
Understanding Doubly Stochastic Clustering

Tianjiao Ding 1 Derek Lim 2 René Vidal 1 Benjamin D. Haeffele 1

Abstract
The problem of projecting a matrix onto the space
of doubly stochastic matrices finds several appli-
cations in machine learning. For example, in spec-
tral clustering, it has been shown that forming the
normalized Laplacian matrix from a data affinity
matrix has close connections to projecting it onto
the set of doubly stochastic matrices. However,
the analysis of why this projection improves clus-
tering has been limited. In this paper we present
theoretical conditions on the given affinity matrix
under which its doubly stochastic projection is
an ideal affinity matrix (i.e., it has no false con-
nections between clusters, and is well-connected
within each cluster). In particular, we show that a
necessary and sufficient condition for a projected
affinity matrix to be ideal reduces to a set of con-
ditions on the input affinity that decompose along
each cluster. Further, in the subspace clustering
problem, where each cluster is defined by a lin-
ear subspace, we provide geometric conditions on
the underlying subspaces which guarantee correct
clustering via a continuous version of the prob-
lem. This allows us to explain theoretically the
remarkable performance of a recently proposed
doubly stochastic subspace clustering method.

1. Introduction
Spectral clustering is a core technique in machine learning,
allowing one to cluster data with relatively general geomet-
ric arrangements based on pairwise measures of similarity
(or affinity) between data points. The steps of spectral clus-
tering are well-known: 1) Define an affinity matrix whose
(i, j)th entry measures the similarity between points i and j;
2) Normalize the affinity matrix and compute a Laplacian;
3) Use eigenvectors of the Laplacian to define an embed-
ding of the data; and 4) Cluster the embedding. However,
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Figure 1. Left: An affinity from a weighted stochastic block model
of 3 clusters, where the probability of a inter- and intra-cluster
connection are both 0.5, and the weights of inter- and intra-cluster
connections are from N (1, .12) and N (1.25, .12) respectively.
Right: A projection of the affinity onto the set of doubly stochastic
matrices under the ℓ2 metric, which has few false connections and
recovers the 3 clusters.

despite the relative simplicity in defining these steps, there
are several implementation details that can have a consid-
erable impact on the overall clustering performance. For
example, the definition of the affinity matrix appears to be
the most important choice one needs to consider for good
performance. However, a key detail that often receives rel-
atively little attention but can have a significant impact on
performance is how to normalize the affinity matrix. Indeed,
the two most popular spectral clustering methods, Ratio
Cut (Hagen & Kahng, 1992) and Normalized Cut (NCut)
(Shi & Malik, 2000), use two different normalizations of
the affinity, which emerge as continuous relaxations of two
different clustering objectives. An alternative point of view
is provided by Zass & Shashua (2006), who argue that these
methods for normalizing the affinity matrix are closely re-
lated to projecting the affinity onto the space of doubly
stochastic matrices, with the difference between methods
being what distance3 is minimized in the projection.

With this context, recall that an ideal affinity matrix satisfies
two properties: 1) Connectivity, i.e., the non-zero entries
(connections) between points within a cluster form a fully-
connected graph and 2) No false connections, i.e., there are
no connections for points between two different clusters.
Prior work has studied conditions on the data under which

3For simplicity, we abuse the word distance to include other
more general ‘distance-like’ measures which to do not necessarily
satisfy all axioms of a distance (e.g., divergences).
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the affinity matrix computed from the data satisfies some of
these properties. For example, the problem of subspace clus-
tering considers clustering data which is (approximately)
supported on a union of low-dimensional linear subspaces,
where each linear subspace defines a cluster. In this case,
an affinity matrix is typically computed by expressing each
data point as a linear combination of all other data points
and enforcing sparse or low-rank properties on the matrix of
coefficients, which is then used to define the affinity (Vidal
et al., 2016). While several sufficient conditions on the data
under which no false connections exist between points from
different subspaces (Property 2) have been derived (Vidal
et al., 2016), such conditions do not guarantee the connec-
tivity of the affinity. This issue is discussed in (You et al.,
2016), where the trade off between sparsity and connec-
tivity is studied experimentally. Moreover, even when the
conditions on the data that guarantee no false connections
of the affinity are violated, suitable normalization can still
lead to an ideal affinity. Indeed, a wide number of ad-hoc
approaches have been proposed to normalize an affinity ma-
trix beyond the standard normalization inherent to NCut
or RatioCuts (Liu et al., 2013; Ji et al., 2014; Elhamifar
& Vidal, 2013), and it has even been argued that much of
the benefit claimed by many proposed clustering algorithms
can actually be attributed largely to ad-hoc affinity normal-
ization (Haeffele et al., 2020). Seeking a more principled
approach to affinity normalization, Lim et al. (2020) follow
the interpretation of Zass & Shashua (2006) and show em-
pirically that normalizing the affinity matrix by projecting
it to the space of doubly stochastic matrix under the ℓ2 dis-
tance achieves state-of-the-art performance across a wide
variety of common clustering datasets. This is illustrated in
Figure 1, which shows that a very noisy affinity matrix with
numerous false connections between the 3 underlying clus-
ters becomes nearly ideal following projection to a doubly
stochastic matrix under the ℓ2 metric.

Contributions. In this work, we give a rigorous theoretical
analysis of doubly stochastic projection of affinity matrices
with the ℓ2 metric (Problem (2)) to help explain its empirical
success. First, we prove a necessary and sufficient condi-
tion on the input affinity for the projected affinity to have
no false connections (Theorem 2.2) even when the origi-
nal affinity matrix might contain a large number of false
connections. While the optimality condition couples the
primal and dual variables from different clusters together
which could complicate the analysis, the condition we pro-
vide relates quantities from decoupled sub-problems, each
of which concerns the doubly stochastic projection of the
entries within only one cluster. Further, under some models
of the input affinity, this allows us to characterize conditions
under which an input affinity with false connections will
have no false connections and be well-connected within
each cluster following doubly stochastic projection (Corol-

laries 2.3 and 2.4). Then, we specialize to the subspace
clustering data model, where the data is assumed to be gen-
erated from a union of linear subspaces, each defining a
cluster. For this setting, we develop a continuous problem
(21), i.e., in the limit when the number of data points be-
comes very large and uniformly distributed, followed by a
continuous counterpart of the decoupling theorem (Theo-
rem 3.2). This allows for an analysis of false connections
(Theorem 3.5) and the connectivity of the projected affini-
ties (Theorem 3.8), which depends solely on the subspace
dimensions, percentage of points within each subspace, and
the angles between the subspaces. In particular, we show
that there will be no false connections in the normalized
affinity matrix if the subspaces are sufficiently separated
in angle, or have sufficiently low dimensions, or are well
balanced in terms of mixture weights. Finally, we conduct a
variety of experiments that illustrate our theoretical findings
and demonstrate the utility of doubly stochastic projection
in different settings.

2. Doubly Stochastic Clustering
2.1. Problem Formulation

To define the doubly stochastic clustering problem that we
study, consider n data points drawn from k underlying clus-
ters, where cluster l contains nl points and n = n1+· · ·+nk.
Define the mixture weight of each cluster l as πl =

nl

n .

Given an affinity matrix K ∈ Rn×n, where Kij = Kji ≥
0 denotes the similarity between data points i and j, the
method of doubly stochastic clustering consists of two steps.
First, one projects a scaled version of the given K onto the
set of doubly stochastic matrices4

An := {A ∈ Rn×n : Aij ≥ 0,∀i, j; A1 = A⊤1 = n1}

under some notion of distance d

A∗ = argmin
A∈An

d(A,
1

η
K), (1)

where 1 is the vector of all ones, and η > 0 is a scaling
parameter. After that, one runs spectral clustering on the
obtained A∗ to produce the final clustering. One immediate
merit of projecting onto An is that one does not need to
choose between Ratio Cut and NCut, since both are equiva-
lent5 on a doubly stochastic affinity A∗.

Choice of the Distance d. As briefly mentioned in §1, classi-
cal spectral clustering methods correspond to projecting the
given affinity K onto the set of doubly stochastic matrices
An under different distances: Ratio Cut is closely related to

4The usual definition of a doubly stochastic matrix requires the
row and column sums to be 1. Here, without loss of generality, we
define the sums to be n to simplify notation in our later analysis.

5That is, the two cuts yield the same Laplacian I − 1
n
A∗.
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projection under the ℓ1 metric, and NCut to projection under
the KL divergence (Zass & Shashua, 2006). One interesting
and perhaps natural alternative is to use the ℓ2 norm as a
distance. Remarkably, doubly stochastic projection under
the ℓ2 metric yields state-of-the-art performance in subspace
clustering on a variety of realistic datasets (Lim et al., 2020).
This is largely due to the empirical observation that such a
projection strikes a balance between removing false connec-
tions (Property 2) and maintaining connectivity (Property
1), via a parameter η that controls the sparsity of the output
affinity A∗. This control of sparsity is, however, not present
when projecting with the ℓ1 norm6 and also absent when
projecting with the KL divergence7.

Importance of Connectivity. Note that the absence of false
connections is insufficient to guarantee correct clustering.
This is because the connections within one cluster may not
form a connected subgraph, resulting in the cluster being
over-segmented. Further, the stability of spectral clustering
(§1) against perturbations on the affinity is associated with
whether each cluster is sufficiently well connected (see §7.1
of Von Luxburg, 2007). Hence, the stability of the final
clustering benefits from the affinity being as connected as
possible within each cluster.

Based on the discussion above, this paper focuses on doubly
stochastic projection under the ℓ2 metric, which we refer to
as DS-D(K, η):

A∗ = argmin
A∈An

∥∥∥∥A− 1

η
K

∥∥∥∥2
F

. (2)

2.2. Optimality Analysis

We first study the optimality conditions of DS-D(K, η).
Since the optimization problem is strongly convex, a stan-
dard primal-dual analysis gives the following necessary and
sufficient conditions for global optimality.

Proposition 2.1. The optimality conditons to DS-D(K, η)
are

A∗ =
1

η
[K −α∗1⊤ − 1α∗⊤]+, (3)

1

η
[K −α∗1⊤ − 1α∗⊤]∗+1 = n1, (4)

where A∗ ∈ Rn×n is the unique primal solution, α∗ ∈ Rn

is a dual solution which satisfies (4), and [·]+ = max(·, 0)
is applied entrywise.

Note that from the form of the primal solution for A∗, the
no false connections property is equivalent to saying that for

6Since the output affinity A∗ differs from the input K only
by their diagonal entries as per Proposition 1 of (Zass & Shashua,
2006), the sparsity is almost unchanged.

7See Proposition 2 of (Zass & Shashua, 2006).

all i, j coming from different clusters, Kij ≤ α∗
i + α∗

j . As
such, we would like to find lower bounds on entries of α∗

to give sufficient conditions on A under which A∗ enjoys
the no-false-connection property. Nevertheless, it is non-
trivial to directly bound α∗ in a meaningful way due to the
coupling the entries of α∗ in (4). However, as we show in
our next result, the no-false-connection property is satisfied
if and only if the DS-D(K, η) problem can be decoupled
into a sequence of doubly stochastic projection problems
along the inter-cluster portions of the affinity matrix.

Without loss of generality, assume that the rows/columns of
K are sorted according to their cluster membership, i.e.

K =


D(1) ∗ · · · ∗
∗ D(2) · · · ∗
...

...
. . .

...
∗ ∗ · · · D(k)

 , (5)

so that the l-th diagonal block of K, D(l) ∈ Rnl×nl , con-
tains the intra cluster affinities for cluster l. Further let i ∼ j
and i ̸∼ j notate that points i and j are in the same or differ-
ent clusters, respectively. With this notation we then have
the following result.

Theorem 2.2. The following statements are equivalent:

1. For each cluster l, there exist α(l) ∈ Rnl a dual solu-
tion of DS-D(D(l), η

πl
), such that α◦

i + α◦
j ≥ Kij for

all i ̸∼ j, where α◦ := [α(1)⊤, . . . ,α(k)⊤]⊤ ∈ Rn.

2. A◦ := diag( 1
π1
A(1), . . . , 1

πk
A(k)) is the unique pri-

mal solution of DS-D(K, η), where for each cluster l,
A(l) is the unique primal solution of DS-D(D(l), η

πl
).

3. The unique primal solution of DS-D(K, η) has no false
connections.

A proof is given in the Appendix. The above theorem gives
necessary and sufficient conditions for the projected doubly
stochastic affinity to have no false connections. Notably,
in words this theorem implies that if one solves a DS-D
problem for each within-cluster block D(l) of K, then the
solution of the DS-D for the entire K matrix will have no
false connections if and only if the solution can be formed
by concatenating all of the within-cluster solutions into
a block diagonal matrix. From this result, we can give
several immediate corollaries for simple properties of the
affinity matrix that are sufficient to guarantee the no-false-
connections property.

Corollary 2.3 (Constant Intra-cluster Connections). Sup-
pose K is such that for each cluster l, all intra-cluster
connections have values µl, i.e., D(l) = µl1nl

1⊤
nl

. Then,
the unique primal optimal for DS-D(K, η) has no false
connections and is fully-connected within each cluster, as
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long as any connections in K between clusters p ̸= q have
values at most 1

2 (µp + µq − η
πp

− η
πq
).

Proof. Suppose the upper bound on connections between
clusters in K holds. We first show that statement 1. in The-
orem 2.2 holds. Consider the problem DS-D(D(l), η

πl
). By

Proposition 2.1, it can be seen that α(l) := 1
2

(
µl − η

πl

)
1nl

and A(l) := πl

η [D(l) −α(l)1⊤
nl

− 1nl
α(l)⊤] is respectively

a dual optimal and the primal optimal for this problem. In-
deed, a row sum of A(l) takes the form

πl

η

nl∑
j=1

[
µl − µl +

η

πl

]
+

=
πl

η

nl∑
j=1

η

πl
= nl. (6)

Now, letting α◦ = [α(1)⊤, . . . ,α(k)⊤]⊤ as in Theorem 2.2,
note that if point i is in cluster p and point j is in cluster
q ̸= p, then α◦

i + α◦
j = 1

2

(
µp + µq − η

πp
− η

πq

)
. Since

we assume that 1
2 (µp + µq − η

πp
− η

πq
) ≥ Kij , statement

1. in Theorem 2.2 holds. It follows from statement 2. that
the primal optimal A◦ for DS-D(K, η) is fully connected
within cluster l, where each connection is of strength 1

πl
;

from statement 3. that A◦ has no false connections.

Corollary 2.4 (Constant Sum of Top Intra-cluster Connec-
tions). Suppose K is such that for each cluster l, there
exists an integer σl, such that the σl-nearest-neighbour8

graph of D(l), denoted as S(l), satisfy the following

1. 1
σl

∑
j∈S

(l)
1

D
(l)
1j = · · · = 1

σl

∑
j∈S

(l)
nl

D
(l)
nlj

:= el,

2. ∀(i, j) ∈ S(l), D
(l)
ij ≥ el − nη

σl
,

3. ∀(i, j) /∈ S(l), D
(l)
ij ≤ el − nη

σl
.

Then, the unique primal optimal for DS-D(K, η) has no
false connections and is connected within cluster l along
the σl-nearest-neighbour graph, as long as any connections
in K between clusters p ̸= q have values at most 1

2 (ep +
eq − nη

σp
− nη

σq
).

Intuitively, the above corollaries suggest that as long as any
two clusters have false connections smaller than the average
of the largest intra-cluster connections, minus some gap
that is proportional to the η parameter, the optimal doubly
stochastic projection will have no false connections and is
well connected within each cluster.

The next corollary shows that the doubly stochastic pro-
jection given by the solution of DS-D(K, η) is invariant to
perturbations by low rank matrices of the form v1⊤ + 1v⊤

8Namely, S(l) contains indices of the largest σl entries of each
row or column of D(l) (recall K is symmetric).

for any v ∈ Rn, such as an elementwise perturbation by a
constant c ∈ R. Thus, the doubly stochastic projection can
remove certain additive corruptions on the input affinity K.
Corollary 2.5. For a vector v ∈ Rn, the primal optimal to
DS-D(K, η) is the same as that of DS-D(K+1v⊤+v1⊤, η).
In particular, adding a constant c ∈ R to each entry of K
does not change the solution DS-D(K + c11⊤).

Proof. For any v ∈ Rn and A ∈ An, note that

⟨1v⊤ + v1⊤,A⟩ =
∑
i

∑
j

viAij +
∑
i

∑
j

vjAij (7)

=
∑
i

vi
∑
j

Aij +
∑
j

vj
∑
i

Aij (8)

=
∑
i

vin+
∑
j

vjn = 2n
∑
j

vj , (9)

which is a constant independent of A. Thus, the minimizer
of the objective DS-D(K) is the same as the minimizer of
the objective DS-D(K + 1v⊤ + v1⊤). The second part of
the lemma follows from taking v = c

21.

3. Doubly Stochastic Subspace Clustering
Given our above analysis for the general DS-D problem, we
now consider a specific data model to provide additional
analysis. Specifically, we will analyze the subspace cluster-
ing model, where the data are assumed to lie on a union of
(low-dimensional) linear subspaces and the goal is to clus-
ter data points based on which linear subspace they lie in.
This assumption is a reasonable model for many real-world
data problems (Vidal, 2011), possibly after a preprocess-
ing of the data such as the scattering transform (Bruna &
Mallat, 2013). Past work has theoretically studied this data
model in various settings (Soltanolkotabi & Candés, 2012;
Soltanolkotabi et al., 2014; You & Vidal, 2015), and re-
cent empirical work that uses doubly stochastic projection
has achieved state-of-the-art empirical results for subspace
clustering problems (Lim et al., 2020).

Specifically, consider k subspaces {Sl}kl=1 of RD, each of
dimension dimSl := dl < D. Suppose each Sl contains
nl points X(l) = [x

(l)
1 , . . . ,x

(l)
nl ] lying on the unit sphere

SD−1. Let Φ =
⋃k

l=1 Sl denote the union of the subspaces,
and X = [X(1), . . . ,X(k)] ∈ RD×n the collection of data.
Given X , one performs subspace clustering using doubly
stochastic projection by first computing an affinity matrix
K ∈ Rn×n from X via kernel functions9 or existing sub-
space clustering methods and the solving the DS-D(K, η)
problem. Then, one can perform spectral clustering on the
solution to DS-D(K, η) and obtain a final clustering.

9That is, for some positive definite function κ : RD×RD → R,
take Kij = κ(xi,xj) for every i, j. Examples for κ include the
Euclidean inner product and radial basis function kernel.
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3.1. Analysis of the Continuous Problem

Since directly tackling the (discrete) DS-D problem with
finite data points from a union of subspace model is non-
trivial, we consider its continuous counterpart where the
number of data points becomes infinitely large and uni-
formly distributed. First, we define a discrete measure asso-
ciated with data X

µX(z) =
1

n

n∑
j=1

δ(z − xj) (10)

in which δ(·) is the Dirac function on the sphere SD−1 such
that for any f : SD−1 → R and any z0 ∈ SD−1,

∫
z∈SD−1

f(z)δ(z − z0)dµSD−1 = f(z0) (11)

where µSD−1 is the uniform measure on SD−1. With the
above definitions, one can view the discrete objective (2) as

∥∥∥∥1ηK −A

∥∥∥∥2
F

=
∑
i,j

(
1

η
Kij −Aij

)2

(12)

≃
∑
i,j

(
1

η
K(xi,xj)−A(xi,xj)

)2

(13)

=n2Ey∼µX
Ez∼µX

{(
1

η
K(y, z)−A(y, z)

)2
}
. (14)

where we assume K ∈ L2(SD−1 × SD−1) is a kernel func-
tion. Similarly, the constraints in (2) can be written as

∀i, n =
∑
j

Aij ≃
∑
j

A(xi,xj) (15)

= nEz∼µX
{A(xi, z)}, (16)

∀i, n ≃ nEz∼µX
{A(z,xi)}, (17)

∀i, j, Aij = A(xi,xj) ≥ 0. (18)

Note further that the discrete measure can be separated as

µX(z) =

k∑
l=1

nl

n
µX(l)(z) =

k∑
l=1

πlµX(l)(z). (19)

In the continuous case, one replaces the discrete measure
µX by its continuous counterpart

µ′(z) :=

k∑
l=1

πlµSD−1∩Sl
(z), (20)

where µSD−1∩Sl
is the uniform measure on SD−1∩Sl. This

leads to the continuous problem DS-C(K, η)

min
A

Ey∼µ′Ez∼µ′

{(
1

η
K(y, z)−A(y, z)

)2
}

(21)

s.t. Ez∼µ′{A(y, z)} = 1, y ∈ SD−1 ∩ Φ a.e. (22)

Ey∼µ′{A(y, z)} = 1, z ∈ SD−1 ∩ Φ a.e. (23)

A(y, z) ≥ 0, y, z ∈ SD−1 ∩ Φ a.e. (24)

According to an analysis of the quadratically regularized
optimal transport problems (Lorenz et al., 2021), A∗ ∈
L2(SD−1 × SD−1) is a solution if and only if there exists a
dual function α∗ ∈ L2(SD−1) such that

A∗(y, z) =
1

η
[K(y, z)− α∗(y)− α∗(z)]+, (25)

Ey∼µ′{[K(y, z)− α∗(y)− α∗(z)]+} = η, (26)
Ez∼µ′{[K(y, z)− α∗(y)− α∗(z)]+} = η, (27)

where (25)-(27) are understood pointwise almost every-
where.
Remark 3.1. (21) is strongly convex, hence it has a unique
primal solution10. However, infinitely-many dual solutions
may exist due to [·]+ zeroing out negative inputs.

Similar to the case for the discrete problem (§2), the primal
solution A∗ satisfying the no false connections property
(which we will equivalently refer to by saying the solution
is subspace preserving) is equivalent to saying that for all
y, z from different subspaces, K(y, z) ≤ α∗(y) + α∗(z)
almost surely. Again, we can separate α∗(y) for y from
different subspaces to show equivalent conditions for when
the subspace preserving property will be satisfied.

Theorem 3.2. For each Sl, let α(l) : Sl → R be a dual
optimal and A(l) the unique primal optimal of DS-C(K, η

πl
)

with measure µSD−1∩Sl
. Define α◦(x) : Φ → R such that

for x ∈ Sl, α◦(x) = α(l)(x).11 Define A◦ : Φ × Φ →

R, A◦(y, z) =

{
1
πl
A(l)(y, z) y, z ∈ Sl

0 o.w.
. The following

statements are equivalent:

1. α◦(y) + α◦(z) ≥ K(y, z) for all y ̸∼ z.

2. A◦ is the unique primal optimal for DS-C(K, η).

3. The unique primal optimal for DS-C(K, η) is subspace
preserving.

10By uniqueness, we mean that any optimal solutions can only
differ from each other on a set of measure zero with respect to µ′.

11For x lying in multiple subspaces, α◦(x) can be defined
arbitrary, since such x lie in a set of measure zero with respect to
µSD−1∩Sl

, provided that the subspaces are independent, disjoint
or intersecting.
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Figure 2. (a) Plot of ρd(α) with respect to α and dimension d. (b)
Given two subspaces of mixture weights π1 and 1− π1, each of
dimension d, the subspaces must have first principal angle of at
least θmin to guarantee subspace preserving property.

3.2. Example: Inner Product Kernel

To demonstrate the effect of doubly stochastic projection for
clustering subspaces, we consider the simplest kernel for K
which is inner product kernel K(y, z) = |⟨y, z⟩|. We first
define the following quantity, which turns out useful in the
analysis later on.

Definition 3.3 (Average height of spherical cap). For any
dimension d, define ρd(α) =

∫
z∈Sd−1 [|zd| − 2α]+dµSd−1 .

Remark 3.4. ρd(α) is decreasing in α with d fixed and
decreasing in d with α fixed. Figure 2a shows ρd(α) for
α ∈ [0, 0.5] and d ∈ {10, 100, 1000}. More notes on ρd(α)
are provided in the Appendix.

Theorem 3.5 (Subspace preserving property). Let K be
the inner product kernel. If for any two different subspaces
Sp,Sq , we have

max
y∈SD−1∩Sp

z∈SD−1∩Sq

|⟨y, z⟩| ≤ ρ−1
dp

(
η

πp
) + ρ−1

dq
(
η

πq
), (28)

then the subspace preserving property holds for A∗.

Remark 3.6. Note that with η fixed, ρ−1
d ( ηπ ) is larger when

the dimension d is smaller or when the mixture weight
π is larger. Moreover, with a fixed subspace arrange-
ment Φ and mixture weights {πl}kl=1, subspace preserv-
ing property is guaranteed with sufficiently small η, since
limx→0 ρ

−1
d (x) = 0.5.

Remark 3.7. As seen in Figure 2b, to guarantee the sub-
space preserving property, the minimum angle between two
subspaces must be larger, i.e., subspaces should be more
separated, when the subspaces are more imbalanced.

Theorem 3.8 (Connectivity). Let K be the inner product
kernel and suppose A∗ satisfy subspace preserving property.
For any subspace Sl, any two points y, z ∈ Sl ∩ SD−1

except for a set of measure zero have a non-zero connection
in A∗ as long as

|⟨y, z⟩| > 2ρ−1
dl

(
η

πl
). (29)

Note that from the above two results, we are guaranteed that
the doubly stochastic projection will achieve the desired
properties of being subspace preserving and being fully
connected for an appropriate choice of parameter η.

4. Experiments
We now verify our theoretical analysis with a variety of
numerical experiments.

Metrics. Since our theorems predict the no-false-connection
and subspace preserving properties, we report the feature
detection error12 (FDE) defined as

1

n

n∑
i=1

∑
j:j ̸∼i

|Aij |/∥Ai∥1 =
1

n

n∑
i=1

∑
j:j ̸∼i

|Aij |, (30)

and the percent of false connections (PFC). Both metrics
take value 0 when A has no false connections. Likewise to
asses the connectivity, we report the number of non-zeros
(NNZ) of A, defined as the average number of entries per
row of A that are larger than 10−8. To further evaluate the
quality of the final clustering, we run spectral clustering on
A, and report the clustering accuracy (ACC) and normalized
mutual information (NMI).

4.1. Weighted Stochastic Block Model

First, we consider the problem of clustering an affinity sam-
pled from a Weighted Stochastic Block Model (WSBM)
with random edge weights (Aicher et al., 2015). A sample
affinity K is taken by first including each intra-cluster edge
with a probability p and each inter-cluster edge with a prob-
ability q, then drawing edge weights for these chosen edges.
Intra-cluster edge weights are drawn from a normal distribu-
tion N (1.25, .12) and inter-cluster edge weights are drawn
from another normal distribution N (1, .12). In our experi-
ments, we take p close to q, so a successful algorithm cannot
just use the difference in sparsity between blocks, and must
take into account the edge weight. We use a WSBM with 5
blocks and 50 points per block.

We run the DS-D(K, η) studied by this paper on the K with
varying η ∈ {0.002, 0.004, 0.01} to obtain a doubly stocah-
stic A. Table 1 reports mean and median feature detection
error, percent false connections, number of non-zeros, clus-
tering accuracy and normalized mutual information of A
over 10 K samples from weighted stochastic block mod-
els WSBM(.5, .4) and WSBM(.5, .5). Remarkably, even
when the original affinity has a significant amount of false
connections and achieves low clustering accuracy, the affin-
ity normalized by DS-D has much fewer false connections

12This metric is commonly used in subspace clustering, known
as feature detection error (Soltanolkotabi & Candés, 2012) or
subspace preserving error (You et al., 2016; Lim et al., 2020).
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Original  = .002  = .004  = .01

Low

High

Figure 3. An affinity K sampled from the weighted stochastic block model WSBM(.5, .4) of 5 clusters and its doubly stochastic
projections DS-D(K, η) with varying η.

Table 1. Feature detection error, number of non-zeros, clustering accuracy and normalized mutual information for the original affinity
K and the output affinity from doubly stochastic clustering DS-D(K, η), with K generated by the weighted stochastic block model
WSBM(p, q) of 5 clusters, where p, q are the probability of intra-cluster and inter-cluster edges respectively. Mean and standard deviations
are taken over 10 trials.
Dataset WSBM(.5, .4) WSBM(.5, .5)

Metrics FDE PFC NNZ ACC NMI FDE PFC NNZ ACC NMI

Original affinity .72±.00 77±.2 104.5±.2 .79±.05 .53±.07 .77±.00 80±.2 124.5±.2 .33±.02 .07±.02
DS-D (η = .002) .02±.00 4.5±.6 12.0±.2 1.0±.00 1.0±.00 .03±.00 5.9±.6 12.0±.3 1.0±.00 1.0±.00
DS-D (η = .004) .04±.01 11±.9 18.5±.4 1.0±.00 1.0±.00 .06±.00 14±.8 18.7±.3 1.0±.00 1.0±.00
DS-D (η = .01) .15±.01 35±1 34.1±.6 1.0±.00 1.0±.00 .17±.00 38±.9 35.9±.7 1.0±.00 1.0±.00

and perfect clustering accuracy. For example, the original
affinity sampled from WSBM(.5, .4) has mean feature detec-
tion error and clustering accuracy of 0.72 and 0.79, while
the one produced by DS-D(η = .004) has 0.04 and 1.0 re-
spectively. Further, the above conclusion holds even in the
challenging case of WSBM(.5,.5), where the probability of
an intra-cluster edge p is the same as that of an inter-cluster
edge q. Last but not the least, with a smaller η, the affinity
given by DS-D is sparser as expected, e.g., the mean number
of non-zeros is 12 with η = 0.002 and 34 with η = 0.01.

4.2. Subspace Clustering

Here we conduct experiments to demonstrate the effect of
doubly stochastic projection when the clusters are defined
by linear subspaces. We first fix K to be the inner product
kernel, and verify conditions on the subspace preserving
property and connectivity studied13 in §3.2 under various
subspace angle θmin, dimension d, and problem parameter
η. Next, we further consider the kernel matrices from Least
Squares Regression (Lu et al., 2012), and show the effect of
doubly stochastic projection improving clustering.

Inner Product Kernel. We generate two subspaces of
dimension d in RD=20. To control the angles between sub-

13While our theorems for understanding subspace clustering are
studied in the continuous limit, the experiments are conducted with
finite data points.

spaces, we choose the basis of subspaces as

U (1) =

[
Id

0D−d,d

]
∈ RD×d,

U (2) =



cos(θ1) 0 . . . 0
0 cos(θ2) . . . 0
...

...
. . . 0

0 0 . . . cos(θd)
sin(θ1) 0 . . . 0

0 sin(θ2) . . . 0
...

...
. . . 0

0 0 . . . sin(θd)
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



∈ RD×d,

(31)

where θ1 = θmin is the smallest angle between the sub-
spaces, and cos(θi) decreases linearly from cos(θmin) to
cos(θd) = 0.5 cos(θmin). Note that θmin = 90◦ is a
simple case where the subspaces are orthogonal, whereas
θmin = 0◦ is difficult since the subspaces have non-trivial
intersections. After that, from each subspace we sample
n = 50d points of unit norm uniformly at random, which
gives 100d points in total, and the input K is taken to the
inner product kernel from those points.

Figure 4 reports feature detection error and number of
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non-zeros for d ∈ {2, 5, 10}, θmin ∈ [0, 90]◦ and η ∈
{5 · 10−2, 10−2, 5 · 10−3, 10−3}. Remarkably, even though
the inner product kernel K is not subspace preserving when
the subspaces are not orthogonal (i.e., θmin ̸= 90◦), its dou-
bly stochastic projection A∗ is subspace preserving when
the subspaces are far away enough from each other (i.e.,
θmin is large) or when η is sufficiently small. For example,
in Figures 4a, 4c and 4e, subspace preserving property holds
for A∗ when θmin ≥ 40◦ and η ≤ 0.001. Moreover, given
η, the closest angle between two subspaces such that A∗

does not have false connections is increasing in the sub-
space dimension d, e.g., using a rather loose η = 0.05, the
smallest θmin is below 40◦ for d = 2 (Figure 4a), while
θmin is above 60◦ for d = 10 (Figure 4e). Surprising as it
may sound, the above phenomenon are expected from Theo-
rem 3.5. Last but not the least, the doubly stochastic affinity
A∗ has fewer non-zero connections when η is smaller, which
is expected from Theorem 3.8. As such, in practise one may
want to tune η to balance between having fewer false con-
nections and the connectivity. Nevertheless, there seems
to be a range of suitable η, even for this arguably simplest
inner product kernel. For instance, with η ∈ [0.001, 0.01],
A∗ is subspace preserving whenever θmin ≥ 30◦ and gets
at least d-many connections inside the subspace.

Least Squares Regression Kernel. Beyond the inner prod-
uct kernel, we also investigate the effect of doubly stochas-
tic projection on other kernels used for subspace clustering,
such as the LSR kernel (Lu et al., 2012). We generate k
subspaces of dimension d in RD=20 uniformly at random,
from which we further sample n = 50d points of unit norm
uniformly at random. First, we compute the LSR kernel K
on the data, and record its performance (raw). The param-
eter γ in LSR is set to be 10. Then, we apply the doubly
stochastic projection and report the metrics on A∗.

Figure 5 reports feature detection error, number of non-
zeros, clustering accuracy and normalized mutual informa-
tion for k ∈ {2, 5} and d ∈ {8, 14}. As expected, clustering
seems to be simpler when one has fewer number of subspace
(k = 2) or the subspaces are of lower dimension (d = 8).
Interestingly, doubly stochastic projection seems to improve
clustering over the LSR kernel. This is evidenced by the
fact that doubly stochastic not only decreases feature detec-
tion error while still leaving a high connectivity, but also
increases the final clustering quality as measured by cluster-
ing accuracy and normalized mutual information.

5. Conclusion
In this paper, we provide an analysis of projecting an affinity
matrix onto the set of doubly stochastic matrices with the
ℓ2 distance metric, a technique commonly applied for spec-
tral clustering yet whose theoretically properties have not
been rigorously analyzed. In particular, we establish nec-
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Figure 4. Feature detection error and number of non-zeros of the
output affinity from doubly stochastic clustering DS-D(K, η), with
the input affinity K being the inner product kernel of data com-
ing from two subspaces of dimensions d ∈ {2, 5, 10} in RD=20,
each containing n = 50d points of unit norm uniformly at ran-
dom. For each d, metrics are shown for varying the smallest
angle between subspaces θmin ∈ [0, 90]◦ and problem parame-
ter η ∈ {5 · 10−2, 10−2, 5 · 10−3, 10−3}. This demonstrates the
geometric conditions for subspace preserving property and con-
nectivity in terms of θmin, d, η, as predicted by Theorem 3.5 and
Theorem 3.8 for the continuous problem (§3).
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Figure 5. Feature detection error, number of non-zeros, clustering
accuracy and normalized mutual information of the LSR kernel (Lu
et al., 2012) before and after applying doubly stochastic projection,
where the LSR kernel is applied on data from k subspaces of
dimension d in RD=20, each containing n = 50d points of unit
norm. Both the subspaces and the points are sampled uniformly at
random.

essary and sufficient conditions for the no-false-connection
property and provide conditions on the input affinity matrix
which will satisfy these conditions, along with conditions
which guarantee the clusters will be connected. Moreover,
in the case when the clusters are linear subspaces, we fur-
ther provide analysis of the no-false-connection property
and connectivity in terms of subspace dimensions, ratio of
points within each subspace, and the angles between sub-
spaces, via a continous extension of the doubly stochastic
projection. Finally, via experiments under a variety of set-
tings we compliment the theories and demonstrate the effect
of doubly stochastic projection.
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A. Additional Proofs
Proof of Theorem 2.2.

Proof. (1 ⇒ 2). Let (A(l),α(l)) be primal-dual optimal for DS-D(D(l), η
πl

). By Proposition 2.1

A(l) =
πl

η2
[D(l) −α(l)1⊤ − 1α(l)⊤]+ (32)

πl

η2
[D(l) −α(l)1⊤ − 1α(l)⊤]+1 = nl1. (33)

Assume now α◦
i + β◦

j ≥ Kij for any i ̸∼ j. We verify if (A◦,α◦) are primal-dual optimal for P-DS(K, η). First, we
check that 1

η2
[K − α◦1⊤ − 1α◦⊤]+ = A◦. For any i, j coming from the same cluster l′, 1

η2
[Kij − α◦

i − α◦
j ]+ =

1
πl′

πl′
η2

[D
(l′)
i′j′ − α

(l′)
i′ − α

(l′)
j′ ]+ = 1

πl′
A

(l′)
i′j′ = A◦

ij , where i′ = i − n1 − · · · − nl′−1, j′ = j − n1 − · · · − nl′−1 are the

counterpart of i, j for indexing D(l′). For i, j from different clusters, we have 1
η2
[Kij − α◦

i − α◦
j ]+ = 0 = A◦

ij . Now, we
only need to verify that A◦1 = n1. This is immediate following the construction of A◦ and (33).

(2 ⇒ 3). This is trivial.

(3 ⇒ 1). Let A◦ be the primal optimal and α◦ be a dual optimal for DS-D(K, η). By Proposition 2.1,

A◦ =
1

η2
[K −α◦1⊤ − 1α◦⊤]+ (34)

A◦1 = n1 (35)

By assumption, A◦ has no false connections, i.e., A◦
ij = [Kij − α◦

i − α◦
j ]+ = 0 for all i ̸∼ j. That is, α◦

i + α◦
j ≥ K†

ij .
This fact, together with (35), yields 1

η2
[D(l) −α(l)1⊤ − 1α(l)⊤]+1 = nl1 for all l ∈ {1, . . . , k}. Therefore, α(l) is dual

optimal for DS-D(D(l)).

Lemma A.1. Suppose K is rotational invariant, i.e., K(y, z) = K(Ry,Rz) for any orthogonal R. For any dimension d
and constant η0, there exists a constant α such that

∫
y∈Sd−1 [K(y, z)− 2α]+dµSd−1 = η0.

Proof. Taking R to be the householder matrix that sends z to e1 gives∫
y∈Sd−1

[K(y, z)− 2γ]+dµSd−1 =

∫
y∈Sd−1

[K(Ry,Rz)− 2γ]+dµSd−1 (K symmetric) (36)

=

∫
y∈Sd−1

[K(Ry, e1)− 2γ]+dµSd−1 (Householder) (37)

=

∫
y∈Sd−1

[K(y, e1)− 2γ]+dµSd−1 (Change of basis14) (38)

This is to say there exist a γ ∈ [0, 1], such that for any z ∈ Sd−1,
∫
y∈Sd−1 [K(y, z)− 2γ]+dµSd−1 = η2, hence taking α to

be a constant function will satisfy the optimality condition.

Notes on Definition 3.3. For any dimension d ∈ Z≥2, let z21 + z22 + ...+ z2d = 1 be the coordinate representation of the unit
sphere Sd−1 of Rd. Let α ∈ [0, 1]. The goal is to compute ρd(α) =

∫
Sd−1 [|zd| − 2α]+dµSd−1 . Note that

ρd(α) =

∫
Sd−1 [|zd| − 2α]+dS∫

Sd−1 dS
=

1

Ad−1

∫
Sd−1

[|zd| − 2α]+dS (39)

=
2

Ad−1

∫
Sd−1 ∩ zd≥0

[zd − 2α]+dS (40)

=
2

Ad−1

∫
Sd−1 ∩ zd≥2α

(zd − 2α) dS (41)

14Let x = Ry, and note that µSd−1(dy) = µSd−1(dR−1x) = µSd−1(dx), where the second equality is due to the fact that µSd−1 is a
uniform measure.
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where Ad−1 is the surface area of Sd−1. For zd ≥ 0, we have the equation of the sphere as zd =
√
1− (z21 + · · ·+ z2d−1) :=

g(z1, . . . , z
2
d−1), which yields the following identities

zd ≥ 2α ⇔
√
z21 + · · ·+ z2d−1 ≤

√
1− 4α2 (42)√

(
∂g

∂z1
)2 + · · ·+ (

∂g

∂zd−1
)2 + 1 =

1√
1− (z21 + · · ·+ z2d−1)

. (43)

With those, one can perform a change of measure to (41) and get

ρd(α) =
2

Ad−1

∫
√

z2
1+···+z2

d−1≤
√
1−4α2

1− 2α√
1− (z21 + · · ·+ z2d−1)

dA (44)

=
2

Ad−1

(
Vd−1

√
1− 4α2

d−1
− 2αSD−2

∫ √
1−4α2

0

rD−2

√
1− r2

dr

)
, (45)

where Vd−1 is the (d− 1)-dimensional volume of Sd−2. Note that when α = 0, (45) gives ρd(α) =
2Vd−1

Ad−1
, which coincides

with the cd quantity as in (Tsakiris & Vidal, 2018). On the other hand, for a general α ∈ [0, 1], we further have

ρd(α) =
2

Ad−1

(
Vd−1

√
1− 4α2

d−1
− 2αAD−2

∫ sin−1(
√
1−4α2)

0

sin θD−2 dθ

)
(46)

=
2

Ad−1

(
Vd−1

√
1− 4α2

d−1
− 2αAD−2

d− 1

√
1− 4α2

D−1

2F1(
1

2
,
d− 1

2
,
D + 1

2
, 1− 4α2)

)
(47)

=
2

Ad−1

√
1− 4α2

d−1
(
Vd−1 −

2αAD−2

d− 1
2F1(

1

2
,
d− 1

2
,
D + 1

2
, 1− 4α2)

)
, (48)

where 2F1 is the hypergeometric function. Since the last term is hard to bound and interpret, we observe that (41) can be
alternatively written as

ρd(α) =
2

Ad−1

∫
Sd−1 ∩ zd≥2α

zd dS − 4α

Ad−1

∫
Sd−1 ∩ zd≥2α

dS (49)

=
2

Ad−1
Vd−1

√
1− 4α2

d−1
− 4α

Ad−1

∫
Sd−1 ∩ zd≥2α

dS, (50)

where the second term is some scalar times the surface area of a spherical cap. With that, we have

ρd(α) =
2Vd−1

Ad−1

√
1− 4α2

d−1
− 4α

Ad−1

1

2
Ad−1I1−4α2(

d− 1

2
,
1

2
) (51)

= cd(1− 4α2)
d−1
2 − 2αI1−4α2(

d− 1

2
,
1

2
), (52)

where I is the regularized beta function.

Observe that as α increases from 0 to 1
2 , ρd(α) decreases from cd to 0. Thus, it may be desirable to say 1− ρd(α)

cd
= O(α...).

Indeed, we have

1− ρd(α)

cd
= 1− (1− 4α2)

d−1
2 +

2

cd
αI1−4α2(

d− 1

2
,
1

2
) (53)

= 1−

d−1
2∑

i=0

(d−1
2

i

)
(−1)i(4α2)i +

2

cd
αI1−4α2(

d− 1

2
,
1

2
) (54)

= −

d−1
2∑

i=1

(d−1
2

i

)
(−1)i(4α2)i +

2

cd
αI1−4α2(

d− 1

2
,
1

2
) (55)
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Assuming d is odd, i.e., d−1
2 is integer, from the property of I we have

(55) = −

d−1
2∑

i=1

(d−1
2

i

)
(−1)i(4α2)i +

2

cd
α

1− 2α

B(d−1
2 , 1

2 )

d−1
2 −1∑
i=0

(−1)i
(d−1
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