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Abstract
We present a new algorithm to learn a deep neural
network model robust against adversarial attacks.
Previous algorithms demonstrate an adversarially
trained Bayesian Neural Network (BNN) provides
improved robustness. We recognize the adver-
sarial learning approach for approximating the
multi-modal posterior distribution of a Bayesian
model can lead to mode collapse; consequently,
the model’s achievements in robustness and per-
formance are sub-optimal. Instead, we first pro-
pose preventing mode collapse to better approxi-
mate the multi-modal posterior distribution. Sec-
ond, based on the intuition that a robust model
should ignore perturbations and only consider the
informative content of the input, we conceptual-
ize and formulate an information gain objective to
measure and force the information learned from
both benign and adversarial training instances to
be similar. Importantly. we prove and demon-
strate that minimizing the information gain objec-
tive allows the adversarial risk to approach the
conventional empirical risk. We believe our ef-
forts provide a step toward a basis for a prin-
cipled method of adversarially training BNNs.
Our model demonstrate significantly improved
robustness–up to 20%–compared with adversarial
training (Madry et al., 2018) and Adv-BNN (Liu
et al., 2019) under PGD attacks with 0.035 distor-
tion on both CIFAR-10 and STL-10 datasets.

1. Introduction
Deep neural networks (DNNs) have demonstrated impres-
sive performance on challenging tasks, such as image
recognition (He et al., 2016) and natural language process-
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ing (Vaswani et al., 2017). Despite the impressive perfor-
mance, DNNs are poor at quantifying the predictive uncer-
tainty and tend to produce overconfident predictions. Conse-
quently, DNNs are shown to be vulnerable to easily crafted
perturbations added to the inputs—so-called adversarial ex-
amples (AEs) (Szegedy et al., 2014)—to significantly hinder
their performance. In image classification tasks, these per-
turbations are imperceptible to human eyes (Goodfellow
et al., 2015) but can drastically degrade a DNN’s perfor-
mance. There are various methods to find such perturba-
tions in whitebox (Madry et al., 2018; Goodfellow et al.,
2015; Carlini & Wagner, 2017; Papernot et al., 2016a; Yuan
et al., 2021) and blackbox settings (Brendel et al., 2018;
Cheng et al., 2020; Chen et al., 2020; Vo et al., 2022a;b).
Alarmingly, these threats are also shown to be effective
in the physical world (Kurakin et al., 2018; Eykholt et al.,
2018) and effective in transferring across models to perform
black-box attacks (Papernot et al., 2016a; 2017). Adversar-
ial perturbations pose a realistic threat for DNN applications
and motivate the need to develop robust DNNs.

Adversarial Training. Despite the immense effort to over-
come threats posed by adversarial examples, training a DNN
robust against these attacks is challenging. Athalye et al.
(2018a) have shown that one of the most robust defenses
against the threat is Adversarial Training (Madry et al.,
2018). Now, a network is trained with adversarial examples
to build robustness against input perturbations post model
deployment. But, as mentioned by Ye & Zhu (2018), the
adversarial training algorithm relies on the “point estimate"
approach of a deep neural network—a fixed set of network
parameters maps the input to the output. Essentially, a point
estimate with a choice of parameters only defines a single
decision boundary that could be easily manipulated with
a stronger adversarial input beyond the pre-defined adver-
sarial constraints, e.g. maximum norm of perturbations.
Alternatively, we can use multiple decision boundaries from
a distribution of model parameters and integrate out the ef-
fects of parameter choice in the model. That is the premise
of Bayesian Deep Neural Network (BNN) learning meth-
ods (Welling & Teh, 2011) aiming to learn a distribution
over the model parameters. Now, the output predictive dis-
tribution is obtained by integrating out the model parameters
sampled from their distribution.
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Bayesian Adversarial Training. Motivated by the intuition
that removing the effects of the parameter choice can lead
to more robust models, Liu et al. (2019) proposed adversar-
ial training of BNNs and demonstrated impressive results.
However, training BNNs pose a significant challenge; the
exact solution of the posterior distribution (i.e. the model pa-
rameter distribution after observing the data) is intractable.
Efforts devoted to developing a suitable inference approach
to approximate the posterior involve either using Markov
Chain Monte Carlo (MCMC; asymptotically accurate but
slow; see e.g. (Welling & Teh, 2011) or variational inference
(efficient but inaccurate; see e.g. (Blei et al., 2017). For
instance, Liu et al. (2019) uses a variational method named
Bayes by Backprop (BBB) (Blundell et al., 2015) to approx-
imate the posterior with a unimodal Gaussian distribution.
Whilst being an efficient learning algorithm, the challenge
faced with such a learning algorithm is the difficulty of cap-
turing the multi-modal aspect of the posterior distribution
because the parameters sampled are in the proximity of the
mode of the distribution.

Our Hypothesis. We are motivated to explore the potential
robustness gains attainable from an adversarial training al-
gorithm for a Bayesian Deep Neural Network capable of
approximating the multi-modality of the posterior. We hy-
pothesize a model (1) learning a better approximation of the
parameter distribution that (2) gains the same information
from the given input and its adversarial counterpart is more
robust.

Our Contribution. In this paper, to achieve (1), we com-
bine adversarial training with an inference approach to faith-
fully capture the posterior distribution of parameters. The
learning of an approximate multi-modal posterior is not
new, inspired by Liu & Wang (2016), we employ Stein Vari-
ational Gradient Descent (SVGD) that encourages diverse
sampling from the posterior. By utilizing the SVGD ap-
proach, to achieving (2), we design an Information Gain
(IG)1 objective. We summarize our contributions below:

• We propose a novel method to learn a BNN robust against
adversarial attacks by utilizing SVGD to generate param-
eter particles that are parallelly trained to be as diverse
as possible whilst maintaining the same measure of in-
formation content learned from benign and adversarial
instances. Our learning approach enables the model to
both reduce the effect of single parameter choice and
learn the invariant patterns common between the training
dataset and its corresponding adversarial samples.

• To maintain the same measure of information content
learned from both benign and adversarial training in-
stances, we formulate an information gain (mutual infor-

1also known as Mutual Information (Houlsby et al., 2011; Gal
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mation) objective. Our proposed objective reinforces the
minimization of the empirical adversarial risk by forcing
the information gained, learning from the benign and
adversarial samples, to be similar.

• We prove, minimizing the information gain objective
allows the adversarial risk to approach the empirical risk
minimization bound. Simply, the risk of misclassification
of an adversarial example is now the same as the risk of
misclassifying a benign sample. This is the first time such
a bound is formally derived; this is significant because
it provides a theoretically justified approach to reducing
the uncertainty associated with adversarial examples.

• Comprehensive evaluations on a set of neural architec-
tures and datasets demonstrate our approach achieves
significant improvement in robustness compared to pre-
vious methods.

2. Background & Related Work
Primer on Bayesian Learning. Given a dataset D =
{xi, yi}Ni=1, a Bayesian Neural Network (BNN) aims to
learn the posterior distribution: p(θ | D) = p(D|θ)p(θ)

p(D)

given the prior distribution p(θ). However, the exact so-
lution for the posterior is often intractable since the deep
neural networks are complex distributions and infeasible
due to the high dimensional integral of the denominator
even for moderately sized networks in the context of deep
learning (Blei et al., 2017). In addition, the true Bayesian
posterior is usually a complex multimodal distribution (Iz-
mailov et al., 2021) as illustrated in Figure 1.

MCMC methods

Variational inference methods

Stein variational gradient descent

Figure 1: Different techniques to sample the posterior.

Variational inference, which relies on another parametric
distribution, is too restrictive to resemble the true posterior
and suffers from mode collapse (Izmailov et al., 2021). On
the other hand, Wang & Liu (2019); Liu & Wang (2016)
proposed a provable general purpose variational inference al-
gorithm named Stein Variational Gradient Descent (SVGD)
that transports a set of parameter particles, encouraged to be
diverse, to fit the true posterior distribution; this approach
can be beneficial for achieving higher performance and
approximating the true posterior distribution. The visual-
ization for different techniques to sample the posterior is
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displayed in Figure 1.

Adversarial Attacks. Attackers can add carefully crafted
noise (perturbations) to the input image to fool the classifier
at the inference stage. In general, the goal of the attacker—
described in Equation (1)—is to degrade the performance
of a neural network by crafting δ, such that:

max
‖δ‖p<εmax

`(f(x + δ;θ), y) (1)

where, p is the norm, εmax is the maximum attack bud-
get (perturbation), ` is the loss function (typically cross-
entropy), f is the network, x is the input, θ is the network
parameter, and y is the ground-truth label.

For a PGD (Madry et al., 2018) attack, an attacker starts
from x0 = xo and conducts projected gradient descent it-
eratively to update the adversarial example following the
Equation (2):

xt+1 = Πεmax

{
xt + α · sign

(
∇x`

(
f
(
xt;θ

)
, yo
))}

(2)

where Πεmax
is the projection to the set

{x | ‖x− xo‖∞ ≤ εmax}

Among all the attack methods, we decided to apply PGD
in our experiments because: i) PGD (Madry et al., 2018) is
regarded as the strongest attack in terms of the `∞ norm and
ii) it gives us direct control over the distortion by changing
εmax.

Adversarial Defenses. Significant research efforts describe
methods to mitigate this threat, such as distillation (Paper-
not et al., 2016b), input denoising (Song et al., 2017) or
feature denoising (Xie et al., 2019), curious readers can find
more from (Kurakin et al., 2018). Among these methods,
adversarial training (Madry et al., 2018) and its variants are
shown to be one of the most effective and popular methods
to defend against adversarial attacks (Athalye et al., 2018a).
The goal of adversarial training is to incorporate the adver-
sarial search within the training process and, thus, realize
robustness against adversarial examples at test time. This is
achieved by solving the following optimization problem:

θ∗ = arg min
θ

E
(x,y)∼D

{
max

‖δ‖p<εmax

`(f(x + δ;θ), y)

}
(3)

where D is the training data. An approximate solution
for the inner maximization can be realized by generating
the PGD adversarial examples from Equation (2) and then
minimizing the classification loss based on the generated
PGD adversarial examples.

Recent works (Atsague et al., 2021; Zhu et al., 2020) also
incorporate different variants of mutual information into
their methods to realize a robust neural network. How-
ever, the mutual information is still utilized in a traditional
“point-estimate” neural network setting; hence, the achieved

robustness is marginal compared with traditional adversar-
ial training. In contrast, this paper focuses on formulating
mutual information (information gain) in a Bayesian neural
network and theoretically prove that Bayesian adversarial
learning with information gain allows the adversarial risk to
approach the conventional risk.

Prior Art on Bayesian Defenses. Bayesian Neural Net-
works were proposed to detect adversarial attacks (Feinman
et al., 2017; Smith & Gal, 2018). Recently, (Carbone et al.,
2020) prove the robustness of BNNs to gradient-based ad-
versarial attacks in the large data and overparameterized
limit, while certified adversarial robustness on small εmax

was shown in (Wicker et al., 2021). On the other hand, Ye &
Zhu (2018) and Liu et al. (2019) tried to combine Bayesian
learning with adversarial training. Ye & Zhu (2018) present
a method to jointly sample from the model’s parameter
posterior and the distribution of adversarial samples given
the current parameter posterior to learn robust BNNs. Liu
et al. (2019) further developed the direction proposed in
Random Self-Ensemble (RSE) (Liu et al., 2018) to build
an adversarially-trained Bayesian neural network method
named Adv-BNN that can scales up to complex data by
adding noise to each weight instead of input or hidden fea-
tures as in RSE (Liu et al., 2018). Adv-BNN also incor-
porates adversarial training to learn a variational posterior
distribution to further improve model robustness against
strong adversarial examples with large εmax. However, us-
ing the variational inference method is likely to lead to mode
collapse and limit the performance of the BNN (Izmailov
et al., 2021) as we discussed earlier and demonstrate in our
experiments in Section 4.

In this work, we propose exploring SVGD (Liu & Wang,
2016) as a Bayesian inference method to achieve a better
approximation for the multi-modal posterior of a BNN. Us-
ing this approach, it is also easy to convert a traditional
neural network to a Bayesian counterpart without much ef-
fort to modify the traditional neural network architecture.
Further, by employing the repulsive force for encouraging
exploration in the parameter space, we conceptualize the
Information Gain in Bayesian learning to bound the differ-
ence of empirical risk versus the adversarial risk to further
improve the robustness on strong adversarial examples.

3. Method
Our method combines adversarial training with an inference
approach to faithfully capture the posterior distribution of
parameters and formulate a new information gain objective
in the setting to achieve a provably bounded adversarial
risk to, hopefully, achieve a robust adversarial defense. We
describe our formulation in what follows.
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3.1. Bayesian Formulation for Adversarial Learning

In contrast to a point estimate learned in conventional deep
learning models, in Bayesian learning, the posterior of the
parameters is obtained using the Bayes rule i.e.:

p(θ | D) =
∏

(x,y)∼D

p(y | x,θ)p(θ)/Z

where Z is the normalizer. Similarly, for the dataset of
adversarials instances Dadv, we obtain a corresponding
posterior p(θ | Dadv). We consider p(y | xadv,θ) =
softmax(f(xadv;θ)) where f is a deep neural network. For
adversarial dataset Dadv, since adversarial examples can
be generated from their corresponding benign instances,
we can obtain Dadv during adversarial training by apply-
ing adversarial attacks such as PGD attacks. However, we
acknowledge that PGD attacks cannot be directly applied
in a BNN setting (Liu et al., 2019). Hence, to account
for the uncertainty of BNNs, we utilize Expectation-over-
Transformation (EoT) (Athalye et al., 2018b) approach to
deploy an EoT PGD attack described in Equation (4); previ-
ously shown in Zimmermann (2019). This attack is more
tailored for BNNs due to the fact that it achieves a more
representative approximation to estimate the gradient and is
formulated as:

xt+1 = Πεmax

{
xt + α · sign

(
Eθ

[
∇x`

(
f
(
xt;θ

)
, yo
)])}

.
(4)

However, the posterior distribution, in general, is intractable
and we need to resort to approximations. In particular, we
propose utilizing Stein variational gradient descent (SVGD)
(Liu & Wang, 2016) which provides an approach to learning
multiple particles for parameters in parallel to approximate
the true posterior. SVGD uses a repulsive factor to encour-
age the diversity of parameter particles to prevent mode
collapse. This diversity enables learning multiple models
to represent various patterns in the data. Collectively, the
patterns are less vulnerable to adversarial attacks. Using
n samples from the posterior (i.e. parameter particles) the
variational bound is minimized when gradient descent is
modified as:

θi = θi − εiφ̂∗(θi) with

φ̂∗(θ) =

n∑
j=1

[
k(θj ,θ)∇θj `(f(xadv;θj), y)

− γ

n
∇θjk(θj ,θ)

]
. (5)

Here, θi is the ith particle, k(·, ·) is a kernel function
that measures the similarity between particles, γ a hyper-
parameter and `(·, ·) is the cross entropy loss. Notably, the
kernel function encourages the particles to be dissimilar
to capture more diverse samples from the posterior and γ
controls the trade-off between the diversity of the samples
versus the minimization of the loss.

Further, given the test data point x∗, we can approximate
the posterior using the Monte Carlo samples as

p(y∗ |x∗,Dadv) =

∫
p(y∗ | x∗,θ)p(θ | Dadv)dθ

≈ 1

n

n∑
i=1

p(y∗ | x,θi), θi ∼ p(θ | Dadv) ,

where θi is an individual parameter particle.

Importantly, in the adversarial setting, it is critical to take
parameter samples that represent different modes of the
distribution that may not have the same vulnerabilities to-
wards perturbations. The adversarial instances are generally
known to exploit the particular patterns learned by the pa-
rameters (Papernot et al., 2016c). When integrating out the
parameters as in the Bayesian setting, especially under the
diverse parameter particles in our approach, we implicitly
remove the vulnerabilities that could arise from a single
choice of a parameter.

3.2. Conceptualizing Information Gain for Bayesian
Learning

Using the Bayesian setting we employ, we can formulate a
notion of information gain that captures the impact of adding
a new training instance to a dataset on the distribution of
the parameters. The information gain can be defined as (see
Appendix A):

IG(x, y; Θ) = H[Eθ[y|x,D]]− Eθ[H[y|x,D]] . (6)

This formulation quantifies an instance’s informativeness for
a model given the training set. Intuitively, the information
gained from an instance is proportionate to the reduction in
the expected entropy of the predictive distribution.

Our conjecture is that a robust neural network quantifies
the information gain from an observation the same as
its adversarial counterpart i.e. E(x,y)∼D[IG(x, y; Θ)] =
E(xadv,y)∼Dadv [IG(xadv, y; Θ)]. In other words, a robust
model ignores the perturbations and only considers the infor-
mative content of the input. We will employ these concepts
in the following learning formulation.

3.3. Formulate Learning a Robust Network Using
Information Gain

We formulate the objective of our training to:

1. Learn the posterior from the adversarial dataset. Since
we use SGVD, this corresponds to learning multi-
ple parameter particles. This amounts to minimiz-
ing the loss subject to the repulsive constraint, i.e.
E(xadv,y)∼Dadv

[
Eθ∼p(θ|Dadv)[`(f(xadv; Θ), y)]

]
. Since the

adversarial dataset is generated while training the model,
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it depends on the particle chosen and its parameters. With
SGVD, we ensure the samples are diverse, and each pa-
rameter particle explores a different pattern in the input.

2. Achieve comparable information gain from both the
given dataset and the adversarials. Thus, ensuring: i) the
information gained from data and adversarial examples is
encouraged to be the same, i.e. E(x,y)∼D[IG(x, y; Θ)] =
E(xadv,y)∼Dadv [IG(xadv, y; Θ)]; ii) the model to be not bi-
ased towards learning from the adversarial instances; and
iii) the receptive fields are active for similar and promi-
nent features.

To this end, we formulate the problem as a constrained
optimization:

min
θ

E(xadv,y)∼Dadv [L(xadv, y;Θ)] (7)

s.t. E(x,y)∼D[IG(x, y;Θ)] = E(xadv,y)∼Dadv [IG(xadv, y;Θ)]

whereL(xadv, y; Θ) = Eθ∼p(θ|Dadv)[`(f(xadv;θ), y)]. Com-
bining the above concepts using the Lagrangian method, we
have the following objective:

LIG(Θ)=L(xadv, y;Θ)+λ|IG(x, y;Θ)− IG(xadv, y;Θ)| (8)

where we use the Monte Carlo sampling using the particles
to estimate the expectations. Subsequently, this learning
objective LIG(Θ) is optimized using the SVGD method in
Equation (5) mentioned earlier in Section 3.1. Effectively,
using this approach, we compute a posterior in a constrained
space defined by the information gain criteria. Since the
space is constrained, the likelihood of findings "particles" in
the posterior that are more robust increases. We summarize
our proposed robust Bayesian learning approach in Algo-
rithm 1. Here, following Liu & Wang (2016), we use the
RBF kernel k(θ,θ′) = exp

(
−‖θ − θ′‖2/(2h2)

)
and take

the bandwidth h to be the median of the pairwise distances
of the set of parameter particles at each iteration.

3.4. A Relation between Adversarial and Observational
Training

A typical machine learning approach minimizes the empiri-
cal risk to learn. There are theoretical and empirical studies
on the relation between the empirical risk and the true risk
that measures the generalization ability of a learning algo-
rithm. Generalization bounds such as Rademacher complex-
ity or VC dimension for classical approaches or more recent
studies for deep learning (see e.g. (Neyshabur et al., 2017))
underpin the theoretical framework for machine learning.

Notably, the relation between the risk when using samples
from the observational distribution (i.e. the given dataset)
versus when using their adversarial counterparts remains
unexplored. It is important, because, while adversarial
training has been commonly used, the impact of using such
an approach on generalization with respect to the true data
distribution is unknown. We consider a Bayesian model

Algorithm 1 Information Gain-BNN (IG-BNN)

1: Input: A set of initial parameter particles {θ0
i }ni=1,

observation data D.
2: Output: A set of parameter particles Θ := {θi}ni=1

that approximates the true posterior distribution p(θ |
Dadv)

3: for (x, y) ∼ p(D) do
4: xadv ← x
5: for t = 1→ T do

6:
xadv = Πεmax

{ xadv + α · sign (

Eθ [∇x` (f (xadv;θj) , y)] ) }
{Generate Adversarial (Eq. (4))}

7: end for
8: for i = 1→ n do
9: θi ← θi − εiφ̂

∗(θi,θj) with φ̂∗(θi,θj) =∑n
j=1

[
k(θj ,θi)∇θj

LIG(Θ)− γ
n∇θj

k(θj ,θi)
]

10: εi is the step size at the current iteration, k(θ,θ′)
is a positive definite kernel that specifies the simi-
larity between θ and θ′, LIG is the main objective
(Eq. (8)), γ, λ is the weight to control the repulsive
force that enforces the diversity among parame-
ter particles and IG objective respectively, ` is the
cross-entropy loss function.

11: end for
12: end for

with no specific assumption on the distribution of either
the adversarial examples or the perturbations to provide a
generic defense approach. The only major assumption we
make for the following adversarial risk bound is that the
distribution of the data and the corresponding adversarial
are sufficiently close. That is a mild assumption when we
consider the adversarial instances are obtained from small
perturbations of the given training dataset. Thus, we are
interested in finding the bound of |Radv −R| where

R = Eθ

[
E(x,y)∼D

[
Ey′∼p(y|x,θ) [I(y = y′)]

]]
is the empirical risk, and

Radv = Eθ

[
E(xadv,y)∼Dadv

[
Ey′∼p(y|xadv,θ) [I(y = y′)]

]]
is the risk of the adversarial examples. Once we can obtain
these, we can simply obtain the overall generalization and
robustness bound. The following proposition summarizes
our findings.
Proposition 1. The risk of a classifier when trained on the
observed training set denoted by R versus when trained
with adversarials denoted by Radv is bounded as

|Radv −R| ≤ 1− E(x,y)∼D

[
exp

((
Eθ[rθ(x, xadv, y)]

− λ |Eθ[IG(x, y; Θ)]− Eθ[IG(xadv, y; Θ)]|
))]

,
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where rθ(x, xadv, y) =
∑K
c p(y = c | x,θ) log(p(y = c |

xadv,θ)), λ ≥ 0 and xadv denotes the adversarial example
obtained from x.

Sketch of the Proof. We simplify the difference between the
risks by considering that the difference between individual
mistakes is smaller than their product, i.e.

Ey1∼p(y|x,θ)
[
Ey2∼p(y|xadv,θ) [I[y 6= y1]− I[y 6= y2]]

]
≤ Ey′∼p(y|xadv,θ)

[
Ey′∼p(y|xadv,θ) [I[y1 6= y2]]

]
≤ 1−

K∑
c=1

p(y = c | x,θ)p(y = c | xadv,θ) .

We then use Jensen’s inequality when using exp(log(·)) to
obtain the upper bound. The complete proof is provided in
the Appendix B. We can see that the difference between the
empirical risk and the adversarial risk is minimized when
the upper bound is minimized. Hence, to minimize the
upper bound, our main learning objectives are to:

1. Minimize cross entropy for the adversarial examples.
This corresponds to matching the prediction from the
adversarial data to that of the observations. Since (x, y)
is given in the training, we simply minimize the entropy
of the adversarial examples. This corresponds to using a
cross-entropy loss in Eq. (7).

2. Minimize the difference between the information gained
from the dataset and its adversarial counterparts. In
addition to individual predictions, the information gained
from each instance (i.e. the benign and its adversarial)
has to have a similar impact in terms of how it changes
the network parameters.

Notably, since we know 1 − exp(−z) ≤ z, to avoid com-
putational instabilities and gradient saturation, we consider
minimizing the upper bound without the exponential func-
tion.

Our proposed algorithm is summarized in Algorithm 1.

4. Experimental Results
In this section, we verify the performance of our proposed
method (IG-BNN) with other baselines in the literature on
two popular and standard vision tasks. We use the CIFAR-
10 (Krizhevsky et al.) dataset—a popular benchmark used to
evaluate the robustness of a DNN in previous works (Madry
et al., 2018; Athalye et al., 2018a). However, it is also
known that adversarial training becomes increasingly hard
for high-dimensional data (Schmidt et al., 2018). There-
fore, to further evaluate the robustness of our method, we
conduct an experiment on a high dimensional dataset—STL-
10 (Coates et al., 2011) with 5,000 training images and 8,000
testing images with images of 96× 96 pixels.

In all experiments, we utilized the same networks used
in the adversarial training BNN method, Adv-BNN (Liu
et al., 2019) to fairly compare the results. Specifically, we
used the VGG-16 network architecture for CIFAR-10 and
the smaller ModelA network for STL-10 used in Liu et al.
(2019). The number of PGD steps and the attack budgets
used for training and testing are also set to be the same for
a fair comparison—see Appendix C Table 5. Notably, we
also conduct the experiment with a larger number of PGD
steps in the Appendix D, and Figure 5 confirm that 20-step
is enough for the EoT PGD attack to reach its full strength.

Because our proposed method evaluates the robustness of a
Bayesian learning method based on Adversarial Training,
the traditional Adversarial Training (Adv. Training) (Madry
et al., 2018) and adversarially trained Bayesian defense, Adv
Bayesian Neural Network (Adv-BNN) (Liu et al., 2019)
are good baselines for comparisons. In addition, we also
compare our method with networks trained with no defenses
(No Defense) as well as Bayesian Neural Networks trained
for the tasks.

Figure 2: Accuracy under `∞-EoT PGD attack on different
datasets. CIFAR-10 is trained on a VGG-16 network, and
STL-10 is trained on ModelA–used in Adv-BNN (Liu et al.,
2019).

.
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4.1. Robustness Under White-box l∞ Attacks

In this experiment, we compare the robustness of our models
under the strong white-box l∞-EoT PGD attack. Follow-
ing the recent work in (Liu et al., 2019), we set the maxi-
mum l∞ distortion to εmax ∈ [0 : 0.07 : 0.005], adjust the
PGD attacks for Bayesian methods as mentioned earlier–
see Equation (4)—and report the accuracy on the test set
(robustness). Overall, the results—shown in Figure 2— il-
lustrate the improved robustness of our method compared
with Adv. BNN (Liu et al., 2019), and the significantly bet-
ter results compared to Adv. Training (Madry et al., 2018).
We also provide detailed results in Table 1 where we show a
marked increase in testing accuracy (benign) and robustness
(against adversarial samples)—notably, IG-BNN achieves
up to 17% at the distortion of 0.035 compared with Adv-
BNN and 20% compared with Adv. Training on STL-10
dataset. These correspond to 13% on CIFAR-10 and 19%
on STL-10, respectively. Although Adv-BNN helped im-
prove robustness, we can see that the learning method is still
below what could be achieved. On the other hand, IG-BNN
achieved better results on both the testing data (benign) and
adversarial examples (under increasing attack budgets).

Table 1: Comparing robustness under different levels of EoT PGD
attacks (or attack budgets).

Data Defenses 0 0.015 0.035 0.055 0.07

CIFAR-10
Adv. Training 80.3 58.3 31.1 15.5 10.3

Adv-BNN 79.7 64.2 37.7 16.3 8.1
IG-BNN (Ours) 83.6 75.5 50.2 26.8 16.9

STL-10
Adv. Training 63.2 46.7 27.4 12.8 7.0

Adv-BNN 59.9 47.9 31.4 16.7 9.1
IG-BNN (Ours) 64.3 60.0 48.2 34.9 27.3

4.2. Ablative Studies

In this section, we investigate the contribution of each of
the formulations in our method. Particularly, we investigate:
i) the contribution of the Bayesian inference method SVGD;
and ii) the contribution of Information Gain (IG). We utilize
the same network architecture and training parameters for
the higher resolution, therefore more challenging, STL-10
dataset with the only difference being the ablative parameter
to conduct the experiment.

Bayesian Inference Methods. We evaluate the network
trained with the adversarial training using the Bayesian in-
ference method proposed in Liu et al. (2019), that is Bayes
by Backprop (Adv train + BBB), to compare with our pro-
posed adversarially trained BNN using SVGD (Adv train
+ SVGD). The results are in Table 2. We can see that em-
ploying SVGD with the ability to capture a multi-model
posterior contributed to improving the robustness of the
Adversarial trained Bayesian Neural Networks.

Table 2: Ablative study on assessing the contribution of the
Bayesian inference method under different levels of EoT PGD
attacks (or attack budgets).

Defenses 0 0.015 0.035 0.055 0.07

Adv train + BBB 59.9 47.9 31.4 16.7 9.1
Adv train + SVGD 63.6 54.2 36.6 24.3 19.4

Information Gain. With the improvements in robustness
achieved with the SVGD formulation for adversarial train-
ing, we conduct the ablative study on the network trained
with SVGD inference method with and without IG to assess
the impact of the IG objective on robustness. Notably, the
trivial solution for the IG objective is that all parameter par-
ticles collapse to a single mode; hence, the IG objective and
its effectiveness can be achieved with the inference methods
encouraging diversity, such as SVGD.

Table 3: Ablative study on assessing the contribution of the Infor-
mation Gain objective under different levels of EoT PGD attacks
(or attack budgets).

Defenses 0 0.015 0.035 0.055 0.07

Adv train + SVGD 63.6 54.2 36.6 24.3 19.4
Adv train + SVGD + IG 64.3 60.0 48.2 34.9 27.3

As shown in Table 3, we can see that IG helped improve
robustness further, up to 12%. We also empirically demon-
strate the difference in empirical risk and the adversarial risk
evaluated on the test set in Figure 3. Our empirical results
demonstrate the impact of adding IG to tighten the bound
and reduce the gap between conventional empirical risk and
the adversarial risk; consequently, improving the robustness
of the network.

Figure 3: The difference between conventional empirical
risk and adversarial risk |Radv −R| on the test set is tight-
ened and minimized when training the BNN with Informa-
tion Gain. Corroborating our proof, the empirical result
further explains the improvement in robustness of the IG-
BNN networks.

4.3. Evaluating the Obfuscated Gradient Effect

One possible failure mode of defense methods discussed in
the literature is the obfuscated gradient effect (Athalye et al.,
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2018a) where seemingly high adversarial accuracy is only
superficial and creates false robustness. In this scenario, the
network learns to obfuscate the gradients whilst showing
seeming robustness by making it harder for the attack to find
perturbations. However, an easy and effective way to verify
this is to apply a black-box attack on the defense methods.
The defense is considered to show an obfuscated gradient
effect if the black-box attack is more successful than the
white-box attack (i.e. the robustness is lower).

Following current practice, in this experiment, we deploy a
black-box Square attack (Andriushchenko et al., 2020) on
our IG-BNN models. Table 4 shows that our IG-BNN is
also highly robust against the black-box attack and, more
importantly, the robustness of the black-box attack is sig-
nificantly higher than the white-box one. Particularly, the
robustness against black-box attacks on CIFAR-10 at the
distortion of 0.035 is 78.9% which is a 28% accuracy im-
provement compared with its white-box counterpart. On
STL-10, at the same distortion, this improvement is 13%.
These results demonstrate that our robustness is not simply
the effect of obfuscated gradients.

Table 4: Blackbox attack to evaluate the obfuscated gradient
effect.

Data Defenses 0 0.015 0.035 0.055 0.07

CIFAR-10 IG-BNN (Ours) 83.6 75.5 50.2 26.8 16.9
Black-box - 82.3 78.9 71.0 63.2

STL-10 IG-BNN (Ours) 64.3 60.0 48.2 34.9 27.3
Black-box - 63.8 61.3 59.3 57.6

4.4. Transfer Attacks Among Parameter Particles

To further evaluate the robustness and illustrate the intuition
for exploring diverse parameter particles, we conduct ex-
periments on the transferability of the adversarial examples
among parameter particles and evaluate the robustness at
class-wise levels (i.e. the robustness in each class).

Specifically, we sample multiple different parameter parti-
cles for the experiment. For each parameter particle (source
particles), we generate corresponding adversarial examples
for that parameter particle. And then, using those adversar-
ial examples generated from the source particles, attack and
evaluate the robustness of other particles (target particles).
We visualize the results as heatmaps with robustness as the
measure (i.e. the ability to correctly identify the adversarial
examples), and show the results in Figure 4— We provide
comprehensive results in the Appendix G. Each row in the
matrix shows the robustness of target particles against the
adversarial examples generated from the source particles
(with the attack budget ε = 0.015).

As expected, we can observe that the adversarial examples
are highly effective on their source particles with 0% ro-

bustness. However, other particles are able to recognize
those adversarial examples correctly with high robustness.
This further demonstrates the effectiveness of our learning
algorithm where we encourage the parameter particles to be
diverse and additionally bound the difference of empirical
risk versus the adversarial risk in terms of the information
gain formulation.
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Figure 4: Diversity of parameter particles is demonstrated
using the transferability of adversarial examples among
particles. We provide comprehensive results in Appendix G.

5. Conclusion
In this study, we presented a novel method to learn a robust
BNN against adversarial attacks. We demonstrate that, al-
though an adversarially trained BNN improved robustness,
the improvement is slight compared with the traditional
adversarial training when using the EoT PGD attack tai-
lored for BNNs. Our proposed IG-BNN learning method
employing SVGD to encourage diverse parameter particles
together with the formulated information gain objective un-
der the Bayesian context provably bounds the difference
of empirical risk versus adversarial risk to yield improved
robustness. The empirical experiments demonstrate that
learning a Bayesian neural network using our method tight-
ens the gap between the empirical risk and the empirical
adversarial risk; this, consequently leads to better robust-
ness compared with previous adversarially trained Bayesian
defense methods.
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A. Definition of Information Gain
We first define our predictive distribution as:

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ .

Following the definition of information gain, we have:

E[IG(x, y; Θ)] =
∑
y

p(y|x,D))

∫
p(y|x,θ)p(D|θ)p(θ)

p(D)p(y|x,D)
log

(
p(y|x,θ)

p(y|x,D)

)
dθ

=
1

p(D)

∑∫
p(y|x,θ)p(D|θ)p(θ) log

(
p(y|x,θ)

p(y|x,D)

)
dθ

=
1

p(D)

∑∫
p(y|x,θ)p(θ|D) log

(
p(y|x,θ)

p(y|x,D)

)
dθ

=
1

p(D)

∑∫
p(y|x,θ)p(θ|D) [log(p(y|x,θ))− log(p(y|x,D))] dθ

=
1

p(D)

∑[∫
p(y|x,θ)p(θ|D) log(p(y|x,θ))dθ −

∫
p(y|x,θ)p(θ|D) log(p(y|x,D))dθ

]
=

1

p(D)

∫
p(θ|D)

∑
p(y|x,θ) log(p(y|x,θ))dθ −

∑∫
p(y|x,θ)p(θ|D) log(p(y|x,D))dθ

=
1

p(D)
(H[Eθ[y|x,D]]− Eθ[H[y|x,D]])

∝
(
H[Eθ[y|x,D]]− Eθ[H[y|x,D]]

)
where for the last line we assume p(D) ≈ p(Dadv) as constant values. Since we are considering adversarial instances to be
obtained from the observational one, this is a very mild assumption and is completely in alignment with current research.

B. Proof of the Objective
We have

|Radv −R| =

∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv) [I (y1 6= y)]− Ey2∼p(y|x) [I (y2 6= y)]

]]∣∣∣∣∣ ,
=

∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 6= y)− I (y2 6= y)]

]]∣∣∣∣∣ ,
≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [|I (y1 6= y)− I (y2 6= y) |]

]]
,

≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 6= y2)]

]]
.

where we can upper bound the expected misclassification to have:

E(x,y)∼D

[
Eθ

[
1−

K∑
c=1

p(y = c | x,θ)p(y = c | xadv,θ)

]]
.
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Subsequently, we use Jensen’s inequality and the fact that x = exp(log(x)) to have:

E(x,y)∼D

[
Eθ

[
1− exp(log(

K∑
c=1

p(y = c | x,θ)p(y = c | xadv,θ))︸ ︷︷ ︸
≥
∑K

c p(y=c|x,θ) log(p(y=c|xadv,θ)

)

]]
.

For a monotonically decreasing function, we know for x ≥ y, f(x) ≤ f(y). Using Jensen’s inequality we have
log(

∑K
c=1 p(y = c | x,θ)p(y = c | xadv,θ))≥

∑K
c p(y = c | x,θ) log(p(y = c | xadv,θ). Since 1 − exp(z) is monoton-

ically decreasing, we have:

E(x,y)∼D

[
Eθ

[
1− exp(log(

K∑
c=1

p(y = c | x,θ)p(y = c | xadv,θ)))

]]

≤ E(x,y)∼D

[
Eθ

[
1− exp

( K∑
c

p(y = c | x,θ) log(p(y = c | xadv,θ))
)]]

= 1− E(x,y)∼D

[
Eθ

[
exp

( K∑
c

p(y = c | x,θ) log(p(y = c | xadv,θ))
)]]

.

Thus we have the following bound:

|Radv −R| ≤ 1− E(x,y)∼D

[
exp

(
Eθ

[ K∑
c

p(y = c | x,θ) log(p(y = c | xadv,θ))︸ ︷︷ ︸
rθ(x,xadv,y)

])]
. (9)

This result demonstrates that the difference between the risks is bounded by the negative cross-entropy of the predictions.
While informative, this bound expresses the relation between the predictions only and not how the model performs on each
set (i.e. given dataset versus its corresponding adversarial).

From the definition of KL-divergence, we know

rθ(x, xadv, y) = −H(p(y = c | x,θ), p(y = c | xadv,θ)) = −KL(p(y = c | x,θ)‖p(y = c | xadv,θ)−H(p(y = c | x,θ))

We can add and subtract H[Eθ[p(y = c | x,θ)]] and Eθ[IG(xadv, y)] to have

Eθ[rθ(x, xadv, y)] = −Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))]−H[Eθ[p(y = c | x,θ)]] + Eθ[IG(xadv, y)]

+ (H[Eθ[p(y = c | x,θ)]]− Eθ[H[p(y = c | x,θ)]])︸ ︷︷ ︸
Eθ [IG(x,y)]

−Eθ[IG(xadv, y)]

= −Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))]− (Eθ[IG(xadv, y)]− Eθ[IG(x, y)])︸ ︷︷ ︸
A

+ Eθ[IG(xadv, y)]−H[Eθ[p(y = c | x,θ)]]︸ ︷︷ ︸
B

= −Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))]−A+B.

We consider two cases:

i) A = 0, then Eθ[rθ(x, xadv, y)] = −Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))] − Eθ[H(p(y = c | x,θ))] ≤
−Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))], because Eθ[H(p(y = c | x,θ))] ≥ 0. Therefore, in this case,
−Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))] is an upper bound on Eθ[rθ(x, xadv, y)].

ii) A 6= 0, then we have −A + B = A(−1 + B/A). We know A ≤ |A| for any value, then A(−1 + B/A) ≤
|A|(−1 +B/A). Setting (−1 +B/A) = −λ, we have λ = (1−B/A). In practice, we tune λ as detailed in the paper.
As such, we have, −A+B ≤ −λ|A|.
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Thus, putting case (i) and (ii) together, we have:

Eθ[rθ(x, xadv, y)] ≤ −Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))]− λ|Eθ[IG(x, y; Θ)]− Eθ[IG(xadv, y; Θ)]| (10)

and since 1− exp(·) is monotonically decreasing, we are able to achieve a tighter bound for Eq. (9) with:

|Radv −R| ≤ 1− E(x,y)∼D

[
exp

(
−
(
Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))] + λ|Eθ[IG(x, y;Θ)]− Eθ[IG(xadv, y;Θ)]|

))]
.

(11)
Then the difference between the empirical risk and the adversarial risk is minimized when the upper bound (the right-hand

expression of the Eq. (11)) is minimized. Hence, the main learning objectives are to:

1. Minimize Eθ[KL(p(y = c | x,θ)‖p(y = c | xadv,θ))]: This corresponds to matching the prediction from the adversarial
data to that of the observations. Since (x, y) is given in training, for minimizing this KL-divergence we simply convert
the minimization of the KL term to minimization of the cross-entropy loss of the adversarial examples instead.

2. Minimize |Eθ[IG(x, y; Θ)] − Eθ[IG(xadv, y; Θ)]|: In addition to individual predictions, the information gained from
each instance has to have a similar impact on the network in terms of how it changes the parameters.

Notably, since we know 1 − exp(−z) ≤ z, to avoid computational instabilities and gradient saturation, we consider
minimizing the upper bound without the exponential function in our implementation.

C. Hyper-Parameters
These are hyper parameters used in our experiments. For a fair comparison with previous works, all of the training, testing
parameters and attack budgets are identical to those in Liu et al. (2019).

Table 5: Hyper-parameters setting in our experiments

Name Value Notes

T ′ 20 #PGD iterations in attack at test time

T 10 #PGD iterations in adversarial training

εmax 8/255 Max l∞-norm in adversarial training

α 2/255 Step size for each PGD iteration

γ 0.01 Weight to control the repulsive force

λ CIFAR-10: 5, STL-10: 20 Weight to control IG objective

n 10
#Parameter particles

#Forward passes when doing ensemble inference
# Expectation over Transformation

D. Experiment with Increasing Number of EoT-PGD Steps
Following standard practice and due to the cost of running increasing numbers of EoT-PGD steps, the results in the main
paper use 20 steps. In this section, we conduct experiments with an increasing number of EoT-PGD steps to demnonstrate
that the robustness we evaluated in the main paper is on a so-called full-strength EoT-PGD. As shown in Figure 5, the
robustness is significantly decreased in the first 20 steps. However, after that, robustness is maintained, i.e. the EoT-PGD
attack has converged and reached its full strength.
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Figure 5: Robustness versus various numbers of EoT-PGD steps. EoT-PGD reaches its full strength after 20 steps. Further
increasing PGD steps did not significantly improve the attack.

E. Transferability to Other Attacks
In this section, in order to extend the scope of the method and to show that our method is generic and applicable to other
adversarial attacks, we conduct experiments to evaluate the robustness of networks trained on EoT-PGD `∞ against different
attacks such as FGSM or `2-attack. Results in Table 6 show that our method’s robustness is transferable to other attacks. The
reason is that we utilized PGD in our method, and PGD is regarded as a “universal" adversary among first-order approaches,
i.e. if a network is robust against PGD adversaries, it will be robust against a wide range of other attacks (Madry et al.,
2018).

Table 6: Transferability. PGD `∞ trained IG-BNN robustness against different adversaries under different attack budgets.

Attacks on CIFAR-10 0 0.015 0.035 0.055 0.07

PGD `∞ 83.6 75.5 50.2 26.8 16.9
FGSM - 76.1 55.7 38.4 28.9
PGD `2 - 83.5 83.4 83.2 83.1

F. Validating Our Conjecture
Our method is built upon the conjecture: a robust neural network quantifies the information gained from observation the
same as its adversarial counterpart. In this section, we further support this conjecture by conducting an evaluation where
we assess the opposite conjecture. We make the BNN model ‘inconsistent’ under clean settings and adversarial settings.
More specifically, instead of minimizing the Information Gain objective, we maximize to enforce the inconsistency. Figure 6
shows that this inconsistency leads to the deterioration of the network’s performance. This experiment empirically validates
our conjecture.
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Figure 6: Accuracy and Robustness of the BNN network trained on STL-10 dataset where we enforce the model to be
‘inconsistent’ under clean settings and adversarial settings.
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G. Details of Transfer Attacks of Adversarial Examples Among Parameter Particles

Figure 7: Transferability of adversarial examples among different particles on STL-10

Figure 8: Transferability of adversarial examples among different particles on CIFAR-10
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