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Abstract
One of the central problems in auction design
is developing an incentive-compatible mecha-
nism that maximizes the auctioneer’s expected
revenue. While theoretical approaches have en-
countered bottlenecks in multi-item auctions, re-
cently, there has been much progress on finding
the optimal mechanism through deep learning.
However, these works either focus on a fixed
set of bidders and items, or restrict the auction
to be symmetric. In this work, we overcome
such limitations by factoring public contextual
information of bidders and items into the auction
learning framework. We propose CITransNet, a
context-integrated transformer-based neural net-
work for optimal auction design, which main-
tains permutation-equivariance over bids and con-
texts while being able to find asymmetric solu-
tions. We show by extensive experiments that
CITransNet can recover the known optimal so-
lutions in single-item settings, outperform strong
baselines in multi-item auctions, and generalize
well to cases other than those in training.

1. Introduction
Auction design is a classical problem in computational eco-
nomics, with many applications on sponsored search (Jansen
& Mullen, 2008), resource allocation (Huang et al., 2008)
and blockchain (Galal & Youssef, 2018). Designing an
incentive-compatible mechanism that maximizes the auc-
tioneer’s expected revenue is one of the central topics in
auction design. The seminal work by Myerson (1981) pro-
vides an optimal auction design for the single-item setting;
however, designing a revenue-optimal auction is still not
fully understood even for two bidders and two items setting
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after four decades (Dütting et al., 2019).

Recently, pioneered by Dütting et al. (2019), there is rapid
progress on finding (approximate) optimal auction through
deep learning, e.g., (Shen et al., 2019; Luong et al., 2018;
Tacchetti et al., 2019; Nedelec et al., 2021; Shen et al., 2020;
Brero et al., 2021; Liu et al., 2021). Typically, we can
formulate auction design as a constrained optimization prob-
lem and find near-optimal solutions using standard machine
learning pipelines. However, existing methods only consider
simple settings: they either focus on a fixed set of bidders
and items, e.g. (Dütting et al., 2019; Rahme et al., 2021b) or
ignore the identity of bidders and items so that the auction
is restricted to be symmetric (Rahme et al., 2021a). As a
comparison, in practice, auctions are much more complex
beyond the aforementioned simple settings. For instance, in
e-commerce advertising, there are a large number of bidders
and items (i.e., ad slots) with various features (Liu et al.,
2021), and each auction involves a different number of bid-
ders and items. To handle such a practical problem, we need
a new architecture that can incorporate public features and
take a different number of bidders and items as inputs.

Main Contributions. In this paper, we consider contextual
auction design, in which each bidder or item is equipped
with context. In contextual auctions, the bidder-contexts and
item-contexts can characterize various bidders and items to
some extent, making the auctions close to those in practice.
We formulate the contextual auction design as a learning
problem and extend the learning framework proposed in
Dütting et al. (2019) to our setting. Furthermore, we present
a sample complexity result to bound the generalization error
of the learned mechanism.

To overcome the aforementioned limitations of the previ-
ous works, we propose CITransNet: a Context-Integrated
Transformer-based neural Network architecture as the pa-
rameterized mechanism to be optimized. CITransNet in-
corporates the bidding profile along with the bidder-contexts
and item-contexts to develop an auction mechanism. It
is built upon the transformer architecture (Vaswani et al.,
2017), which can capture the complex mutual influence
among different bidders and items in an auction. As a re-
sult, CITransNet is permutation-equivariant (Rahme et al.,
2021a) over bids and contexts, i.e., any permutation of bid-
ders (or items) in the bidding profile and bidder-contexts (or
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item-contexts) would cause the same permutation of auction
result (We will provide a formal definition in Remark 3.1).
Moreover, in CITransNet, the number of parameters does
not depend on the auction scale (i.e., the number of bidders
and items), which brings CITransNet the potential of gen-
eralizing to auctions with various bidders or items, which
we denote as out-of-setting generalization.

We show by extensive experiments that CITransNet can
almost reach the same result as Myerson (1981) in single-
item auctions and can obtain better performance in complex
multi-item auctions compared to those strong baseline algo-
rithms we use. Additionally, we also justify its out-of-setting
generalization ability. Experimental results demonstrate
that, under the same contextual setting, CITransNet can
still perform well in auctions with a different number of
bidders or items than those in training.

Further Related Work. As discussed before, it is an
intricate task to design optimal auctions for multiple bidders
and multiple items. Many previous works focus on special
cases (to name a few, Manelli & Vincent (2006); Pavlov
(2011); Giannakopoulos & Koutsoupias (2014); Yao (2017);
Daskalakis et al. (2017); Haghpanah & Hartline (2021))
and the algorithmic characterization of optimal auction (e.g.,
Chawla et al. (2010); Cai et al. (2012); Babaioff et al. (2014);
Yao (2014); Cai & Zhao (2017); Hart & Nisan (2017)). In
addition, machine learning has also been applied to find
approximate solutions for multiple items settings (Balcan
et al., 2008; Lahaie, 2011; Dütting et al., 2015), and there
are also many works analyzing the sample complexity of
designing optimal auctions (Cole & Roughgarden, 2014;
Devanur et al., 2016; Balcan et al., 2016; Guo et al., 2019;
Gonczarowski & Weinberg, 2021). In our paper, we follow
the paradigm of automated mechanism design (Conitzer &
Sandholm, 2002; 2004; Sandholm & Likhodedov, 2015).

Dütting et al. (2019) propose the first neural network frame-
work, RegretNet, to automatically design optimal auctions
for general multiple bidders and multiple items settings by
modeling an auction as a multi-layer neural network and us-
ing standard machine learning pipelines. Feng et al. (2018)
and Golowich et al. (2018) modify RegretNet to handle dif-
ferent constraints and objectives. Curry et al. (2020) extend
RegretNet to be able to verify strategyproofness of the auc-
tion mechanism learned by neural network. ALGNet (Rahme
et al., 2021b) models the auction design problem as a
two-player game through parameterizing the misreporter
as well. PreferenceNet (Peri et al., 2021) encodes hu-
man preference (e.g. fairness) into RegretNet. Rahme
et al. (2021a) propose a permutation-equivariant architecture
called EquivariantNet to design symmetric auctions, a
special case that is anonymous (bidder-symmetric) and item-
symmetric. In contrast, we study optimal contextual auc-
tion design, and our proposed CITransNet is permutation-

equivariant while not restricted to symmetric auctions.

Existing literatures of contextual auction mainly discuss the
online setting of some known contextual repeated auctions,
e.g., posted-price auctions (Amin et al., 2014; Mao et al.,
2018; Drutsa, 2020; Zhiyanov & Drutsa, 2020), in which
at every round the item is priced by the seller to sell to a
strategic buyer, and second price auctions (Golrezaei et al.,
2021). As a comparison, we consider the offline setting
of contextual sealed-bid auction. We learn the mechanism
from historical data and optimize the expected revenue for
the auctioneer. Besides, we do not assume the conditional
distribution of the bidder’s valuation when given both the
bidder-context and item-context.

Organization. This paper is organized as follows: In Sec-
tion 2 we introduce contextual auction design, model the
problem as a learning problem and derive a sample com-
plexity for it; In Section 3 we present the structure of
CITransNet, along with the training and optimization pro-
cedure; We conduct experiments in Section 4 and draw the
conclusion in Section 5.

2. Contextual Auction Design
In this section, we set up the problem of contextual auction
design. Then, we extend the learning framework proposed
by Dütting et al. (2019) to our contextual setting.

2.1. Contextual Auction

We consider a contextual auction with n bidders N =
{1, 2, . . . , n} and m items M = {1, 2, . . . ,m}. Each bid-
der i ∈ N is equipped with bidder-context xi ∈ X ⊂ Rdx

and each item j ∈ M is equipped with item-context
yj ∈ Y ⊂ Rdy , in which dx and dy are the dimensions of
bidder-context variables and item-context variables, respec-
tively. Denote x = (x1, x2, . . . , xn) as the bidder-contexts
and y = (y1, y2, . . . , ym) as the item-contexts. x and y are
sampled from underlying joint probability distribution Dx,y .
Let vij be the valuation of bidder i for item j. Conditioned
on bidder-context xi and item-context yj , vij is sampled
from a distribution Dvij |xi,yj

, i.e., the distribution of vij
depends on both xi and yj .

The valuation profile v = (vij)i∈N,j∈M ∈ Rn×m is un-
known to the auctioneer, however, she knows the sampled
bidder-contexts x and item-contexts y. In this paper, we
only focus on additive valuation setting, i.e., the valuation
of each bidder i for a set of items S ⊆ M is the sum of
valuation for each item j ∈ S: viS =

∑
j∈S vij . At an

auction round, each bidder bids for each item. Given the
bidding profile (or bids) b = (bij)i∈N,j∈M , the contextual
auction mechanism is defined as follows:
Definition 2.1 (Contextual Auction Mechanism). A contex-
tual auction mechanism (g, p) consists of an allocation rule



A Context-Integrated Transformer-Based Neural Network for Auction Design

g and a payment rule p:

• The allocation rule g = (gij)i∈N,j∈M , in which
gij : Rn×m × Xn × Ym → [0, 1] computes the prob-
ability that item j is allocated to bidder i, given the
bidding profile b ∈ Rn×m, bidder-contexts x ∈ Xn

and item-contexts y ∈ Ym. For all b, x, y, and j ∈M ,
we have

∑n
i=1 gij(b, x, y) ≤ 1 to guarantee no item is

allocated more than once.
• The payment rule p = (p1, p2, . . . , pn), in which
pi : Rn×m×Xn×Ym → R≥0 computes the price bid-
der i need to pay, given the bidding profile b ∈ Rn×m,
bidder-contexts x ∈ Xn and item-contexts y ∈ Ym.

Define V = V1 × V2 × · · · × Vn be the joint valuation
profile domain set, in which Vi is the domain set of all
the possible valuation profiles vi = (vi1, vi2, . . . , vim)
of bidder i. Let V−i = (V1, . . . ,Vi−1,Vi+1, . . . ,Vn) be
the joint valuation profile domain set except Vi. Simi-
larly, we denote v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and
b−i = (b1, . . . , bi−1, bi+1, . . . , bn). Without loss of gener-
ality, we assume bi ∈ Vi for all i ∈ N . Each bidder i ∈ N
aims to maximize her utility, defined as follows,
Definition 2.2 (Quasilinear utility). In an additive valuation
auction setting, the utility of bidder i under mechanism
(g, p) is defined by

ui(vi, b, x, y) =

m∑
j=1

gij(b, x, y)vij − pi(b, x, y) (1)

for all vi ∈ Vi, b ∈ V, x ∈ Xn, y ∈ Ym.

In this work, we want the auction mechanism to be dominant
strategy incentive compatible (DSIC)1, defined as below,
Definition 2.3 (DSIC). An auction (g, p) is dominant strat-
egy incentive compatible (DSIC) if for each bidder, the
optimal strategy is to report her true valuation no matter
how others report. Formally, for each bidder i ∈ N , for all
x ∈ Xn, y ∈ Ym and for arbitrary b−i ∈ V−i, we have

ui(vi, (vi, b−i), x, y)) ≥ ui(vi, (bi, b−i), x, y)), (2)

for all bi ∈ Vi.

Besides, the auction mechanism needs to be individually
rational (IR), defined as follows,
Definition 2.4 (IR). An auction (g, p) is individually ratio-
nal (IR) if for each bidder, truthful bidding will receive a
non-negative utility. Formally, for each bidder i ∈ N , for
all x ∈ Xn, y ∈ Ym and for arbitrary vi ∈ Vi, b−i ∈ V−i,
we have

ui(vi, (vi, b−i), x, y) ≥ 0. (IR)
1There is another weaker notion of incentive compatibility,

Bayesian incentive compatibility (BIC), in the literature. In prac-
tice, DSIC is more desirable than BIC. It doesn’t require prior
knowledge of the other bidders and is more robust. In this work,
we only focus on DSIC, similar to Dütting et al. (2019).

In a DSIC and IR auction, rational bidders would truthfully
report their valuations. Therefore, let Dv,x,y be the joint
distribution of v, x and y, the expected revenue is:

rev :=E(v,x,y)∼Dv,x,y

[
n∑

i=1

pi(v, x, y)

]
. (3)

Optimal contextual auction design aims to find an auction
mechanism that maximizes the expected revenue while sat-
isfying the DSIC and IR conditions.

2.2. Contextual Auction Design as a Learning Problem

Similar to Dütting et al. (2019), we formulize the problem
of optimal auction design as a learning problem. First, we
define ex-post regret:

Definition 2.5 ((Ex-post) Regret). The ex-post regret for a
bidder i under mechanism (g, p) is the maximum utility gain
she can achieve by misreporting when the bids of others are
fixed, i.e.,

rgti(v, x, y) := max
bi∈Vi

ui(vi, (bi, v−i), x, y)− ui(vi, v, x, y).
(4)

In particular, similar to Dütting et al. (2019), the DSIC
condition is equivalent to rgti(v, x, y) = 0,∀i ∈ N, v ∈
V, x ∈ Xn, y ∈ Ym. By assuming that Dv,x,y has full
support on the space of (v, x, y) and recognizing that the
regret is non-negative, an auction satisfies DSIC (except for
measure zero events) if

E(v,x,y)∼Dv,x,y

[
n∑

i=1

rgti(v, x, y)

]
= 0. (DSIC)

LetM be the set of all the auction mechanisms that satisfy
Equation (IR). By setting Equation (DSIC) as a constraint,
we can formalize the problem of finding an optimal contex-
tual auction as a constraint optimization:

min
(g,p)∈M

− E(v,x,y)∼Dv,x,y

[
n∑

i=1

pi(v, x, y)

]

s.t. E(v,x,y)∼Dv,x,y

[
n∑

i=1

rgti(v, x, y)

]
= 0,

(I)

This optimization problem is generally intractable due to the
intricate constraints2. To handle such a problem, we param-
eterize the auction mechanism as (gw, pw), where w ∈ Rdw

are the parameters (with dimension dw) to be optimized.

2In the automated mechanism design literature (Conitzer &
Sandholm, 2002; 2004), Equation (I) can be formulated as a linear
programming. However, this LP is hard to solve in practice because
of the exponential number of constraints, even for discrete value
distribution settings.
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All the expectation terms are computed empirically by L
samples of (v, x, y) independently drawn from Dv,x,y . The
empirical ex-post regret for bidder i under parameters w is
defined as

r̂gti(w) :=
1

L

L∑
ℓ=1

rgtwi (v
(ℓ), x(ℓ), y(ℓ)), (5)

where rgtwi (v, x, y) is computed based on the parameter-
ized mechanism (gw, pw). On top of that, the learning
formulation of Equation (I) is

min
w∈Rdw

− 1

L

L∑
ℓ=1

n∑
i=1

pwi (v
(ℓ), x(ℓ), y(ℓ))

s.t. r̂gti(w) = 0,∀i ∈ N

(II)

Equation (IR) can be satisfied through the architecture de-
sign. See Section 3.4 for the discussion.

2.3. Sample Complexity

We provide a sample complexity to bound the two gaps
at the same time: the gap between empirical revenue and
expected revenue, and the gap between empirical regret
and expected regret. Such result justifies the feasibility to
approximately solve Equation (I) by Equation (II).

For contextual auction mechanism class M, similar to
Dütting et al. (2019), we measure the capacity ofM via cov-
ering numbers (Shalev-Shwartz & Ben-David, 2014). We
define the ℓ∞,1-distance between two auction mechanisms
(g, p), (g′, p′) ∈M as maxv,x,y

∑
i∈N,j∈M |gij(v, x, y)−

g′ij(v, x, y)| +
∑

i∈N |pi(v, x, y) − p′i(v, x, y)|. For all
r > 0, let N∞,1(M, r) be the minimum number of balls
with radius r that cover all the mechanisms in M under
ℓ∞,1-distance (called the r-covering number of M). We
have the following result:
Theorem 2.6. For each bidder i, assume w.l.o.g. that the
valuation function vi satisfies vi(S) ≤ 1, ∀S ⊆ M . Fix
δ, ϵ ∈ (0, 1), for any (gw, pw) ∈M, when

L ≥ 9n2

2ϵ2

(
ln

4

δ
+ lnN∞,1(M,

ϵ

6n
)

)
, (6)

with probability at least 1− δ over draw of training set S
of L samples from Dv,x,y , we have both∣∣∣∣∣

n∑
i=1

(
E(v,x,y)p

w
i (v, x, y)−

L∑
ℓ=1

pwi (v
(ℓ), x(ℓ), y(ℓ))

L

)∣∣∣∣∣ ≤ ϵ,
(7)

and∣∣∣∣E(v,x,y)∼Dv,x,y

[ n∑
i=1

rgtwi (v, x, y)
]
−

n∑
i=1

r̂gti(w)

∣∣∣∣ ≤ ϵ.
(8)

See Appendix E for detailed proofs.

3. Model Architecture
In this section, we describe CITransNet, the proposed
context-integrated transformer-based neural network for
computing allocation and payment in Equation (II).

3.1. Overview of CITransNet

As shown in Figure 1, CITransNet takes the bidding profile
b ∈ Rn×m, bidder-contexts x and item-contexts y as inputs.
An input layer is used first to compute a d-dimensional fea-
ture vector for each bidder-item pair. Afterward, the features
of all the bidder-item pairs, i.e., I ∈ Rn×m×d, are fed into
one or multiple interaction layers. Such transformer-based
interaction layers model the interactions between bidders
and items. The global feature maps F ∈ Rn×m×3 are
obtained through the last interaction layer. Finally, we com-
pute the allocation result gw(b, x, y) and payment result
pw(b, x, y) through the final output layer.

3.2. Input Layer

First, we apply a pre-processing to obtain a representation
exi
∈ Rd′

x for each bidder context xi and fyj
∈ Rd′

y for
each item context yj :

• If xi (or yj) is drawn from a continuous space, simply
set exi

= xi (or fyj
= yj).

• If xi (or yj) is only drawn from some finite types, em-
bed it into a continuous space, similarly as the common
procedure in word embedding (Mikolov et al., 2013).
The corresponding embedding is exi

(or fyj
).

We construct the initial representation for each bidder-item
pair: E = (Ei,j)i∈N,j∈M , in which

Eij = [bij ; exi ; fyj ] ∈ R1+d′
x+d′

y , (9)

Afterwards, two 1× 1 convolutions with a ReLU activation
are applied to E and reduce the third-dimension of E from
1 + d′x + d′y to d− 1. Formally,

E′ = Conv2(ReLU(Conv1(E))) ∈ Rn×m×(d−1), (10)

where both Conv1 and Conv2 are 1× 1 convolutions, and
ReLU(x) := max(x, 0). By concatenating E′ and the bids
b, we get I ∈ Rn×m×d, the output of our input layer:

I = [b;E′] ∈ Rn×m×d, (11)

where feature Iij ∈ Rd in I captures the bidding and context
information of the corresponding bidder-item pair.

3.3. Interaction Layer

Given the representation for all bidder-item pairs I ∈
Rn×m×d, we move on to model the interactions between



A Context-Integrated Transformer-Based Neural Network for Auction Design

Figure 1: A schematic view of CITransNet, which takes the bidding profile b ∈ Rn×m, bidder-contexts x ∈ Xn and
item-contexts y ∈ Ym as inputs. We first embeds x and y into ex ∈ Rd′

x and fy ∈ Rd′
y , and then assemble ex, fy and b into

E ∈ Rn×m×(1+d′
x+d′

y), the initial representation for each bidder-item pair. The remaining part of our input layer along with
one or more transformer-based interaction layers are adopted to model the mutual interactions among different bidders and
items. Based on the output F ∈ Rn×m×3 of the last interaction layer, we compute the allocation and payment result via the
final output layer.

different bidders and items, which is illustrated in the lower
part of Figure 1. The interaction layer is built based upon
transformer model (Vaswani et al., 2017), which can be
used to capture the high-order feature interactions of input
through the multi-head self-attention module (Song et al.,
2019). See Appendix A for a description of transformer.

Precisely, for each bidder i, we model its interactions with
all the m items through transformer on the i-th row of I
(denoted as Ii,· ∈ Rm×dh ):

Irowi,· = transformer(Ii,·) ∈ Rm×dh ,∀i ∈ N, (12)

where dh is the size of the hidden nodes in the MLP part
of the transformer. Symmetrically, for each item j, we
model its interactions with all the n bidders through another
transformer on the j-th column of I (called I·,j ∈ Rn×dh ):

Icolumn
·,j = transformer(I·,j) ∈ Rn×dh ,∀j ∈M. (13)

Afterwards, the global representation for all the bidder-item
pairs is obtained by the average of all the features

eglobal =
1

nm

n∑
i=1

m∑
j=1

Iij ∈ Rd. (14)

Combining Irow, Icolumn and eglobal together, we get new
features I ′ij for each bidder-item pair

I ′ij := [Irowij ; Icolumn
ij ; eglobal] ∈ R2dh+d (15)

Finally, as what we did in input layer, two 1×1 convolutions
with a ReLU activation are applied on I ′ in order to reduce
the third dimension of I ′ from 2dh + d to dout. Formally,

F = Conv4(ReLU(Conv3(I
′))) ∈ Rn×m×dout , (16)

where both Conv4 and Conv3 are 1× 1 convolutions, and
F is the output of the interaction layer. By stacking multiple
interaction layers, we can model higher-order interactions
among all the bidders and items.

3.4. Output Layer

In the last interaction layer, we set dout = 3 and get the
global feature maps F = (Fh, F q, F p) ∈ Rn×m×3, which
will be used to compute the final allocation and payment in
the output layer.

The first feature map Fh ∈ Rn×m is used to compute the
original allocation probability hw(b, x, y) ∈ [0, 1]n×m by
softmax activation function on each column of Fh, i.e.,

hw·,j = Softmax(Fh
·,j),∀j ∈M. (17)

Here hwi,j is the probability that item j is allocated to bidder
i and we have

∑n
i=1 h

w
i,j = 1 for each item j ∈M .

Since some item j may not be allocated to any bidder, we
use the second feature map F q to adjust hw. The weight
qw(b, x, y) ∈ (0, 1)n×m of each probability is computed
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through sigmoid activation on F q:

qwi,j = Sigmoid(F q
i,j),∀i ∈ N, ∀j ∈M, (18)

where Sigmoid(x) := 1
1+e−x ∈ (0, 1).

The allocation result gw is then obtained by combining hw

and qw together:

gwij(b, x, y) = qwij(b, x, y)h
w
ij(b, x, y). (19)

As a result, we have 0 <
∑n

i=1 g
w
i,j(b, x, y) < 1 for each

item j ∈M .

For payment, we compute payment fraction p̃w(b, x, y) ∈
(0, 1)n via the third feature map F p:

p̃wi = Sigmoid
( 1

m

m∑
j=1

F p
ij

)
,∀i ∈ N, (20)

where p̃wi is the fraction of bidder i’s utility that she has to
pay to the auctioneer. Given the allocation gw and payment
fraction p̃w, the payment for bidder i is

pwi (b, x, y) = p̃wi (b, x, y)

m∑
j=1

gwij(b, x, y)bij . (21)

By doing so, Equation (IR) is satisfied.
Remark 3.1 (Permutation-equivariant). Similar to the def-
inition in Rahme et al. (2021a), we say an auction
mechanism (gw, pw) is permutation-equivariant if for any
two permutation matrices Πn ∈ {0, 1}n×n and Πm ∈
{0, 1}m×m, and any input (including bids b ∈ Rn×m,
bidder-contexts x ∈ Rn×dx and item-contexts y ∈ Rm×dy ),
we have gw(ΠnbΠm,Πnx,Π

T
my) = Πng

w(b, x, y)Πm and
pw(ΠnbΠm,Πnx,Π

T
my) = Πnp

w(b, x, y). Transformer is
known to be permutation-equivariant, since it maps each em-
bedding in input to a new embedding that incorporates the
information of the set of all the input embeddings. Moreover,
the 1 × 1 convolutions we use in CITransNet are all per
bidder-item wise, i.e., acting on each bidder-item pair. As a
result, CITransNet maintains permutation-equivariant.

3.5. Optimization and training

Similar to Dütting et al. (2019), CITransNet is optimized
through the augmented Lagrangian method. The Lagrangian
with a quadratic penalty is:

Lρ(w;λ) =−
1

L

L∑
ℓ=1

n∑
i=1

pwi (v
(ℓ), x(ℓ), y(ℓ)) +

n∑
i=1

λir̂gti(w) +
ρ

2

n∑
i=1

(
r̂gti(w)

)2

,

(22)

where λ = (λ1, λ2, . . . , λn) ∈ Rn is the Lagrange multipli-
ers, and ρ > 0 is a hyperparameter that controls the weight

of the quadratic penalty. During optimization, we update
the model parameters and Lagrange multipliers in turn, i.e.,
we alternately find wnew ∈ argminw Lρ(w

old, λold) and
update λnewi = λoldi + ρ · r̂gti(wnew),∀i ∈ N . See Ap-
pendix B for a detailed optimization and training procedure.

4. Experiments
In this section, we conduct empirical experiments to show
the effectiveness of CITransNet in different contextual
auctions 3. Afterward, we demonstrate the out-of-setting
generalization ability for CITransNet by evaluating the
trained model in settings with different numbers of bidders
or items. Our experiments are run on a Linux machine
with NVIDIA Graphics Processing Unit (GPU) cores. Each
result is obtained by averaging across 5 different runs. We
ignore the standard deviation since it is small in all the
experiments.

Baseline Methods. We compare CITransNet with the
following baselines: 1) Item-wise Myerson, a strong base-
line used in Dütting et al. (2019), which independently
applies Myerson auction with respect to each item 4; 2)
RegretNet (Dütting et al., 2019), which adopts fully-
connected neural networks to compute auction mecha-
nism; EquivariantNet (Rahme et al., 2021a), which is
a permutation-equivariant architecture to design the spe-
cial mechanism of symmetric auctions 5; 3) CIRegretNet
and CIEquivariantNet, which are the context-integrated
version of RegretNet and EquivariantNet. Specifically,
we replace the interaction layers of our CITransNet with
RegretNet and EquivariantNet, respectively. We
set these baselines to evaluate the effectiveness of our
transformer-based interaction layers.

See Appendix C for implementation details of all methods.

Evaluation. Following Dütting et al. (2019) and Rahme
et al. (2021a), to evaluate each method, we adopt empir-
ical revenue (the minus objective in Equation (II)) and
empirical ex-post regret average across all the bidders
r̂gt := 1

n

∑n
i=1 r̂gti. We obtain the empirical regret for

each bidder by executing gradient ascent on her bids bi for

3Our implementation is available at https://github.
com/zjduan/CITransNet.

4Bundle Myerson is another baseline used in Dütting et al.
(2019) that satisfies both DSIC and IR. However, we find it always
performs worse than Item-wise Myerson, both in our experi-
ments and in Dütting et al. (2019). Therefore, we do not present
its results.

5While Rahme et al. (2021b) formulate auction learning as
an adversarial learning framework, we view this as an orthogonal
problem since this work mainly focuses on the innovation of neural
architectures. Therefore, to make a fair comparison, we adopt the
learning framework in Dütting et al. (2019) for the baselines and
leave the adversarial learning framework extension for future work.

https://github.com/zjduan/CITransNet
https://github.com/zjduan/CITransNet
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Table 1: Experiment results of known settings (Setting A-C). The optimal solutions are given by Myerson (1981). Each
experiment is run 5 times and the average results are presented.

Method
A: 3× 1 B: 3× 1 C: 5× 1

|X | = 5, |Y| = 1 |X | = 5, |Y| = 2 X ,Y ⊂ R10

rev rgt rev rgt rev rgt

Optimal 0.594 - 0.456 - 0.367 -

RegretNet 0.516 <0.001 0.412 <0.001 0.329 <0.001
EquivariantNet 0.498 <0.001 0.403 <0.001 0.311 <0.001

CIRegretNet 0.594 <0.001 0.453 <0.001 0.364 <0.001
CIEquivariantNet 0.590 <0.001 0.452 <0.001 0.360 <0.001

CITransNet 0.593 <0.001 0.454 <0.001 0.366 <0.001

200 iterations. We run such gradient ascent for 100 times
with different initial bids b(0)i , and the maximum regret is
recorded for bidder i.

Single-item Contextual Auctions. First, we evaluate
CITransNet in single-item auctions, whose optimal so-
lutions are given by Myerson (1981). We aim to justify
whether CITransNet can recover the near-optimal solu-
tions. The specific single-item auctions we consider are:

(A) 3 bidders and 1 item, with discrete bidder-contexts
and item-context, in which X = {1, 2, 3, 4, 5} and
Y = {1}. Both contexts are independently and uni-
formly sampled. Given xi ∈ X and y1 = 1, vi1 is
drawn according to the truncated normal distribution
N (xi

6 , 0.1) in [0, 1].

(B) 3 bidders and 1 item, with discrete bidder-contexts and
item-context, in which X = {1, 2, 3, 4, 5} and Y =
{1, 2}. Both contexts are independently and uniformly
sampled. Given xi ∈ X , vi1 is drawn according to the
truncated normal distributionN (xi

6 , 0.1) in [0, 1] when
y1 = 1, and is drawn according to probability densities
fi(x) =

i
6e

− i
6x truncated in [0, 1] when y1 = 2.

(C) 5 bidders and 1 item, with continuous bidder-contexts
and item-context, in which X = [−1, 1]10 and Y =
[−1, 1]10. Both the contexts are independently and
uniformly sampled. Given xi ∈ X and yj ∈ Y , vij is
drawn according to U [0,Sigmoid(xTi yj)].

We present the experimental results of Setting A, B
and C in Table 1. We can see that all the context-
integrated models (CIRegretNet, CIEquivariantNet
and CITransNet) are able to recover the optimal solu-
tions given by Myerson (1981) in these simple settings:
near-optimal revenues are achieved with regrets less than
0.001. In comparison, despite low regret, RegretNet and
EquivariantNet fail to reach the optimal solution. It

turns out that integrating context information into model
architecture is crucial in contextual auction design. Fur-
thermore, EquivariantNet, the symmetric mechanism de-
signer, fails to reach the same performance as RegretNet,
which reflects the importance of designing asymmetric solu-
tions in contextual auctions.

Multi-item Contextual Auctions. Next, we illustrate the
potential of CITransNet to discover new auction designs
in multi-item contextual auctions without known solutions.
We consider discrete context settings as follows:

(D) 2 bidders with X = {1, 2, . . . , 10} and 5 items with
Y = {1, 2, . . . , 10}. All the contexts are uniform sam-
pled, and vij is drawn according to the normal distri-

bution N
(

(xi+yj) mod 10+1
11 , 0.05

)
truncated in [0, 1].

(E) 3 bidders and 10 items. The discrete contexts and
corresponding values are drawn similarly as Setting D.

(F) 5 bidders and 10 items, which is, to the best of our
knowledge, the largest auction size considered in pre-
vious literatures of deep learning based auction de-
sign (Rahme et al., 2021b). The discrete contexts and
corresponding values are drawn similarly as Setting D.

Additionally, We also construct continuous context settings
based on Setting C:

(G) 2 bidders and 5 items. The continuous contexts and
corresponding values are drawn similarly as Setting C.

(H) 3 bidders and 10 items. The continuous contexts and
corresponding values are drawn similarly as Setting C.

(I) 5 bidders and 10 items. The continuous contexts and
corresponding values are drawn similarly as Setting C.

Experimental results for Setting D-I are shown in Table 2.
CITransNet obtains the best revenue results in all the set-
tings while keeping low regret (less than 0.003 in Setting
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Table 2: Experiment results for Setting D-I. Each experiment is run by 5 times and the average results are presented.

Method
D: 2× 5 E: 3× 10 F: 5× 10 G: 2× 5 H: 3× 10 I: 5× 10

|X | = |Y| = 10 |X | = |Y| = 10 |X | = |Y| = 10 X ,Y ⊂ R10 X ,Y ⊂ R10 X ,Y ⊂ R10

rev rgt rev rgt rev rgt rev rgt rev rgt rev rgt

Item-wise Myerson 2.821 - 6.509 - 7.376 - 1.071 - 2.793 - 3.684 -

CIRegretNet 2.803 <0.001 5.846 <0.001 6.339 <0.003 1.104 <0.001 2.424 <0.001 2.999 <0.001
CIEquivariantNet 2.841 <0.001 6.703 <0.001 7.602 <0.003 1.147 <0.001 2.872 <0.001 3.806 <0.001

CITransNet 2.916 <0.001 6.872 <0.001 7.778 <0.003 1.177 <0.001 2.918 <0.001 3.899 <0.001
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Figure 2: Out-of-setting generalization results: we train CITransNet and evaluate it on the same contextual auction with a
different number of bidders or items. We set Item-Wise Myerson as the baseline. The regret results are less than 0.001 in
all of these experiments. (a) Trained on Setting E (3× 10 with |X | = |Y| = 10) and evaluated with different number of
bidders. (b) Trained on Setting D (2× 5 with |X | = |Y| = 10) and evaluated with different number of items. (c) Trained on
Setting G (2× 5 with X ,Y ⊂ R10) and evaluated with different number of items.

F and less than 0.001 in all the other settings). Notice that
the only difference between CITransNet, CIRegretNet
and CIEquivariantNet is the architecture of interaction
layers. Such a result indicates the effectiveness of our
transformer-based interaction module to capture the com-
plex mutual influence among bidders and items. Further-
more, both CITransNet and CIEquivariantNet outper-
form CIRegretNet a lot in all the 3× 10 and 5× 10 auc-
tions, showing that adding the inductive bias of permutation-
equivariance is helpful in large-scale auction design.

Out-of-setting Generalization. In addition, to show the ef-
fectiveness of CITransNet, we also conduct out-of-setting
generalization experiments. Specifically, we train our model
and evaluate it in auctions with a different number of bid-
ders or items. Such evaluation is feasible for CITransNet,
since the size of parameters in CITransNet does not rely
on the number of bidders and items. We illustrate the ex-
perimental results on Figure 2, and see Appendix D for
more detailed numerical values. Figure 2a shows the ex-
perimental results of generalizing to a varying number of
bidders. We train CITransNet on Setting E, the discrete
context settings with 3 bidders and 10 items, and we eval-
uate CITransNet on the same contextual auction with n

bidders and 10 items (n ∈ {3, 4, 5, 6, 7}). We observe good
generalization results: In addition to obtain low regret (less
than 0.001) in all the test settings, CITransNet outperforms
Item-wise Myerson when n ∈ {3, 4, 5} 6. Furthermore,
in Figure 2b and Figure 2c we present the experimental
results of generalizing to varying number of items. We
train CITransNet on Setting D and Setting G respectively,
where both settings have 2 bidders and 5 items , and we
test the model on the same contextual auction with 2 bid-
ders and m items (m ∈ {3, 4, 5, 6, 7}). Again, we observe
good generalization results. While still keeping small re-
gret (less than 0.001), CITransNet is able to outperform
Item-wise Myerson in all the test auctions.

5. Conclusion
In this paper, we propose a new (transformer-based) neu-
ral architecture, CITransNet, for contextual auction design.
CITransNet is permutation-equivariant with respect to bids
and contexts, and it can handle asymmetric information
in auctions. We show by experiments that CITransNet

6As comparison, we find CIEquivariantNet fails to general-
ize to different bidders. See Appendix D for the results.
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can recover the known optimal analytical solutions in sim-
ple auctions, and we demonstrate the effectiveness of the
transformer-based interaction layers in CITransNet by
comparing CITransNet with the context integrated ver-
sion of RegretNet and EquivariantNet. Furthermore,
we also illustrate the out-of-setting generalization ability
for CITransNet by evaluating it in auctions with a varying
number of bidders or items. Given the decent generaliz-
ability of CITransNet, an immediate next step is to test
CITransNet over an industry-scale dataset. It would also
be interesting to test CITransNet in an online manner.
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A. Transformer Architecture
Transformer architecture (Vaswani et al., 2017) aims at modeling the mutual correlations among a set of tokens (e.g., words
in a sentence in machine translation) via multi-head self-attention module. In our paper, we use transformer to model the
interactions among the items (or bidders) with respect to a fixed bidder (or item). Without loss of generality, we denote the
input as

Einput = (e1, e2, . . . , en)
T ∈ Rn×d, (23)

where n is the number of tokens (i.e., bidders or items) and d is the dimension for each feature vector ei.

Let dh be the hidden dimension of transformer, and H be the number of heads (i.e., subspace). For head h ∈ [H], we use
the key-value attention mechanism (Miller et al., 2016) to determine which feature combinations are meaningful in the
corresponding subspace. Specifically, for each token i ∈ [n], we first compute the correlation between token i and token j in
head h:

α
(h)
i,j =

exp(ψ(h)(ei, ej))∑n
k=1 exp(ψ

(h)(ei, ek))
, (24)

where
ψ(h)(ei, ej) = ⟨W (h)

queryei,W
(h)
keyej⟩, (25)

is an attention function which defines the similarity between the token i and j under head h. ⟨·, ·⟩ is inner product, and
W

(h)
query, W (h)

key ∈ Rd′×d are transformation matrices which map the original embedding space Rd into a d′ = dh

H dimensional
space Rd′

.

Next, we update the representation of token i in subspace h by combining all relevant features. This is done by computing
the weighted sum using coefficients α(h)

i,j :

ẽ
(h)
i =

n∑
j=1

α
(h)
i,j (W

(h)
valueej) ∈ Rd′

, (26)

where W (h)
value ∈ Rd′×d. Since ẽ(h)i ∈ Rd′

is a combination of token i and all its relevant tokens, it represents a new
combinatorial feature.

Afterwards, we collect combinatorial features learned in all subspaces as follows:

ẽi = ẽ
(1)
i ⊕ ẽ

(2)
i ⊕ · · · ⊕ ẽ

(H)
i ∈ RHd′

= Rdh , (27)

where ⊕ is the concatenation operator, and H is the number of total heads.

Finally, a token-wise MLP is applied to each token i and we get a new representation for it.

e′i = MLP(ẽi) ∈ Rdh , (28)

and the final output is
Eoutput = (e′1, e

′
2, . . . , e

′
n)

T ∈ Rn×dh . (29)

Notice that the parameters to be optimized in transformer are W (h)
query,W

(h)
key ,W

(h)
value ∈ Rd′×d for all h ∈ [H] and the

parameters of the final token-wise MLP, all of which are unrelated to the number of tokens n. Furthermore, the transformer
architecture is permutation-equivariant.

B. Optimization and Training Procedures
We use the augmented Lagrangian method to solve the constrained training problem in Equation (II) over the space of neural
network parameters w ∈ Rdw .

Algorithm 1 describe the training procedure of CITransNet. First, for each iteration t ∈ [T ], we randomly draw a minibatch
St of size B, in which St = {(v(1), x(1), y(1)), . . . , (v(B), x(B), y(B))}. Afterwards, we alternately update the model
parameters and the Lagrange multipliers:
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Algorithm 1 CITransNet Training

1: Input: Minibatches S1, . . . ,ST of size B
2: Parameters: ∀t ∈ [T ], ρt > 0, γ > 0, η > 0, c > 0, T ∈ N, Γ ∈ N, Tλ ∈ N
3: Initialize: w0 ∈ Rd, λ0 ∈ Rn

4: for t = 0 to T do
5: Receive minibatch St = {(v(1), x(1), y(1)), . . . , (v(B), x(B), y(B))}
6: Initialize misreports v′(ℓ)i ∈ Vi,∀ℓ ∈ [B], i ∈ N
7: for r = 0 to Γ do
8: ∀ℓ ∈ [B], i ∈ N :

9: v′
(ℓ)
i ← v′

(ℓ)
i + γ∇v′

i
uwi

(
v
(ℓ)
i ,

(
v′

(ℓ)
i , v

(ℓ)
−i

)
, x(ℓ), y(ℓ)

)
10: end for
11: Compute regret gradient:
12: ∀ℓ ∈ [B], i ∈ N :
13: gtℓ,i = ∇w

[
uwi (v

(ℓ)
i , (v′

(ℓ)
i , v

(ℓ)
−i ), x

(ℓ), y(ℓ))− uwi (v
(ℓ)
i , v(ℓ), x(ℓ), y(ℓ))

] ∣∣∣
w=wt

14: Compute Lagrangian gradient using Equation (30) and update wt:
15: wt+1 ← wt − η∇w Lρt

(wt, λt)
16: Update Lagrange multipliers λ once in Tλ iterations:
17: if t is a multiple of Tλ then
18: λt+1

i ← λti + ρt r̂gt i(w
t+1), ∀i ∈ N

19: else
20: λt+1 ← λt

21: end for

(a) wnew ∈ argminw Lρ(w
old, λold)

(b) λnewi = λoldi + ρ · r̂gti(wnew),∀i ∈ N

The update (a) is performed approximately using gradient descent. The gradient of Lρ w.r.t. w for fixed λt is given by:

∇w Lρ(w, λ
t) =− 1

B

B∑
ℓ=1

∑
i∈N

∇w p
w
i (v

(ℓ), x(ℓ), y(ℓ)) +
∑
i∈N

B∑
ℓ=1

λti gℓ,i + ρ
∑
i∈N

B∑
ℓ=1

r̂gt i(w) gℓ,i, (30)

where

gℓ,i = ∇w

[
max

v′(ℓ)
i ∈Vi

uwi (v
(ℓ)
i , (v′

(ℓ)
i , v

(ℓ)
−i ), x

(ℓ), y(ℓ))− uwi (v
(ℓ)
i , v(ℓ), x(ℓ), y(ℓ))

]
.

The computation of r̂gti and gℓ,i involve a “max” over misreports for each bidder i, and we solve it approximately by
gradient ascent. In particular, we maintain misreports v′(ℓ)i for each bidder i on each sample ℓ. For every update on the
model parameters wt, we perform Γ gradient ascent updates to compute the optimal misreports.

C. Implementation Details
For all the settings (Setting A-I), we generate the training set of each setting with size in {50000, 100000, 200000} and test
set of size 5000.

For all the methods, we train the models for a maximum of 80 epochs with batch size 500. We set the embedding size in
settings with discrete context (Setting A, B, D, E, F) as 16. The value of ρ in the augmented Lagrangian (Equation (22))
was set as 1.0 at the beginning and incremented by 5 every two epochs. The value of λ in Equation (22) was set as 5.0
initially and incremented every certain number (selected from {2− 10}) of epochs. All the models and regret are optimized
through Adam (Kingma & Ba, 2014) optimizer. Following Dütting et al. (2019), for each update on model parameters, we
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Table 3: Out-of-setting generalization results of CITransNetand CIEquivariantNet: we train each model and evaluate
it on the same contextual auction with a different number of bidders or items. (a) Trained on Setting E (3 × 10 with
|X | = |Y| = 10) and evaluated with different number of bidders. (b) Trained on Setting D (2× 5 with |X | = |Y| = 10) or
Setting G (2× 5 with |X | ⊂ R10, |Y| ⊂ R10) and evaluated with different number of items.

(a)

Method 3× 10 4× 10 5× 10 6× 10 7× 10
rev rgt rev rgt rev rgt rev rgt rev rgt

Trained on Setting E: n = 3,m = 10 with |X | = |Y| = 10

Item-wise Myerson 6.509 - 7.028 - 7.376 - 7.629 - 7.837 -
CIEquivariantNet 6.703 <0.001 7.024 0.018 7.229 0.051 7.365 0.079 7.474 0.1
CITransNet 6.872 <0.001 7.222 <0.001 7.395 <0.001 7.496 <0.001 7.598 <0.001

(b)

Method 2× 3 2× 4 2× 5 2× 6 2× 7
rev rgt rev rgt rev rgt rev rgt rev rgt

Trained on Setting D: n = 2,m = 5 with |X | = |Y| = 10

Item-wise Myerson 1.691 - 2.264 - 2.821 - 3.391 - 3.954 -
CIEquivariantNet 1.687 <0.001 2.267 <0.001 2.841 <0.001 3.405 <0.001 3.971 <0.001
CITransNet 1.720 <0.001 2.333 <0.001 2.916 <0.001 3.540 <0.001 4.141 <0.001

Trained on Setting G: n = 2,m = 5 with X ,Y ⊂ R10

Item-wise Myerson 0.640 - 0.855 - 1.071 - 1.290 - 1.489 -
CIEquivariantNet 0.663 <0.001 0.900 <0.001 1.147 <0.001 1.400 <0.001 1.637 <0.001
CITransNet 0.677 <0.001 0.919 <0.001 1.177 <0.001 1.438 <0.001 1.686 <0.001

run Γ = 25 update steps on the misreport bid bi for each bidder, and the optimized misreports are cached to initialize the
misreports bidding in the next epoch.

For our proposed CITransNet, the output channel of the first 1× 1 convolution in both the input layer and interaction layers
are set to 64. We set d = 64 for the 1 × 1 convolution with residual connection in input layer, and dh = 64 for the final
1× 1 convolution in each interaction layer. We tune the numbers of interaction layers from {2, 3}, and in each interaction
layer we adopt transformer with 4 heads and 64 hidden nodes.

RegretNet and CIRegretNet take fully-connected neural networks as the core architecture. We choose the number of
layers from {3, 4, 5, 6, 7} and the number of hidden nodes per layer from {64, 128, 256}. As for EquivariantNet and
CIEquivariantNet, we use 4 exchangeable matrix layers of 64 channels each.

D. Additional Out-of-setting Generalization Experiments
In addition to CITransNet, we also conduct the same out-of-setting generalization experiments for CIEquivariantNet.
The numerical results are shown in Table 3. While CITransNet generalize well to all of these settings with low regret
(less than 0.001), CIEquivariantNet fails to obtain low regret when generalizing to auctions with a different number of
bidders. Such a result indicates the critical role of the transformer-based interaction layers in CITransNet when generalized
to settings with varying bidders.

E. Proof of Theorem 2.6
The proof is done by combining covering numbers (Shalev-Shwartz & Ben-David, 2014; Dütting et al., 2019) and a
generalization Lemma (Lemma E.1, whose technique comes from Duan et al. (2021)) based on concentration inequality.
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E.1. Basic Definition

On top of the definitions in Section 2.3, we first define the covering numbers of bidder’s utility functions and regret functions.

Covering NumbersN∞,1(U , r) andN∞(Ui, r). Let Ui be the class of utility functions for bidder i on auctions inM, i.e.,

Ui =
{
ui : Vi × V × Xn × Ym → R

∣∣∣ui(vi, v, x, y) =

m∑
j=1

gij(v, x, y)vij − pi(v, x, y)
}
. (31)

Similarly, let U be the class of utility profiles overM. Define the ℓ∞,1-distance between two utility profiles u and u′

as maxv,v′,x,y

∑n
i=1 |ui(vi, (v′i, v−i), x, y) − ui(vi, (v′i, v−i), x, y)| and N∞,1(U , r) as the minimum number of balls of

radius r > 0 to cover U (r-covering number of U) under such ℓ∞,1-distance. We also define the ℓ∞-distance between
ui and u′i as maxv,v′

i
|ui(vi, (v′i, v−i), x, y) − u′i(vi, (v′i, v−i)x, y)| and N∞(Ui, r) as the r-covering number of Ui under

ℓ∞-distance.

Covering Numbers N∞,1(RGT, r) and N∞(RGTi, r). As for regret functions, let RGTi ◦ Ui be the class of all regret
functions for bidder i, i.e.,

RGTi◦Ui =
{
rgti : V×Xn×Ym → R

∣∣∣ rgti(v, x, y) = max
v′
i∈Vi

ui(vi, (v
′
i, v−i), x, y)−ui(vi, v, x, y) for some ui ∈ Ui

}
.

(32)
The same as before, we define RGT ◦U as the class of profiles of regret functions, and we define ℓ∞,1-distance between two
regret profiles rgt and rgt′ as maxv,x,y

∑n
i=1 |rgti(v, x, y)− rgt′i(v, x, y)|. Let N∞,1(RGT ◦ U , r) denote the r-covering

number of RGT◦U under such distance. Similarly, define the ℓ∞-distance between rgti and rgt′i as maxv,x,y |rgti(v, x, y)−
rgt′i(v, x, y)|, and denote N∞(RGT ◦ Ui, r) as the r-covering number of RGT.

Covering NumbersN∞,1(P, r) andN∞(Pi, r). As for revenue (payment) functions, we denote the class of all the profiles
of payment functions as P and

Pi = {pi : V × X × Y → R≥0 | p ∈ P}. (33)

We denote the r-covering number of P asN∞(P, r) under the ℓ∞,1-distance and the r-covering number for Pi asN∞(Pi, ϵ)
under the ℓ∞-distance.

E.2. Important Lemmas

The generalization lemma (Lemma E.1) plays an important role in our proof.

Lemma E.1. Let S = {z1, . . . , zL} ∈ ZL be a set of samples drawn i.i.d. from some distribution D over Z . We assume
f(z) ∈ [a, b] for all f ∈ F and z ∈ Z . Define the ℓ∞-distance between two functions f, f ′ ∈ F as maxz∈Z |f(z)− f ′(z)|
and define N∞(F , r) as the r-covering number of F under such ℓ∞-distance. Let LD(f) = Ez∼D[f(z)] and LS(f) =
1
|S|

∑|S|
i=1 f(zi), then we have

PS∼Dm

[
∃f ∈ F ,

∣∣∣LS(f)− LD(f)]
∣∣∣ > ϵ

]
≤ 2N∞(F , ϵ

3
) exp

(
− 2Lϵ2

9(b− a)2

)
. (34)

Proof. Define Fr as the minimum function class that r-covers F (so that |Fr| = N∞(F , r)). For all function f ∈ F ,
denote fr as the closed function to f in such function class Fr. On top of that, we have |f(z)− fr(z)| ≤ r, ∀z ∈ Z . For all
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ϵ > 0, set r = ϵ
3 , we get

PS∼Dm

[
∃f ∈ F ,

∣∣∣LS(f)− LD(f)]
∣∣∣ > ϵ

]
≤PS∼Dm

[
∃f ∈ F ,

∣∣∣LS(f)− LS(fr)
∣∣∣+ ∣∣∣LS(fr)− LD(fr)

∣∣∣+ ∣∣∣LD(fr)− LD(f)]
∣∣∣ > ϵ

]
≤PS∼Dm

[
∃f ∈ F , r +

∣∣∣LS(fr)− LD(fr)
∣∣∣+ r > ϵ

]
≤PS∼Dm

[
∃fr ∈ Fr,

∣∣∣LS(fr)− LD(fr)
∣∣∣ > 1

3
ϵ
]
, r =

ϵ

3

≤N∞(F , ϵ
3
)PS∼Dm

[∣∣∣LS(f)− LD(f)
∣∣∣ > 1

3
ϵ
]

≤2N∞(F , ϵ
3
) exp

(
− 2Lϵ2

9(b− a)2

)
. (Hoeffding Inequality)

(35)

The following two lemmas (Lemma E.2 and Lemma E.3) provides the covering numbers bound for payment and regret.

Lemma E.2. N∞,1(P, ϵ) ≤ N∞,1(M, ϵ).

Proof. By the definition of the covering number for the auction classM, there exists a cover M̂ forM of size |M̂| ≤
N∞,1(M, ϵ) such that for any (g, p) ∈M, there is a (ĝ, p̂) ∈ M̂ for all v, x, y,∑

i,j

|gij(v, x, y)− ĝij(v, x, y)|+
∑
i

|pi(v, x, y)− p̂i(v, x, y)| ≤ ϵ. (36)

As a result, we can have P̂ = {p̂
∣∣∣ (ĝ, p̂) ∈ M̂}, then for any p ∈ P , there exist a p̂ ∈ P̂ , for all v, x, y,

∑
i

|pi(v, x, y)− p̂i(v, x, y)| ≤ ϵ. (37)

Therefore, we have N∞,1(P, ϵ) ≤ N∞,1(M, ϵ).

Lemma E.3. N∞,1(RGT ◦ U , ϵ) ≤ N∞,1(M, ϵ
2n ).

Proof. The proof then proceeds in two steps:

1. bounding the covering number for each regret class RGT ◦ U in terms of the covering number for individual utility
classes U ;

2. bounding the covering number for the joint utility class U in terms of the covering number forM.

First we prove that N∞,1(RGT ◦ U , ϵ) ≤ N∞,1(U , ϵ2 ).

By the definition of covering number N∞,1(U , r), there exists a cover Û with size at most N∞,1(U , ϵ/2) such that for any
u ∈ U , there is a û ∈ Û with

max
v,v′,x,y

n∑
i=1

∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣ ≤ ϵ

2
. (38)
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For any u ∈ U , taking û ∈ Û satisfying the above condition, then for any v, x, y, we have∣∣∣ max
v′
i∈Vi

(
ui(vi, (v

′
i, v−i), x, y)− ui(vi, (vi, v−i), x, y)

)
− max

v̄i∈Vi

(
ûi(vi, (v̄i, v−i), x, y)− ûi(vi, (vi, v−i), x, y)

)∣∣∣
≤

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v̄i
ûi(vi, (v̄i, v−i), x, y) + ûi(vi, (vi, v−i), x, y)− ui(vi, (vi, v−i), x, y)

∣∣∣
≤

∣∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v̄i
ûi(vi, (v̄i, v−i), x, y)

∣∣∣∣+ ∣∣∣ûi(vi, (vi, v−i), x, y)− ui(vi, (vi, v−i), x, y)
∣∣∣

≤
∣∣∣∣max

v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v̄i
ûi(vi, (v̄i, v−i), x, y)

∣∣∣∣+max
v′
i

∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣.
(39)

Let v∗i ∈ argmaxv′
i
ui(vi, (v

′
i, v−i), x, y) and v̂∗i ∈ argmaxv̄i ûi(vi, (v̄i, v−i), x, y), then

max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v̄i
ûi(vi, (v̄i, v−i), x, y) =ui(vi, (v

∗
i , v−i), x, y)− ûi(vi, (v̂∗i , v−i), x, y)

≤ui(vi, (v∗i , v−i), x, y)− ûi(vi, (v∗i , v−i), x, y)

≤max
v′
i

∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣

max
v̄i

ûi(vi, (v̄i, v−i), x, y)−max
v′
i

ui(vi, (v
′
i, v−i), x, y) =ûi(vi, (v̂

∗
i , v−i), x, y)− ui(vi, (v∗i , v−i), x, y)

≤ûi(vi, (v̂∗i , v−i), x, y)− ui(vi, (v̂∗i , v−i), x, y)

≤max
v′
i

∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣.

(40)

Thus, ∣∣∣max
v′
i

(
ui(vi, (v

′
i, v−i))− ui(vi, (vi, v−i))

)
−max

v̄i

(
ûi(vi, (v̄i, v−i))− ûi(vi, (vi, v−i))

)∣∣∣
≤ 2max

v′
i

∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣. (41)

Summing the inequalities by i, this completes the proof that N∞,1(RGT ◦ U , ϵ) ≤ N∞,1(U , ϵ2 ).

Next we prove that N∞,1(U , ϵ) ≤ N∞,1(M, ϵ
n ).

By the definition of the covering number for the auction classM, there exists a cover M̂ forM of size |M̂| ≤ N∞,1(M, ϵ
n )

such that for any (g, p) ∈M, there is a (ĝ, p̂) ∈ M̂ for all v, x, y,∑
i,j

|gij(v, x, y)− ĝij(v, x, y)|+
∑
i

|pi(v, x, y)− p̂i(v, x, y)| ≤
ϵ

n
. (42)

For all v ∈ V, v′i ∈ Vi,∣∣∣ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)
∣∣∣

≤
∣∣∣∑

j

(
gij((v

′
i, v−i), x, y)− ĝij((v′i, v−i), x, y)

)
v′ij

∣∣∣+ ∣∣∣pi((v′i, v−i), x, y)− p̂i((v′i, v−i), x, y)
∣∣∣

≤
∑
j

∣∣∣gij((v′i, v−i), x, y)− ĝij((v′i, v−i), x, y)
∣∣∣+ ∣∣∣pi((v′i, v−i), x, y)− p̂i((v′i, v−i), x, y)

∣∣∣
≤ ϵ
n
.

(43)

Thus,
n∑

i=1

|ui(vi, (v′i, v−i), x, y)− ûi(vi, (v′i, v−i), x, y)| ≤ n ·
ϵ

n
= ϵ. (44)
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This completes the proof that N∞,1(U , ϵ) ≤ N∞,1(M, ϵ
n )

Therefore,
N∞,1(RGT ◦ U , ϵ) ≤ N∞,1(U ,

ϵ

2
) ≤ N∞,1(M,

ϵ

2n
). (45)

This completes the proof of Lemma E.3.

E.3. Proof of Theorem 2.6

proof of Theorem 2.6. For all ϵ, δ ∈ (0, 1), when

L ≥ 9n2

2ϵ2

(
ln

4

δ
+ lnN∞,1(M,

ϵ

6n
)

)
, (46)

Combining Lemma E.1 and Lemma E.2 together, we get

PS∼Dm

[
∃(gw, pw) ∈M,

∣∣∣∣ n∑
i=1

E(v,x,y)∼Dv,x,y
[pwi (v, x, y)]−

1

L

n∑
i=1

L∑
ℓ=1

pwi (v
(ℓ), x(ℓ), y(ℓ))

∣∣∣∣ > ϵ
]

≤ 2N∞(P, ϵ
3
) exp (−2Lϵ2

9n2
)

≤ 2N∞(M,
ϵ

3
) exp (−2Lϵ2

9n2
)

≤ 2N∞(M,
ϵ

6n
) exp (−2Lϵ2

9n2
)

≤ δ

2
.

(47)

Similarly, combining Lemma E.1 and Lemma E.3 together, we have

PS∼Dm

[
∃(gw, pw) ∈M,

∣∣∣∣E(v,x,y)∼Dv,x,y

[ n∑
i=1

rgti(w)
]
−

n∑
i=1

r̂gti(w)

∣∣∣∣ > ϵ
]

≤ 2N∞(RGT ◦ U , ϵ
3
) exp (−2Lϵ2

9n2
)

≤ 2N∞(M,
ϵ

6n
) exp (−2Lϵ2

9n2
)

≤ δ

2
.

(48)

Combining Equation (47), Equation (48) and the Union Bound, with probability at most δ
2 + δ

2 = δ, one of the two events
of Equation (47) and Equation (48) happens. Therefore, with probability at least 1− δ, Equation (7) and Equation (8) both
hold. We complete the proof of Theorem 2.6.


