Augment with Care: Contrastive Learning for Combinatorial Problems

Haonan Duan “ !> Pashootan Vaezipoor ' > Max B. Paulus® Yangjun Ruan'? Chris J. Maddison ! 2

Abstract

Supervised learning can improve the design
of state-of-the-art solvers for combinatorial
problems, but labelling large numbers of
combinatorial instances is often impractical due
to exponential worst-case complexity. Inspired
by the recent success of contrastive pre-training
for images, we conduct a scientific study of the
effect of augmentation design on contrastive pre-
training for the Boolean satisfiability problem.
While typical graph contrastive pre-training
uses label-agnostic augmentations, our key
insight is that many combinatorial problems
have well-studied invariances, which allow for
the design of label-preserving augmentations.
We find that label-preserving augmentations
are critical for the success of contrastive pre-
training. We show that our representations
are able to achieve comparable test accuracy
to fully-supervised learning while using only
1% of the labels. We also demonstrate that
our representations are more transferable to
larger problems from unseen domains. Our
code is available at https://github.com/
h4duan/contrastive-sat,

1. Introduction

Combinatorial problems, e.g., Boolean satisfiability (SAT)
or mixed-integer linear programming (MILP), have many
applications in the industry and can encode many
fundamental computational tasks. These problems are NP-
complete, so solvers that perform efficiently in the worst
case are not within reach. However, learning can be used to
improve the average complexity of solvers on the population
of combinatorial problems found in the wild (Nair et al.,
2020).

“Equal contribution "University of Toronto 2Vector
Institute ETH Ziirich. Correspondence to: Haonan Duan
<haonand @cs.toronto.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022.
Copyright 2022 by the author(s).

Supervised learning is a promising approach to
combinatorial solver design (e.g., Selsam & Bjgrner,
2019} [Nair et al.,|2020). Unfortunately, the need for labels
is a severe limitation. Many read-world problems, such as
cryptography SAT instances, are extremely hard or, in some
cases, even impossible to solve (Nejati & Ganesh| 2019).
Computing expert branching labels for large-scale MILPs
requires sophisticated parallel solvers (Nair et al.| [2020).

In order to scale learning for combinatorial problems, we
ask: how much can we learn from unlabelled combinatorial
instances? In this work, we consider a contrastive learning
approach, which begins by creating multiple “views” of
every unlabelled instance, a process called augmentation.
An encoder is trained to maximize the similarity between the
representations of augmentations that come from the same
instance, while minimizing the similarity between those of
distinct ones (Chen et al.| [2020a). This has been successful
in computer vision: contrastive representations can be used
with linear predictors to achieve competitive accuracies on
ImageNet using a fraction of the labelled instances (Chen
et al., 2020a; |He et al.| 2020; |Chen et al., [2020Db)).

Our key insight is that combinatorial problems have
well-studied invariances that can be used to design
extremely effective augmentations for contrastive learning.
Contrastive learning theory indicates that augmentations
should be (roughly) label-preserving in order to confer
guarantees on downstream prediction (Arora et al.l [2019;
Tosh et al., 2021; [HaoChen et al.| [2021). This is in
contrast to the majority of label-agnostic graph contrastive
frameworks (e.g., You et al.,|2020; \Hassani & Khasahmadi,
2020). For some combinatorial problems, label-preserving
transformations are available from subroutines of existing
solvers, e.g., variable elimination modifies SAT formulas
while preserving their satisfiability. Our augmentations
produce new formulas by randomly applying such
satisfiability-preserving transformations. Crucially, our
augmentations do not require full solves and are much
cheaper to compute than the labels.

We study data augmentations for contrastive learning for
Boolean satisfiability. We demonstrate that:

* Augmentation design is critical for contrastive pre-
training on combinatorial problems. In particular, our

https://github.com/h4duan/contrastive-sat
https://github.com/h4duan/contrastive-sat

Contrastive Learning for Combinatorial Problems

- ~ - ~ =

=
|
=
<
J
~<
N -

1z

Figure 1. A bipartite graph representation (LIGT) of a SAT
formula ¢ := (x V =y V —z) A (—mx V y V z). The subgraph
without === edges is the LIG of ¢.

augmentations are sufficient for strong performance,
while existing graph augmentations are not.

¢ Our contrastive method matches the best supervised
baseline while using 100 x fewer training labels.

* Our contrastive representations transfer better to new
problem types than supervised representations.

2. Background

SAT. A Boolean formula in propositional logic consists
of Boolean variables composed by logical operators “and”
(A), “or” (V) and “not” (—). A literal is a variable v or its
negation —w. A clause is a disjunction of literals \/["_, /;. A
Boolean formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses. We assume that all formulas
are in CNF. A variable assignment satisfies a clause when at
least one of its literals is satisfied. A formula ¢ is satisfied
under m when all of its clauses are satisfied, and 7 is a
satisfying assignment for ¢. SAT is the problem of deciding,
for a given formula ¢, if there exists a satisfying assignment
(SAT) or not (UNSAT).

We can represent a SAT formula ¢ by a bipartite graph
called literal-clause incidence graph (LIG) (Figure[I). The
graph contains a node for every clause and literal of ¢. An
edge connects a clause node and a literal node iff the clause
contains that literal. We define LIG" when the literal nodes
of the same variable in LIG are connected.

NeuroSAT. [Selsam et al.| (2018) proposed NeuroSAT to
classify satisfiability of Boolean formulas. NeuroSAT
consists of two parts: 1) Encoder: a special Graph Neural
Network (GNN) that takes in the LIG™ representation of
a formula and produces an embedding for its literals; 2)
Aggregator: A function that maps each literal representation
to a vote and then aggregates them into a prediction about
satisfiability. More details can be found in Appendix

3. Related Work

Graph Contrastive Learning. Existing graph
contrastive frameworks can, in principle, be used to

learn representations for combinatorial problems. Common
augmentations in graph contrastive frameworks include: 1)
perturbing structures, such as, node dropping, subgraph
sampling or graph diffusion, and 2) perturbing features,
such as, masking or adding noise to the node features
(Hassani & Khasahmadi, 2020). These augmentations have
achieved success in multiple graph-level tasks (You et al.,
2020; Hassani & Khasahmadil, [2020), as well as node-level
tasks (Zhu et al.,2020; Wan et al.| 2021} [Tong et al.| 2021).

Supervised Learning for Combinatorial Optimization
(CO). Almost all modern approaches to machine learning
for CO, use variations of a GNN architecture. On the
supervised front, the work of Nowak et al| (2018)) on
Quadratic Assignment Problem, [Joshi et al.| (2019) and
Prates et al.|(2019) on Travelling Salesman Problem (TSP)
have shown encouraging results. |Gasse et al.| (2019) trained
a branching heuristic for MILPs by imitating an expert
policy. Later, Nair et al.| (2020) extended those ideas to
make them scalable to substantially larger instances. In
SAT, [Selsam et al.| (2018) proposed a way to train GNNs
to solve SAT problems in an end-to-end fashion. The same
architecture was used in|Selsam & Bjgrner|(2019) to guide
variable branching across conventional solvers.

Reinforcement Learning for CO. Supervised learning
is bottlenecked by the need for labels. Consequently,
many have explored the use of Reinforcement Learning
(RL). Node selection policy of |Dai et al.| (2017) for TSP
and |[Kool et al.| (2018) for Vehicle Routing Problem are
examples of that effort. [Lederman et al.| (2020) and
Yolcu & Poczos| (2019) used REINFORCE to train variable
branching heuristic for quantified Boolean formulas and
local search algorithm WalkSAT, respectively. Kurin et al.
(2019) used DQN for SAT and [Vaezipoor et al.| (2021}
improved a SOTA #SAT solver via Evolution Strategy. We
refer to (Cappart et al.| 2021; [Bengio et al.,[2021)) for more
comprehensive record of efforts in this area.

Unsupervised Learning for CO. |Toenshoff et al.| (2021}
proposed an unsupervised approach to solve constrained
optimization problems on graphs by minimizing a problem
dependent loss function. |Amizadeh et al.| (2019aib) solved
SAT and CircuitSAT problems by minimizing an energy
function. Lastly, inspired by probabilistic method, |Karalias
& Loukas| (2020) trained a GNN in an unsupervised way
to act as a distribution over possible solutions of a given
problem, by minimizing a probabilistic penalty loss. Our
method is distinct from other unsupervised techniques in
that we do not minimize a problem-dependent loss function
and rather learn problem representations through contrastive
learning. To the best of our knowledge this is the first
attempt at applying contrastive learning in the domain of
combinatorial optimization.

Contrastive Learning for Combinatorial Problems

4. Framework Overview

Similar to contrastive algorithms in other domains (e.g.,
images), we learn representations by contrasting augmented
views of the same instance against negative samples. Our
framework (Figure [2) consists of four major components:

Augmentations. Given a combinatorial instance ¢, a
stochastic augmentation is applied to form a pair of positive
samples, denoted by (1, ¢). Our key insight is the tailored
design of augmentations for combinatorial problems should
preserve the label of the problem, e.g., satisfiability for SAT,
as detailed in Section[3]

Format Transformation (£). Formulas (q@l, QASQ) are
transformed into (e.g., LIGT) graphs (G, G=).

Encoder. A neural encoder is trained to extract graph-level
representations z;,z» € R from the augmented graphs G
and G'2. This encoder can be any GNN such as GCN (Kipf]
& Welling, 2016)) and the encoder proposed by NeuroSAT.

Contrastive Loss. In the end, SimCLR’s (Chen
et al.| [2020a) contrastive loss L is applied to the graph
representations {z; }2",, obtained from a mini-batch of n
instances. We follow |Chen et al.|(2020a)) and use an MLP
projection head to project each z; to m;. For a positive
pair of projected representations (m;,m;), the loss £; ;
is a cross-entropy loss of differentiating the positive pair
from the other 2(n — 1) negative samples (i.e., augmented
samples of other instances):

exp(sim(mg, m;) /)

iy Lz exp(sim(my, my) / 7)

»Ci, ji=— IOg s (l)
where 7 is the temperature parameter, 1 is the indicator
function, and s¢m measures the similarity between two
representations: sim(m;, m;) := m!m;/ ||m;| |[m;|.
The final loss £ is the average of L; ; over all positive
pairs. After training is completed, we only keep the encoder
to extract the representation z; for downstream tasks.

5. Augmentations for Combinatorial Problems
5.1. Definition and Motivation

Intuitively, contrastive learning leads to representations that
are invariant across augmentations. Thus, to guarantee
downstream predictive performance, augmentations should
(mostly) preserve the labels of downstream tasks (Arora
et al.l 2019; [Tosh et al., [2021; [HaoChen et al., 2021}
Dubois et al.,[2021)). The augmentations found in computer
vision, e.g., cropping and color jittering of images, typically
preserve the labels of classification tasks. This is not
the case for most previous graph contrastive frameworks
(You et al.| [2020; |[Hassam1 & Khasahmadi, 2020), where
simple graph augmentations like node dropping and
link perturbation are used without consideration of the

downstream task. For combinatorial problems, these label-
agnostic augmentations (LAAs) are likely to produce many
false positive pairs. For example, in the SR dataset in
NeuroSAT, each SAT can be turned into UNSAT by flipping
one literal in one clause.

Thus, we aim to design label-preserving augmentations
(LPAs), which are transformations that preserve the instance
label. Formally, given a problem family ® and a labelling
function f, an augmentation distribution A is an LPA iff:

£() = f(¢), Vo € supp (A(|9)),V¢ € @,

where supp denotes the support of a distribution.

Importantly, LPAs are well-studied for many combinatorial
problems and are much cheaper to obtain than labels. For
SAT prediction, common preprocessing techniques from
SAT solvers such as variable elimination can be used as
LPAs, as discussed in Section 5.2} There are also LPAs
for other combinatorial problems, such as, adding cuts
(Achterberg et al.,2020) for MILPs and deleting dominant
vertices (Akiba & Iwata), [2016) for Minimum Vertex Cover.

The type of LPAs is also crucial. Intuitively, LPAs that
make more significant changes to an instance create harder
positives from which better representations can be learned.
Indeed, LPAs that lead to larger augmentation support
supp (A(:|¢)) will split ® into coarser equivalences
classes, and thus (roughly speaking) a classifier can be
learned with fewer labelled instances.

5.2. Label-preserving Augmentations for SAT

The LPAs for SAT preserve satisfiability of any Boolean
formula. In other words, a (un)satisfiable instance remains
(un)satisfiable after the applications of LPAs. We review
some common LPAs for SAT below, with examples and
time complexity results provided in Appendix [A]

Unit Propagation (UP). A clause is a unit clause if it
contains only one literal. If an instance ¢ contains a unit
clause ¢, we can 1) remove all clauses in ¢ containing the
literal £ and 2) delete —/¢ from all other clauses.

Add Unit Literal (AU). The inverse of UP: 1) construct a
unit clause from a new literal ¢, 2) add its negation —¢ to
some other clauses and 3) create new clauses containing /.

Pure Literal Elimination (PL). A variable v is called pure
if it occurs with only one polarity in ¢. We can delete all
clauses in ¢ containing v.

Subsumed Clause Elimination (SC). If a clause ¢; is a
subset of ca, i.e., all literals in ¢; are also in cs, then deleting
co does not change satisfiability of ¢.

Clause Resolution (CR). Resolution produces a new clause

Contrastive Learning for Combinatorial Problems

Label
Preserving)
Augmentations e
co2tx2 VI3
R Ny
c1 Xy cp=E1rV T2 VT3 V 2y
c2 tx2 V3 n

c3 :x1 Vx3V Ty

1
Cc1

ot o N
€3+ NV-=E3V-Tg

T
—x1 Vae VsV Ty 1

¢

Cq :

CAninkN Cauiak

=~
) Y N (1 @)

X2 X X3 X3 X4 TIX4
 —
—_—
£ Gy Encoder I

o e e L)

.] i »
X1 X X2 TXp X4 X4

d

4 ox Vo

tx1 VeV axa

0

3

cs

|
P .
& ncoder
Ga
4

Figure 2. Our contrastive learning framework for combinatorial problems. Given an instance ¢, a pair of augmented samples (q@l, g?)g) are
formed using label-preserving augmentations. (41, ¢2) are then transformed to graph formats (G1, G2). An encoder is used to extract
graph representations (z1, z2). Lastly, a standard contrastive loss is applied over a mini-batch of instances.

implied by two clauses containing complementary literals:

INa VN ay, ~UNb Vb,
a1V Va, Vb V---by,

2

The new clause cis called the resolvent of ¢y, ca: ¢ = ¢1®cs.
Adding c to ¢ does not change satisfiability.

Variable Elimination (VE). Let S; be a set of clauses
containing the literal ¢, and S_, be a set of clauses
containing its negation —¢. Then a new set S is obtained
by pairwise resolving on clauses of S, and S_,: S
{c1 ® ealer € Sp,co € S—y}. Replacing Sy U S_, with
S does not change satisfiability (Eén & Biere},[2005).

Note that some augmentations, such as VE, have the
worst-case exponential complexity if run until convergence.
However, in our paper, we only eliminate a small and fixed
number of variables. Therefore, all LPAs listed here are
cheap and have polynomial-time complexity.

6. Empirical Study of Augmentations for SAT

Our first experiments study the role of augmentations in
contrastive learning for SAT prediction. We followed
the standard linear evaluation protocol to evaluate
representations (Chen et al., 2020a), i.e., we report test
accuracy of a linear classifier trained on top of frozen
representations.

Architecture. We primarily used the encoder of NeuroSAT
(Selsam et al., 2018) as the GNN architecture. We
also re-ran a small number of experiments with another
type of GNN in Appendix The dimension of literal
representations was chosen to be 128. We discarded
the aggregator of NeuroSAT and obtained the graph-
level representations by average-pooling over all literal
representations. All design details of the encoder followed
the original NeuroSAT paper unless otherwise specified.

Experimental Setting. We used the contrastive loss in
Equation [T] with the temperature 0.5. For the projection
head, we used a 2-layer MLP, with the dimension of hidden
and output layer being 64. Appendix [also shows some
experiments with other contrastive objectives. We used
Adam optimizer with learning rate 2 x 10~% and weight
decay 10~°. The batch size was 128 and the maximum
training epoch was 5000. The generator produced a set of
new unlabelled instances for each batch. We used sklearn’s
(Pedregosa et al., [2011) logistic regression model for linear
evaluation. We generated 100 separate labelled instances to
train our linear evaluators, and another 500 as the validation
set to pick the hyperparameters (ranging from 10~3 to 10%)
of Lo regularization. The test set consisted of 10* instances.

Datasets. We experimented using four generators: SR
(Selsam et al.,2018]), Power Random 3SAT (PR) (Ansotegui
et al.| 2009), Double Power (DP) and Popularity Similarity
(PS) (Giraldez-Cru & Levy, 2017). SR and PR are the
synthetic generators. DP and PS are pseudo-industrial
generators producing instances that mimic real-world
problems. We generated instances of 10 variables for SR
and PR, and 20 for DP and PS. The number inside the
parenthesis denotes the number of variables per instance.
We also tweaked the parameters of the generators so that
they produce roughly balanced SAT and UNSAT. More
details are in Appendix

Augmentations. We used four of the LPAs from Section
[5.2] namely: AU, SC, CR and VE. The augmentations UP
and PL were not studied because most of our instances
originally do not contain unit clauses or pure literals.

For our baseline we adopted four LAAs from GraphCL
(You et al.| 2020) with some adjustments. The issue with
the original augmentations was that they operate directly on
the graph. However, NeuroSAT requires the input to be in

Contrastive Learning for Combinatorial Problems

LPA

59.3 Erag

LAA

SR(10) PR(10)

64.0 56.1

DP(20) PS(20)

Figure 3. Contrastive learning with LPAs learns much better representations for SAT predictions than with LAAs. We evaluated the linear
classification performance of SSL models trained with different single augmentations (diagonal) or paired combinations (off-diagonal).
The four heatmaps on the first row show results using LPAs, and the ones on the second row using LAAs. Each column denotes different
datasets. For off-diagonal entries on each heatmap, the row corresponds to the first augmentation applied.

Table 1. Adding SAT-preserving clauses (Resolution) leads to
much higher accuracy than adding random ones (Random). The
number of clauses added is controlled to be the same for both.

W SR PR DP PS
Type

Random 55.6 528 64.7 68.9
Resolution (ours) 864 92.6 848 969

the LIG™ format, and blindly applying these augmentations
might break that structure. Thus, we adapted GraphCL
augmentations to maintain the LIG™ structure, resulting
in the following augmentations: drop clauses (DC), drop
variables (DV), link perturbation (LP) and subgraph (SG).
DC and DV correspond to node dropping. LP corresponds
to edge perturbation, where we randomly add or remove
links between literals and clauses on a SAT instance. Lastly,
SG is similar to the one in GraphCL where we do a random
walk on an instance and keep the resulting subgraph.

All 8 augmentations except SC are parameterized by p
which controls the intensity of perturbations. For SC, we
eliminate all subsumed clauses. In this section, we chose
the p that achieved the best linear evaluation performance
when the corresponding augmentation was applied alone.
The results for tuning p are shown in Appendix [C]

6.1. Label-Preserving Augmentations are Necessary

Do LPAs learn better representations than LAAs? To
investigate the effect of using different augmentations,

we evaluated the linear classification performance of SSL
models trained with different single augmentations or paired
combinations. As Figure [3|shows, the accuracy (%) for the
best LPA pair is: 95.1 for SR, 93.3 for PR, 86.0 for DP and
96.9 for PS, while the corresponding number (%) for LAAs
is much lower: 54.4,59.1,70.0 and 65.5. These results
show that SSL models trained with LPAs learn significantly
better representations than those with LAAs.

Do our gains simply come from adding clauses? The
four LAAs from GraphCL do not add new clauses to the
original instance. To investigate whether this explains
the performance gap, we compared CR against adding
the same number of randomly generated clauses (adding
random clauses). We eliminated subsumed clauses (SC)
after both augmentations. As shown in Table[T} adding SAT-
preserving resolvents achieved at least 20% higher accuracy
than adding randomly generated clauses.

Does combining LPAs and LAAs hurt performance?
In Table 2] we trained SSL models with VE followed by
7 different augmentations on SR(10). We compared the
accuracy change with the model trained with VE only. From
Table 2| adding LAAs resulted in 30% drop in accuracy,
while LPAs decreased the accuracy by at most 3%.

In summary, the performance gap between LPAs and LAAs
meets our intuition. LAAs do not guarantee preserving
satisfiability, which could result in false positive pairs that
hurt the SAT prediction performance.

Contrastive Learning for Combinatorial Problems

Table 2. Adding LAAs to LPAs significantly hurts the performance.
Cells represent the difference of linear evaluation accuracy between
training with VE followed by another aug and with VE alone on
SR(10). Yellow indicates improved accuracy.

LPAs LAAs
AU CR SC DC DV LP SG
-1.5 0.7 -344 -324 -33.7 -359

6.2. Type, Order, and Strengths of LPAs are Crucial

Previous studies of contrastive learning for image (Chen
et al., 2020a) and graph (You et al., 2020) have shown
that the quality of learned representations relies heavily on
finding the right type and composition of augmentations. We
observe a similar pattern in SAT. In Figure [3] the accuracy
gap between the best LPA combination and the worst is
between 20 — 40% for all datasets.

The conjecture in SimCLR (Chen et al.| [2020a)) is that
stronger augmentations lead to better representations.
Intuitively, weaker augmentations often create very
correlated positive examples, providing shortcuts for neural
networks to cheat in the contrastive task without learning
meaningful representations. Based on this conjecture, we
study what type, order, and strengths of LPAs induce harder
positive pairs and thus better representation quality.

Resolution-based augmentations are the most powerful.

In Figure [3] the best pair for each dataset includes either
CR or VE. Both of them are based on the resolution rule
in Equation 2] Resolution is a powerful inference rule
in propositional logic. In fact, we can build a sound and
complete propositional theorem prover with only resolutions
(Genesereth & Kao, 2013). The Davis—Putnam algorithm
(Davis & Putnam, |1960), the basis of practical SAT solvers,
iteratively applies resolution until reaching satisfiability
certificates. Resolution-based augmentations in contrastive
learning may help the neural work learn the essence of
resolution, which leads to better satisfiability prediction.

Composing different augmentations is beneficial across
datasets. The highest accuracy in Figure [3|always comes
from off-diagonal entries, i.e., composition of different
augmentations. In PR, every singular augmentation failed
to obtain accuracy higher than 60% by itself. While
singular augmentations achieved decent accuracy on SR and
DP, combinations further improved the accuracy. Similar
to image and graph, composing different augmentations
resulted in harder positives and better representations.

Eliminating subsumed clauses after adding resolvents
is particularly helpful. CR followed by SC consistently

produced high-quality representations across all datasets.

Using CR alone tended to perform substantially worse. The

100
SR(10)
904 = PR(10)
—— DP(20)
804 = PS(20)

"
"\x——-x/x/x

50 T T T T T
1 5 10 15 20
Rate of Clause Resolution (%)

~
o

Linear Evaluation
Accuracy (%)

(o2}
o

Figure 4. Adding more resolvents improves the performance across
all datasets. Each point represents linear evaluation accuracy of an
SSL model trained with CR of the specified rate (i.e., # of added
resolvents divided by # of original clauses) followed by SC.

accuracy drop without SC is: 28.1% for SR, 33.4% for PR,
7.0% for DP, 25.3% for PS. Without SC, all original clauses
are preserved by the augmentation, leading to trivial positive
pairs. In other words, without SC the GNN may have solved
the contrastive task by finding a common subgraph, not by
learning anything meaningful about resolution rules.

Interestingly, swapping the order of this pair also decreased
accuracy by 20 — 30% for all datasets. We conjecture that
this may be an artefact of our specific generators. The
percent of subsumed clauses in the original instances (over
1000 samples) was 43,0, 76,69 for SR, PR, DP and PS.
Applying SC first had no effect on PR due to no subsumed
clauses present. For the other three, SC may have eliminated
too many clauses, which hurt the diversity of resolvents
created in the next phase.

More resolvents lead to better representations. Figure
H] studies the effect of the number of resolvents added in
CR. In general, adding more resolvents improved the linear
evaluation performance across all datasets. More resolvents
not only add more new clauses, but also may help SC delete
more original clauses, which create harder positives.

6.3. Do Our Augmentations Reveal the True Label?

As mentioned before, CR and VE are powerful enough
to build a sound and complete solver. Because our
instances are relatively small, it is important to ask
if our augmentations “accidentally” reveal the true
label(SAT/UNSAT) to the model. We do not believe this is
the case for the following reasons.

Our augmentations (polytime complexity) cannot in general
determine whether a formula is satisfiable (exponential in
the worst case). When applied to our datasets, VE only

Contrastive Learning for Combinatorial Problems

eliminated between 1-4 variables, and CR added between
10-20% of the total number of original clauses. This amount
of work alone is not enough to solve SAT.

To assess whether our augmentations are effectively solving
our specific instances, we measured the number of decision
steps of CryptoMiniSat solvers (Soos et al., |2009) on
different datasets before and after our LPAs. If our LPAs
were close to solving the instance, the decision steps
should have decreased dramatically after LPAs were applied.
However, Table[6]in Appendix [[|shows the decision steps
remain relatively stable after augmentations.

7. Comparison with Other Methods

The second set of experiments compared our proposed
framework with other baselines in the setups of linear
evaluation, fine-tuning and few-shot transfer learning. In
addition to our model (SSL with LPA), we studied 4
baselines: SSL with LAA, supervised models trained
without augmentations, supervised models trained with
LPA or LAA. The details of training SSL. models followed
Section @ For supervised models, we trained the
encoder and aggregator of NeuroSAT end-to-end. The
hyperparameters for supervised models were the same as
SSL in Section [6] except the learning rate was chosen to
be 2 x 1072, following |Selsam et al. (2018). For each
dataset, we chose the best augmentation combination for
LPA and LAA according to Figure[3] The degree parameter
associated with each augmentation was tuned separately
for SSL and supervised models. We used 200 instances as
validation sets for early stopping of all methods.

Unless otherwise specified, all datasets used in this section
have 40 variables per instance; in the Appendix [H| we report
results for the same experiments on smaller instances. For
SR datasets, following NeuroSAT, we trained on SR(U(10,
40)) and tested on SR(40). Training procedures for all
models were the same as Section[7.1] except the batch size
was 80 for SR(40) to avoid memory issues. When fine-
tuning NeuroSAT, we used different learning rates for the
encoder and aggregator, which were separately tuned for
different models on each dataset.

7.1. Linear Evaluation

We first evaluated the linear evaluation accuracy of all
methods following the procedure in Section 6] We varied
the number of labelled instances from 2 to 10*.

As shown in the first row of Figure[5] our method achieved
substantially higher accuracy than others across all datasets
in the low-label regime. For example, with 10 training
labelled instances, the improvement (%) of ours compared
from the second best method was: 9.42 for SR, 14.07 for
PR, 30.81 for DP, 22.18 for PS. Our model’s accuracy was

also on par with fully-supervised models that had access to
significantly more labels: for all datasets, the accuracy of
our models trained with 100 labels matched or exceeded the
accuracy of our best supervised baselines trained with 10*
labels, a 100 x reduction in the number of labels needed.

On the other hand, SSL models trained with LAAs were
not much better than random-initialized ones under linear
evaluation. We also found that using LAAs for supervised
models even hurt performance, possibly because LAAs add
label noise. For example, with 10000 labels on DP(40),
adding LAAs gave 20.21% lower accuracy than supervised
without augmentations.

7.2. Fine-tuning

fWe evaluated the fine-tuning accuracy of different SSL
models compared to the supervised baselines. Specifically,
we took the pre-trained SSL models and optimized them
end-to-end on labelled data for a few epochs.

As shown in the second row of Figure [5} the fine-tuning
results resemble those of linear evaluation. In the low-
label regime, our model (SSL + LPA) dominated across all
datasets. In contrast, SSL with LAAs did not improve much
from supervised models that were randomly initialized. As
with linear evaluation, we observed a reduction in sample
complexity of at least 100x.

7.3. Few-shot Transfer Learning

We investigated how well the SSL models trained in Section
[7.1)perform in 10-shot transfer to unseen and larger datasets,
Uniform Random 3SAT (UR) and Community Attachment
(CA) (Giraldez-Cru & Levy, [2015). UR is a synthetic
generator, and CA is pseudo-industrial. We trained a logistic
regression classifier on the fixed representations with 10
SAT and 10 UNSAT instances from the target dataset.
We compared transferability of representations from SSL
with those from supervised representations trained on the
same source dataset. In particular, the supervised baseline
was trained using 100, 000 labelled source instances with
the same augmentations as SSL. Only the encoder of the
supervised models was used for extracting representations
on target datasets.

Do our representations transfer better than supervised?
As shown in Figure [f] we found that our SSL models
generally transferred better than the supervised baseline.
This improvement also tended to be larger when the source
and target domain were more distinct, such as from pseudo-
industrial instances (DP, PS) to random 3 SAT (UR), and
from random 3SAT (PR) to pseudo-industrial instances
(CA). This meets our intuition, because SSL does not
leverage labels in the source dataset, and thus reduces
overfitting on source labels (Yang et al., 2020).

Contrastive Learning for Combinatorial Problems

—— SSL + LPA (ours) SSL + LAA -=-- Supervised -=-- Supervised + LPA Supervised + LAA Random
SR(40) PR(40) DP(40)

100 100 100
5
2 901 90 901
S8
= < o4 807 80
< =

701 701 # 70
o < 0] 60 Y s 60 {
=] éff:‘/ﬁ
o — | — T
— 50 - 50 50

2 10 100 1000 500010000 2 10 100 1000 500010000 2 10 100 1000 500010000 2 10 100 1000 500010000

100
o0]
£g®
g % s
5L
g g 70
R=|
=3

60

50 R T bt -

2 10 100 1000 500010000 2 10 100 1000 500010000 2 10 100 1000 500010000 2 10 100 1000 500010000

No. of Training Labels No. of Training Labels

No. of Training Labels No. of Training Labels

Figure 5. Our method (SSL + LPA) achieves significantly higher accuracy after linear evaluation and fine-tuning than all baselines in
low-label regime and is comparable to supervised models that have been given more labels. We vary the number of training labelled
instances from 2 to 10* and report the average accuracy and standard error over 3 trials for all methods.

Does transferability vary with the source dataset? We
also found that transferability of representations depended
heavily on the source datasets. Generally speaking,
models trained on pseudo-industrial generators, DP and
PS, transferred worse than the synthetic generators, SR
and PR. We conjecture that small industrial instances are
not challenging enough for models to learn generalizable
representation of unseen problem domains. In Appendix
we also performed an experiment to show how the model
trained on SR, PR, DP and PS transfer to each other, which
supports similar conclusions: models trained on SR and PR
transferred better to DP and PS than vice verse.

8. Conclusions and Outlook

We studied the effect of data augmentations on contrastive
learning for the Boolean satisfiability problem. We
designed label-preserving augmentations using well-
studied transformations, e.g., clause resolution or variable
elimination, and confirmed the hypothesis that data
augmentations should be label-preserving to help in
downstream prediction. The design of our augmentations
was critical; we found that resolution-based augmentations,
which produced more distinct augmentations, were
necessary for strong results. Our contrastive method was
able to learn strong SAT predictors (at least as strong as
our best supervised baselines) with 100x fewer labelled
training instances.

Although our results are restricted to Boolean satisfiability,
they hold lessons for solver design more broadly. For
example, the convex hull of MILP feasible sets is invariant
to cuts, which suggests that contrastive pre-training could be
used to improve Neural Diving (Nair et al.,|2020). In general,
our results strongly suggest that studying and exploiting
invariances can dramatically improve the sample complexity
of heuristics learned via imitation learning.

The study of combinatorial problems is fruitful for the
broader machine learning community, because these
problems are non-trivial and so much is known about their
invariances. In particular, experiments can be designed that
exactly satisfy the assumptions of invariant learning theory,
making combinatorial problems fantastic test beds for the
emerging field of contrastive and self-supervised learning.

Acknowledgments

We thank Roger Grosse and Guiliang Liu for valuable
discussions and insights. Resources used in preparing this
research were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies
sponsoring the Vector Institute. We acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), RGPIN-2021-03445.

Contrastive Learning for Combinatorial Problems

1 SSL (ours) Supervised

76.6
,,,,,,, ,7,3,.1,,70:8'72,7,,,,,,,,,,,,,,,,,,,,,,,,,,,,

= 74.3
E:’ 61.2 62.0
5 k0.5 53.1

Target Dataset

SR(10) PR(10) DP(20) PS(20)

Source Dataset

Figure 6. The representations of our model (solid bars) transfer
better from source to unseen target dataset than those of supervised
(hatched bars) trained on the same source. 10-shot transfer
accuracy (%) was evaluated for each setup. The blue line is the
accuracy of fully-supervised models trained on each target dataset
with 10k labels.

References

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., and
Weninger, D. Presolve reductions in mixed integer
programming. INFORMS Journal on Computing, 32
(2):473-506, 2020.

Akiba, T. and Iwata, Y. Branch-and-reduce exponential/fpt
algorithms in practice: A case study of vertex cover.
Theoretical Computer Science, 609:211-225, 2016.

Amizadeh, S., Matusevych, S., and Weimer, M. Learning
to solve circuit-sat: An unsupervised differentiable
approach. In ICLR, 2019a.

Amizadeh, S., Matusevych, S., and Weimer, M. Pdp:
A general neural framework for learning constraint
satisfaction solvers. arXiv preprint arXiv:1903.01969,
2019b.

Ansétegui, C., Bonet, M. L., and Levy, J. Towards industrial-
like random sat instances. In Twenty-First International
Joint Conference on Artificial Intelligence, 2009.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O.,
and Saunshi, N. A theoretical analysis of contrastive
unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Bardes, A., Ponce, J., and LeCun, Y. Vicreg: Variance-
invariance-covariance regularization for self-supervised
learning. arXiv preprint arXiv:2105.04906, 2021.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour

d’horizon. European Journal of Operational Research,

290(2):405-421, 2021.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris,
C., and Velic¢kovié, P. Combinatorial optimization and
reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G.
A simple framework for contrastive learning of visual
representations. In International conference on machine
learning, pp. 1597-1607. PMLR, 2020a.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020b.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. arXiv preprint arXiv:1704.01665, 2017.

Davis, M. and Putnam, H. A computing procedure for
quantification theory. Journal of the ACM (JACM), 7(3):
201-215, 1960.

Dubois, Y., Bloem-Reddy, B., Ullrich, K., and Maddison,
C. J. Lossy compression for lossless prediction. In
NeurlPS, 2021.

Eén, N. and Biere, A. Effective preprocessing in sat
through variable and clause elimination. In International
conference on theory and applications of satisfiability
testing, pp. 61-75. Springer, 2005.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and
Lodi, A. Exact combinatorial optimization with
graph convolutional neural networks. arXiv preprint
arXiv:1906.01629, 2019.

Genesereth, M. and Kao, E. Introduction to logic. Synthesis
Lectures on Computer Science, 4(1):1-165, 2013.

Giraldez-Cru, J. and Levy, J. A modularity-based random
sat instances generator. In Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

Girdldez-Cru, J. and Levy, J. Locality in random sat
instances. International Joint Conferences on Artificial
Intelligence, 2017.

HaoChen, J. Z., Wei, C., Gaidon, A., and Ma, T. Provable
guarantees for self-supervised deep learning with spectral
contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

Hassani, K. and Khasahmadi, A. H. Contrastive multi-
view representation learning on graphs. In International
Conference on Machine Learning, pp. 4116-4126.
PMLR, 2020.

Contrastive Learning for Combinatorial Problems

He, K., Fan, H., Wu, Y., Xie, S., and Girshick,
R. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 9729-9738, 2020.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Karalias, N. and Loukas, A. FErdos goes neural: an
unsupervised learning framework for combinatorial
optimization on graphs. In NeurlPS 2020 34th
Conference on Neural Information Processing Systems,
2020.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kurin, V., Godil, S., Whiteson, S., and Catanzaro, B.
Improving SAT Solver Heuristics with Graph Networks
and Reinforcement Learning. CoRR, abs/1909.11830,
2019.

Lederman, G., Rabe, M. N., Seshia, S., and Lee,
E. A. Learning Heuristics for Quantified Boolean
Formulas through Reinforcement Learning. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I,
Lichocki, P., Lobov, 1., O’Donoghue, B., Sonnerat, N.,
Tjandraatmadja, C., Wang, P., et al. Solving mixed
integer programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

Nejati, S. and Ganesh, V. Cdcl (crypto) sat solvers
for cryptanalysis. In Proceedings of the 29th Annual
International Conference on Computer Science and
Software Engineering, pp. 311-316, 2019.

Nowak, A., Villar, S., Bandeira, A. S., and Bruna, J. Revised
note on learning quadratic assignment with graph neural
networks. In 2018 IEEE Data Science Workshop (DSW),
pp- 1-5. IEEE, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Prates, M., Avelar, P. H., Lemos, H., Lamb, L. C., and Vardi,
M. Y. Learning to solve np-complete problems: A graph
neural network for decision tsp. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 4731-4738, 2019.

Selsam, D. and Bjgrner, N. Guiding high-performance
sat solvers with unsat-core predictions. In International
Conference on Theory and Applications of Satisfiability
Testing, pp. 336-353. Springer, 2019.

Selsam, D., Lamm, M., Benedikt, B., Liang, P., de Moura,
L., Dill, D. L., et al. Learning a sat solver from single-bit
supervision. In International Conference on Learning
Representations, 2018.

Soos, M., Nohl, K., and Castelluccia, C. Extending sat
solvers to cryptographic problems. In International
Conference on Theory and Applications of Satisfiability
Testing, pp. 244-257. Springer, 2009.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
neural networks for maximum constraint satisfaction.
Frontiers in artificial intelligence, 3:98, 2021.

Tong, Z., Liang, Y., Ding, H., Dai, Y., Li, X., and Wang, C.
Directed graph contrastive learning. Advances in Neural
Information Processing Systems, 34, 2021.

Tosh, C., Krishnamurthy, A., and Hsu, D. Contrastive
learning, multi-view redundancy, and linear models. In
Algorithmic Learning Theory, pp. 1179-1206. PMLR,
2021.

Vaezipoor, P., Lederman, G., Wu, Y., Maddison, C., Grosse,
R. B, Seshia, S. A., and Bacchus, F. Learning branching
heuristics for propositional model counting. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(14):
12427-12435, May 2021.

Wan, S., Zhan, Y., Liu, L., Yu, B., Pan, S., and Gong, C.
Contrastive graph poisson networks: Semi-supervised
learning with extremely limited labels. Advances in
Neural Information Processing Systems, 34, 2021.

Yang, X., He, X., Liang, Y., Yang, Y., Zhang, S., and
Xie, P. Transfer learning or self-supervised learning?
a tale of two pretraining paradigms. arXiv preprint
arXiv:2007.04234, 2020.

Yolcu, E. and Po6czos, B. Learning Local Search
Heuristics for Boolean Satisfiability. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pp. 7990-8001, 2019.

Contrastive Learning for Combinatorial Problems

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in Neural Information Processing Systems, 33:5812—
5823, 2020.

Zhu, Y., Xu, Y., Yu, E, Liu, Q., Wu, S., and Wang, L. Deep
graph contrastive representation learning. arXiv preprint
arXiv:2006.04131, 2020.

Contrastive Learning for Combinatorial Problems

A. LPAs for SAT

Table 3. Examples of LPAs for SAT. UP: remove ¢, c¢3 and —z from c4. AU: add unit literal —z5, add x5 to ¢; and create a new random
clauses containing —x5 . SC: remove c4 because c2 C ca. CR: add c2 ® c3. VE: eliminate x3 by adding c2 ® c3 and ¢4 ® c3.

Original UP

C1 .21 Ea

CQZ$2VI’3 I’Q\/$3
c3:x1Vx3Vay V=3 V-4

cqg X1 VaxoaVayV 2y | =21Vre VIyV 2y
AU SC

X5

r5V X X1

T V I3 o V T3
SCl\/_|I3\/I’4 1’1\/_\1‘3\/I4

-1 VI VgV 2y L1V V-&3 €q
—x5 VarVxs Vs

CR VE

X1 I

To V T3 Eo V-3

x1V x3V Iy ErV=&3V-%E1
—x1Vxe VgV 2y T1-V-Eo V&3 €q
x1VaeVay x1 Ve Vay

B. NeuroSAT

Encoder We use L™ and C" to denote the embeddings for literals and clauses at the message passing round 7. In addition,
we have hidden states for literals and clauses, denoted by L}, C}'. Let M be the bipartite adjacency matrix of the LIGT.
NeuroSAT encoder is parameterized by two MLPs (Lyy,54, Cpnsg) and two layer-norm LSTMs (L,,, C,), which are shared
for all rounds. Then for round n, embeddings are updated as:

(C™L O = Cul[CR, MT Linsg (L™)])
(L™ L) &= Lu([Ly, FLIP(L"), MClusg (C" 1)),
where F'LI P swaps the literal and its negation in the embedding.

In this work, we always set the number of message passing rounds to 26. We use L2 as the final literal embedding. The
graph-level representation can be computed as an average of the embeddings for all literals.

Aggregator Given the embeddings LV from the encoder, we project each literal representation to a single scalar using an
MLP Lpie: V < Lyote(L™). Then we minimize the cross-entropy loss between the true label and sigmoid(mean(Lyote))

C. Augmentation Rates for LAAs ans LPAs

We also investigated the effect of augmentation rates for LAAs and LPAs, with results presented in Figure [7]and 8]

D. Datasets
D.1. Brief Description

* SR (Selsam et al., 2018) A random SAT generator proposed as a challenge for neural networks to learn intrinsic
properties about satisfiability without cheating on some miscellaneous statistics about the dataset.

* PR (Ansotegui et al., 2009) A random k-SAT generator where the frequency of each variable is sampled from a
power-law distribution.

Contrastive Learning for Combinatorial Problems

SR(10) PR(10) DP(20) PS(20)
64
54 56 66
53 55 64 62
52 62
51 54 60
60
s 66
56 62 65
52
64
_ 54 60
X 51 63
<
62
2 50 52 58 DC
< = DV
5 58
5 54 — LP
< 57 62 % — SG
» 53 64
56
& 5 60 63
55 62
51 58
68
53 %8 66
57 64
64
52 56
55 i 62
60

1510152025 1 510152025 1 510152025 1 5 10152025
Augmentation Rate (%)

Figure 7. The effect of rate of LAAs on the accuracy across datasets. The diamond markers indicate the maximum achieved accuracy
which was the rate that was subsequently chosen to produce the heatmap of Figure[3]

* DP (Ansotegui et al.,|2009) A pseudo-industrial generator based on PR with varying clause length

PS (Giraldez-Cru & Levy,2017) A pseudo-industrial generator based on the notion of locality.

* UR A random k-SAT generator where each variable is sampled uniformly.

CA (Giraldez-Cru & Levy,2015) A pseudo-industrial generator based on the notion of modularity.

D.2. Parameters

For the purpose of reproducibility, we show the parameters of each generator used in the paper below:

* SR(10) / SR(40) All parameters follow NeuroSAT.

¢ PR(10) Number of variables: 10. Number of clauses: 41. Variable per clause: 3. Power-law exponents of variables:
1.7.

* PR(40) Number of variables: 40. Number of clauses: 147. Variable per clause: 3. Power-law exponents of variables:
2.5.

* DP(20) Number of variables: 20. Number of clauses: 34. Average variables per clause: 4. Power-law exponents of
variables: 1.7.

* DP(40) Number of variables: 40. Number of clauses: 75. Average variables per clause: 5. Power-law exponents of
variables: 1.7.

* PS(20) Number of variables: 20. Number of clauses: 58. Min variable per clause: 2. Average variables per clause: 4.

* PS(40) Number of variables: 40. Number of clauses: 73. Min variable per clause: 2. Average variables per clause: 5.

Contrastive Learning for Combinatorial Problems

SR(10) PR(10) DP(20) PS(20)
64 1
57 1 55 66 1
631
56 651
541 64 62
551 o 63 61+
S 62 i 601
s 671
z o] %81 66 1 697 AU
g 90l] | — VE
3 » » % 681 — CR
< 89tiitt| 544 Voi i G4 R
)
2 781 72
581 581 75 70+
56 1 561 72 681
54 661
54 691 64 1

5101520 5 101520 5 101520 5 10 15 20
Augmentation Rate (%)

Figure 8. The effect of rate of our LPA augmentations on the accuracy across datasets. The diamond markers indicate the maximum
achieved accuracy which was the rate that was subsequently chosen to produce the heatmap of Figure El

E. Does our method work with other GNN architectures?

We also studied if our framework could be used with more common architectures, such as, graph convolutional networks
(GCNs). We chose the GCN architecture in NeuralDiver (Nair et al., [2020) without the residual connection. The number of
layers is set to be 10. Table[d]shows that SSL + LPA still dominates in the low-label regime.

Table 4. Linear evaluation performance of different methods with GCNs on SR(10).

2 10 100 1000 5000 10000

Supervised 49.82 50.08 50.68 50.23 51.25 78.82
SSL+LPA 6035 7026 73.17 7529 7527 77.54
SSL+LAA 51.32 5129 4893 50.72 5041 63.24

F. Does our method work with other contrastive loss functions?

We replaced the SimCLR’s loss function in Equation [I| with the VICReg loss (Bardes et al., [2021). We set A = 15, u =
1,v = 1 for the hyperparameters of VICReg. As shown in Table [5] linear evaluation performance for both objective
functions are quite close.

Table 5. Linear evaluation performance of our methods with SimCLR and VICReg loss on SR(10)

2 10 100 1000 5000 10000

Ours + SimCLR 79.53 88.32 9223 93.32 93.01 95.12
Ours + VICReg 7638 89.15 91.27 9398 94.01 94.77

G. More Transfer Learning Results

See Figure[9]

Contrastive Learning for Combinatorial Problems

PS(20) PS(40)

SR(10) MENPR(10) EEEDP(20) HEEEPS(20)

Figure 9. Each bar represents the SSL model trained on a different source dataset, and each subplot is the target dataset 4 SSL models are
evaluated on. The number on top of each bar is the linear evaluation accuracy with 20 labels from the target dataset. The blue line is the
fully-supervised baseline trained on 20 labels on the target baseline, and the red line is the supervised baseline trained on 10000 labels.
The ¢ symbol emphasizes that the train and test datasets are from the same distribution. Left: Transfer to unseen problems of similar size.
right: Transfer to unseen problems of larger size.

H. Evaluation on Smaller Datasets

We also performed linear evaluation and fine-tuning experiments for the smaller datasets in Section [6} The results are shown
in Figure[T0]

I. Decision step

We measured the decision steps of CryptoMiniSat 2009) solvers before and after our augmentations. The result
is shown in Table [l

Table 6. Decision steps of CryptoMiniSat (Soos et al | [2009) solvers before and after augmentations used in Figure[5] We use the same
augmentation as the corresponding SSL model in Figure[3] The statistics is computed over 1000 instances for each dataset.

SR(40) PR(40) DP(40) PS(40)
SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

Before 17.54 13.25 1821 12.14 32.78 0.27 33.26 7.37
After 16.36 16.40 21.61 12.64 28.47 0.36 34.83 6.92

Contrastive Learning for Combinatorial Problems

—— SSL + LPA (ours)

SR(10)

SSL + LAA —=-- Supervised -

PR(10)

- Supervised + LPA

DP(20)

Supervised + LAA ===+ Random

Linear Evaluation
Accuracy (%)

100

100

100

90 1

80 1

701

60 A

50 1

PS(20)

2

10 100 1000 5000 10000

2 10 100 1000 500010000

2 10 100 1000 500010000

100

Fine-tuning
Accuracy (%)

90

80

70

60

50

2

10 100 1000 500010000
No. of Training Labels

2

10 100 1000 500010000
No. of Training Labels

2 10 100 1000 500010000
No. of Training Labels

2 10 100 1000 500010000
No. of Training Labels

Figure 10. Our method (SSL + LPA) achieves significantly higher accuracy after linear evaluation and fine-tuning than baselines in
low-label regime and is comparable to supervised models that have been given more labels. We vary the number of training labelled
instances from 2 to 10* and report the average accuracy and standard error over 3 trials for all methods.

	Introduction
	Background
	Related Work
	Framework Overview
	Augmentations for Combinatorial Problems
	Definition and Motivation
	Label-preserving Augmentations for SAT

	Empirical Study of Augmentations for SAT
	Label-Preserving Augmentations are Necessary
	Type, Order, and Strengths of LPAs are Crucial
	Do Our Augmentations Reveal the True Label?

	Comparison with Other Methods
	Linear Evaluation
	Fine-tuning
	Few-shot Transfer Learning

	Conclusions and Outlook
	LPAs for SAT
	NeuroSAT
	Augmentation Rates for LAAs ans LPAs
	Datasets
	Brief Description
	Parameters

	Does our method work with other GNN architectures?
	Does our method work with other contrastive loss functions?
	More Transfer Learning Results
	Evaluation on Smaller Datasets
	Decision step

