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Abstract

Existing deep topic models are effective in captur-
ing the latent semantic structures in textual data
but usually rely on a plethora of documents. This
is less than satisfactory in practical applications
when only a limited amount of data is available.
In this paper, we propose a novel framework that
efficiently solves the problem of topic modeling
under the small data regime. Specifically, the
framework involves two innovations: a bi-level
generative model that aims to exploit the task in-
formation to guide the document generation, and
a topic meta-learner that strives to learn a group
of global topic embeddings so that fast adapta-
tion to the task-specific topic embeddings can
be achieved with a few examples. We apply the
proposed framework to a hierarchical embedded
topic model and achieve better performance than
various baseline models on diverse experiments,
including few-shot topic discovery and few-shot
document classification.

1. Introduction

Topic models (Blei et al., 2003) enjoy great popularity
among various text mining tools. Their prevalence stems
from their ability to organize a collection of documents into
a set of prominent themes. In addition to highlighting the
underlying patterns intuitively, these extracted topics can
also be used to derive low-dimensional representations of
the documents, which have proven useful in a series of natu-
ral language processing tasks, such as information retrieval
(Wang et al., 2007), text classification (Rubin et al., 2012),
and machine translation (Mimno et al., 2009).

Over the recent years, considerable progress has been made
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Figure 1. Illustration of the advantage of embedded topic models
over traditional topic models in the few-shot setting. Considering
word embeddings as transferable knowledge reduces the difficulty
of discovering new topics from novel target tasks.

in topic modeling, ranging from exploring hierarchical doc-
ument representations (Zhou et al., 2016; Guo et al., 2018)
to discovering more coherent topics (Bianchi et al., 2021).
In particular, the development of variational autoencoder
(VAE) (Kingma & Welling, 2013) shows the potential of
deep neural networks in posterior inference, motivating the
proposal of an array of neural topic models (NTMs) (Miao
et al., 2016; Zhang et al., 2018; Dieng et al., 2020) that
possess better flexibility and scalability. However, relatively
little work has focused on few-shot adaptation in topic mod-
els (Iwata, 2021). This is partly because a topic model is
often supposed to deal with a large volume of text, but more
primarily due to the challenging nature of learning joint
distributions from a few samples in an unsupervised manner.
On the other side, there are inevitably times in real-world
applications when only a limited amount of data is avail-
able, such as written records of ancient history or news from
front-line reporters. Thus, it is crucial to explore effective
ways for few-shot learning in topic models.

Few-shot learning is a long-standing problem that aims to
efficiently solve new tasks with only a few examples by ex-
ploiting knowledge gained from a large number of related
tasks (Kim et al., 2019). While there have been many suc-
cessful learning paradigms, most of them were originally
designed for supervised tasks and are not natural to be ap-
plied in topic models. Basically, the form of knowledge that
can be transferred to new tasks plays a key role in determin-
ing a few-shot algorithm. For instance, the model-agnostic
meta-learning (MAML) (Finn et al., 2017) algorithm defines
the knowledge as a good initialization of model parameters
that can be adapted with a few gradient descent steps to
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individual tasks. Similarly, the knowledge in topic model-
ing could be designed as a meaningful prior of the topics.
However, compared to traditional topic models that adapt
the entire topics to each task, we find that the embedded
topic model (ETMs) (Dieng et al., 2020; Duan et al., 2021a)
can be more effective in achieving the few-shot adaptation.
Concretely, as shown in Fig. 1, the word embeddings serve
as transferable knowledge that can be learned from multiple
training tasks, as a result, only the topic embeddings need
to be inferred when adapting to a new task.

Although the embedded topic model somewhat alleviates
the plight of discovering new topics from a few documents,
it does not essentially solve the problem of topic modeling
under the small data regime. To this end, we draw inspira-
tion from several recent studies that cast meta-learning as
Bayesian inference in hierarchical modelling (Gordon et al.,
2018; Ravi & Beatson, 2018) and further propose to learn
a group of global topic embeddings, which are modeled
as Gaussian distributions, providing a good quantification
of uncertainty and also facilitating the fast adaptation to
task-specific topic embeddings. Moreover, considering the
dependence between documents and the task they belong
to, we develop a bi-level generative model that captures
the topic proportion information from both tasks and doc-
uments. Specifically, the task-level latent variables act as
a prior to be conditioned on the document-level latent vari-
ables, which can better reflect the intrinsic variability within
the tasks. In conclusion, we in this paper propose a novel
framework that effectively solves the problem of learning
a topic model from a few documents. We apply this frame-
work to a hierarchical embedded topic model (Duan et al.,
2021a) and achieve better performance than various baseline
models in few-shot experiments. Our main contributions
are summarized as follows:

* We propose a novel framework to solve the problem of
topic modeling under the few-shot settings, including
three novel modules: 7) the word embeddings sharing
mechanism of ETMs is used to reuse knowledge from
training tasks; i) a group of global topics is employed
to facilitate the fast adaptation to task-specific topic
embeddings; i) A bi-level generative model is devel-
oped to capture the topic proportion information from
both tasks and documents.

* The proposed framework is applied in a hierarchical
topic model to obtain a novel bi-level hierarchical gen-
erative model. Meanwhile, we design an efficient
upward-downward inference network to approximate
the posterior for its latent variables.

* A flexible training algorithm with an episodic training
strategy is developed to train the model parameters.
Experiments on various datasets and tasks show that
our models outperform various baseline models on
few-shot learning settings.

2. Related work
2.1. Topic modeling

The family of topic models has been significantly expanded
in recent years, resulting in hierarchical topic models (Blei
et al., 2010; Paisley et al., 2014; Gan et al., 2015; Henao
etal., 2015; Zhou et al., 2015; Cong et al., 2017; Zhao et al.,
2018), neural topic models (Miao et al., 2016; Srivastava &
Sutton, 2017; Card et al., 2017; Zhang et al., 2018), embed-
ded topic models (Dieng et al., 2020; Duan et al., 2021a),
optimal transport-based topic models (Huynh et al., 2020;
Zhao et al., 2021; Wang et al., 2022), and knowledge-guided
topic models (Duan et al., 2021b). Besides, topic models
can also be improved by drawing upon experiences from
other domains, such as transfer learning (Hu et al., 2015)
and continual lifelong learning (Gupta et al., 2020). How-
ever, little attention has been paid to the adaptability of topic
models in few-shot settings. Iwata (2021) develops a few-
shot learning algorithm based on latent Dirichlet allocation,
the core idea of which is to learn good model priors via
a shared inference network. But it is limited by the shal-
low structure and only explores the single-layer semantic
information. Moreover, it relies on an iterative procedure to
adapt to a new task at the testing stage, which is less than
satisfactory when real-time processing is desired (Zhang
et al., 2018). The most significant difference between our
model and the above topic models is that we have introduced
a task-level latent variable and maintained a group of topic
embeddings shared by different tasks. They act as a good
prior, facilitating accurate posterior approximations even
with only a few documents.

2.2. Meta-learning

Meta-learning, also known as learning to learn, comprises a
broad family of techniques focused on helping deep mod-
els quickly adapt to new environments. Existing literature
commonly categorizes meta-learning approaches into three
groups: i) the metric-based, i) the model-based, and i)
the optimization-based. Metric-based methods (Vinyals
et al., 2016; Snell et al., 2017; Sung et al., 2018) aim to
learn a good metric space in which efficient predictions can
be made for new tasks. This type of method is typically used
in supervised learning. Model-based methods (Edwards &
Storkey, 2016; Santoro et al., 2016; Mishra et al., 2017)
depend on a well-designed module to maintain an internal
state for each task. Optimization-based methods (Ravi &
Larochelle, 2016; Finn et al., 2017) involve directly optimiz-
ing a meta learner that can efficiently update its parameters
using a small amount of data. Some recent studies (Gordon
et al., 2018; Ravi & Beatson, 2018; Iakovleva et al., 2020;
Jeon et al., 2022) also cast meta-learning as Bayesian in-
ference in a hierarchical graphical model. This approach
provides a principled framework to reason about uncertainty.
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Figure 2. Graphical illustrations: (a) The bi-level hierarchical generative model is composed by two collections of hierarchical latent

variables, ng) for the task D; and Hl(l]) for the samples z; ;; the embedding-based topic meta-learner is a hierarchical generative model,

where task-specific topic embeddings ol

i

are generated from global topic embeddings /3 O (b) The proposed hierarchical upward and

downward encoder network for inferring document-specific latent variables Gz(lj) and task-specific latent variables {c(l) agl) }; (c) The

7

proposed hierarchical permutation invariant neural network for getting hierarchical task representation hgl).

Our work can be viewed as a combination of the model-
based methods and Bayesian approaches, because we use a
model-based network to infer the task and document repre-
sentations and a Bayesian decoder to quickly adapt to the
new topic embeddings.

3. Proposed model
3.1. Problem formulation

Before diving into the details of our method, we first intro-
duce the problem definition of few-shot learning for topic
modeling. Given the bag-of-words (BoWs) representations
of C training corpora { X C}le, the goal of few-shot learn-
ing is to train a topic model on these corpora so that during
the evaluation stage, the trained model can be adapted to
discover new topics with only a few documents from a new
corpus X . Following the convention in most few-shot
learning approaches, we adopt an episodic training strategy

that samples a batch of tasks {D;}, from the training

corpora. Each task consists of a small training subset DES)

called support set and a validation subset DZ(Q) called query
set, DES) N Dz@) = . During evaluation, we similarly
sample the test task Dieq from the new corpus X ey, use its
support set Dt(eft) to adapt the model, and use its query set

Dl(e?t) to evaluate the performance of the adapted model.

3.2. Bi-level hierarchical generative model

In this section, we combine the proposed framework with
the gamma belief network (Zhou et al., 2015), resulting in a
bi-level hierarchical topic model. Formally, the generative

model with L latent layers can be expressed as
cEL) ~ Gam (r, el(-L'H)) S
cz(-l) ~ Gam (WHI)CEZH)&EHD) )
6" ~ Gam (c(.L) e(.LH)) cee
i, 7 I} 9 1]

61! ~ Gam (26 1 0, LY ...,

95}].) ~ Gam (@52)02? +eM) e(.2>> ,

? J

€y

x;,; ~ Pois (@EUGZ(}]-)) ,

where x; ; € Z" denotes the word count vector of the ;"
document in the 7" task, which is factorized as the prod-

uct of a task-specific factor loading matrix <1>§.” € RKXK !

and a document-specific factor score 02(13-) € Rf ! under
the Poisson likelihood. Then, in order to obtain hierarchi-

cal document representations, the shape parameter of the

factor score Bfl]) € Rf" at layer [ is further decomposed

into the sum of @El+1)0§f;r1) and ¢!, where cl(-l) € Rf’

i
is the task-specific factor score that serves as a prior in-
corporated with task information, till the top layer, 95?)

only depends on cl(-L). Moreover, to build the dependence

between task-specific factor scores of different layers, the
shape parameter of the factor score ¢! is factorized into

@b(l“)cglﬂ). In addition, the set of variables in Eq. (1)

T, e,gLH), e ,6,52), e(-L+1), XX ,e@ are all hyperparame-

ters, which are set to fixed values following the previous
work (Zhang et al., 2018), i.e., {r =1, egl) =1, egl) =1}
Distinct from other few-shot generative models (Oord et al.,

2017; Giannone & Winther, 2021) that typically employ
a shared decoder for all tasks, here we use a task-specific
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decoder @,EZ) on account of the unique transferability of
text representations. More concretely, most existing few-
shot generative models mainly focus on vision tasks. As
low-level patterns (e.g., points and edges) in images are
ubiquitous in almost every task, their corresponding rep-
resentations can be shared across tasks. The situation is
quiet different for textual data, where our tasks operate at
the lexical level and words that frequently occur in one task
may disappear in other tasks. Consequently, a task-specific
decoder is of vital importance to capture the variability be-
tween different tasks.

3.3. Embedding-based topic meta-learner

As discussed in Sec. 1, embedded topic models lay a solid
foundation for achieving the few-shot adaptation to novel
tasks. However, unlike the vanilla embedded topic model
(Dieng et al., 2020) where the unique word-topic matrix is
directly formulated as the product of word embeddings and
topic embeddings, the challenge of our generative model lies
in that the hierarchical factor loading matrices are assumed
to be independent. Fortunately, a recently proposed neural
topic model called SawETM (Duan et al., 2021a) addressed
this issue by putting forward a Sawtooth Connection (SC)
module. Particularly, representing topics of all layers into a
shared embedding space enables the factor loading matrix
<I>§l])€ to be calculated based on the topic embeddings at two
adjacent layers. As a result, the dependency between factor
loading matrices of two adjacent layers is built by reusing
the topic embeddings of intermediate layers.

Building on top of SawETM, we intend to further improve
our model’s ability to quickly learn a set of new topics from
a few target documents. To this end, we resort to the concept
of Bayesian meta-learning. By imposing probabilistic distri-
butions on the network weights, it aims to learn reasonable
priors that can produce accurate posterior approximations
with a few steps of gradient descent or Bayesian updating
(Ravi & Beatson, 2018). Nevertheless, we emphasize that it
is difficult to fine-tune all parameters effectively using only
a few documents, especially for the high-dimensional word
embeddings. Accordingly, we design a solution where only
topic embeddings need to be inferred adaptively from the
new tasks. Specifically, as shown in Fig. 2(a), we maintain
a group of global topic embeddings dedicated to providing
good priors for task-specific topic embeddings. Thus, the
generation of factor loading matrices is expressed as

BY ~N(0,1),
1/;,(;) = softmax (,BUfl)TB;(;)), l=2,.---,L
. @)

1=0,--,L

ol ~ N (B T), =1,

ac-nT
@il,)c = softmax (ai ai7k>, l=1,---,L

where 3() € RE1*D represents the set of global topic em-
beddings shared across different tasks and a!” € RE1xP

denotes the group of task-specific topic embeddings that is
sampled from a Gaussian distribution with 3() as its mean
vector. Note that in the bottom layer (%) € RV*P is the
word embeddings, which is learned from a large number of

training tasks and no longer fine-tuned for the target task.

3.4. Approximate inference

To perform efficient inference for the latent variables of our
proposed model, we develop an effective inference network
to approximate the posteriors of {8\, ¢c{”, 80, a{"}L,
based on amortized variational inference (AVI) techniques
(Hoffman et al., 2013; Kingma & Welling, 2013).

Document latent variable inference Instead of using Gaus-
sian latent variables as in most neural topic models (Sri-
vastava & Sutton, 2017), our generative model employs
gamma-distributed latent variables that are more suitable for
modeling sparse and non-negative document representations.
However, such a choice also brings the difficulty of repa-
rameterizing gamma-distributed random variables when we
design a sampling-based inference network. To mitigate this
issue, we utilize a Weibull upward-downward variational
encoder to approximate the posteriors of {051]) }- | inspired
by the work in Zhang et al. (2018; 2020). Then we have
009 |z 5,0 D) = Weibull (k(lj) A“j) G

4,9 L2Y B

where parameters kgl;, )\l(»l; € Rfl are deterministic trans-

formations of the observed document features, the informa-
tion from the stochastic task path cgl), and the information

from the stochastic up-down path Gfl;' b, Fig. 2(b) shows
how these pieces of information are propagated to influence

01(1J+ 1). Formally, the inference process can be described by
h{") =ReLU R\ "W + b{"),
W _ { hﬁ,? ac?  1=1,
RV ( (1+1) p(1+1) )
J hz’,j P, Oi,j ®c; I <L, 4)
kglz =1In[1+ exp(hgglwél) + bél))L
AL = In[1 +exp(hy) W§ + b)),
where hg?j) =z, {hil; ?iﬁil,z:l € RXt, ReLU () =

max(0, -) is the nonlinear activation function, and & denotes
the concatenation in feature dimension.

Task latent variable inference For the same reason, we
also use Weibull distributions to approximate the posteriors
of task-specific latent variables {cE” M., formulated as

g(el” |2, ") = Weibull (k§”, A§.”) O G)

where the parameters k:,gl), )\El) € Rf ! are deterministically
transformed from both the observed task representation and
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the information from the stochastic up-down path c(l+1) as

displayed in Fig. 2(b). In detail, we first employ a simple
and effective permutation invariant neural network model
(Zaheer et al., 2017) shown in Fig. 2(c) to infer hierarchical
task representations as

1 N
o _ O
h =D hs ©6)
And then we calculate the parameters kzz@, )\El) by
RO h<L) =
i h<l) ® ¢(z+1 (z+1) 1< L,
O] ' w® (1) Q)
k;” =In[l +exp(h;” W ' +b,")],
AL = [l + exp(B W + 6],

Additionally, Gaussian distributions are used to model po-
tential uncertainties of the topics. Therefore, the inference
of task-specific topic embeddings should consider both the
likelihood information from observed task representations

k" and the prior information from 3", and we have

u>)

a(el)| X) =N ()0

i) = (b @ YW + b)), ®)
ol) = (h" o B YWY + b,
Global latent variables inference The prior 3" captures

the shared semantic structure of topic embedding across
all the tasks, and we can use a Gaussian distribution to
approximate its posterior as

BV 1X) =N (n), o)), ©
where the inference network can be expressed as
pd =w, o =w. (10)

Note that @ = {{Ww1%.X 1= L {B T 111} are the pa-
rameters of the inference network that can be seen as the
shared structure representing the meta-knowledge (Gordon
et al., 2018).

3.5. Variational inference under episodic training
framework

As the definition described in Section 3.1, during evalua-

(s

tion, we are only given D, ) to infer the variational distri-

butions q(az(-l)) and ¢(c (”) and measure the performance
of the model by evaluating the variational distribution on
corresponding DEQ). In order to keep consistent during
training and evaluation, we consider a modified version of
the objective of the Evidence Lower Bound (ELBO) that

Algorithm 1 Autoencoding Variational Inference for Meta-
DETM
Set mini-batch size m and the number of layer T’
Initialize the variational network parameters €2;
while not converge do
1. Randomly sample a mini-batch of m support and

query sets to form a subtask {D(S) } {D(,Q)} ;
2. Infer variational posterior for ztaslk latent i/airi—
ables {afl)}@
{D(S)}l by Eq (5) and Eq. (8);

3. Infer variational posterior for document latent
variables {0”}2" lelj , using {D; ,J}L 1j=1 by
Eq. (3);

4. Calculate ValL (Q;{DES>}7_n ) according to

=1

Eq. (11) and update 2
end while

_, and {¢; l)}l 11=1 only using

incorporates this support and query task split (Ravi & Beat-
son, 2018). This means that for each episode ¢, we only use
the support data D§S> to infer the variational posteriors of

{ o (l)}
I M & (D L1 0] (0)
ELBo—; Q{np( ’|{c" }1:1’{ }z P )}
{m q(C§l)|D§S>> }

e

Dlpe )
wo [ afalio)
_ Z Z ADE, |In ® » (80
i=1 =1 p (ai \5”)) )
(11)

where A", v(!) are the regularization coefficients (Higgins
et al., 2016), and the first item can be further written as

, and the resulted objective is expressed as

M L

=D Eq

i=1 [=1

()
ln ('B )

Z’) Eq

=1

N
Eqlnp (Di[-)] = )" Eq [1np(a 5@, 6(])]

n q( 1,7 |m'lj70(l+1> ;D)
(60187 9D ) |1

12)

with

l l l

Q Hl 1 0( 1370(+1v ())
l S

q<c§->m£ Na(elV|D®

(13)
Na(B®),

where q(O | x; 5, 0(l+1), g.l)) is the variational Weibull
distribution in Eq. (3), and p(@flj) ) is the prior gamma
distribution in Eq. (1); The first term is the expected log-
likelihood or reconstruction error, while the second term
is the Kullback—Leibler (KL) divergence that constrains

(0(l | x; oY (l)) to be close to its prior p(0( ))

2J0 1] ’ ] mn

|
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the generative model; The analytic KL expression and sim-
ple reparameterization of the Weibull distribution make it
simple to estimate the gradient of the ELBO, with respect
to all the parameters €2 in the inference network. Similar to
variational auto-encoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014), the training objective of Meta-DETM
is to maximize the ELBO.

3.6. Model properties

Hierarchical semantic topic: The loading matrices &)
in Eq. (2) capture the semantic correlations of the topics of
adjacent layers. Using the law of total expectation, we have

l
el fa) ] - [T

t=1

6!V
— T (14)
Hfs:2 e;t)

Therefore, [ i ‘ﬁ(t)} ®! is naturally interpreted as the

projection of topic @) to the observation space, providing
us with a principled way to visualize the topics at different
semantic levels.

Multi-level semantic task dependence: The proposed
model can capture semantic task dependences in different
levels by hierarchical task-specific latent variables {cV } £,
which represent more specific semantic structure depen-
dence in the lower layer and more abstract semantic struc-
ture dependence in the higher layer.

Effectiveness of meta-decoder: Our designed meta-
decoder enables knowledge accumulated from source tasks
to be efficiently transferred to the target task, yielding a
good posterior approximation with only a few samples.

4. Experiments

We carry out extensive experiments on several widely-used
text datasets varying in scale. We report per-heldout-word
perplexity and few-shot text classification accuracy on each
dataset. We also qualitatively analyze the adaptation process
from shared global topics to task-specific topics. Datasets:
Our experiments are conducted on three widely-used textual
benchmarks with different scales and document lengths,
including 20Newsgroups (20NG), Yahoo! Answers (Yahoo),
and Reuters Corpus Volume I (RCV1). 20NG consists of
informal discourse from news discussion forums and has
18,846 documents from 20 categories (Lang, 1995). Yahoo
is a topic classification dataset built from Yahoo! Answers
Comprehensive Questions and Answers version 1.0 dataset,
with 10 categories, each containing 145,000 samples (Zhang
et al., 2015). We randomly sample 100,000 documents from
the Yahoo dataset for our experiments. RCV1, a collection
of Reuters news wire articles from 1996 to 1997, consists
of 804,414 documents (Lewis et al., 2004). These articles
are written in formal speech and labeled with topic codes.
We consider 55 second-level topics as our total class set for

our experiments. We build a vocabulary by removing the
stop words and selecting the top K most frequent words,
where K = 2,000 for 20NG, K= 10,000 for RCV1, and K=
10,000 for Yahoo in the per-heldout-word perplexity (PPL)
experiments, and K = 2,000 for both 20NG and RCV1 for
few-shot document classification experiments.

Baseline methods: We compare the proposed model with
classical neural topic models and their few-shot variants,
including: Latent Dirichlet allocation (LDA) with Products
of Experts (AVITM) (Srivastava & Sutton, 2017), which re-
places the mixture model in LDA with a product of experts
and uses the AVI for training; Embedded topic Model (ETM)
(Dieng et al., 2020), a variant of LDA that incorporates the
idea of word embeddings; Sawtooth Factorial Embedded
Topic Model (DETM) (Duan et al., 2021a), which extends
the gamma belief network (Zhou et al., 2015) to a deep em-
bedded topic model by taking inspiration from ETM. For all
the above baselines, the model is trained on all training cor-
pora and then fine-tuned with the support set from the target
task at the test time. Besides, we also consider three few-
shot variants for ablation study, including MAML-DETM,
which optimizes all the parameters of DETM using model-
agnostic meta-learning (Finn et al., 2017); neural statistician
(Edwards & Storkey, 2016) for DETM (NS-DETM), which
only employs task-specific latent variables at the highest
layer to modulate generative model; and its extension hier-
archical neural statistician for DETM (Giannone & Winther,
2021) (HNS-DETM), which uses hierarchical task-specific
latent variables to modulate the generative model.

4.1. Per-heldout-word perplexity

Training/test split: For 20NG, we select 18 classes as the
training corpora and the remaining two classes as the valida-
tion corpus and the test corpus, respectively; For Yahoo, 8
classes are chosen to form the training corpora, another two
classes are used as the validation corpus and the test corpus,
respectively. For RCV1, we split the total 55 classes into
47, 3, 5 to comprise the training, validation, and test corpus.

Model setting: For hierarchical topic models, we set the
network structure with three layers as [256, 128, 64]. For
embedded topic models such as ETM, DETM, NS-DETM,
HNS-DETM, and Meta-DETM, we set the embedding size
as 50. For the NTMs, we set the hidden size as 256. For
optimization, the Adam optimizer (Kingma & Ba, 2014)
is adopted with an initial learning rate of le=2. We set
support size as [3,5,10], and query size as 15, mini-batch
size is defined as the class number of the training corpus.
For a testing time, we sample tasks from testing corpus with
support size [3,5,10] and query size [3,5,10], and average
PPL for all the query documents to get final test results.

Results: To evaluate the predictive performance of the pro-
posed model, we calculate the per-heldout-word perplexity
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Figure 3. (a)-(c): Comparison of per-heldout-word perplexity with set size 3. (d)-(f): Comparison of per-heldout-word perplexity with
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(PPL) (Cong et al., 2017) on three regular document datasets,
including 20NG, Yahoo, and RCV1. During testing, we first
use the support set to estimate a topic model for the tar-
get task. And then for each document in the query set, we
randomly select 80% of the word tokens to form a training
matrix X, holding out the remaining 20% to form a test-
ing matrix Y. We use X to infer the latent variables and
calculate the per-held-word perplexity as

where S is the total number of collected samples and
y. =SV SNy, Fig. 3 (a)-(c) show how the per-
plexity changes as a function of the number of layers for
various models over three different datasets. Benefiting from
the powerful embedding-based decoder, ETM performs bet-
ter than AVITM. But both are constrained by the shallow
structure that lacks expressiveness, resulting in a perfor-
mance gap with the deep embedding topic models. With a
similar embedding-based decoder, we can see that DETM
with a single hidden layer outperforms ETM, indicating that
using the Weibull distribution is more appropriate than the
logistic normal distribution to model the latent document
representation. Although equipped with a powerful meta-
learning algorithm to learn good initialization for few-shot
adaption, MAML-DETM yields worse perplexity than its
base DETM. This may be due to the generalization diffi-
culty of using only a few samples to compute gradients in a
high-dimensional parameter space (Rusu et al., 2018). By
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Model Setsize 20News Yahoo Rcvl
LDA 3 1751 4984 9932
LDA 5 1670 4710 9147
LDA 10 1523 3808 8789

GBN-1 1 1692 4943 9954

GBN-1 5 1633 4681 8756

GBN-1 10 1489 3765 8553

DETM-1 1 853 1498 2497
DETM-1 5 813 1382 2414
DETM-1 10 768 1345 2350

Table 1. PPL results on three datasets.

learning a good task-specific prior for the document-specific
factor score, NS-DETM gets certain performance improve-
ments on DETM. Furthermore, HNS-DETM gets a more
noticeable performance boost by modeling the hierarchical
task-specific variables as prior information for the document-
specific factor score across all layers. Finally, equipped with
an embedding-based topic meta-learner, Meta-DETM out-
performs the other methods by a large margin. Fig. 3 (d)-(f)
show how the perplexity changes as a function of support
set size for various models over three different datasets. It’s
not surprised that the performance becomes better as the set
size increases, and the proposed Meta-DETM gets the best
performance compared with other base models.

We also evaluate the performance of traditional topic models
such as LDA and GBN, the results are presented in Tab. 1.
From the table we can see, traditional topic models like
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LDA and GBN perform worse than the neural topic model.
And the relevant results can be found in Iwata (2021), com-
pared with trained individually using the target support data,
fine-tuning pre-trained topic models on the training corpus
by target support data gets worse performance. The results
show that the traditional topic models are hard to be adapted
to the new task with a few samples, and using an unsuitable
pre-trained model as a prior has a bad influence on meta-
learning. On the other hand, the experiment results further
demonstrate the continuous learning ability of traditional
topic models in that the topic is hard to change (correspond-
ing to catastrophic forgetting) (Chen et al., 2021).

4.2. Few-shot text classification

To further validate the effectiveness of the proposed model,
we also compare our model with several baseline algorithms
on the few-shot text classification task.

Training/test split: Since each of the 20 categories in 20NG
can be further grouped into 6 higher-level categories (i.e.,
computers, recreation, science, politics, religion, and for-
sale), we conduct the split to ensure that no higher-level
category spans across different split sets. For instance, we
choose those categories belonging to “science” and “recre-
ation” to form the training corpus, categories attached to
“computers” as the validation corpus, and all other categories
as the test corpus. For the RCV1 dataset, we first sample
20 documents from each class to obtain a small version of
RCV1 dataset. Then we divide the 55 classes into a training
set of 35 classes, a validation set of 5 classes, and a test set
of 15 classes.

Model setting: We evaluate the model performance under
two types of representations with three typical few-shot
learning algorithms. MLP applies a two-layer feed-forward
network over the input bag-of-words features. CNN applies
1D convolution over the input words and obtains the rep-
resentation by max-over-time pooling (Kim, 2014). Here
we don’t use the transformer architecture to get document
representations in the light of its huge amount of parame-
ters, which is not friendly for few-shot learning. FT first
pre-trains a classifier over all training examples, then fine-
tunes the network using the support set (Chen et al., 2019).
MAML learns an initialization for all the model parame-
ters, so that the model can quickly adapt to new classes
(Finn et al., 2017). Prototypical network (PROTO) learns a
metric space for few-shot classification by minimizing the
Euclidean distance between the centroid of each class and
its constituent examples. The 20NG and RCV 1 datasets are
used with a vocabulary of size 2,000. The network structure
of the neural deep topic model is set as [128, 64, 32]. The
support set size is set as [1, 5], the query size is set as 15,
and the mini-batch size is set as the class number of the
training corpus. Other model settings are kept consistent

Method 20 News RCV1
Rep. Alg. 1 shot S5shot 1shot 5 shot

MLP FT 315 40.2 56.1 68.2
CNN FT 29.0 36.1 55.0 62.3

MLP MAML 292 36.2 50.2 60.3
CNN MAML 284 35.7 46.0 56.1
MLP PROTO 29.5 36.1 39.8 50.7
CNN PROTO  28.6 33.0 37.4 48.3

HNS-DETM-1 30.3 39.2 51.8 63.0
HNS-DETM-3 325 42.5 53.2 66.6

Meta-DETM-1 33.7 44.1 544 66.4
Meta-DETM-3 34.4 45.5 57.2 72.3

Table 2. Results of 5-way 1-shot and 5-way 5-shot classification
on two datasets.

with the PPL experiments..

Results: We first describe in detail how to finish the clas-
sification task with our model. Specifically, given a set of
labelled examples of each unseen class Dy, ..., D4, we first
compute the approximate posteriors g({c}i—;|D;; ) and
q({a}?-1|D;; ). Then for each sample z, we compute the
test ELBO by Eq. 12 with the approximate posteriors of
different class sets and classify it according to maximiz-
ing the test ELBO. Table 2 lists the comparison of various
few-shot learning algorithms on two real-world datasets, in-
cluding 20 News and Rcv1. Meta-learning approaches such
as MAML and PROTO have emerged as promising meth-
ods for few-shot image classification. However, different
from vision models that can share low-level patterns (such
as edges) and their corresponding representations across
tasks, highly informative words for one task may not be
relevant for other tasks (such as the word ‘grandma’ should
be informative in the family class but not in the internet
class ) (Bao et al., 2019). So it’s not surprising that the
meta-learner’s performance drops below that of a simple,
fine-tuned method. From another principle, the proposed
models meta-learn how to build a topic model for each
task and hence need not face the above challenge. In de-
tail, we see that both HNS-DETM and Meta-DETM get
strong performance compared with other models. Further,
Meta-DETM gets the best performance, illustrating the ef-
fectiveness of the embedded topic meta-learner. Besides,
the performance of Meta-DETM improves as the layer gets
deeper, demonstrating the significance of exploring hier-
atical semantic structure. Overall, the Meta-DETM can
be a strong classifier and provides a new consideration for
few-shot text classification.

4.3. Effect of the regularization coefficient

To generate topic embeddings for a new task, the embedded
topic meta-learner mainly fuses the information from 3)
the global topic embeddings learned from a large number
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Global decoder

Adapt to target task of
class Comp. Graphical.

31™ topic at layer 3: subject got probably
things right far really said little wrote good org
look say best sure long thing read use says

75" topic at layer 2: far really said
little best say used read look good org
says sure thing long

97" topic at layer 2: said right little
good wrote look say org thing says long
sure best used try

[

Task-specific decoder

31* topic at layer 3: color graphics
systems formats use available data subject
software memory contains bits

97" topic at layer 2: image color 75" topic at layer 2:display screen
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graphics black speed edge windows color division break works
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Figure 4. Hierarchical topics learned for the target task of class Comp.Graphical (right) and its corresponding global topic (left).
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Figure 5. The effect of (a) v and (b) A®) on model’s perfor-
mance.

of training tasks and 47) the task representations inferred
from the support set. A primary concern in meta-learning
is how to balance the two pieces of information to achieve
better generalization (Yin et al., 2019). In our model, as
defined in Eq. (11), E[In¢(8)/p(8")] can be regarded as
a meta-regularization to the meta-parameters 3, which
limits the information from the training tasks stored in the
meta-parameters; and E[In ¢(o!” D)/ p(a!?|8")] can be
seen as the regularization to the parameters a(*), which
limits the information from the new task. To study the effect
of the regularization coefficient v(*) and A(*) in Eq. (11),
we evaluate the test perplexity with a varying layer-wise
regularization coefficient on the 20NG dataset. The results
of related experiments are shown in Fig. 5, it indicates
that a better balance between the two pieces of information
can improve performance. Furthermore, we can see that
the optimal value of v becomes larger as the layer goes
deeper, which shows higher layers require less historical
information. Meanwhile, the optimal value of A is smaller
in the deeper layers, indicating that higher layers need more
new task information. Such phenomena well support our
motivation that low-level (specific) structures learned by
shallow layers can be shared across various tasks, whereas
deeper layers cannot.

4.4. Hierarchical semantic topics adaption

In this part, we visually show the learned topics at different
layers. As shown in Fig. 4, we exhibit hierarchical topics
adapted for a new task from the Comp.Graphical class (right)
and the corresponding global topics learned from historical
training tasks (left) on the 20NG dataset. For the 1" layer,
some task-specific topics have more similar semantics with
global topics, such as the 21" and 53" topics, and we can
see that the task-specific topics are only slightly adjusted
compared to the corresponding global topics. Meanwhile,
some other global topics that are not related with the new
incoming task will undergo more significant changes, such
as the 1" and 142™ topics. For the deeper layers, most
task-specific topics have different semantics with the global
topics, showing that at higher layers topics depend more on
information from the new task. This phenomenon further
confirms the investigation in Sec. 4.3.

5. Conclusion

In this paper, we have studied the problem of few-shot learn-
ing for topic modeling, which has not yet attracted much
research attention. We propose a novel framework that can
efficiently extend embedded topic models to discover new
topics from only a few documents. Extensive experiments
demonstrate that our proposed framework is more effective
than several typical few-shot learning algorithms. More-
over, we also show how our model finds new topics from
a few documents by visualization, which helps us to better
understand the mechanism of our model’s effectiveness.
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