
On the Difficulty of Defending Self-Supervised Learning against Model
Extraction

Adam Dziedzic 1 2 Nikita Dhawan 1 2 Muhammad Ahmad Kaleem 1 2 Jonas Guan 1 2 Nicolas Papernot 1 2

Abstract
Self-Supervised Learning (SSL) is an increasingly
popular ML paradigm that trains models to trans-
form complex inputs into representations without
relying on explicit labels. These representations
encode similarity structures that enable efficient
learning of multiple downstream tasks. Recently,
ML-as-a-Service providers have commenced of-
fering trained SSL models over inference APIs,
which transform user inputs into useful represen-
tations for a fee. However, the high cost involved
to train these models and their exposure over APIs
both make black-box extraction a realistic secu-
rity threat. We thus explore model stealing attacks
against SSL. Unlike traditional model extraction
on classifiers that output labels, the victim models
here output representations; these representations
are of significantly higher dimensionality com-
pared to the low-dimensional prediction scores
output by classifiers. We construct several novel
attacks and find that approaches that train directly
on a victim’s stolen representations are query ef-
ficient and enable high accuracy for downstream
models. We then show that existing defenses
against model extraction are inadequate and not
easily retrofitted to the specificities of SSL.

1. Introduction
Self-Supervised Learning (SSL) trains encoder models to
transform unlabeled inputs into useful representations that
are amenable to sample-efficient learning of multiple down-
stream tasks. The ability of SSL models to learn from unla-
beled data has made them increasingly popular in important
domains like computer vision, natural language process-
ing, and speech recognition, where data are often abundant
but labeling them is expensive (Chen et al., 2020; Grill

1University of Toronto 2Vector Institute. Correspondence to:
Adam Dziedzic <adam.dziedzic@utoronto.ca>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

et al., 2020; He et al., 2020; Radford et al., 2021). Recently,
ML-as-a-Service providers like OpenAI (Neelakantan et al.,
2022; Ope) and Cohere (coh) have begun offering trained
encoders over inference APIs. Users pay a fee to transform
their input data into intermediate representations, which are
then used for downstream models. High-performance SSL
models in these domains are often costly to train; training a
large BERT model can cost north of 1 million USD (Sharir
et al., 2020). The value of these models and their expo-
sure over publicly-accessible APIs make black-box model
extraction attacks a realistic security threat.

In a model extraction attack (Tramèr et al., 2016), the at-
tacker aims to steal a copy of the victim’s model by sub-
mitting carefully selected queries and observing the outputs.
The attacker uses the query-output pairs to rapidly train a
local model, often at a fraction of the cost of the victim
model (Jagielski et al., 2020). The stolen model can be used
for financial gains or as a reconnaissance stage to mount
further attacks like extracting private training data or con-
structing adversarial examples (Papernot et al., 2017b).

Past work on model extraction focused on the Supervised
Learning (SL) setting, where the victim model typically
returns a label or other low-dimensional outputs like confi-
dence scores (Tramèr et al., 2016) or logits (Truong et al.,
2021). In contrast, SSL encoders return high-dimensional
representations; the de facto output for a ResNet-50 Sim-
CLR model, a popular architecture in vision, is a 2048-
dimensional vector. We hypothesize this significantly higher
information leakage from encoders makes them more vul-
nerable to extraction attacks than SL models.

In this paper, we introduce and compare several novel en-
coder extraction attacks to empirically demonstrate their
threat to SSL models, and discuss the difficulties in protect-
ing such models with existing defenses.

The framework of our attacks is inspired by Siamese net-
works: we query the victim model with inputs from a
reference dataset similar to the victim’s training set (e.g.
CIFAR10 against an ImageNet victim), and then use the
query-output pairs to train a local encoder to output the
same representations as the victim. We use two methods
to train the local model during extraction. The first method
directly minimizes the loss between the output layer of

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

the local model and the output of the victim. The second
method utilizes a separate projection head, which recreates
the contrastive learning setup utilized by SSL frameworks
like SimCLR. For each method, we compare different loss
metrics, including MSE, InfoNCE, Soft Nearest Neighbors
(SoftNN), or Wasserstein distance.

We evaluate our attacks against ResNet-50 and ResNet-34
SimCLR victim models. We train the models and generate
queries for the extraction attacks using ImageNet and CI-
FAR10, and evaluate the models’ downstream performance
on CIFAR100, STL10, SVHN, and Fashion-MNIST. We
also simulate attackers with different levels of access to data
that is in or out of distribution w.r.t. the victim’s training
data.

Our experimental results in Section 4 show that our attacks
can steal a copy of the victim model that achieves consid-
erable downstream performance in fewer than 1/5 of the
queries used to train the victim. Against a victim model
trained on 1.2M unlabeled samples from ImageNet, with a
91.9% accuracy on the downstream Fashion-MNIST classi-
fication task, our direct extraction attack with the InfoNCE
loss stole a copy of the encoder that achieves 90.5% accu-
racy in 200K queries. Similarly, against a victim trained
on 50K unlabeled samples from CIFAR10, with a 79.0%
accuracy on the downstream CIFAR10 classification task,
our direct extraction attack with the SoftNN loss stole a
copy that achieves 76.9% accuracy in 9,000 queries.

We discuss 5 current defenses against model extraction,
including Prediction Poisoning (Orekondy et al., 2020), Ex-
traction Detection (Juuti et al., 2019), Watermarking (Jia
et al., 2020), Dataset Inference (Maini et al., 2021), and
Proof-of-Work (Dziedzic et al., 2022). We show that for
each of these defenses, the existing implementations are
inadequate in the SSL setting, and that retrofitting them to
the specificities of encoders is non-trivial. We identify two
main sources of this difficulty: the lack of labels and the
higher information leakage from the model outputs.

Our main contributions are as follows:

• We call attention to a new setting for model extraction:
the extraction of encoders trained with SSL. We find that
the high dimensionality of their outputs make encoders
particularly vulnerable to such attacks.

• We introduce and compare several novel model extraction
attacks against SSL encoders and show that they are a
realistic threat. In some cases, an attacker can steal a
victim model using less than 1/5 of the queries required to
train the victim.

• We discuss the effectiveness of existing defenses against
model extraction in this new setting, and show that they
are either inadequate or cannot be easily adapted for en-

coders. The difficulty stems from the lack of labels, which
are utilized by some defenses, and the higher information
leakage in the outputs compared to supervised models. We
propose these challenges as avenues for future research.

2. Background and Related Work
2.1. Self-Supervised Learning

Self-Supervised Learning (SSL) is an ML paradigm that
trains models to learn generic representations from unla-
beled data. The representations are then used by down-
stream models to solve specific tasks. The training signal
for SSL tasks is derived from an implicit structure in the in-
put data, rather than explicit labels. For example, some tasks
include predicting the rotation of an image (Gidaris et al.,
2018), or predicting masked words in a sentence (Devlin
et al., 2018). These tasks teach models to identify key se-
mantics of their input data and learn representations that are
generally useful to many downstream tasks due to their sim-
ilarity structure. Contrastive learning is a common approach
to SSL where one trains representations so that similar pairs
have representations close to each other while dissimilar
ones are far apart.

2.2. Self-Supervised Learning Frameworks

Many new SSL frameworks have been proposed over the re-
cent years; for ease of exposition, we focus on three current
popular methods in the vision domain.

The SimCLR (Chen et al., 2020) framework learns repre-
sentations by maximizing agreement between differently
augmented views of the same sample via a contrastive In-
foNCE loss (van den Oord et al., 2018) in the latent space.
The architecture is a Siamese network that contains two
encoders with shared weights followed by a projection head.
During training, the encoders are fed either two augmenta-
tions of the same input (positive pair) or augmentations of
different inputs (negative pair). The output representations
of the encoders are then fed into the projection head, whose
outputs are used to compute a distance in the latent space;
positive pairs should be close, and negative pairs far. The
encoders and the projection head are trained concurrently.
The authors show that the crucial data augmentation to cre-
ate positive samples and achieve strong performance is a
combination of a random resized crop and color distortion.

SimSiam (Chen & He, 2020) is another Siamese network ar-
chitecture that utilizes contrastive learning like SimCLR but
simplifies the training process and architecture. In SimCLR,
negative samples are needed during training to prevent the
model from collapsing to a trivial solution, i.e. outputting
the same representation for all inputs. The authors of Sim-
Siam show that negative samples are not necessary; collapse
can be avoided by applying the projection head to only one

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

of the encoders (in alternation) and preventing the gradient
from propagating through the other encoder during training.

Barlow Twins (Zbontar et al., 2021) aims to create similar
representations of two augmentations of the same image
while reducing redundancy between the output units of the
representations. It measures the cross-correlation matrix
between two views and optimizes the matrix to be close to
the identity matrix. The optimization process uses a unique
loss function involving an invariance term and a redundancy
reduction term. As with other methods, a projection head is
used before passing the representation to the loss function.

2.3. Model Extraction Attacks

In the model extraction attacks for SL, an attacker queries
the victim model to label its training points (Tramèr et al.,
2016). The main goals of such an adversary are to achieve a
certain task accuracy of the stolen model (Orekondy et al.,
2019) or recreate a high fidelity copy that can be used to
mount other attacks (Jagielski et al., 2020), such as the
construction of adversarial examples (Szegedy et al., 2014;
Papernot et al., 2017b). The attacker wants to minimize the
number of queries required to achieve a given goal. In the
self-supervised setting, the goal of an adversary is to learn
high-quality embeddings that can be used to achieve high
performance on many downstream tasks.

2.4. Defenses against Model Extraction

Defenses against model extraction can be categorized based
on when they are applied in the extraction process. They
can be classified as proactive, active, passive, or reactive.

Proactive defenses prevent the model stealing before it hap-
pens. One of the methods is based on the concept of proof-
of-work (Dziedzic et al., 2022), where the model API users
have to expand some compute by solving a puzzle before
they can read the desired model output. The difficulty of the
puzzle is calibrated based on the deviation of a user from
the expected behavior for a legitimate user.

Active defenses introduce small perturbations into model
outputs to poison the training objective of an at-
tacker (Orekondy et al., 2020) or truncate outputs (Tramèr
et al., 2016), however, these active methods lower the quality
of results for legitimate users.

Passive defenses try to detect an attack (Juuti et al., 2019).
Reactive defenses are post-hoc methods that are used to
determine if a suspect model was stolen or not. The exam-
ples of such methods are watermarking (Jia et al., 2020),
dataset inference (Maini et al., 2021), and Proof-of-Learning
(PoL) (Jia et al., 2021). The PoL method can be immedi-
ately applied to SSL since defenders can claim ownership
of a model by showing proof of incremental updates from
their SSL model training.

Victim

𝑦𝑣

𝑦𝑎

𝑔𝑣

𝑓𝑎 𝑧𝑎
ℒ(𝑧𝑎, 𝑧𝑣)

𝑧𝑣

𝑤

𝑤′

𝑥

Input
Image

View Representation

𝑓𝑣

𝑔𝑎

Projection

𝑡

𝑡′

ℒ(𝑦𝑎,𝑦𝑣)1 2

Figure 1. Stealing the encoder model fv using 1 the direct com-
parison between victim and attacker’s representations or 2 access
to the latent vectors z or recreating the projection head gv .

3. Extraction Methods
3.1. Threat Model

The adversary makes queries to the victim model for rep-
resentations of arbitrary inputs. The adversary has direct
access only to the output representations. We consider set-
tings where the adversary has/does not have knowledge
about the encoder architecture, the victim’s data augmenta-
tion scheme, loss function used, victim’s training/test set or
external dataset, and other parameters and hyper-parameters
set by the victim during training of the encoder model.

3.2. Extraction Algorithms

We consider different approaches to extracting encoders
trained with SSL. The final outcome of the self-supervised
training process is an encoder or feature extractor f , where
for an input x we obtain the representation y = f(x). The
goal of an adversary is to steal the encoder f . Figure 1
presents the stealing process from the attacker’s perspective.
An input image x is augmented using two separate opera-
tors t and t′ to obtain two correlated views w = t(x) and
w′ = t′(x). Here a view refers to a version of the image
under a particular augmentation. Note that it is possible
that t(x) = x in the case when no augmentations are used
and that w = w′ when the same augmentation operator
is used by the victim and attacker. The view w is passed
through the attacker’s encoder fa to obtain representation
ya and w′ is fed to the victim’s encoder fv which returns
yv. The representations can be further passed to the vic-
tim’s head gv or attacker’s ga to obtain latent vectors zv or
za, respectively. To train the stolen encoder, our adversary
adopts the methodology of Siamese networks, for example,
SimSiam (Chen & He, 2020), where one of the branches is
the victim’s encoder and the other is the attacker’s stolen
local model. The attacker tries to train the stolen model to
output representations as similar as possible to the victim
encoder.

Direct Extraction. The first plain attack method directly
steals the encoder f by comparing the victim representation
yv with the representation ya obtained on the attacker’s end

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Algorithm 1 Stealing an Encoder.
Input: Querying Dataset D, access to a victim model
fv(w; θv).
Output: Stolen representation model fa(w; θa)

1: Initialize fa with a similar architecture as fv .
2: for sampled queries {xk}Nk=1 ∈ D do
3: Sample augmentations t and t′.
4: Generate views wk = t(xk) and w′

k = t′(xk).
5: Query victim model to obtain representations:

yv = fv(w
′
k)

6: Generate representations from stolen model:
ya = fa(wk)

7: Compute loss L{yv, ya}.
8: Update stolen model parameters θa := θa − η∇θaL.
9: end for

through an appropriate loss function such as Mean Squared
Error (MSE) or InfoNCE (van den Oord et al., 2018). Algo-
rithm 1 presents the pseudo-code for stealing the representa-
tion model using the direct extraction method.

Recreate Projection Head. The projection head g is a
critical component in the training process used for many
contrastive learning approaches as shown by Chen et al.
(2020). However, it is usually discarded after the training
process. Another method of stealing a model is thus to first
recreate the victim’s head and then pass the representations
obtained from the victim through the head before finding
the loss (see the pseudo-code in Algorithm 2). In practice,
recreating the head requires knowledge of the victim’s train-
ing process such as the augmentations and the loss function
used which may not be possible in all cases. At the end of
the attack spectrum, we also assess the case where the vic-
tim releases the projected representations z or an adversary
can access the head gv .

Our adopted methodology is the Direct Extraction method
since, as we show in the evaluation, this method is able to
outperform or match the performance of more sophisticated
methods such as the head recreation. Moreover, compared
to these more sophisticated methods, which require the use
of augmentations, direct extraction is less prone to being
detected by a defender (as we discuss in Section 5.3).

3.3. Loss Functions

One of the most important hyper-parameter choices for
representation stealing is the loss function, which can be
categorized into quadratic, symmetrized, contrastive, and
supervised-contrastive. They can be arranged into a hierar-
chy as in Figure 3. The standard quadratic loss like MSE
(Mean Squared Error) can be used to directly compare the
representations from the victim and the stolen copy. For
example, we train a stolen copy of the model with the MSE

Algorithm 2 Recreating a Projection Head.
Input: Querying dataset D, access to a victim model
fv(w; θv).
Output: Recreated victim head gv(y; θ

′
v) as ga(y; θ′a).

1: for sampled queries {xk}Nk=1 ∈ D do
2: Sample augmentations t and t′.
3: Generate views wk = t(xk) and w′

k = t′(xk).
4: Query victim model to obtain representations:

yk = fv(wk) and y′k = fv(w
′
k).

5: Pass representations through head: zk = ga(yk) and
z′k = ga(y

′
k).

6: Compute loss L{zk, z′k}.
7: Update parameters of the head θ′a := θ′a − η∇θ′

a
L.

8: end for

objective such that it minimizes the ℓ2-distance between
its predicted representations and the representation outputs
from the victim model.

The symmetrized losses (Grill et al., 2020; Chen & He,
2020), have two parts to the loss for a given data point
x. When considering two separate views of x, w and w′,
the first part of the loss is L1(g(f(w)), f(w

′)), where f is
the feature extractor, and g represents the prediction head,
which transforms the output of one view and matches it to
the other view. More simply, the head g is a small fully-
connected neural network which transforms the representa-
tions from one space to another. The symmetry is achieved
by computing the other part of the loss L2(g(f(w

′)), f(w))
and the final symmetrized loss is L = L1 + L2. The loss
functions L1 and L2 are commonly chosen as to be the
negative cosine similarity. The standard supervised and
symmetrized losses take into account only the distances
between the representations and compare solely positive
examples, i.e., the representations for the same input image.

Finally, modern batch contrastive approaches, such as In-
foNCE (van den Oord et al., 2018) or Soft Nearest Neighbor
(SoftNN) (Frosst et al., 2019) compare not only positive but
also the negative pair samples in terms of their distances
and learn representations so that positive pairs have similar
representations while negative pairs have representations
which are far apart. The supervised contrastive loss (SupCon
loss) (Khosla et al., 2020) is a novel extension to contrastive
loss functions which uses labels from supervised learning
in addition to positive and negative labeling. An attacker
can use a labeled public dataset, such as ImageNet or Pascal
VOC, to obtain the labels to be used with the SupCon loss.

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

4. Empirical Evaluation
4.1. Experimental Setup

We include results for victim models trained on the Ima-
geNet, CIFAR10, and SVHN datatsets. The ImageNet en-
coder has an output representation dimension of 2048, while
encoders trained on CIFAR10 and SVHN return 512 dimen-
sional representations. For ImageNet, we use the publicly
available ResNet50 model from (Chen & He, 2020). For
the CIFAR10 and SVHN datasets, we use a public PyTorch
implementation of SimCLR (Chen et al., 2020) to train vic-
tim ResNet18 and ResNet34 models over 200 epochs with
a batch size of 256 and a learning rate of 0.0003 with the
Cosine Annealing Scheduler and the Adam optimizer. For
training stolen models, we use similar (hyper-)parameters
to the training of the victim models. More details on the
experimental setup are in Section A.1.

4.2. Linear Evaluation

The usefulness of representations is determined by evaluat-
ing a linear layer trained from representations to predictions
on a specific downstream task. We follow the same eval-
uation protocol as in Chen et al. (2020), where a linear
prediction layer is added to the model and is fine-tuned with
the full labeled training set from the downstream task while
the rest of the layers of the network are frozen. The test
accuracy is then used as the performance metric.

4.3. Methods of Model Extraction

We compare the stealing algorithms in Table 1. The Direct
Extraction steals fv by directly comparing the victim’s and
attacker’s representations using the SoftNN loss, the Recre-
ate Head uses the SimSiam method of training to recreate
the victim’s head which is then used for training a stolen
copy, while Access Head trains a stolen copy using the la-
tent vectors zv and the InfoNCE loss. For CIFAR10 and
STL10 datasets, the Direct Extraction works best, while it
is outperformed on the SVHN dataset by the Access Head
method. The results for the Recreate Head are mixed; the
downstream accuracy for loss functions such as InfoNCE
improves when the head is first recreated while for other
loss functions such as MSE, which directly compares the
representations, the recreation of the head hurts the perfor-
mance. This is in line with the SSL frameworks that use the
InfoNCE loss on outputs from the heads (Chen et al., 2020).
The results show that the representations can be stolen di-
rectly from the victim’s outputs; the recreation or access to
the head is not critical for downstream performance.

We observe that bigger differences in performance stem
from the selection of the loss function—a comparison of the
different loss functions is found in Table 2. The choice of
the loss function is an important parameter for stealing with

Table 1. Comparison between attack methods for the classifica-
tion top-1 accuracy on downstream tasks CIFAR10, STL10, and
SVHN. The models are stolen from a CIFAR10 victim encoder
with 9,000 queries from the CIFAR10 test set.

METHOD\DATASET CIFAR10 STL10 SVHN

Victim Model 79.0 67.9 65.1

DIRECT EXTRACTION 76.9 67.1 67.3
RECREATE HEAD 59.9 52.8 56.3
ACCESS HEAD 75.6 65.0 69.8

Table 2. Comparison between loss functions. We use the same
setup as in Table 1. Loss functions with (*) use data augmentations.

LOSS TYPE\DATASET CIFAR10 STL10 SVHN

Victim Model 79.0 67.9 65.1

MSE 75.5 64.8 58.8
INFONCE 75.5 64.6 69.6
SOFTNN 76.9 67.1 67.3
WASSERSTEIN 63.9 50.8 49.5

SUPCON* 78.5 63.1 67.1
BARLOW* 26.9 26.6 26.2

the SoftNN stolen model having the highest downstream
accuracy in two of the three datasets while InfoNCE has
a higher performance in one of the tasks. However, as we
show in Table 8, the number of queries used is also a factor
behind the performance of different loss functions. We
note that the SupCon loss gives the best performance on
the CIFAR10 downstream task and this is likely a result of
the fact that SupCon assumes access to labeled query data,
which in this case was the CIFAR10 test set.

The results in Table 3 show the stealing of the encoder pre-
trained on ImageNet. Most methods perform quite well in
extracting a representation model at a fraction of the cost
with a small number of queries (less than one fifth) required
to train the victim model as well as augmentations not being
required. In general, the Direct Extraction with InfoNCE
loss performs the best and the performance of the stolen
encoder increases with more queries.

4.4. Comparing Stealing Encoders vs Stealing
Supervised Models

To test the hypothesis that the higher information leakage
from encoders makes them more vulnerable to extraction
attacks than supervised models, we compare stealing en-
coders (using representations) against stealing supervised
models (using labels). Here we observe a higher accuracy
on downstream tasks after stealing with representations com-
pared to labels. For example, we steal a SimCLR victim
model pretrained on the CIFAR10 train set using both la-

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 3. Linear Evaluation Accuracy on a victim and stolen encoders. The victim encoder is pre-trained on the ImageNet dataset.

LOSS # OF QUERIES DATASET DATA TYPE CIFAR10 CIFAR100 STL10 SVHN F-MNIST

Victim Model N/A N/A N/A 90.33 71.45 94.9 79.39 91.9

MSE 50K CIFAR10 TRAIN 75.7 43.9 27.3 48.7 61.7
INFONCE 50K CIFAR10 TRAIN 61.8 32.9 56.8 51.5 82.1

MSE 50K IMAGENET TEST 47.7 19.3 13.1 23.8 82.1
MSE 50K IMAGENET TRAIN 51.0 17.2 49.5 39.7 84.7

INFONCE 50K IMAGENET TEST 64.0 35.3 60.4 63.7 88.7
INFONCE 50K IMAGENET TRAIN 65.2 35.1 64.9 62.1 88.5

MSE 100K IMAGENET TRAIN 55.5 23.0 27.1 27.3 82.1
INFONCE 100K IMAGENET TRAIN 68.1 38.9 63.1 61.5 89.0

MSE 200K IMAGENET TRAIN 56.1 22.6 47.8 55.4 87.6
INFONCE 200K IMAGENET TRAIN 79.0 53.4 81.2 48.3 90.5
INFONCE 250K IMAGENET TRAIN 80.0 57.0 85.8 71.5 90.2

Table 4. Stealing embeddings vs labels. We compare SSL (Self-
Supervised Learning) methods with embeddings vs SL (Supervised
Learning) methods with labels, posteriors, or logits. The victim
models are (pre)trained on CIFAR10 train set.

Method CIFAR10 STL10 SVHN

Victim SSL 79.0 67.9 65.1

SSL stealing 75.5 64.6 69.6
SL no fine-tune 65.6 52.4 32.1
SL fine-tune 66.9 56.0 38.1

bels and embeddings. The accuracy of the stolen model is
75.5% when using representations whereas it is 66.9% when
stealing with labels. To use labels, the SimCLR encoder
with a finetuned final layer (the downstream classifier on
CIFAR10) is used as the victim model. Full results for these
two settings are shown in Table 4. Fine-tune in the case
of SL means that given the stolen label model, we again
fine tune it on the downstream task by removing the final
layer and repeating the linear evaluation process which is
run when stealing encoder models. No fine-tune refers to
the accuracies directly obtained from the stolen model.

5. Defense Strategies
We consider different defense strategies to protect represen-
tation models from model extraction attacks. We analyze
current state-of-the-art strategies from SL and either show
why they are inadequate for SSL in their present state or
how they can be adjusted to the new setting.

5.1. Watermarking-based Defense

SL methods have been shown to use input triggers and labels
to watermark their models and claim the ownership with
high confidence (Jia et al., 2020). In the self-supervised set-
ting, labels are replaced by vector representations. Adding a

trigger to the input may not entangle the watermark enough
to be extracted during stealing, and adding a trigger to the
representations leaves the defense susceptible to adaptive
attacks like pruning. Instead, we can take advantage of data
augmentations to incorporate structural watermarks in rep-
resentations that are naturally extracted during stealing. In
particular, we select a private augmentation, not used during
contrastive training. We train representations to contain dis-
criminative information about this augmentation instead of
being invariant to it. We then use the presence of this infor-
mation to claim ownership, without affecting downstream
performance.

Such a defense requires training the encoder simultaneously
with an augmentation predictor. This is a relatively small
discriminator and adds a negligible computational cost to
training. It is trained to distinguish between views of the
private augmentation and the encoder is trained to output
representations that perform well on the augmentation pre-
dictor, in addition to the contrastive learning. Representa-
tions from this encoder are invariant to other augmentations
but contain discriminative information about the private one.
We hypothesize that any stolen model would extract this
information and also perform well on the augmentation pre-
dictor. On the other hand, other genuinely trained encoders
should perform no better than random chance on it.

We test our hypothesis on the Direct Extraction attack
against SimCLR encoders for CIFAR10 and SVHN datasets.
The original SimCLR training procedure uses random crops,
horizontal flips, color jitter, grayscale and Gaussian blur
for contrastive learning of representations. We use rota-
tion prediction as the watermarking task. For every input
image, we randomly generate two views, one rotated by
an angle in [0◦, 180◦] and the other rotated by an angle in
[180◦, 360◦]. The victim encoder includes a two-layer MLP,
the augmentation predictor, that maps representations to the
rotation interval they belong to. The encoder optimizes both
the training and watermarking objectives. When evaluating

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 5. Ownership t-test for Watermarks. ∆µ is the effect size.

DATASET # QUERIES ∆µ P-VALUE T-VALUE

CIFAR10 10K 0.07 6.34E-14 9.81
CIFAR10 50K 0.11 1.27E-21 15

SVHN 10K 0.06 2.59E-11 8.22
SVHN 50K 0.09 3E-15 10.64

Watermark Success Rate, training images are selected and
augmented with the same rotations the victim is trained with.
The stolen model’s representations are then evaluated on
the augmentation predictor to obtain its accuracy on the
watermark task. Note that the same evaluation of another
genuinely trained model gives an accuracy of around 50%,
close to random chance.

To claim the ownership of the stolen model, we use the
statistical t-test. The null hypothesis is that the probability
of correct rotation classification for a tested model should
be equal to those of a benign random model. Our results
in Table 5 and Figure 2 give evidence that the watermarked
behavior transfers to models stolen using different loss func-
tions. These models obtain accuracies on the watermark
task that are significantly higher than random chance and
can be used to claim the ownership with 95% confidence.
While this method inherently entangles watermark behavior
in the representations, an adaptive adversary may attempt to
remove it. We note that such an adaptive attack is unlikely to
succeed due to the absence of input-label pairs that are key
to SL methods. As such, finding the private augmentation
and stealing the victim while enforcing invariance would
require as much insight and computational cost as training
from scratch. However, we leave the complete treatment of
this to future work.

We note the assumptions, advantages and disadvantages of
this method. The success of this defense hinges on two
heavy assumptions: (1) genuinely trained models would
not reasonably output representations that contain this exact
discriminative information. In practice, they may actually
be invariant to it. (2) The adversary is unable to guess
the watermark task and remove its information without es-
sentially training from scratch. If these assumptions hold,
this defense has the advantage of inherently entangling the
watermark task information into the representation. Even
a model stolen with fewer queries extracts the watermark
well enough for the defender to claim ownership, as demon-
strated in Figure 2. Disadvantages include failure modes
when the above assumptions do not hold, and the require-
ment to retrain existing encoders with an augmentation
predictor. This may be difficult especially if a model has
already been trained.

Figure 2. Watermark Success Rate for models stolen with differ-
ent loss functions vs. a genuinely trained model (Random Model).

5.2. Perturbation-based Defenses

The perturbation-based defenses modify model outputs to
hinder the training of the stolen copy. A simple application
of this method for SSL is to perturb the output representa-
tions with some random noise. Due to the large dimensions
and different use cases of representations compared to soft-
max outputs in the supervised setting, the results of adding
noise highly depends on the training objectives of an at-
tacker and legitimate user. We conducted a simple test of
this adaptation and observed a drop of up to 10% in the
performance of a stolen encoder against a non-adaptive at-
tacker, while also incurring a slight drop in performance (of
around 1% to 2%) on downstream tasks for legitimate users.
(see Section A.4 in Appendix). However, in general, this
noise needs to be tuned according to the situation and may
require further assumptions about attackers.

Prediction poisoning is an advanced active defense method
against the extraction of SL models, where the defender
perturbs the outputs to decrease the performance of the
attacker’s stolen model (Orekondy et al., 2020) while main-
taining a high quality of outputs for benign users. In the
case of a prediction poisoning defense for SSL, the defender
should add perturbations to the outputs that must simultane-
ously optimize two objectives: the perturbation should harm
the training of an encoder model by an adversary, while
not affecting the training of a downstream model used by
a legitimate user. We provide an analysis that shows the
difficulty in applying this defense in the SSL setting (see
Section E.1).

The prediction poisoning defense for SSL requires a com-
plicated and expensive two-way optimization. The victim
would have to use at least two surrogate models, for the
stolen encoder and a legitimate downstream classifier, and
approximate their respective Jacobians. Moreover, several

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

assumptions are needed such as the type of loss functions
used and the types of potential downstream tasks legitimate
users are training on. Another issue is the lack of labels in
SSL. The victim must know the target labels L used by the
legitimate user for the specific downstream task. This can be
done by considering multiple possibilities for downstream
tasks or by requiring legitimate users to choose a specific
downstream task. However, since there can be multiple legit-
imate users, multiple possible values of L would need to be
considered, thereby further constraining the optimization.

5.3. Detection of Model Extraction

The passive defenses try to detect adversarial inputs by an-
alyzing the distribution of input queries. However, there
is a very wide spectrum of acceptable inputs to SSL mod-
els. Moreover, detection methods like PRADA (Juuti et al.,
2019) do not generalize to attacks that utilize only natural
data (Orekondy et al., 2019; Pal et al., 2020) while such
data can be used for the representation extraction. The de-
tection methods might be useful against attackers who apply
contrastive loss functions (e.g., InfoNCE or SupCon) and
provide two augmentations of the same image as inputs, for
example, to recreate the head g. For this purpose, the victim
can collect the history of representations returned for a given
user. Then, for a new query w, it can check the history to
determine if there is a similar query w′, potentially different
augmentation of the same raw input image x.

Most encoders are trained to maximize the similarity on out-
puts from a projection head z = g(·). Thus, we carry out the
comparison between queries on the level of their projection
outputs z from the head gv instead of on representations
y. We do not carry out the similarity search on the level of
input images since the representations or projection outputs
can be seen as compressed versions of inputs and stored at
a much lower cost. There are different metrics that can be
used to measure the distances between vectors. We find that
both the ℓ2-norm and cosine distance metrics work relatively
well in identifying similar queries (Tables 13,15). Moreover,
using the head is important in improving the performance as
we observe lower error rates (Tables 13,14). If queries for
different views of the same input are run from different ac-
counts, then the defense has to analyze representations from
many accounts and find out which accounts issue queries
that result in similar representations.

5.4. Dataset Inference

Another defense that we consider is inspired by the idea of
dataset inference (Maini et al., 2021). It identifies whether
a given model was stolen by verifying if a suspected adver-
sary’s model has private knowledge from the victim’s train
set. It builds on the observation that a model behaves differ-
ently when presented with its training data versus unseen

(test) data; the private training points are further away from
decision boundaries than public (test) data points since the
optimization algorithms locally overfit around the decision
boundaries. Then, the stolen model, although obtained by
model extraction, exhibits similar behavior to the victim
model. The self-supervised models do not have decision
boundaries, so we adjust the dataset inference defense: in-
stead of analyzing distances of data points from decision
boundaries, we analyze loss values from private (train) vs
public (test) sets. To compute the loss, we use the projection
head from the training stage.

Hypothesis Testing. Using the loss scores produced by
head gv , we create equal-sized sample vectors lt and lp from
private training and public data, respectively. Following
(Maini et al., 2021)’s method, we test the null hypothesis
H0 : µp < µt where µp = l̄p and µt = l̄t are mean loss
scores. The test either rejects H0 and conclusively rule that
fv is stolen, or gives an inconclusive result.

Our results suggest that the signal for identifying that a
stolen model contains knowledge about a victim’s private
training data is much weaker for encoders than SL models.
We hypothesize that SL models overfit more to the training
set than the encoders, which apply heavier augmentations
(see Table 19). This makes it harder to use dataset inference
in the SSL setting.

5.5. Calibrated Proof-of-Work

The calibrated proof-of-work defense proposes to make
model extraction more difficult by requiring users to solve a
puzzle before they can read predictions from an ML model
exposed via a public API (Dziedzic et al., 2022). The puzzle
is generated using the HashCash function and requires a
user to find a suffix that can be appended to a challenge
string so that the message digest has a specific number of
leading zeros. The difficulty of the puzzle depends on how
the privacy leakage incurred by a given user differs from the
expected privacy leakage for a legitimate user.

The defense requires us to model a behavior of a legitimate
user. In the SL setting, we can expect queries to come from a
similar distribution as the victim’s training set. However, for
the SSL models, the training set is usually much larger and
more diverse. In principle, any user query might be valid
since we cannot anticipate any specific downstream task.
Moreover, this defense method estimates the information
or privacy leakage from the target model. These can be
easily computed based on the softmax outputs in SL but
not directly from the representations, which are not trained
to express probability values. The defense uses the PATE
framework (Papernot et al., 2017a; 2018), which measures
privacy leakage for individual queries. PATE creates teacher
models that are trained on the defender’s training data and
uses predictions from each teacher. Such predictions are not

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

available in the encoder models. Another way to estimate
the information leakage of a query is by computing the
entropy value. Again, it can be calculated from the softmax
values in SL but not from the representations. A possible
way to circumvent the difficulty is by computing the entropy
directly on the input image, however, this value is not tied
to the model and does not reflect its information leakage.
Overall, we could require a user to solve a small puzzle
for each query to prevent the ML API from being flooded
by requests, but it is challenging to precisely calibrate the
difficulty of the puzzle.

6. Conclusions and Future Work
As MLaaS shifts away from prediction APIs and towards
representation APIs, we analyze how the encoders trained
with SSL can be extracted when exposed to the public. We
find that the direct objective of imitating the victim’s rep-
resentations gives high performance on downstream tasks
despite the attack requiring only a fraction (less than 15%
in certain cases) of the number of queries needed to train
the stolen encoder in the first place. With limited queries,
performance degrades rather quickly. We hypothesize this
is due to a lack of useful inductive biases, e.g., data augmen-
tations. For the ImageNet encoder, the attacker’s accuracy
for downstream tasks is within 1% of the victim’s accuracy
on simple tasks like Fashion MNIST, and up to 17% for
more complicated datasets like CIFAR100. The quality of
the stolen encoders is highly dependent on the selection of
the attacker’s loss function and tends to be better with the
MSE loss in the limited query regime while InfoNCE is
more useful when more queries are available. However, it is
challenging to defend encoders trained with SSL since the
output representations leak a substantial amount of infor-
mation. The most promising defenses are reactive methods,
such as watermarking, that can embed specific augmenta-
tions in high-capacity encoders. Overcoming the discussed
challenges and improving defenses is an important avenue
for future work. Another interesting direction to extend
the work on encoder extraction is in the natural language
domain for large text representation models.

Acknowledgments
We would like to acknowledge our sponsors, who support
our research with financial and in-kind contributions: CI-
FAR through the Canada CIFAR AI Chair program, DARPA
through the GARD program, Intel, Meta, NFRF through an
Exploration grant, and NSERC through the Discovery Grant
and COHESA Strategic Alliance. Resources used in prepar-
ing this research were provided, in part, by the Province of
Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute. We would like
to thank members of the CleverHans Lab for their feedback.

References
Openai, https://openai.com. URL https://openai.
com/.

Cohere, https://cohere.ai. URL https://cohere.ai/.

Chen, T., Kornblith, S., Norouzi, M., and Hinton., G. A sim-
ple framework for contrastive learning of visual represen-
tations. International Conference on Machine Learning,
2020.

Chen, X. and He, K. Exploring simple siamese representa-
tion learning. 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dziedzic, A., Kaleem, M. A., Lu, Y. S., and Papernot, N.
Increasing the cost of model extraction with calibrated
proof of work. In International Conference on Learning
Representations, 2022. URL https://arxiv.org/
abs/2201.09243.

Frosst, N., Papernot, N., and Hinton, G. Analyzing and
improving representations with the soft nearest neigh-
bor loss. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 2012–2020. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/frosst19a.html.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised
representation learning by predicting image rotations. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=S1v4N2l0-.

Ginsburg, B., Gitman, I., and You, Y. Large batch training
of convolutional networks with layer-wise adaptive rate
scaling, 2018. URL https://openreview.net/
forum?id=rJ4uaX2aW.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos,
R., and Valko., M. Bootstrap your own latent: A new
approach to self-supervised learning. Computer Vision
and Pattern Recognition, 2020.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick., R. Momen-
tum contrast for unsupervised visual representation learn-
ing. Computer Vision and Pattern Recognition, 2020.

https://openai.com/
https://openai.com/
https://cohere.ai/
https://arxiv.org/abs/2201.09243
https://arxiv.org/abs/2201.09243
https://proceedings.mlr.press/v97/frosst19a.html
https://proceedings.mlr.press/v97/frosst19a.html
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=rJ4uaX2aW
https://openreview.net/forum?id=rJ4uaX2aW

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., and
Papernot., N. High accuracy and high fidelity extraction
of neural networks. USENIX Security Symposium, 2020.

Jia, H., Choquette-Choo, C. A., and Papernot, N. Entangled
watermarks as a defense against model extraction. arXiv
preprint arXiv:2002.12200, 2020.

Jia, H., Yaghini, M., Choquette-Choo, C. A., Dullerud, N.,
Thudi, A., Chandrasekaran, V., and Papernot, N. Proof-
of-learning: Definitions and practice. arXiv preprint
arXiv:2103.05633, 2021.

Juuti, M., Szyller, S., Marchal, S., and Asokan, N. Prada:
protecting against dnn model stealing attacks. In 2019
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pp. 512–527. IEEE, 2019.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y.,
Isola, P., Maschinot, A., Liu, C., and Krishnan, D.
Supervised contrastive learning. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 18661–18673. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.
pdf.

Maini, P., Yaghini, M., and Papernot, N. Dataset infer-
ence: Ownership resolution in machine learning. In Pro-
ceedings of ICLR 2021: 9th International Conference on
Learning Representationsn, 2021.

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M.,
Tworek, J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy,
C., Heidecke, J., Shyam, P., Power, B., Nekoul, T. E.,
Sastry, G., Krueger, G., Schnurr, D., Such, F. P., Hsu,
K., Thompson, M., Khan, T., Sherbakov, T., Jang, J.,
Welinder, P., and Weng, L. Text and code embeddings by
contrastive pre-training, 2022.

Orekondy, T., Schiele, B., and Fritz, M. Knockoff nets:
Stealing functionality of black-box models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4954–4963, 2019.

Orekondy, T., Schiele, B., and Fritz, M. Prediction poison-
ing: Towards defenses against dnn model stealing attacks.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SyevYxHtDB.

Pal, S., Gupta, Y., Shukla, A., Kanade, A., Shevade, S.,
and Ganapathy, V. Activethief: Model extraction using
active learning and unannotated public data. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 865–872, 2020.

Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I. J.,
and Talwar, K. Semi-supervised knowledge transfer for
deep learning from private training data. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017a.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on
Asia conference on computer and communications secu-
rity, pp. 506–519, 2017b.

Papernot, N., Song, S., Mironov, I., Raghunathan, A., Tal-
war, K., and Erlingsson, Ú. Scalable private learning with
PATE. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever., I. Learning transferable
visual models from natural language supervision. Arxiv,
abs/2103.00020, 2021.

Sharir, O., Peleg, B., and Shoham, Y. The cost of train-
ing nlp models: A concise overview. arXiv preprint
arXiv:2004.08900, 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. 2014. URL https://openreview.
net/forum?id=kklr_MTHMRQjG.

Tramèr, F., Zhang, F., Juels, A., Reiter, M., and Ristenpart.,
T. Stealing machine learning models via prediction apis.
USENIX Security Symposium, 2016.

Truong, J.-B., Maini, P., Walls, R. J., and Papernot, N. Data-
free model extraction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021.

van den Oord, A., Li, Y., and Vinyals., O. Representa-
tion learning with contrastive predictive coding. ArXiv,
abs/1807.03748, 2018.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. arXiv preprint arXiv:2103.03230, 2021.

https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://openreview.net/forum?id=SyevYxHtDB
https://openreview.net/forum?id=SyevYxHtDB
https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=kklr_MTHMRQjG

On the Difficulty of Defending Self-Supervised Learning against Model
Extraction (Supplement)

A. Additional Experimental Results
A.1. Details on Experimental Setup

We test various attack methods with different loss functions for the stealing process. We use different numbers of queries
from different datasets, where each query represents an input to the victim model. The user then receives as output the
representation from the victim.

For training a stolen model, we use similar (hyper-)parameters to the training of the victim models, with a batch size of
either 64 or 256, initial learning rate of 0.0001, and the Adam optimizer. In the case of stealing from the ImageNet victim
model, we use a larger learning rate of 0.1 or 1.0 with the LARS optimizer (Ginsburg et al., 2018) and a batch size of 256 or
512.

For downstream tasks, we use the CIFAR10, SVHN, STL-10, and Fashion MNIST datasets to compare the performance of
the stolen model to the victim model. We use the standard linear evaluation protocol where an additional linear layer is
added to the representation model while all other layers are frozen. The network is then optimized with labeled data from
the specific downstream task. For the models stolen from a CIFAR10 or SVHN victim model, we use a learning rate of
0.0001 with the SGD optimizer for the linear evaluation with the parameters tuned for the victim model and then keep them
constant while evaluating the models that are stolen from it. For the ImageNet victim model, we use a learning rate of 1.0
with the LARS optimizer and a batch size of 256. In all cases, the top 1 test accuracy on the specific downstream task was
reported and used for the comparison between the victim and stolen models.

We ran all experiments on machines equipped with an Intel® Xeon® Silver 4210 processor, 128 GB of RAM, and four
NVIDIA GeForce RTX 2080 graphics cards, running Ubuntu 18.04.

A.2. Perturbation based Defense Methods

We evaluated several types of perturbation based defenses against extraction attacks involving representations. To model
a legitimate user, we used a two layer linear network which is trained by the legitimate user to map from representations
obtained from the victim model to the final label in the specific downstream task the user is interested in. Therefore once the
network is trained, the legitimate user can obtain a label for a new image by first querying the victim model and then using
the obtained representation as an input to his or her trained network to find the label. By contrast, an adversary will first
attempt to steal the full model on the victim side by querying and then add an additional linear layer for a downstream task.
The major difference between an adversary and legitimate user is that an adversary trains a full model which gives it the
additional benefit of being able to be useful for various downstream task and not having to first query the victim model to
get the label for a new input. Table 10 and 11 shows the results of using simple Gaussian noise with a mean of 10 and 0
respectively and the accuracy the legitimate user and adversary can obtain for different levels of noise. The results show that
increasing the level of noise added harms the adversary while the accuracy of the legitimate user remains relatively constant.
Moreover, using a higher mean for the noise is more effective. Table 12 shows results for an alternative defence method
which only perturbs representations it identifies as being close to a previously queried representation. The defence seeks to
identify attacker’s which use several augmentations of the same image under the assumption that the representations of
two augmentations of the same image will be more similar than the representations of two different images. We use the
ℓ2 distance and cosine distance to measure the similarity between two representations and set a threshold. In the case the
distance between a new representation and a previously returned representation is under a set threshold, it is replaced by
random Gaussian noise with a high mean and variance. From Table 12, we see that there is little effect of this defense on a
legitimate user as desired while an adversary using multiple augmentations (such as with the InfoNCE loss) has a reduced
accuracy. The standard deviation σ of the noise however does not have a major impact on reducing the accuracy of the
adversary apart from the initial drop from no noise to noise with σ = 20.

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 6. Comparison between loss functions for the classification top-1 accuracy on downstream tasks and models stolen from a SVHN
victim model. 9000 queries from the SVHN test set are used for stealing. Loss functions with (*) use data augmentations.

LOSS\DATASET CIFAR10 STL10 SVHN

VICTIM MODEL 57.5 50.6 80.5

MSE 51.2 46.3 80.6
WASSERSTEIN 46.4 40.1 69.4
INFONCE 56.3 50.4 86.2
SOFTNN 48.4 44.6 78.6

SUPCON* 42.3 33.9 92.1
SIMSIAM* 49.7 44.0 66.7
BARLOW* 17.9 16.3 19.4

Table 7. Comparison between number of queries from the attacker to the classification accuracies on downstream tasks of CIFAR10,
STL10 and SVHN for the stolen representation model. The victim model was trained using the CIFAR10 dataset and the attacker used the
SVHN training set for queries. The attacker used the InfoNCE loss.

QUERIES\DATASET CIFAR10 STL10 SVHN

VICTIM MODEL 79.0 67.9 65.1
500 35.7 31.1 26.4
1000 38.6 34.7 40.4
5000 50.5 46.6 72.7
10000 59.3 51.6 73.1
20000 69.3 56.6 72.8
30000 69.9 56.6 67.5
50000 71.8 57.6 67.1

A.3. Compare Loss Functions

We further compare loss functions in Table 6.

A.4. Adding Random Noise to Representations

The first approach to perturbing the representations is to add random Gaussian noise as in Table 10. In general, the
representations are resilient to noise and rather a large amount of noise has to be added to decrease the performance on
downstream tasks. We observe that such perturbations can even slightly increase the accuracy on the downstream task
since they can act as regularizers. Overall, when we add noise, for a legitimate user - we decrease the accuracy AL of the
downstream classifier trained on noisy representations. If we steal the encoder using noisy representations and then train the
downstream classifier using the stolen encoder, the accuracy is around 10% worse than AL. This is a good starting point but
we need a better method for the defense to make a wider gap in terms of accuracy between legitimate and malicious users.

quadratic

symmetrized contrastive

supervised contrastive

Figure 3. Hierarchy of the loss functions.

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 8. Comparison between number of queries from the attacker to the classification accuracies on downstream tasks of CIFAR10,
STL10 and SVHN for the stolen representation model. The victim model was trained using the CIFAR10 dataset and the attacker used the
SVHN training set for queries. The attacker used the SoftNN, MSE and InfoNCE loss functions.

QUERIES / LOSS SOFTNN MSE INFONCE

SVHN CIFAR10 STL10 SVHN CIFAR10 STL10 SVHN CIFAR10 STL10 SVHN

500 39.3 36.1 28.2 36.1 33.2 39.5 35.7 31.1 26.4
1000 40.0 39.6 40.9 43.4 39.7 58.1 38.6 34.7 40.4
5000 55.5 49.5 66.0 55.6 47.6 58.7 50.5 46.6 72.7
10000 60.4 53.4 65.9 59.3 50.0 58.0 59.3 51.6 73.1
20000 67.2 58.5 68.0 58.1 50.9 56.6 69.3 56.6 72.8
30000 70.8 58.5 67.3 60.6 51.0 58.7 69.9 56.6 67.5
50000 70.9 60.3 67.7 61.6 52.7 59.3 71.8 57.6 67.1

VICTIM 79.0 67.9 65.1 79.0 67.9 65.1 79.0 67.9 65.1

Table 9. Comparison between number of queries from the attacker to the classification accuracies on downstream tasks of CIFAR10 and
SVHN for the stolen representation model. The victim model was trained using the CIFAR10 dataset and the attacker used the CIFAR10
training set for queries. The attacker used the Soft Nearest Neighbours (SoftNN) loss.

QUERIES\DATASET CIFAR10 STL10 SVHN

VICTIM MODEL 67.3 74.5 59.3
500 47.7 39.3 45.1
1000 51.8 41.8 53.2
5000 58.4 49.2 59.1
10000 63.9 53.1 57.8
20000 67.5 55.3 58.2
30000 66.6 55.7 60.0
40000 65.5 56.3 58.8
50000 66.3 56.7 59.8

B. Hierarchy of Loss Functions
We present a hierarchy of loss functions in Figure 3.

C. Hierarchy of Defenses
A hierarchy of defense methods is presented in Figure 4.

D. Stealing Algorithms

Algorithm 3 Training a Downstream Classifier for Linear Evaluation Protocol
Input: Victim or Stolen Model f , downstream task with labeled data
Output: Downstream linear classifier g(x; θ)

1: Add a linear layer to the model f and freeze all previous layers
2: for labeled query batches {xk, yk}Nk=1 do
3: Compute loss L{{f(xk), yk}} where L{f(x), y} = −

∑
i yk log f(x)

4: Update linear model parameters θ := θ − η∇θL
5: end for

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 10. Noise based perturbations as a defence. The downstream accuracy on CIFAR10 for a legitimate user and an adversary are
shown where the adversary used the MSE loss. All results are based on 9000 queries from the CIFAR10 test set. The noise added was
Gaussian noise with a mean of 10 and standard deviation of σ as in the table.

σ \DATASET LEGITIMATE ADVERSARY

0 67.1 66.3
1 65.7 56.9
2 67.9 56.8
3 64.0 56.9
4 62.2 55.8

Table 11. Noise based perturbations as a defence. The downstream accuracy on CIFAR10 for a legitimate user and an adversary are
shown where the adversary used the MSE loss for stealing the representation model. All results are based on 9000 queries from the
CIFAR10 test set. The noise added was Gaussian noise with a mean of 0 and standard deviation of σ as in the table.

σ \DATASET LEGITIMATE ADVERSARY

0 66.7 66.3
1 63.9 64.8
2 67.2 66.5
3 65.0 65.5
4 63.1 63.4

E. Defenses
E.1. Prediction Poisoning

We can consider the gradient of the loss with respect to the model parameters θ ∈ RD for a query x made by the attacker to
formalize this objective as in (Orekondy et al., 2020). We let yv ∈ Rn be the representations returned by the victim model
and ỹv be the perturbed representations which will act as targets for the stolen model F to be trained by the attacker. Then
the gradient of the loss function which will be used by the attacker to update its model parameters based on the unperturbed
representations is a = −∇θL{F (x; θ), yv}. Similarly, let b = −∇θL{F (x; θ), ỹv} be the gradient when the perturbed
representations are returned. To harm the attacker’s gradient, the similarity between a and b should be minimized. This
similarity can be quantified with various metrics such as the ℓ2 distance or cosine similarity. We let G be the downstream
linear classifier trained by a legitimate user and ϕ ∈ RE be the parameters of this model. Further, let J be the loss function
used to train this classifier and t ∈ Rk be the target labels from the dataset used for the downstream task. Then in order to
avoid harming the legitimate user, the victim must maximize the similarity between

c = −∇ϕJ{G(yv;ϕ), t}

and
d = −∇ϕJ{G(ỹv;ϕ), t}

Although there are various loss functions L which can be used by an attacker when training a stolen model, we assume for
simplicity that the attacker uses the Mean Squared Error (MSE) loss. For the downstream task which involves a standard

Defenses

Proactive

PoW-PATE

Active

Noisy
Representations

Passive
(against contrastive losses)

Detect Similar
Representations

Reactive
(against quadratic losses)

Watermarking
Augmentations

Dataset Inference
from Representations

Figure 4. Hierarchy of the defense methods.

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 12. Noise based perturbations as a defence where only very similar queries were perturbed by a large amount. The downstream
accuracy on CIFAR10 for a legitimate user and an adversary are shown where the adversary used the InfoNCE loss (with two augmentations
per image). All results are based on 9000 queries from the CIFAR10 test set. The noise added was Gaussian noise with a mean of 1000
and standard deviation of σ as in the table. The first set of results are with the Cosine similarity as the distance metric and the second set
of results is using the ℓ2 distance.

σ \DATASET LEGITIMATE ADVERSARY

0 66.9 53.1
20 65.4 41.2
40 65.3 44.7
60 66.0 41.8

0 66.9 52.2
20 65.4 44.9
40 65.3 45.7
60 64.7 45.4

Table 13. False Positive and False Negative rates for different threshold values τ for the identification of similar queries. This
identification is used by the defense which perturbs similar queries. The ℓ2 distance is used and the victim model passes the representation
through its head after which the threshold τ is used.

τ FALSE POSITIVE RATE (%) FALSE NEGATIVE RATE (%)

12 4.7 ± 1.7 53.1 ± 2.8
13 12.3 ± 3.1 35.1 ± 3.1
14 27.7 ± 3.4 19.3 ± 2.2

training task, we assume standard training so that J can be chosen to be the Cross Entropy Loss. With these assumptions, a
can be simplified as:

−∇θL{F (x; θ), yv}

= −∇θ
1

n

n∑
i=1

(F (x; θ)i − yvi)
2

= − 1

n

n∑
i=1

∇θ(F (x; θ)i − yvi)
2

= − 1

n

n∑
i=1

2(F (x; θ)i − yvi)∇θ(F (x; θ)i − yvi)

= − 2

n

n∑
i=1

(F (x; θ)i − yvi) · ∇θ(F (x; θ)i)

since ∇θyv = 0. This can then be simplified as the matrix product

a = − 2

n
∇θF

T (F (x; θ)− yv)

where ∇θF ∈ Rn×D is the Jacobian of the stolen model F . In a similar way, b can be simplified to

b = − 2

n
∇θF

T (F (x; θ)− ỹv)

To optimize ỹv so that the similarity between a and b is minimized, we thus need to recreate the attacker’s model F in some
form to approximate the Jacobian ∇θF and the model’s output F (x). This can be done by using a surrogate model Fsurr

on the victim’s end. Then if we let sim be the similarity function used, the optimization objective can be written as

min
ỹv

sim(a, b) = min
ỹv

sim(− 2

n
∇θF

T
surr(Fsurr(x; θ)− yv),−

2

n
∇θF

T
surr(Fsurr(x; θ)− ỹv))

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 14. False Positive and False Negative rates for different threshold values τ for the identification of similar queries. This
identification is used by the defense which perturbs similar queries. The ℓ2 distance is used and the victim model uses the representations
directly.

τ FALSE POSITIVE RATE (%) FALSE NEGATIVE RATE (%)

17 7.7 ± 2.3 49.0 ± 2.5
18 16.2 ± 2.7 39.5 ± 2.5
19 28.2 ± 2.6 26.4 ± 2.2

Table 15. False Positive and False Negative rates for different threshold values τ for the identification of similar queries. This
identification is used by the defense which perturbs similar queries. Cosine similarity is used and the victim model passes the
representations through the head before using the threshold. Note that with cosine similarity, a similarity value > τ is classified as
similar.

τ FALSE POSITIVE RATE (%) FALSE NEGATIVE RATE (%)

0.45 31.4 ± 2.7 9.4 ± 1.8
0.5 15.5 ± 2.6 21.3 ± 2.3
0.55 7.0 ± 1.7 34.1 ± 2.1

We also simplify c as

−∇ϕJ{G(yv;ϕ), t}

= −∇ϕ −
k∑

i=1

ti logG(yv;ϕ)i

=

k∑
i=1

∇ϕti logG(yv;ϕ)i

=

k∑
i=1

ti∇ϕ logG(yv;ϕ)i

= ∇ϕ logG(yv)
T t

and d as ∇ϕ logG(ỹv)
T t. In this case, we note that to satisfy this optimization requirement, the victim must recreate

the downstream classifier G to estimate the Jacobians ∇ϕ logG(yv;ϕ) ∈ Rk×E and ∇ϕ logG(ỹv;ϕ). Again this can be
done using a surrogate model Gsurr on the victim’s end based on which we can write the optimization objective for the
downstream task as

max
ỹv

sim(∇ϕ logGsurr(yv)
T t,∇ϕ logGsurr(ỹv)

T t)

We note that different similarity functions may be used for the two objectives. Therefore applying prediction poisoning
requires a double optimization problem to be solved, each of which requires certain assumptions such as the type of loss
function used.

E.2. Watermarking Defense

We include additional results for our Watermarking defense which embeds predictive information about a particular
augmentation (rotations, in our case) in the features learned by the victim. The ability of the watermark to transfer
is measured by the Watermark Success Rate, which is the accuracy of a classifier trained to predict the watermarking
augmentation. In our experiments, this task is prediction between images rotated by angles in [0◦, 180◦] or [180◦, 360◦]. A
random, genuinely but separately trained, model achieves random performance on this task, i.e. around 50% watermark

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 16. Watermark Success Rate on rotation prediction for models stolen with SVHN queries and different losses.

Queries MSE SoftNN InfoNCE

10000 55.35 55.82 57.45
20000 55.92 55.32 57.2
30000 58.19 54.5 57.78
40000 55.78 56.68 55.75
50000 58.84 57.11 58.98
60000 56.84 57.58 58.02
70000 56.89 59.53 56.52

Table 17. Watermark Success Rate on rotation prediction for models stolen with CIFAR10 queries and different augmentations applied
to queries. Standard refers to the standard augmentations used in SimCLR, +Rotation refers to the standard augmentations along with
rotations, and NoAug refers to completely unaugmented images.

Queries MSE SoftNN InfoNCE

Standard +Rotation NoAug Standard +Rotation NoAug Standard +Rotation NoAug

10000 54.69 73.76 54.61 55.48 74.49 56.45 56.53 56.85 57.0
20000 60.62 74.68 60.49 58.43 76.67 59.45 58.38 59.52 57.72
30000 61.45 75.84 61.45 59.03 77.86 62.03 58.01 59.92 58.84
40000 61.21 76.15 62.66 62.56 77.86 60.86 58.84 60.99 61.76
50000 59.81 76.5 60.95 62.15 78.53 63.94 59.42 63.21 62.34

success rate. Table 16 shows that the watermark transfers sufficiently for models stolen with SVHN queries and different
losses. Since the watermarking strategy is closely related to the augmentations used during training or stealing, we test
the watermark success rate for CIFAR10 queries that are augmented with the standard SimCLR augmentations, standard
augmentations with rotations included, or no augmentations at all. We report these results in Table 17 and find that in all
cases, the watermark transfers to the stolen model well. If the adversary happens to use rotations as an augmentation, the
watermark transfer is significantly stronger. However, this is not necessary for good watermark transfer, as demonstrated by
the NoAug success rates.

E.3. Dataset Inference Defense

We also tested an approach based on Dataset Inference (Maini et al., 2021) as a possible defense. In the case of representation
models, we directly measure the ℓ2 distance between the representations of a victim model and a model stolen with various
methods. We also compute the distance between the representations of a victim model and a random model, which in this
case was trained on the same dataset and using the same architecture but a different random seed that resulted in different
parameters. The distance is evaluated on the representations of each model on the training data used to train the victim model.
We obtain the results averaged across the datasets in Table 18. The general trend is that the more queries the adversaries
issue against the victim model that are used to train the stolen copy, the smaller the distance between the representations
from the victim and stolen models. In terms of loss functions, the stealing with MSE always results in smaller distances than
for another Random model. On the other hand, for attacks that use either InfoNCE or SoftNN losses, it is rather hard to
differentiate between stolen models and a random model based on the distances of their representations from the victim as
some have a higher distance while others have a lower distance. We also observe a similar trend with watermarks where the
MSE and SoftNN loss methods give different performances compared to a random model.

The more an adversary interacts with the victim model to steal it, the easier it is to claim ownership by distinguishing the
stolen model’s behavior on the victim model’s training set.

We present results for the dataset inference method in Table 19.

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Table 18. ℓ2 distances between the representation of a stolen model and a victim model. The Random column denotes model of the same
architecture and training procedure like the victim model but with a different initial random seed. The Victim column designates the type
of dataset used by the victim. The AdvData represents the data used by an adversary to steal the victim model.

QUERIES VICTIM ADVDATA RANDOM MSE INFONCE SOFTNN

9K CIFAR10 CIFAR10 34.1 26.6 44 14.4
50K CIFAR10 CIFAR10 34.1 14.6 40 12.8
50K IMAGENET CIFAR10 65.8 25.2 36.2 119.6

Table 19. Dataset Inference. Compare the differences between raw data points and their augmentations for different private and public
datasets. We use statistical t-test where the null hypothesis is that the differences in distances are smaller for the public dataset than for the
private dataset, where ∆µ is the effect size. Size is the image size. U is un-/self-supervised learning, while S denotes the supervised
learning.

SIZE # QUERIES # AUG. MODEL LEARNING PRIVATE PUBLIC ∆µ P-VALUE T-VALUE

32 100 100 SVHN U SVHN SVHN -0.17 0.99 -2.90
32 10000 100 SVHN U SVHN SVHN -0.005 0.79 -0.82

224 64 10 IMAGENET U IMAGENET IMAGENET -0.005 0.99 -2.53
224 32 10 IMAGENET S IMAGENET IMAGENET 0.71 0.028 1.92
224 64 10 IMAGENET S IMAGENET IMAGENET 1.06 10−5 4.03
224 64 10 IMAGENET S IMAGENET IMAGENET 0.89 10−4 3.61
224 128 10 IMAGENET S IMAGENET IMAGENET 0.36 0.02 1.97
224 256 10 IMAGENET S IMAGENET IMAGENET -0.44 0.99 -3.31
224 256 10 IMAGENET S IMAGENET IMAGENET -0.12 0.81 -0.87
224 1024 10 IMAGENET U IMAGENET IMAGENET -0.02 1.0 -33.99
32 50 10 SVHN S SVHN SVHN 0.15 0.0685 1.49
32 50 10 SVHN S SVHN SVHN 0.39 0.033 1.84
32 50 10 CIFAR10 S CIFAR10 CIFAR10 -0.46 0.99 -4.3

F. Representation Model Architecture
This section shows a sample representation model architecture (in this case a ResNet34 model). (generated using torchsum-
mary).

--
Layer type Output Shape Param #

==
Conv2d-1 [-1, 64, 32, 32] 1,728

BatchNorm2d-2 [-1, 64, 32, 32] 128
Conv2d-3 [-1, 64, 32, 32] 36,864

BatchNorm2d-4 [-1, 64, 32, 32] 128
Conv2d-5 [-1, 64, 32, 32] 36,864

BatchNorm2d-6 [-1, 64, 32, 32] 128
BasicBlock-7 [-1, 64, 32, 32] 0

Conv2d-8 [-1, 64, 32, 32] 36,864
BatchNorm2d-9 [-1, 64, 32, 32] 128

Conv2d-10 [-1, 64, 32, 32] 36,864
BatchNorm2d-11 [-1, 64, 32, 32] 128
BasicBlock-12 [-1, 64, 32, 32] 0

Conv2d-13 [-1, 64, 32, 32] 36,864
BatchNorm2d-14 [-1, 64, 32, 32] 128

Conv2d-15 [-1, 64, 32, 32] 36,864
BatchNorm2d-16 [-1, 64, 32, 32] 128
BasicBlock-17 [-1, 64, 32, 32] 0

Conv2d-18 [-1, 128, 16, 16] 73,728
BatchNorm2d-19 [-1, 128, 16, 16] 256

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Conv2d-20 [-1, 128, 16, 16] 147,456
BatchNorm2d-21 [-1, 128, 16, 16] 256

Conv2d-22 [-1, 128, 16, 16] 8,192
BatchNorm2d-23 [-1, 128, 16, 16] 256
BasicBlock-24 [-1, 128, 16, 16] 0

Conv2d-25 [-1, 128, 16, 16] 147,456
BatchNorm2d-26 [-1, 128, 16, 16] 256

Conv2d-27 [-1, 128, 16, 16] 147,456
BatchNorm2d-28 [-1, 128, 16, 16] 256
BasicBlock-29 [-1, 128, 16, 16] 0

Conv2d-30 [-1, 128, 16, 16] 147,456
BatchNorm2d-31 [-1, 128, 16, 16] 256

Conv2d-32 [-1, 128, 16, 16] 147,456
BatchNorm2d-33 [-1, 128, 16, 16] 256
BasicBlock-34 [-1, 128, 16, 16] 0

Conv2d-35 [-1, 128, 16, 16] 147,456
BatchNorm2d-36 [-1, 128, 16, 16] 256

Conv2d-37 [-1, 128, 16, 16] 147,456
BatchNorm2d-38 [-1, 128, 16, 16] 256
BasicBlock-39 [-1, 128, 16, 16] 0

Conv2d-40 [-1, 256, 8, 8] 294,912
BatchNorm2d-41 [-1, 256, 8, 8] 512

Conv2d-42 [-1, 256, 8, 8] 589,824
BatchNorm2d-43 [-1, 256, 8, 8] 512

Conv2d-44 [-1, 256, 8, 8] 32,768
BatchNorm2d-45 [-1, 256, 8, 8] 512
BasicBlock-46 [-1, 256, 8, 8] 0

Conv2d-47 [-1, 256, 8, 8] 589,824
BatchNorm2d-48 [-1, 256, 8, 8] 512

Conv2d-49 [-1, 256, 8, 8] 589,824
BatchNorm2d-50 [-1, 256, 8, 8] 512
BasicBlock-51 [-1, 256, 8, 8] 0

Conv2d-52 [-1, 256, 8, 8] 589,824
BatchNorm2d-53 [-1, 256, 8, 8] 512

Conv2d-54 [-1, 256, 8, 8] 589,824
BatchNorm2d-55 [-1, 256, 8, 8] 512
BasicBlock-56 [-1, 256, 8, 8] 0

Conv2d-57 [-1, 256, 8, 8] 589,824
BatchNorm2d-58 [-1, 256, 8, 8] 512

Conv2d-59 [-1, 256, 8, 8] 589,824
BatchNorm2d-60 [-1, 256, 8, 8] 512
BasicBlock-61 [-1, 256, 8, 8] 0

Conv2d-62 [-1, 256, 8, 8] 589,824
BatchNorm2d-63 [-1, 256, 8, 8] 512

Conv2d-64 [-1, 256, 8, 8] 589,824
BatchNorm2d-65 [-1, 256, 8, 8] 512
BasicBlock-66 [-1, 256, 8, 8] 0

Conv2d-67 [-1, 256, 8, 8] 589,824
BatchNorm2d-68 [-1, 256, 8, 8] 512

Conv2d-69 [-1, 256, 8, 8] 589,824
BatchNorm2d-70 [-1, 256, 8, 8] 512
BasicBlock-71 [-1, 256, 8, 8] 0

Conv2d-72 [-1, 512, 4, 4] 1,179,648
BatchNorm2d-73 [-1, 512, 4, 4] 1,024

Conv2d-74 [-1, 512, 4, 4] 2,359,296
BatchNorm2d-75 [-1, 512, 4, 4] 1,024

Conv2d-76 [-1, 512, 4, 4] 131,072
BatchNorm2d-77 [-1, 512, 4, 4] 1,024
BasicBlock-78 [-1, 512, 4, 4] 0

Conv2d-79 [-1, 512, 4, 4] 2,359,296
BatchNorm2d-80 [-1, 512, 4, 4] 1,024

Conv2d-81 [-1, 512, 4, 4] 2,359,296
BatchNorm2d-82 [-1, 512, 4, 4] 1,024
BasicBlock-83 [-1, 512, 4, 4] 0

Conv2d-84 [-1, 512, 4, 4] 2,359,296

On the Difficulty of Defending Self-Supervised Learning against Model Extraction

BatchNorm2d-85 [-1, 512, 4, 4] 1,024
Conv2d-86 [-1, 512, 4, 4] 2,359,296

BatchNorm2d-87 [-1, 512, 4, 4] 1,024
BasicBlock-88 [-1, 512, 4, 4] 0

Identity-89 [-1, 512] 0
ResNet-90 [-1, 512] 0

==
Total params: 21,276,992
Trainable params: 21,276,992
Non-trainable params: 0
--
Input size MB: 0.01
Forward/backward pass size MB: 19.07
Params size MB: 81.17
Estimated Total Size MB: 100.25
--

