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Abstract
A fundamental concept in control theory is that
of controllability, where any system state can be
reached through an appropriate choice of con-
trol inputs. Indeed, a large body of classical and
modern approaches are designed for controllable
linear dynamical systems. However, in practice,
we often encounter systems in which a large set of
state variables evolve exogenously and indepen-
dently of the control inputs; such systems are only
partially controllable. The focus of this work
is on a large class of partially controllable lin-
ear dynamical systems, specified by an underly-
ing sparsity pattern. Our main results establish
structural conditions and finite-sample guarantees
for learning to control such systems. In particu-
lar, our structural results characterize those state
variables which are irrelevant for optimal con-
trol, an analysis which departs from classical con-
trol techniques. Our algorithmic results adapt
techniques from high-dimensional statistics—
specifically soft-thresholding and semiparametric
least-squares—to exploit the underlying sparsity
pattern in order to obtain finite-sample guaran-
tees that significantly improve over those based
on certainty-equivalence. We also corroborate
these theoretical improvements over certainty-
equivalent control through a simulation study.

1. Introduction
A recurring theme in modern sequential decision making
and control applications is the presence of high-dimensional
signals containing much irrelevant information. Operating
on raw signals provides flexibility to learn much higher-
quality policies than what may be expressed using hand-
engineered inputs or features, but it poses new challenges for
reinforcement learning (RL) and control. In the context of
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controls, high-dimensionality inevitably leads to many state
variables that do not affect and cannot be affected by the
controller inputs. Hence, these state variables are irrelevant
for optimal control. In this work, we consider the question
of how to efficiently learn to control partially controllable
systems, while ignoring these irrelevant variables.

Example 1 (Turbine Orientation (Stanfel et al., 2020)).
Consider the problem of learning to orient turbines in a
wind farm in response to sensor measurements of wind
speed and direction. To learn a high-quality controller that
can anticipate local wind patterns, it is desirable to collect
measurements from a broad region. However geographical
features such as mountains and valleys may render some of
these measurements irrelevant for the control task, although
this may not be known to the system designer in advance.
As such, we would like our controller to efficiently learn to
ignore these irrelevant sensors while relying on the relevant
ones for decision making.

Systems like this contain two challenging elements for learn-
ing to control. First, a large part of the system state —
namely the wind speed and direction at all locations — is
completely uncontrollable, as the wind turbines negligibly
affect weather patterns. Rather, the controller must react
to these state variables even though they cannot be con-
trolled. Second, some of the uncontrollable variables may
be completely irrelevant, meaning they have no bearing on
the optimal control decisions. To complicate matters, which
variables are controllable, uncontrollable, and irrelevant
must be learned, ideally in a sample-efficient manner.

In the broader literature, there are two well-studied ap-
proaches for addressing high dimensionality. One approach
is through feature engineering or the use of kernel machines,
while the other exploits sparsity to recover certain low-
dimensional structural information. Both approaches have
been utilized in the context of decision making, the former
via dimension-free linear control (Perdomo et al., 2021) and
the Kernelized Nonlinear Regulator (Deisenroth and Ras-
mussen, 2011; Mania et al., 2020; Kakade et al., 2020), and
the latter both in RL (Agarwal et al., 2020; Hao et al., 2021)
and some works on continuous control (Fattahi and Sojoudi,
2018; Wang and Yang, 2020; Sun et al., 2020). This work
contributes to the latter line of work on structure recovery
in continuous control.
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Our focus is on establishing non-asymptotic guarantees for
learning to control in high-dimensional partially controllable
systems like the wind farm example described above. We
focus our attention on the problem of learning the linear
quadratic regulator (LQR) in which the majority of the state
variables are irrelevant.

Technical Overview. Deferring further details and tech-
nical motivation to subsequent sections, we present a brief
overview of the setup and results. Consider a dynamical
system of the form xt+1 = Axt +But + ξt where xt ∈ Rd
is the system state, ut ∈ Rdu is the controller input, and ξt
is a (stochastic) disturbance. The system is said to be con-
trollable if, in expectation, any system state can be reached
through an appropriate choice of a deterministic control
sequence (Formally, this condition is equivalent to the con-
trollability matrix being full rank. See Section 3). When
such a condition does not hold, we call the system partially
controllable. For such systems, it is well known that there
exists an invertible transformation of the state variables,
such that the system can be rewritten with dynamics of the
form (Klamka, 1963; Sontag, 2013):

A =

[
A1 APC

12

0 APC
2

]
, B =

[
B1

0

]
. (1)

Here the first block of coordinates corresponds to the con-
trollable subsystem. On the other hand, the second block of
uncontrollable coordinates cannot be affected by the con-
trol inputs (due to that B2 = 0, although it can affect the
controllable subsystem (if APC

12 6= 0) (Klamka, 1963; Zhou
et al., 1996; Sontag, 2013).

To capture the presence of irrelevant state variables that do
not affect the controllable subsystem, we consider a dynam-
ical system that is more structured than (1). In our setting,
which we call the partially controllable linear-quadratic (PC-
LQ) control problem, the system admits the block structure:

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 . (2)

To capture the irrelevance of state variables, our main learn-
ability results will assume that the underlying dynamics of
the system are determined by an (A,B) in this form, up
to a permutation of the coordinates (see below for more
discussion about this assumption). As we shall see, the first
two blocks make up the relevant part of the system, while
the third block of coordinates are irrelevant (in the sense
that if we condition on knowing the values of the coordi-
nates in blocks 1 and 2, then the state variables in block 3
provide no further information with regards to predicting
the controllable coordinates in block 1, which, as we shall
see, is what is required for optimal control). We are par-
ticularly interested in the high-dimensional regime where
A1 ∈ Rsc×sc , A2 ∈ Rse×se and sc + se := s� d.

Our Contributions. Our first theorem is a structural re-
sult characterizing which state variables are irrelevant for
optimal control. The result pertains to all problems equiv-
alent to PC-LQ control, and is proven via an invariance
argument. When specialized to PC-LQ control, the theorem
verifies that the third block of state variables can be ignored
by the optimal controller (while it is clear that the optimal
value function depends on block three). This structural re-
sult and our assumption that the relevant subsystem (blocks
one and two) comprises few state variables, shows that the
optimal policy is “sparse”: it is determined by poly(s) pa-
rameters, although neither the system dynamics A nor the
optimal value function are sparse matrices.

Relying on the characterization of the relevant state vari-
ables for optimal control we turn to the main contribution of
our work. We derive two algorithms that incorporate ideas
from high-dimensional statistics to efficiently estimate only
the relevant parts of the system dynamics. In Table 1 on
page 3, we summarize the main results of the paper and
compare with guarantees for certainty-equivalent control.
We study two settings that differ only in their assumptions
on the distribution of the starting state x0. In the first setting
(labeled “diagonal” in Table 1 on page 3), we assume that x0

is sampled such that E[x0] = 0 and E[x0x
>
0 ] is a diagonal

matrix. In this case, we show that our algorithm learns a
near-optimal control with a nearly-dimension-free rate: the
sample complexity scales polynomially with the sparsity s
and action dimension du, but only logarithmically with the
ambient dimension d.

The second setting generalizes the diagonal case to only
require that x0 has strictly positive definite (PD) covari-
ance. Here our algorithm incurs a lower order polynomial
dependence on the ambient dimension d. In particular, for
d2 ≤ (s2 +dus)/ε this lower order term is dominated by the
leading term, which yields the same sample complexity as
in the diagonal case. In both settings, our bounds compare
quite favorably to certainty-equivalent control, which in-
curs a poly(d)/ε leading order dependence. For the second
setting, our algorithmic approach relies on a reduction to
a semi-parametric least squares estimation (Chernozhukov
et al., 2016; 2018a; Foster and Syrgkanis, 2019). We pro-
vide a new result (see Proposition 9), which might be of
independent interest, for the semi-parametric least squares
estimation algorithm for the linear case.

2. Preliminaries and Notation
Linear-Quadratic Control. A linear-quadratic (LQ) con-
trol problem is specified by a tuple of matrices L =
(A,B,Q,R). The state x ∈ Rd evolves according to
xt+1 = Axt + But + ξt where u ∈ Rdu is the in-
put to the system and ξt is i.i.d. noise. The cost con-
ditioning on the first observation to be x1 is given by
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Covariance Matrix Estimation Algorithm Sample Complexity

Positive Definite Least-Squares Õ
(
poly(d,du)

ε

)
Diagonal Second-Moment Product Õ

(
s2+dus

ε

)
Positive Definite Semiparametric Least-Squares Õ

(
s2+dus

ε +

√
(s2+dus)d

ε0.5

)
Table 1. Sample complexity results for learning a near-optimal controller in the PC-LQ setting. Our results, highlighted in gray, compare
favorably with the classical least-squares/certainty-equivalent control when the relevant subsystem has dimensionality s� d. We assume
the third, irrelevant, block of (2) is stable in L∞ norm (Assumption 1). In Õ(·) we only keep polynomial dependence in ε, d, s, and du.
See Appendix A for a thorough summary.

J(x1, {ut}t≥1) = E
[∑

t≥1 x
>
t Qxt + utRut | x1

]
and

J({ut}t≥1) = E
[
J(x1, {ut}t≥1)

]
. The cost matrices are

assumed to be positive-semi definite, Q < 0, R � 0. The
task is to find the policy that minimizes J

(
{ut}t≥1

)
. It is

well-known that the optimal controller, the linear quadratic
regulator (LQR), of such a system is linear in the state vec-
tor, ut = K?xt, and the optimal value from any x1 is given
by J?(x1) = x>1 P?x1, where P? is the solution of the Ric-
cati equation and K? = (R + BTP?B)−1B>P?A. With
some abuse of notation we let J(K) be the expected cost
when following taking actions according to u = Kx.

In this work, we assume that R = Idu , and write L =
(A,B,Q) for short. This can be obtained by rotating
u → R−1/2u, which is valid since R � 0. We also as-
sume the system is stabilizable, which means that there
exists a matrix K ∈ Rdu×d such that ρ(A + BK) < 1,
where ρ(X) = max {|λi(X)|}i is the spectral radius of
X and λi(X) refers to the eigenvalues. Furthermore,
we denote Amax = maxi,j∈[d] |A(i, j)| and Bmax =
maxi∈[d],k∈[du] |B(i, k)|.

Notation. We denote by K?(L) as the optimal policy of
L. We let [n] = {1, .., n}. Given two ordered lists I1 and
I2 we let I2/I1 = {x ∈ I2|x /∈ I1} denote their difference.
Furthermore, given a vector x ∈ Rd and a list I with entries
in [d] we let x(I) denote the vector in R|I| which contains
the coordinates of I, x(I) =

[
x(I(1)) · · · x(I(|I|))

]
.

We denote Id as the identity matrix of dimension d. The
spectral/L2 norm of a matrix is denoted by ||A||op and
the Frobenius norm by ||A||F . We use O(X) to refer to
a quantity that depends on X up to constants, and denote
a ∨ b = max(a, b). For a square matrix A ∈ Rd×d we
denote size(A) = d.

3. The Partially Controllable
Linear-Quadratic Control Problem

In this section we formally define the LQ problem we ana-
lyze and later derive sample complexity results. We focus
on an LQ problem that consists of a partially controllable

system and define an explicit notion of irrelevant state vari-
ables. Specifically, we establish that these state variables
are irrelevant for optimally control this system, and, for that
reason, we say the optimal controller of such a system is
sparse.

A linear system is said to be partially controllable if the
controllability matrix G =

[
B AB · · · AdB

]
is not

of a full rank, that is rank(G) = sc < d (e.g., Sontag
(2013)). For an LQ problem in such a system, there exists
a linear transformation T that transforms the system and
cost function to obtain an equivalent LQ control problem
L̃ = (Ã, B̃, Q̃) with the block structure of (1). This repre-
sentation reveals that the second block of coordinates APC

2

cannot be affected by the controller inputs. As such, one
might hope that APC

12 and APC
2 are not required for optimal

control. Unfortunately, this is not the case, as we show in
the next simple example. Even when rank(G) = 1 and
Q = Id, the optimal policy may depend on the full dynam-
ics of the uncontrollable subsystem (see Appendix C for
detailed analysis).

Example 2 (Necessity of uncontrollable dynamics for opti-
mal control). Let ρ ∈ Rd−1, ||ρ||∞ < 1,

Aρ =


1 1 1 · · · 1
0 ρ1 0 · · · 0

...
...

0 0 · · · 0 ρd−1

 , B =


1
0
...
0

 , Q = Id,

Let Lρ = (Aρ, B, Id) be a stabilizable LQ problem. Then,
K?(Lρ) is a function of ρ.

The example highlights that, without further structure, the
optimal policy may depend on Ω(d) parameters of the tran-
sition dynamics A even though only a small portion of the
system is controllable. Intuitively, this occurs because the
uncontrollable system interacts with the controllable one
through matrix APC

12 in (1), so the optimal controller must
plan for and react to the uncontrollable state.

On the other hand, there are many systems in which some
uncontrollable state variables do not affect the controllable
ones whatsoever. The following model captures this sce-
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nario; we refer to this model as a Partially Controllable
Linear Quadratic (PC-LQ) control problem.1

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 , Q = Id, (3)

where A1 ∈ Rsc×sc , A2 ∈ Rse×se , Ad−s×d−s3 , B1 ∈
Rsc×du and s = se + sc. The linear system in a PC-LQ
problem2 can be decomposed into three components: a con-
trollable system, an uncontrollable relevant system, and an
uncontrollable irrelevant system, where the latter has no
interaction with the controllable system. These are the first,
second, and third blocks on the diagonal, respectively. Fur-
thermore, A12 is a coupling that allows the uncontrollable
relevant dynamics to affect the controllable ones, and A32 is
a coupling that allows the uncontrollable relevant system to
affect the irrelevant one. Observe that any LQ control prob-
lem can be written in the form of (3), for some sc and se,
where, for a general stable system, with no uncontrollable
irrelevant dynamics, sc + se = d.

If the PC-LQ has s < d, then there are variables that are
essential for modeling the dynamics that are superfluous for
optimal control. Indeed, as we show in the next result, the
optimal policy of any PC-LQ problem does not depend on
the entire transition dynamics, specifically, the optimal con-
troller is insensitive to the dynamics of the uncontrollable
irrelevant subsystem (blocks A3 and A32). On the other
hand, this subsystem can exhibit a very complex temporal
structure, so it is important for dynamics modeling/certainty
equivalence. Thus, even though the dynamics matrix A is
not a low-dimensional object, when s� d, it is thus apt to
say that the optimal policy of a PC-LQ is low-dimensional.
The following result explores two invariance properties of
the optimal controller in a PC-LQ problem under cost and
dynamics transformation (see Appendix D for the proof).

Theorem 1 (Invariance of Optimal Policy for PC-LQ). Con-
sider the following PC-LQ problems (as in equation (3)):

1. Let L1 = (A,B, Id), L2 = (A,B, I1+) be PC-LQ
problems in stabilizable systems with similar dynamics.
Let I1+ be a diagonal matrix such that (i) if i ∈ [d] is
a coordinate of the first block then I1+(i, i) = 1, and,
(ii) for any other i ∈ [d], I1+(i, i) ∈ {0, 1}.

2. Let L1 = (A,B, Id), L2 = (Ā, B, Id) be PC-LQ prob-
lems in stabilizable systems such that

A =

A1 A12 0
0 A2 0
0 A32 A3

 , Ā =

A1 A12 0
0 A2 0
0 Ā32 Ā3

 .
1Note that the results in this section apply to any system that is

rotationally equivalent to (3).
2For brevity, we will henceforth use “a PC-LQ” to stand for “a

PC-LQ control problem”.

Then, for both (1) and (2), the optimal policy of L1 and L2

is equal, i.e., K∗(L1) = K∗(L2).

Of course, since Q = Id, the optimal value functions for
L1 and L2 will – in general – be quite different. Since the
uncontrollable blocks A3 and A32 of a PC-LQ are irrelevant
to optimally control it, we refer to both of the block as the
irrelevant blocks from this point onward. This highlights the
fact that the LQR of a PC-LQ is sparse: it does not depend
on the parameters of the irrelevant blocks.

3.1. Characterization via controllability and the
relevant disturbances matrices

A natural question is to understand when a system is equiv-
alent to a PC-LQ with an irrelevant subsystem. The next
result provides a characterization of PC-LQ in terms of the
controllability matrix and a new object that we call the rel-
evant disturbances matrix. Recall that any LQ problem
with controllability index sc can be rotated into the form (1).
For brevity, denote X12 = APC

12 and X2 = APC
2 . Let the

relevant disturbances matrix using this representation be

RD =
[
X>12 XT

2 X
>
12 · · · (XT

2 )d−scX>12

]
. (4)

Then, we have the following structural characterization of a
PC-LQ through the controllability and relevant disturbances
Krylov matrices (see Appendix E for the proof).

Proposition 2 (Controllability characterization of PC-LQ).
If L has controllability index sc and rank(RD) = se then
L = (A,B, Id) is rotationally equivalent to (3).

3.2. Characterization via minimal invariant subspaces

We next characterize a PC-LQ via the notion of minimal
invariant subspaces. This characterization is more useful for
our subsequent algorithmic development. Minimal invariant
subspaces (w.r.t., an initial subspace) are formalized in the
next definition.

Definition 3 (Minimal invariant subspace w.r.t. another sub-
space, e.g., (Basile and Marro, 1992)). LetK be a subspace
and A ∈ Rn×n. Subspace V is an invariant subspace of A
w.r.t. K if (i), K ⊆ V , and (ii) AV ⊂ V . V is the minimal
invariant subspace of A w.r.t. K if (i) and (ii) hold and V
is the subspace with the smallest dimension that satisfies
both (i) and (ii).

That is, the minimal invariant subspace of A w.r.t. K is the
smallest subspace that contains K and is closed/invariant
under the action of A, meaning that Av ⊂ V for any v ∈ V .
In Appendix F we show that the minimal invariant subspace
is always unique, and, thus, it is always well defined.

The next result shows that the first and second blocks of
a partially controllable system can be expressed in terms
of two minimal invariant subspaces. This yields a simple
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Algorithm 1 Learning Optimal Policy of PC-LQ
1: Require: ε, δ > 0.
2: Define: SThε(x) = 1I {|x| > ε} (x− sign(x)ε).

3: Get Â and B̂, an (ε, δ) element-wise estimates of A and
B, respectively.

4: Soft threshold the empirical estimates element-wise,
B̄ = Thε(B̂), Ā = Thε(Â).

5: Return: Optimal policy of L̄ = (Ā, B̄, I).

algebraic characterization of the relevant components of
the system, which we will use to develop algorithms (see
Appendix E for the proof).

Proposition 4 (PC-LQ and Minimal Invariant Subspaces).
An LQ problem is equivalent to PC-LQ (3) if and only
if there exist projection matrices with rank(PB) ≤
rank(Pc) ≤ rank(Pr) where

1. Pc is an invariant subspace of A w.r.t. PB and
rank (Pc) = sc,

2. Pr is an invariant subspace of (I − Pc)A> w.r.t. Pc
and rank (Pr) = sc + se = s,

such that A,B can be written as

A = PcAPc + PrA(Pr − Pc) + (I − Pr)A(I − Pc),
B = PBB.

The subspaces Pc and Pr are the minimal invariant sub-
spaces if and only if the controllability matrix is of rank sc
and the relevant disturbances matrix is of rank se.

With the above notation, the subspace Pc represents the first
block of (3), and Pr represents the first two blocks which
are generally required for optimally control a PC-LQ. The
matrix (I − Pr)A(I − Pc) represents the irrelevant blocks
of a PC-LQ which we can safely ignore by Theorem 1.

4. Learning Sparse LQRs in Partially
Controllable Systems

We now turn to our main question and focus on the learnabil-
ity of optimal policy in PC-LQ. We assume that the model
is transformed to be in the form of (3), so it is axis-aligned
up to permutations, i.e., the irrelevant state variables are
not a-priori known to the algorithm designer. We further
assume size(A1) + size(A2) = se + sc = s � d. Of
course, as we have discussed, the dynamics matrix A itself
is not sparse, but the optimal policy of such system, the
LQR, is sparse. Theorem 1 establishes the LQR depends
only on O(poly(s)) parameters. Thus, we hope for sample
complexity guarantees that scale primarily with the intrinsic
dimension s, rather than the ambient dimension d.

Remark 5 (Axis-aligned assumption). The axis-aligned
assumption is a natural extension of the sparsity assump-
tion made in sparse regression literature (e.g., (Wainwright,
2019), Chapter 7). In control problems, this assumption may
be satisfied when the state variables x arise from physical
measurements. In this case, axis-alignment corresponds to
negligible coupling between different state variables that
represent measurements in different locations (as elabo-
rated in Example 1). Furthermore, all the results generalize
naturally when the rotation for which the LQ problem can
be written as (3) is known. We comment that asymptotic
dimension-free bounds for system identifications without the
axis-aligned assumptions are impossible, due to the need
to learn the rotation matrix. We leave it as an interesting
future question to study whether asymptotic dimension-free
bounds are possible for general PC-LQ problems.

By Proposition 4 the optimal controller is insensitive to
errors in (I − Pr)A(I − Pc), corresponding to block 3
of the dynamics matrix. However, to take advantage of
this, we must first identify the zero pattern of the matrix A.
More formally, we seek estimates (Ā, B̄) of the dynamics
satisfying the following no false positive property:

∀i, j ∈ [d], k ∈ [du] : A(i, j) = 0⇒ Ā(i, j) = 0, and

B(i, k) = 0⇒ B̄(i, k) = 0. (5)

Indeed, in the presence of such a condition, we can ensure
that there is no interaction between the relevant and irrel-
evant parts of the system in the estimated model, so that
(Ā, B̄) is a PC-LQ with a similar block structure to the true
dynamics.

A natural way to obtain estimates of (A,B) that satisfy (5)
is to perform soft-thresholding on an entrywise accurate ini-
tial estimate. Note that the soft-thresholding operation does
not introduce much additional error. Since many options
are available for obtaining the initial estimate, we formal-
ize this via an oracle that we call the entrywise estimate.
In Section 5, we instantiate this oracle with two different
procedures and analyze their sample complexity.

Definition 6 (Entrywise estimator). We say that X̂ is an
(ε, δ) entrywise estimator of a matrix X ∈ Rd1×d2 if
with probability at least 1 − δ we have maxi,j |X̂(i, j) −
X(i, j)| ≤ ε.

Given access to such an oracle, Algorithm 1 learns an opti-
mal policy in a PC-LQ problem. First, it estimates (A,B)

via the entrywise estimator, to obtain (Â, B̂). Second, it
applies a soft-thresholding to these estimates to get Ā, B̄.
Finally, it returns the optimal policy of the LQ problem
L̄ = (Ā, B̄, I).

For the analysis, we require a technical assumption on the
L∞ stability of the irrelevant subsystem A3.
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Assumption 1 (L∞-stability of irrelevant dynamics). A3 is
L∞ stable: maxi

∑
j |A3(i, j)| = ||A3||∞ < 1.

In addition, our guarantee scales with the operator norm of
the optimal value function for the relevant subsystem only.
Formally, let L1:2 = (A1:2, B1:2, I1:2) be an s-dimensional
LQ problem defined by the first two blocks of (3) and let
P?,1:2 be the solution to the Ricatti equation for this system.
The guarantee is given as follows (see Appendix G for the
proof).
Theorem 7 (Learning the PC-LQ). Fix ε, δ > 0. Assume
access to an entrywise estimator of (A,B) with parameters
(
√
ε/ (2s(s+ du)), δ), and that Assumption 1 holds. Then,

if ε < 1/||P?,1:2||10
op, with probability greater than 1 − δ

Algorithm 1 outputs a policy K̄ such that

J?(K̄) ≤ J? +O(||P?,1:2||8opε).

To prove this result we utilize the machinery of Theorem 1,
Proposition 4, the perturbation result of (Simchowitz and
Foster, 2020), and the no-false positive property of the esti-
mated model.

5. Sample Complexity for Entrywise
Estimation

We now instantiate two entrywise estimators and establish
their sample complexity guarantees in two settings. First,
when the initial state x0 has a diagonal covariance matrix,
we show that a simple second-moment estimator suffices.
In the more general setting where the initial state x0 has
PD covariance, we develop an estimator based on semipara-
metric least-squares. The first estimator has better sample
complexity guarantees, while the second estimator is more
general.

5.1. Diagonal covariance matrix

When the initial state x0 has a diagonal covariance matrix,
we analyze a simple second-moment estimator. Specifically
we estimate the model with

Â =
1

Nσ2
0

∑
n

x1,nx
>
0,n, and B̂ =

1

N

∑
n

x1,nu
>
0,n,

(6)

given N partial trajectories {(x0,i, u0,i, x1,i)}Ni=1 where
u0,i ∼ N (0, Idu). For this estimator we prove the following
(see Appendix H.1 for a proof):
Proposition 8 (Entrywise estimation with diagonal
covariance). Assume that x0 ∼ N (0, σ0Id) and
that Assumption 1 holds. Denote σeff = 1 +
Amax

√
s +

(
1 +Bmax

√
du
)

((σ/σ0) ∨ σ) . Then, given

N = O

(
log( dδ )σ2

eff

ε2

)
samples (6) is an entrywise estimator

of (A,B) with parameters (ε, δ).

Combining with Theorem 7, we obtain the first shaded row
of Table 1 on page 3.

5.2. Positive definite covariance matrix

For the second setting, we only assume that the covariance
of x0 is PD. This, more general setting, is of importance
since the stationary measure of a policy may be quite com-
plex, and, in particular, it may induce correlations between
the irrelevant and relevant blocks (see Appendix B for fur-
ther discussion on the need to handle general covariance ma-
trices). In this case, the least-squares estimator of A yields
a guarantee in the Frobenius norm, which can be translated
into an entrywise estimate. However, the sample complexity
of this approach scales as poly(d)/ε2, which is too large for
our purposes. Instead of using classical least-squares, our
approach is based on a reduction to semiparametric least-
squares (Chernozhukov et al., 2016; 2018b;a; Foster and
Syrgkanis, 2019), which, as we will see, results in a sample
complexity of 1/ε2 +d/ε for entrywise estimation. Observe
that here the ambient dimension only appears in the lower
order term.

The main idea is as follows: Suppose we wish to learn the
(i, j)-th entry of A and assume we have (x1, x0) sample
pairs from the model x1 = Ax0 + ξ where ξ is a zero-mean
σ sub-gaussian vector. Then, for any i ∈ [d],

x1(i) = A(i, j)x0(j) + 〈A(i, [d]/j), x0([d]/j)〉+ ξi.
(7)

If the first and second terms on the RHS were uncorrelated,
then a linear regression of x1(i) onto x0(j) would yield
an unbiased estimate of A(i, j). Unfortunately, these two
terms are correlated under our assumptions, so least-squares
may be biased. To remedy this, we attempt to decorrelate
the two terms using a two-stage regression procedure. The
first stage involves high dimensional regression problems,
but these errors ultimately only appear in the lower order
terms.

Since our results for this problem may be of independent
interest, we next study a generalization of the model in (7)
and explain the estimator in detail. As a corollary, we obtain
a sample complexity guarantee for the entrywise estimator
for the PC-LQ.

Semiparametric least-squares. As a generalization
of (7), assume that x ∼ N (0,Σ) where λmin(Σ) > 0 and
x ∈ Rd and let

y = 〈w?, x1〉+ 〈e?, x2〉+ ξ (8)

where w?, x1 ∈ Rdw , e?, x2 ∈ Rde , x = [x1, x2]> and ξ is
σ sub-Gaussian. Furthermore, Σ = E

[
x2x

T
2

]
, and Σ/Σ2 is

the Schur complement. By observing tuples sampled from
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Algorithm 2 Semiparametric Least Squares

1: Require: Dataset D = {(x1,n, x0,n)}2Nn=1 row and column indices i, j ∈ [d].
2: Reduction to semiparametric LS: DSP = {(yn, z1,n, z2,n)}Nn=1 where

yn = x1,n(i), z1,n = x0,n(j), z2,n = x0,n([d]/j).

3: Estimate cross correlation L̂ =
(∑N

n=1 z1,nz
>
2,n

)(∑N
n=1 z2,nz

>
2,n

)†
.

4: Estimate conditional output ĉ =
(∑N

n=1 z2,nz
>
2,n

)† (∑N
n=1 ynz2,n

)
.

5: Set Â(i, j) =
(∑2N

n=N+1(z1,n − L̂z2,n)(z1,n − L̂z2,n)>
)† (∑2N

n=N+1 (yn − 〈ĉ, z2,n〉) (z1,n − L̂z2,n)
)
.

6: Output: Â(i, j)

this model {yn, x1,n, x2,n}Nn=1 we wish to estimate only
w?. To do so, we first estimate L? ∈ Rdw×dw and c? ∈ Rde ,
that relate x2 to the conditional expectation E[x1|x2] and
E[y|x2], with N samples via standard least-squares. Due to
the model Gaussian assumption, it holds that

E[x1|x2] = L?x2, E[y|x2] = cT? x2.

When access to exact estimates of these quantities is given,
we show in Appendix H.2.1, that the model (8) can be
‘orthogonalized’ and written as

y = 〈w?, x1 − L?x2〉+ 〈c?, x2〉 ,

where E[(x1 − L?x2)x>2 ] = 0, so that the two terms on the
right hand side are uncorrelated, unlike in the original model.
Thus, given estimates L̂N , ĉN , we regress y−〈ĉN , x2〉 onto
(x1 − L̂Nx2) to get an estimate of w?. See Algorithm 2
for a description of the algorithm. In the next result, we
show that this estimator has leading order error scaling
with dw and only a lower order error term scaling with de.
Furthermore, we get a minimal dependence in λmin(Σ),
with similar scaling as in usual OLS analysis (Hsu et al.,
2012b) (see Appendix H.2.2 for proof).

Proposition 9 (Semiparametric Least-Squares). Let δ ∈
(0, e−1). Consider model (8) and assume that Σ
is PD. Denote σ2

c = ||w?||2Σ/Σ2
+ σ2. Then, if

N ≥ O
((
σ2
c/λmin(Σ)

)
∨ 1
)
ddw log

(
d
δ

)
, with probability

1− δ, the semiparametric LS estimator ŵ of w? satisfies

||w? − ŵ||2 ≤

O

√σ2dw log
(

1
δ

)
Nλmin(Σ)

+

(
σ2
c ∨ σc

)
ddw log

(
dw
δ

)
N
√
λmin(Σ)

 .

Returning to the PC-LQ setting, we obtain an entrywise
estimator forA by applying the semiparametric LS approach
on each pair (i, j) ∈ [d]2. To estimate B, since we can
sample u0 with a diagonal covariance, we can apply the

results for the diagonal covariance case. We summarize
the sample complexity for entrywise estimation in the next
corollary (see Appendix H.2 for proof).

Corollary 10 (Element-wise Estimate, PD Covariance).
Assume x0 ∼ N (0,Σ) and that λmin(Σ) > 0. De-
note σ2

c = A2
maxλmax(Σ) + σ2. Then, if N ≥

O
((
σ2
c/λmin(Σ) ∨ 1

)
d log

(
d
δ

))
, and

N = O

(
σ2 log( dδ )
ε2λmin(Σ) +

d(σ2
c∨σc) log( dδ )
ε
√
λmin(Σ)

)
, then the semipara-

metric LS yields an entrywise estimate of A with parameters
(ε, δ).

Combining with Theorem 7, we obtain the second shaded
row of Table 1 on page 3.

6. Experiments
We present a proof-of-concept empirical study, to demon-
strate the end-to-end statistical advantages of leveraging
sparsity in the LQR of a PC-LQ. We generate synthetic sys-
tems with marginally stable controllable blocks; the task is
to learn a stabilizing controller K (such that ρ(A+BK) <
1) from finite samples, in the presence of many irrele-
vant state coordinates (letting d increase, while holding
s and du constant). We compare Algorithm 1 with the
certainty-equivalent controller obtained from the ordinary
least-squares (OLS) estimator for the system’s dynamics.

Synthetic PC-LQ problems were generated with i.i.d. stan-
dard Gaussian entries (for all A1, A2, A3, A12, A32, B1);
the diagonal blocks were normalized by their top singu-
lar values so that ρ(A1) = 1, and ρ(A2) = ρ(A3) = 0.9.
We computed Ā from the minimum-norm N -sample OLS
estimator, as well as the soft-thresholded semiparametric
least-squares estimator from Algorithm 1 (with ε = 0.1),
and obtained certainty-equivalent controllers K̄ by solving
the Riccati equation with L̄ := (Ā, B). Over 100 trials in
each setting, we recorded the fraction of times K̄ stabilized
the system (ρ(A+BK̄) < 1, and J(K̄) ≤ 1.1 · J(K∗)).
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Figure 1. Empirical comparison of Algorithm 1 with OLS for sta-
bilizing a marginally stable PC-LQ. As the number of irrelevant fea-
tures increases, the sample complexity of the sparsity-leveraging
estimator grows much more slowly. Success frequencies (with
standard deviations from the normal approximation) are measured
over 100 trials.

Figure 1 summarizes our findings: keeping the relevant
dimensions fixed (sc = se = 5, du = 1) and allowing d
to grow, the sample complexity of stabilizing the system
exhibits a far milder dependence on the ambient dimension
d when using our estimator. A complete description of the
experimental protocol is given in Appendix J.

7. Related Work
Partial controllability in control theory. The notion of
controllability and partial controllability has been well stud-
ied from many different aspects in both classical and modern
control theory (Kalman, 1963; Lin, 1974; Glover and Sil-
verman, 1976; Jurdjevic and Quinn, 1978; Zhou et al., 1996;
Bashirov et al., 2007; Sontag, 2013), as well as, the relation
between controllability and invariant subspaces (Klamka,
1963; Basile and Marro, 1992). In Section 3, we charac-
terize which parts of a PC-LQ are not needed for optimal
control. To the best of our knowledge, such characterization
does not exist in previous literature. One may interpret the
results of Section 3 as an extension of Kalman’s canonical
decomposition. That is, we further decompose the uncon-
trollable and observable system (see Kalman (1963), Page
165) into relevant and irrelevant parts for optimal control.

Structural results in LQ. Recently, there has been a
surge of interest in the learnability of LQ (Abbasi-Yadkori
and Szepesvári, 2011; Dean et al., 2019; Sarkar and Rakhlin,
2019; Cohen et al., 2019; Mania et al., 2019; Simchowitz
and Foster, 2020; Cassel et al., 2020; Tsiamis and Pap-
pas, 2021). However, learning in the presence of structural
properties of an LQ has been, to large extent, unexplored.
Closely related to our work is the problem studied in (Fat-
tahi and Sojoudi, 2018; Fattahi et al., 2019). There, the
authors considered an LQ problem in which the dynamics
itself has a sparse structure. Specifically, the dynamics was
assumed to have some sparse block structure such that all
elements in each block are simultaneously zero or non-zero.
We do not put any such restriction on a PC-LQ. Moreover,
in our case, the transition matrix A need not be a sparse ma-
trix, and may have Ω(d2) non-zero elements. The sparsity

utilized in our work is sparsity of the optimal controller and
not of the dynamics itself. We also comment that in (Fat-
tahi and Sojoudi, 2018; Fattahi et al., 2019) additional as-
sumptions were made, which are not satisfied in our setting.
First, the authors assume a mutual-incoherence condition
on the covariance matrix. Additionally, it is assumed that
A(i, j), B(i, j) ≥ γ > 0, i.e., that there is a minimal value
for the entries of the dynamics. These assumptions are cru-
cial for identification of the non-zero entries; assumptions
we do not make in this work (see Appendix B for further
discussion on the structure of the covariance matrix in our
setting). That is, we recover a near optimal policy without
the need to recover the true block structure.

Another related work is the work of (Wang and Yang, 2020),
where the authors assumed the dynamics is of low rank and
fully controllable. We do not make such an assumption and
allow for uncontrollable part to affect the controllable part.
Lastly, in (Sun et al., 2020), the authors analyzed system
identification via low-rank Hankel matrix estimation. Ob-
serve that Hankel based techniques only enable the recovery
of the controllable parts of the system, as they are based on
a function of AnB. However, to optimally control a stable
system, knowledge of the relevant uncontrollable process is
also needed (see Example 2).

8. Summary and Future Work
In this work, we studied structural and learnability aspects
of the PC-LQ. We characterized an invariance property of
the LQR of a PC-LQ. This revealed that the optimal con-
troller of such systems is, in fact, a low-dimensional object.
Then, given an entrywise estimator, we showed that the
sample complexity of learning an axis-aligned PC-LQ has
only a mild dependence on the ambient dimension, scaling
primarily with the dimensionality/sparsity of the optimal
controller.

The results presented in this work opens several interesting
future research avenues. First, we believe it would be inter-
esting to study additional invariance properties of optimal
policies of other control and RL problems. As stressed in
this work, invariances of the optimal controller can yield
statistical improvements for learning in such models. More
broadly, is there a general way to characterize such invari-
ances? Second, in this work, we assumed the PC-LQ model
is sparse, or, axis-aligned. A natural question would be to
study the learnability of such a model when the system is not
axis-aligned, and understand the nature of possible sample
complexity improvements in such systems? Lastly, extend-
ing our results to a single trajectory setting is of interest,
and may require developing new tools for semiparametric
least-squares analysis.
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