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Abstract

Newton-type methods are popular in federated
learning due to their fast convergence. Still, they
suffer from two main issues, namely: low com-
munication efficiency and low privacy due to the
requirement of sending Hessian information from
clients to parameter server (PS). In this work, we
introduced a novel framework called FedNew in
which there is no need to transmit Hessian infor-
mation from clients to PS, hence resolving the
bottleneck to improve communication efficiency.
In addition, FedNew hides the gradient informa-
tion and results in a privacy-preserving approach
compared to the existing state-of-the-art. The
core novel idea in FedNew is to introduce a two
level framework, and alternate between updating
the inverse Hessian-gradient product using only
one alternating direction method of multipliers
(ADMM) step and then performing the global
model update using Newton’s method. Though
only one ADMM pass is used to approximate the
inverse Hessian-gradient product at each iteration,
we develop a novel theoretical approach to show
the converging behavior of FedNew for convex
problems. Additionally, a significant reduction
in communication overhead is achieved by uti-
lizing stochastic quantization. Numerical results
using real datasets show the superiority of Fed-
New compared to existing methods in terms of
communication costs.
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1. Introduction

In this paper, we consider the following federated learning
(FL) problem

. 1 ¢
min f(z) =~ ;fz(w), (D
where d denotes the dimension of the model € R¢ we
wish to train, n is the total number of clients/clients in the
system, f;(x) is a convex loss/risk associated with data
stored on client ¢ € [n] := {1,2,...,n}, and f(x) is the
empirical loss/risk. While first-order methods for FL prob-
lems are extensively studied in the literature, recently a
handful of second-order methods have been proposed for
FL problems. The main advantage of second-order methods
is their faster convergence rate, although they suffer from
high communication costs. Besides that, sharing the first
and second-order information (which contains client’s data)
may create a privacy issue. This is because the Hessian
matrix contains valuable information about the properties of
the local function/data, and when shared with the parameter
server (PS), privacy may be violated by eavesdroppers or an
honest-but-curious PS. For instance, authors in (Yin et al.,
2014) show that the eigenvalues of the Hessian matrix can
be used to extract important information of the input images.

In this work, we are interested in developing communica-
tion efficient second-order methods while still preserving
the privacy of the individual clients. To this end, we pro-
pose a novel framework that hides the gradients as well as
the Hessians of the local functions, yet uses second-order
information to solve the FL problem. In particular, we
divide the standard Newton step into outer and inner lev-
els. The objective of the inner level is to learn what we
call the Hessian inverse-gradient product or Zeroth Hessian
inverse-gradient product for the computation-efficient ver-
sion (i.e., (V2f (%)) 71V f(a*) or (V2f(a)) 71V f(2*))
without sharing individual gradients and/or Hessians. We
use the ADMM method to solve the inner level problem due
to their faster convergence as compared to gradient descent
(GD) methods. Specifically, one ADMM step is used to
approximate the solution of the inner level problem at each
iteration. The solution of the inner level is used to perform
the outer level update, which is similar to Newton’s method.
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The proposed approach ensures privacy and communication
efficiency. Next, we summarize the state-of-the-art of first
and second-order FL methods.

1.1. First-order FL Methods

The de-facto solution to problem (1) is to use distributed
(stochastic) gradient descent method (DGD/DSGD). In the
k-th iteration of DGD, the PS shares z* with all clients,
each client computes its local gradient with respect to z*
and transmits it to the PS which aggregates them to form
the global gradient and perform one GD step as follows.

k+1 _ k. k_k_gn ok
2" =2 —aVf(®) =2 n;Vfi(m ). (2

Throughout this paper, we will refer to FL with DGD as
FedGD. To enable communication-efficient FL, several tech-
niques were proposed for enhancing communication effi-
ciency, which is a key bottleneck in the FL. These tech-
niques include model compression/quantization (Konecny
et al., 2016; Alistarh et al., 2017; Khirirat et al., 2018; El-
gabli et al., 2020), local computation utilizing schemes such
as local SGD (McMahan et al., 2017a; Stich, 2020; Khaled
et al., 2020; Mishchenko et al., 2021a), and censoring or
partial participation (McMabhan et al., 2017a; Gower et al.,
2019; Chen et al., 2018). Moreover, solutions that utilize a
combination of the above techniques (e.g., censoring and
quantization) were also investigated (Sun et al., 2019; Issaid
et al., 2021). Other relevant techniques for further reducing
the communication cost of FL. methods include the use of
momentum (Mishchenko et al., 2019; Zhize Li & Richtarik,
2020), and adaptive learning rates (Malitsky & Mishchenko,
2019; Xie et al., 2019; Reddi et al., 2020; Mishchenko et al.,
2021b).

1.2. Towards Second-order FL. Methods

First-order FL. methods suffer from slow convergence speed
in terms of the number of iterations/communication rounds.
Moreover, their convergence speed is a function of the con-
dition number, which depends on: (i) the structure of the
model being trained, (ii) the choice of loss function, and (iii)
the distribution of training data. On the other hand, second-
order methods are known to be much faster owing to the
fact that they make an extra computational effort to estimate
the local curvature of the loss landscape, which is useful
in generating faster and more adaptive update directions.
Therefore, second-order methods perform more computa-
tions per communication round to achieve less number of
communication rounds. Since in FL, it is often commu-
nication and not computation that is the key bottleneck,
second-order methods are becoming attractive and have re-
cently gained attention. The Newton’s method, which forms
the basis for most efficient second-order methods, enjoys a

fast condition-number-independent (local) convergence rate
(Beck, 2014), is given by

S R (iv2fi(xk))_1 zn: V).  (3)
i=1 =1

However, fewer number of communication rounds does not
necessarily induce a lower communication cost. Commu-
nication overhead is also affected by the number of trans-
mitted bits between the clients and PS, which depends on
the size of the transmitted vector/matrix per communica-
tion round. Hence, a direct application of Newton’s method
does not induce an efficient distributed implementation as
it requires repeated communication of the local Hessian
matrices V2 f; € R4*4 to the server. This is prohibitive and
constitutes a massive number of transmitted bits, which re-
quires high communication energy and bandwidth. Another
important concern when implementing Newton’s method
is privacy, as it requires sharing both the gradient and the
Hessian at each iteration, which makes it vulnerable to inver-
sion attacks (Fredrikson et al., 2015; Hitaj et al., 2017). For
instance, in a linear regression task, the Hessian matrix is
nothing but DT D, where D is the data matrix which results
in privacy issues for each client.

Recently, (Safaryan et al., 2021) proposed a Newton-based
framework that avoids communicating the full Hessian ma-
trix at each iteration. The idea is to share a compressed
version of the Hessian matrix utilizing compression tech-
niques such as top-K, and Rank-R approximation. While
this approach can reduce the communication cost, it has a
number of shortcomings: (i) it does not solve the privacy
issue since every client still shares the gradient and a com-
pressed version of the Hessian matrix, (ii) it introduces fur-
ther computations to perform compression, and (iii) it may
not lead to high communication savings when the rank of the
Hessian matrix is high. It is also worth mentioning that this
approach, as well as the standard Newton’s method, require
matrix inversion at the PS at each iteration. On the other
hand, even though the Newton Zero algorithm (proposed
in (Safaryan et al., 2021)) requires matrix inversion only at
the first iteration, it still shares the full Hessian matrix at the
initial iteration, which necessitates O(d?) communication
cost at the first iteration, besides overlooking privacy. More-
over, in contrast to first-order FL. methods which rely on
simple aggregation at the PS, existing Newton-based meth-
ods require matrix inversion and multiplication (at least for
the first iteration) which restricts the use of quantization to
Hessian and gradient at the same time.

To obviate the above-mentioned limitations, we propose
FedNew, a novel and efficient framework that ensures pri-
vacy by hiding the Hessian and the gradient. i.e., neither
gradient nor Hessian is sent directly. In addition, FedNew re-
duces the communication cost compared to standard second-
order methods by transmitting only O(d) information at
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each iteration, similar to first-order methods. Furthermore,
FedNew reduces the computation cost when utilizing the
zeroth Hessian at each iteration (similar to Newton Zero),
since it performs matrix inversion only once (at the first iter-
ation). Finally, to further reduce communication overhead,
we propose a variant, coined Q-FedNew, which quantizes
the transmitted variable. We summarize our contributions
as follows.

(1) We propose a novel framework to solve the FL problem
using second-order information. In particular, we decom-
pose the objective function of the problem of learning the
Hessian inverse-gradient product into a sum of separable
functions and solve it in a distributed way. The framework
alternates between updating the Hessian inverse-gradient
product and the global model. To the best of our knowledge,
this is the first work that utilizes one step of the ADMM
method to estimate Newton directions with convergence
guarantees.

(2) The proposed FedNew algorithm is rooted in a
communication-efficient and privacy-preserving way to esti-
mate the Hessian inverse-gradient product at each iteration.
In contrast to existing approaches, FedNew does not require
clients to share their gradient and the Hessian matrix (or
compressed Hessian matrix) at any iteration, including the
first one; hence O(d) communication cost is guaranteed at
each iteration including the first one.

(3) We prove that the proposed FedNew algorithm asymptot-
ically converges to the optimal direction of Newton method.
We develop a novel proof technique to show that the pro-
posed ADMM based inner and outer level iterates interacts
with each other and shows converging behavior under some
assumptions (cf. Sec. 3). Moreover, we provide a privacy
analysis of FedNew and show that the reconstruction of
gradients/Hessians is not possible (cf. Sec. 4).

(4) To further reduce the communication cost per iteration,
we leverage stochastic quantization and propose quantized
version called Q-FedNew. It was possible due to the unique
feature of FedNew where clients share only a vector with PS
that is not involved in any further multiplication/inversion
at the PS (cf. Sec. 5).

We conduct extensive simulations on real datasets and
show the performance gain of the proposed FedNew and
Q-FedNew algorithms in comparison to Newton Zero and
FedGD in terms of the number of transmitted bits and num-
ber of communication rounds.

2. Proposed Framework: FedNew

We start by writing the Newton update step for the global
model z at iteration £ as

H =gk (V) TV, @)

where f (the empirical loss function) is assumed to be a
continuously differentiable function over = € R?. A key ob-
servation is that the direction z(z%):=(V2 f(2*)) "tV f(2*)
is the solution of the following problem

2(a%) = argmin Sy T2 f (e )y — yTVF(F).  (5)
yeRd 2

Note that the problem in (5) is an unconstrained convex
optimization problem that can be solved at iteration k to
obtain the optimal direction z(x*). To solve this problem,
one could utilize any existing iterative solver and obtain
a direction that is close to the optimal z(z*) for a given
xk, Utilizing the solution of (5), we can then update z as,
P+l = 2% — 2(2¥) which is a one Newton step from z*.
However, the main issue here is that solving (5) iteratively
introduces a double loop, which can be communication and
computation expensive. To address this issue, we propose a
two-level framework detailed next.

2.1. Inner Level: One Pass ADMM

We note that solving (5) completely at each iteration k ex-
hibits three challenges: (i) it requires sharing local Hessians
and gradients with the PS which is communication expen-
sive, (ii) it creates privacy issues since clients share their
gradients and Hessians, and (iii) it requires matrix inversion
at the PS at each iteration. We will explain how to overcome
the limitation (iii) later in this section. Let us first start by
addressing the limitations in (i) and (ii), by reformulating
the problem as follows

n

e % b (ly?(vzfi(mk) +al)y; — y;‘FVfZ-(x’f))

st. yi=vy, Vié€]ln], (6)
where we introduce a tuning parameter «. The problem
in (6) is a consensus reformulation of the problem in (5)
where y; denotes the local directions, and y denotes the
global direction. Note that the direction —[V?2f(z*) +
al]~'V f(z*), the inexact Newton direction, is also a de-
scent direction (Marteau-Ferey et al., 2019; Karimireddy
et al., 2018; Mishchenko, 2021; Zhang et al., 2021) which
boils down to Levenberg-Marquardt algorithm for least
square problems which exhibits global convergence (Lev-
enberg, 1944; Marquardt, 1963; Bergou et al., 2020). By
reformulating (5) as (6), the objective function becomes
separable across clients, which allows the solution to be dis-
tributed and avoid clients sharing their Hessians/gradients
at each iteration. We leverage ADMM algorithm to solve
the problem in (6) in a distributed manner.

To simplify the notation, from now on, we will use H f for
Hessian V2 f;(«*) and g¥ for gradient V f;(x*) of client i
at iteration k. With that, the augmented Lagrangian of the
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optimization problem (6) can be written as,
N n 1
£, ({yi}izlaya/\)zz <§yiT(sz+aI)yi - szQf) (7

i=1
n p n

+ Z<>\i7yi —y)+ 5 Z ly: — wll3,
=1 i=1

where A = {\;}!_, is the collection of dual variables and
p > 01is a constant penalty parameter. One ADMM pass
is performed at each iteration k. Hence, the primal and the
dual variables are updated as follows.

(1) Each client i updates its primal variable y* by solving
the following problem,

. g1 - —
yF =arg min {leT(HZk + ad)y +NFL g =k

Yi
P _
~ui" g+ G llvi — o 1H3}7 (8)
which gives the solution,
yi=(H +al +pl)~ (gf =X+ py* 1), 9)

Then, every client transmits its updated local variable
y¥ to the PS.

(2) The primal variable of the PS is updated by solving the
following problem

n n
. _ p .
y" =arg min { DN G Yl - ylli},
E i=1

y i=1
(10)
Which gives the solution,
1< —
== AT ), (11

i=1

Once the global variable y* is updated at the PS, it will
be shared with all clients.

(3) The dual variables are updated locally for each client

A= Nl - ). (12)

From (11) and (12), we know that Z?:l )\f = 0, Vk, hence
(11) can be written as

1 n
k-_iz k-
y _ni_lyz

Therefore, the global variable y* is just the average of the
local variables y¥, for all i € [n].

(13)

Algorithm 1 FedNew (Federated Newton)

1: Parameters: K; p, o
Initialization: 2°,¢°, {30} ,, {\9}7, € R?
k<0
while £ < K do
on all clients: compute local gradient g* and local
Hessian HY.
6:  on all clients: update y* using (9) and send to the
PS
7:  on the PS: update y* using (13) and z* using (14)
and transmit them to all clients
8:  on all clients: update \¥ using (12)
9: end while

2.2. Outer Level: Approximate Newton Step

At the outer level, after calculating the global direction y*
from (13), we perform the following update

b+l _ ok

z —y", (14)
where ¥ is an approximation to the optimal direction
y*(2*). We note that the closed-form expression in (9) still
involves an inversion of the local Hessian Hf , which can
be avoided by using H? instead of HY at each iteration. To
summarize, at iteration k, given g¥ and HF (H? if we avoid
inversion), each client updates and transmits y*. Then the
PS updates y*, and performs a one Newton step before shar-
ing the updated model and 3" with all the clients. Finally,
each client updates the dual variables via (12). The detailed
steps of the algorithm are summarized in Algorithm 1. Us-
ing ADMM to solve the inner level optimization problem
introduces a new set of variables (local primal and dual vari-
ables), and by performing only one ADMM pass each time,
the subproblems are not solved optimally, which may affect
the convergence of the outer iterate 2* in our framework.
Therefore, it becomes essential to study the convergence
behavior of the inner iterates so that outer iterates eventually
follows the newton directions only. Proving convergence for
such a combination between a primal based method (New-
ton method) for the outer problem and a primal-dual based
method with one pass only each iteration (one-pass ADMM
method) for the inner problem is very challenging. However,
in the next section, we provide convergence analysis of the
proposed framework and show that convergence holds under
some assumptions and conditions.

3. Convergence Analysis

In this section, we study the convergence of the proposed
FedNew algorithm. Note that we have introduced a two
level framework to approximate the update in (4). The
solution of (5) would result in the optimal direction, which
we then use to update the model parameter at the PS. Since
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(5) is strictly convex, there exists a unique optimal solution
which we can write in closed form, but it requires that all
clients transmit their hessian matrices to the PS, where the
PS performs summation of the local Hessians, and then
matrix inversion, which is costly, and we want to avoid.
The path we took is to use an iterative distributed ADMM
algorithm to solve the inner level problem in (6). There are
two possibilities, the first is that we solve the inner problem
iteratively till convergence, and then utilize the solution
for the Newton update. In this case, ¥ would trivially
converge to z* for a = 0 following the existing analysis
in the literature (Karimireddy et al., 2018; Marteau-Ferey
et al., 2019), but it would add a lot of computational burden
on the clients and is not very practical solution to aim for. In
contrast, we propose to solve the inner problem via one step
ADMM (where we just take one step of standard ADMM),
and then perform the outer Newton update. Note that this
approach is really effective for practical use, but introduces
errors in the Newton directions to be used for the outer
update. This makes the convergence proof challenging and
does not hold straightforwardly from the existing proof of
the ADMM or Newton based methods. To address this
challenge, we develop a proof technique next to show that
FedNew converges asymptotically.

To analyze the convergence behavior of Algorithm 1, we
assume that each function f; is twice differentiable, convex,
has L-Lipschitz continuous gradient, and L ,-Lipschitz con-
tinuous Hessian. Let Q;(z, y) be equal to 2y (V2 f;(2*) +
al)y; — yI'V fi(z*), with this definition, we assume that
V@ is Lipschitz continuous in y with constant L, i.e., for
any given x', 22 € X, we have

IVQ;(z? VQi(x?

We start with the necessary and sufficient optimality con-
ditions of the inner problem in (6) at the k-th iteration (the
k-th Newton step), which are the primal and dual feasibility
conditions (Boyd et al., 2011) defined as

yi (2" =y* (z"), (primal feas.) (16)
(HE+al)yr (z")—gF+ 25 (2¥) = 0, (dual feas.) (17)

) — WD? < Lellyd — w2 )?. (15)

for all i € [n]. In (16)-(17), y* (x*) and A (x*) denote the
optimal values of ¥ and \¥, respectively, at the k*" itera-
tion, i.e. when running the ADMM steps to the end. Note
that if y; (z*) is computed then z* ! = 2% — L5 | yr*
Next, we write the optimality conditions at the optimal
model z* as

yr =y* =0,Vi € [n]
g5 =\, Vi € [n)

(primal feas.) (18)
(dual feas.) 19)

where g¥ becomes g in (19). The equality in (18)
and (19) follows from the fact that y* = V2[f(z*) +

al]7'V f(z*) = 0 because Vf(z*) = 0. Note that we
drop the k notation in (18)-(19) because we write them for
2* which is independent of k. Next, to simplify the analysis,
we introduce a local copy z; of the model x to write

1 n
Ly at -
n =1

Re-writing (14) as (20) does not change anything in the
algorithm but simplifies the analysis. With this, we first
introduce two intermediate lemmas (Lemma 1 and Lemma
2) which would lead us to Theorem 1.

n

1 k k
— (w-yh) o)

=1

Lemma 1. In Algorithm I (FedNew), for each iteration k,
it holds that

n

Z()\f + s*

i=1

n
k k k
_)‘: ,yf—y* >§ _aznyf_y* H27

2y

k

where s* = p(y* — y*~1) is the dual residual of the inner

problem.

The proof of Lemma 1 is provided in Appendix A. The
result in Lemma 1 will be used in Lemma 2 to impose an
upper bound on the difference between the optimality gap
of the inner problem at iteration k and k — 1.

Lemma 2. In Algorithm I (FedNew), for each iteration k,
it holds that

1 ¢ «k - «k
;ZH/\?—& 1242810 llyk — ¥ + pnlly* —y
i=1 i=1
+2pnly* -y
2"
Z”)\k 1 )\*k 1”2 qZ”y *k—1H2
4L n f— _ —
=y By Y2 2pm |y — R
=28 [l — "%, 22)
i=1
where 31 > 0, B3 > 0, and
8L§n
b1+ P2 <a—2.5p— p . (23)

The proof of Lemma 2 is provided in Appendix B. Now, we
are ready to state the main theoretical result of this work.
To proceed towards the main theorem, we define Lyapunov
function V'* as

1 n n
=;Z I = X2 280 vk —y
=1 =1

*k||2

*k||2

+ pnlly® — 12+ 20m)ly" — yF 2, 4)

*k”Q



FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning

which quantifies the distance to the optimal for the dual
variable \¥, and the primal variable y*. We present the
main result in Theorem 1.

2
Theorem 1. With o that satisfies (23) for fy > ~2, p >
2L, and By > 0, the sequence of iterates of FedNew (cf.
Algorithm 1) are such that \f — )\fk, yF - y**, and
v* = yFask — oo

Proof. The detailed proof of Theorem 1 is provided in Ap-
pendix C. To prove the asymptotic convergence of the pro-
posed algorithm, we utilize the results of Lemma 1 and
Lemma 2, and show that the Lyapunov function V* is
monotonically decreasing for each k. Subsequently, we
utilize the Monotone Convergence Theorem to claim that
V¥ converges to zero as k — oo. This further implies that
e )\jk, yF - y*k, and y* — y*k as k — oo. O

We remark that even though we obtain the approximate
inexact Newton directions via approximating the solution
of the distributed optimization problem formulated in (6) at
each iteration, we will asymptotically move in the inexact
Newton direction, which is a descent direction. One can
utilize the global convergence analysis of inexact Newton
methods in (Karimireddy et al., 2018; Marteau-Ferey et al.,
2019) to further establish the global convergence of FedNew
and we leave that to future scope of this work. Finally,
it is worth mentioning that replacing H* with H? in the
formulation (6) and Algorithm 1 does not change the results
of Lemmas 1 and Lemma 2 since they both require positive
definiteness of the Hessian, which already is a property of
HY?. With this, it is easy to show that Theorem 1 result
also holds for the computation-efficient implementation of
FedNew.

4. Privacy Analysis

Revealing the local gradient is vulnerable to model inver-
sion, and reconstruction attacks (Fredrikson et al., 2015;
Hitaj et al., 2017). In addition, revealing the Hessian in-
creases vulnerability, since more information about the local
function/data is released. These attacks infer the statistical
profiles of training samples and violate data privacy. Against
such an adversarial inverse problem, we aim at preserving
privacy defined as follows.

Definition 1 (Zhang et al., 2018) A mechanism M :
M(X)— Y is defined to be privacy preserving if the in-
put X cannot be uniquely derived from the output Y.

We treat X as local gradient/Hessian to be protected, and
consider Y as the known information at an eavesdropper
such as the PS or another client. At iteration k, under the
standard Newton’s method, the PS receives the gradient gf
and the Hessian H¥ from each client 4, thereby violating the

privacy defined in Definition 1. In sharp contrast, the PS in
FedNew receives yf which is neither the gradient nor the
Hessian. Consequently, we ensure that privacy is preserved
against curious PS and against any eavesdropper with the
knowledge of the updating trajectory of the variable y. The
following theorem formally states that FedNew preserves
the privacy of the local gradients/Hessians.

Theorem 2. At each iteration k > 0, FedNew preserves
the privacy of each local gradient update gf and local zero-
Hessian HF.

Proof. The eavesdropper needs to solve (9) with respect
to HF and g¥. However, this single equation has three
unkowns at the reciever which are HF, g¥, and \*~!. Hence,
the receiver, the eavesdropper cannot have a unique solution
for HY, g¥ since the number of variables V = 3 is greater
than the number of equations £ = 1. This finalizes the
proof. O

The key point of the proof is to show that the inverse problem
of an eavesdropper boils down to solving a set of equations
at every iteration, in which the number of unknowns is larger
than the number of equations. Therefore, each client’s local
gradient/Hessian cannot be uniquely derived.

5. Quantized FedNew

Similar to first-order methods, FedNew allows each client to
transmit a vector whose size is equivalent to the model size.
At the PS, all received vectors need only to be aggregated
and averaged. Therefore, in contrast to other second-order
methods, the received information from all clients at the PS
is not involved in any further multiplication and/or inversion.
Note that such multiplication and/or inversion may make
existing quantization schemes used in first-order methods
no longer applicable. Hence, by utilizing this feature of Fed-
New, we are able to further quantize the transmitted variable
(y¥) using quantization schemes used in first-order meth-
ods in the literature (Elgabli et al., 2020), and numerically
show the convergence of the proposed approach. With quan-
tization, we can significantly reduce the communication
overhead per iteration. We refer to the quantized version of
FedNew by Q-FedNew.

Next, we describe the quantization procedure of Q-FedNew.
At iteration k, each client ¢ quantizes the difference be-
tween y¥ and the previously quantized vector gf*l as
yF—gF 1 = Qi(yF, 95 "). The function Q,(-) is a stochas-
tic quantization operator that depends on the quantization
probability pﬁ ; for each element j € {1,2,---,d}, and
on b the bits used to representing each element. We
choose pf ; and b% as follows. The j-th element g '],
of the previously quantized model vector is centered at

the quantization range 2R§€ that is equally divided into
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Figure 1. Optimality gap of FedNew compared to FedGD and Newton Zero in terms of the number of communication rounds per client for
different datasets. FedNew(r = 0) require close to Newton Zero’s number of communication rounds for € optimality gap, yet preserves
the privacy. FedNew(r = 0.1) and FedNew(r = 1) achieve faster convergence.
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Figure 2. Optimality gap of Q-FedNew compared to FedNew in terms of number of communication rounds and number of communication
bits per client for different datasets.Q-FedNew converges as fast as FedNew, but at significantly less number of transmitted bits.

2 — 1 quantization levels, yielding the quantization step
size A¥ = 2RF/ (Qbf —1). In this coordinate, the difference
between [yF]; and [§F1]; is

i
1

= AR (25)

[ei(yF)]; (wil; — 05" +RY),

where adding R¥ ensures the non-negativity of the quantized
value. Then, [¢;(y¥)]; is mapped to [g, (y¥)]; as

[ei(yy
|[ci(yF)];]  with prob. 1 — pf ;

ln(yF)); = - with prob. 26)

where [-] and |-| are ceiling and floor functions, respec-
tively. Next, we select the probability pf,j in (26) such
that the expected quantization error is E [ef j] is zero which
implies that

Py (leilyd)]s — Tes(H)li0)
+ (1 =p;) (lesyh)]y = Lew)li))

0. (@27

Solving (27) for p} ;, we obtain

= (lesy))y = Lesw)]s)) - (28)

The pi—f ; selection in (28) ensures that the quantization er-
ror is unbiased, yielding the quantization error variance

E [(ek )2] < (AF)2/4 (Reisizadeh et al., 2019). This im-

]

k
Dij

plies that E {e’f] < d(AF)?/4. With the aforementioned

stochastic quantization procedure, b¥, R¥, and ¢;(y¥) suf-

fice to represent ¢, where

qz’(yf) = ([Qi(yf)]la [yzk)]% Ty [yf)]d)’

are transmitted to the PS. After receiving these values at the
PS, gjf can be reconstructed as follows:

+ Afqi(yf) — RIL.

(29)

~k ~k—1

Ui =Y; (30)

In contrast to full arithmetic precision based communication
which uses 32d bits to represent the transmitted vector, every
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transmission payload size of Q-FedNew is b¥d + bp bits,
where b < 32 is the required bits to represent RY.

6. Experiments

In this section, we empirically investigate the performance
of the proposed algorithms FedNew and Q-FedNew against
FedGD (McMahan et al., 2017b), and Newton Zero (Sa-
faryan et al., 2021) for a binary classification problem using
regularized logistic regression'. We consider 3 variants of
FedNew. To explain these variants, we let r be the update
rate of the hessian matrix. We consider » € {0,0.1,1}. i.e.,
r = 0, reflects the case when the hessian matrix is not up-
dated at all. Therefore, H is used at each iteration similar
to Newton zero. » = 0.1 reflects the case when the hessian
is updated every 10th iteration. Finally, » = 1 reflects the
case when the hessian is updated at each iteration, so HY
is used at iteration k. As we will show later in the section,
updating the hessian matrix at each iteration improves the
convergence speed, but at the cost of more computations.
We first describe the experimental setup and then discuss
the numerical results.

6.1. Experimental Setup

In our experiments, we consider the regularized logistic
regression problem

i {f(x) = ) + ’;xw} SNED

where the local loss functions are defined as

1 m
filz) = - Z log (1 + exp(—bija;;w)) , (32)

=1

{aij, bij}jepm) forms the data samples of the i client, and
1 > 0 is a regularization parameter chosen to be equal
to 1072 in all experiments conducted in this section. We
use four standard datasets taken from the LibSVM library
(Chang & Lin, 2011): ala, w7a, w8a, and phishing. More
details on each dataset, including the number of independent
features and the number of clients considered, are summa-
rized in Table 1, where N = m X n is the total number of
samples. In our experiments, each dataset is evenly split
between the clients. Note that we have chosen different
numbers of clients for each of the datasets to show the per-
formance of the proposed approach under various network
sizes. For Q-FedNew, the quantization resolution is 3 bits
in all experiments. In the experiments, we plot the opti-
mality gap f(x*) — f(2*) as a function of the number of
communication rounds or the number of communicated bits

'"The code is avaialble at
aelgabli/FedNew.

https://github.com/

per client, where f(x*) is the function value at the 30 it-
erate of the standard Newton’s method. Finally, for each
variant of our algorithm, we choose « and p that give the
fastest convergence in the tested range. We would like to
mention that though we theoretically prove convergence for
o that satisfies (23), we observe that empirically FedNew
converges for any choice of o > 0.

6.2. Comparison to Baselines

In Fig. 1, we plot the optimality gap as a function of the
number of communication rounds for FedNew and the two
baselines: FedGD and Newton Zero. Fig. 1 shows that
FedNew-(r = 1) is the fastest to converge compared to
the other algorithms in terms of the number of communi-
cation rounds, followed by FedNew-(r = 0.1), then both
Newton Zero and FedNew-(r = 0), and finally FedGD. In
conclusion, when using the updated hessian at each itera-
tion, FedNew can achieve significant reduction in terms of
the number of communication rounds, but at the cost of
more computations. On the other hand, FedNew-(r = 0)
which avoids updating the hessian can match the conver-
gence speed of Newton Zero while preserving privacy. Pe-
riodic update of the hessian (r = 0.1) achieves a middle
point. In fact, as shown in Fig. 1, in some of the datasets, it
converges as fast as the exact hessian based FedNwe (r = 1)
while reducing the computation cost 10 times since the hes-
sian is computed once every 10 iterations.

Fig. 2 compares Q-FedNew to FedNew. As shown in the
figure, for a fixed number of communication rounds, Q-
FedNew achieves the same optimality gap as FedNew. How-
ever, when the optimality gap is plotted against the number
of communicated bits per client, we can clearly see the sig-
nificant savings in terms of the number of communicated
bits per client that Q-FedNew achieves compared to Fed-
New. For example, for the dataset w8a, Q-FedNew(r = 1)
requires almost 10x less number of transmitted bits com-
pared to FedNew(r = 1) to achieve the optimality gap of
1073,

Table 1. Description of the datasets

Dataset N m d n
ala 1600 160 99 10
w7a 24640 308 263 80
w8a 49700 829 267 60
phishing 11040 276 40 40

Finally, we observe, from Figs. 1 and 2, that Newton Zero
starts at a large number of communicated bits since it re-
quires every client to send the whole Hessian matrix at the
first iteration, which consumes a large number of transmitted
bits.
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7. Conclusion and Future Work

We proposed a novel communication-efficient, and privacy-
preserving federated learning framework based on New-
ton and ADMM methods. Unlike existing approaches, the
proposed approach (FedNew) does not require clients to
transmit their Hessian or its compressed version at any iter-
ation. Moreover, the proposed approach ensures privacy by
hiding the gradient and the Hessian information. FedNew
achieves the same communication-efficiency of first-order
methods per iteration, while enjoying faster convergence
and preserving privacy. In particular, the inverse Hessian-
gradient product alternates between updating the inverse
Hessian-gradient product using only one ADMM step at
each Newton’s iteration, and updating the global model us-
ing Newton’s method. FedNew is proved to follow the inex-
act Newton directions asymptotically. The non-asymptotic
version of the proof of optimality is left to the future scope
of this work. Furthermore, a significant reduction in commu-
nication overhead is achieved by utilizing stochastic quanti-
zation. Numerical results show the superiority of FedNew
compared to existing methods in terms of communication
costs while ensuring privacy. Future works will explore the
convergence analysis of the quantized version of FedNew
(Q-FedNew), and extend the current framework to fully
decentralized topology.
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Appendices

A. Proof of Lemma 1

At iteration k, and given 2%, we run the one step ADMM to evaluate the direction yf at each client 7. From the first order

optimality condition of the problem in (8), we can write
(Hf +al)yf — gf + X7 +p(yf =971 =0. (33)

We add and subtract y* in the left hand side in the above expression and utilize the dual udpate \¥ = )\f_l + p(yk — %)
(cf. (12)) in (33) to get

(HF +al)yf —gF + M+ p(y" =y 1) =0. (34)

Let s* be the dual residual at iteration k defined as

s* = py* -y (35)
Therefore, (34) can be re-written as
(HF +al)yf —gF + 2\ + 57 = 0. (36)
Re-arranging the terms, we get
)\f + 5P = gf - (Hf + aI)yf. (37)

Subtracting )\jk from both sides and using (17), we obtain
A st = A = (HE oD (5" — ) (38)
Multiplying both sides with y* — 3**, we obtain,
NF 45 =Ny =yt = (H + aDy" — yfuf —yt") (39)

Since H is a positive semidefinite. i.e., (HF (y:* — y¥),y* — y*) <0, we can re-write (39) as

OF +sF = X7yl =) < —allyf — "7 (40)
Using y b= y*k , and summing over all clients, and we obtain

P e e I NN (VA @41
=1 =1

That concludes the proof.

B. Proof of Lemma 2

We start with the statement of Lemma 1 and multiply both sides of (41) by 2 to obtain

244 2B < =22y |lyf —y**|%, 42)

i=1
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where A := """  (\F — ARyl kY and B = S sk oyl — y*"). First, we focus on the first term on the left side of
(42). Note that since >, A\¥ = 377" A% = 0, term A can be written as A = "1 (\F — \#¥ y¥). Hence, we can write

24 =2 (\F = xF yf)
=1

n

(a) — *k
=23 (T oyl — oyt = N )
=1

I
b

n
_ k )
<>\’-“ R AR T e T R Al &
=1

O A P e Y e N [l o ) S 7
1 =1 =1

||<r
M: -

7

1 n n
k k k c— _
:72 =y = NN - A R 1+py’“>+;ZH/\f*>\f e ) (74

3

2 B 2 n . 1 n - n
—onAf B T i e N O N D ) B S PV N Tl o3 SN 744
pi:l pz’:l pi:l =1
(43)

where we used the update of the dual variables, i.e. \¥ = A¥~! 4 py¥ — py* in (a), and replaced y¥ by (\F — A\¥=1 4 pyk) /p
in the first two terms of (b). Now, we use A — \#~ 1 (/\k AFY — (AF=1 — A**) in the third term of (43) to write

1 & _ 1 — . _ .
;ZHA?*AQC 1+py’“||2:;ZIIAf*/\ik*(Af 1*&-“%’“) |12
=1 =1

1« ok R _ Wk 2 « _ ok ok
=;Z||A5—Ai ||2+;Z|Mf Ry —py’“n?—;Z@f D N AP D V)
=1 =1

i=1
(44
Utilizing the expression in (44) into (43), we get
1 n ) 1 n 3 . n
=2 DI =X - ;Z [N = A = +pz Iyt 11
i=1 i i
1 n 5 b
==Y A=A - Z IS = X2 = ol )1 + pz lyf )12 45)
p i=1 =1
Next, we tackle the term B. Replacing the dual residual s**! by its definition, we get
- — *k - — «k
2B=2p) (" — v oyl ) =20 (W =yl = -y
i=1 i=1
: k
=20 (F —F ) 4 20n(yt — oy - "), (46)
where we utilized the definition ¥ = y* — y*. Using y* — y** = y* — y* =1 4 y*=1 — y** we can write
1k _ : —1 k- k
2B =2p» (" —yF k) 4 20nllyt — yF TP+ 20m(yt - yF AT - ). (47)

i=1
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1 k—1 *k)

Next, using y* — y*=1 = ¥ — y’*’c —(y —y*"), we can write

n
_ — — k . k — k
2B =2p> (F —oF ) + 20nllyt — yF P = 200yt = 0P 4 20n 0yt — L yE T — )
=1
n
_ k _ k — — k
=20 (F ="l + onll(F — vt — T =y P+ enllgt — R = 2000 —
=1
k *xk  k—1 *xk
+ 2oy =y Ty =y (48)

n
— k — k _
= pnlly* — "7 + pnllyF — v FI17 = pnlly Tt =y IR 20> (R -y ).
=1

Using the definition of 7 and the equality in (13), we have

n n

SwF =yl = F =Y ) = - e -ty =0 (49)
i=1 i=1 i=1
Hence, from (48), we obtain
2B = pnlly® — y* 17 + pnlly® — v |7 = pnllyt T -y FYR (50)
Substituting (45) and (48) into (42) and rearrange terms, we obtain,
1 n
=N UNE = NI+ pnllyt — | (51)
i=1

1 n - . ~ . ~ n n .
< ;Z N = AP onllyt T = R = pnlly® = P+ pnllyF I = 0 D IR =200l — vt
i=1 =1 =1

using n Y1 [[yF)? > || S0, w2, we can easily show that p > 7, [[y¥||> > pn||y*||%, so both terms cancel from the

RHS of (51), and we obtain

1< k k
=3I = X+ pnllyt -yt
i1

1< - k _ k - S k
<= N =N+ onllyt T =g = pnllyt = P =20 ) Iy - ot (52)
P4 i=1
Adding and subtracting )\f 1 we get

1o k k
= I = AP+ pnllyt -y
p =1

1< _ k— k— k - k : — . ; k
< ;lekf e TN NP ol = P = oyt = TP = 200>l -0 tP (53)
i=1 =1
Using |la + b||* < 2||a|* + 2||b|?, the following holds

1 - xk *xk
;ZIIA?—& 1 + pnlly* — y** |2 (54)

i=1

2 « _ — 2 « k— k . k - - k
< ;ZW b 1||2+;ZIIA? e e [ e el ) e 2o N (7 Vi
=1 =1

i=1
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Using A" = gF — (HF 4+ o T)y2*, we get

1« k k
;Z IAF = X012+ pnlly® — v+
1=1

2 ¢ - 2 o _
<D INT NP 2D gt - (HET ot T Dyt - b o (HE + oDy
i=1 =1

_ k _ k
+pnllyt =y 12— onllyt — g2 = 200 Iy — ytFR. (55)
=1
Using the definition of Q;(+, -), we write (55) as

1 n
=3 INE = N o pnlly® - R
p i=1

2 - — *K— 2 - — *K— *
S;ZW Lot 1\\2+;levczi<m‘“ Lyttt - vQiat, u) )P
i=1 =1

n
_ k - k
+onlly* =y = pnlly =y =20 llyE — vt (56)
=1
Using the lipschitz continuity of V), we obtain

1 k k
;Z\P\f*/\? 12+ pnlly® — y*"|1?
i1
9 n 972 n
_ k-1 k—1 k _ k _ k
S;ZIM? Loy ||2+7q2||yi* =y P+ onllgt T =y = pnllyt = g = 200y - )R
i=1 i1 -1
(57)
Equivalently, we can write (57) as
1< k , k
= I = X+ pnllyt -yt
P

1 & _ 1 & _ _ _ _ _ _ _ _ _
S;ZIIAf’l—A?k 1||2+;legf A U e O T N 0 £ I YA O P
=1 =1

2L2 " k— k _ k _ - k
+— S ol =yt ol = g = oyt — P =20 (luf - v (58)
i=1 =1
Using the inequality |la + b||? < 2||a||* + 2|b||* and the expression of V), we obtain
1 k k
=D I = NP+ pnllyt - ot
Pi=
IS k—1 2 ¢ k—1 2n 2L k-1 k
e I L v e S v T B v € e | e [ e N 7 i [
P Pi= p "
n
- k - k
+pnlly" =y = onllyt — R = 20 JlyF - M)

=1
2 n

1 k—1 k=12 2L5 S k—1 k=12 | 2N k12 2Lq xk—1 k2
SN IMT NP D e TP S ST DY T =
Lt ) P et

n
_ k — k
+pnlly™ =y 12— onllyt =y 2 =200 Iyl — R, (59)
=1
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Replacing s*~! by its definition, we get

1 k k
;ZHAf = AP+ pnlly =yt ?

=1

1~ kbt *k—1112 2L3 k1 *k—1)2 k—1 k—2(2 2L§n xk—1 *k 2
S;ZH&- S B ST llyE =y T 20yt - 2 + =l =y
i=1 i—

n
— k — k
+pnllyF =y 12— onllyt — R =200 [lyE - R

Let oo = a3 + ap. Adding and subtracting 3" in [|y* =1 — y*"||2 and using ||a + b||? < 2||a||? + 2]|b||2, we obtain

1 k k
;Z\Mf—/\f 12 + pnlly® — y*" |

i=1

1 — _ _ 202 B _ B 2L2n _
D PP 1||2+7q2||yf Loy B 20m Tt — 2\\2+7q||y*k e

n n
_ k _ k k
+2only® — yF 2+ 20mlyF — v P = pnllyt — P = 200 ) llF — ot IE = 200 ) IlyE - v
= i=1
Using 0, [lyf — 9" 112 > || 20, (0F — v *)I1? = nlly* — y** || we can rewrite (61) as
1 n
k k
= I = AP+ pnlly® )P
p =1
L2 n _ 2L2n _
<= ZIIA’“ P NP Y b = gt 2om T — R ey —
p = P
n
_ k — k k
+2onllyF — v + 20n]lyF — 712 = pnllyt — yF 2 200n)lyt -y )P - 200 ) IlyE - vtFP.

Assuming [|y*~1 — y¥||? < ||y* — y**||? which holds for sufficiently large p, and choosing a; > 2.5p, we get

1 & k k
= AN = AP+ pnllyt -yt
p =1
1 n _ ke 2 2 n k— _ _ 2L2n k— k
< ;ZW e i [ ley g P+ 2omyF Tt -y 2||2+7q||y* by
=1

_ k
—2pnlly* — y*1* - 20, Z ™ — 12

Re-arranging the terms, we get

1 ¢ k k _

;Z”)\i‘g = X2+ onlly® — P + 20mlyF — yF P
i=1

n

1 _ k—1 k—1 _ _
S;ZH/\f R Z v 4 20nly T = )P
=1

2L g k k
+Tq||y* Py P - 200 leyl v

(60)

(61)

(62)

(63)

(64)
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*k—1 y*k|

Adding and subtracting y* ! in ||y 2 we get

1o , k , k _
= CUINE = X+ pnlly® =yt 20mllgt — 1P
i=1
L= kot I R k=12 k=1 k=22
S;ZH)\f = A +7q2||yf =y T+ 2onlly T Yy T+
i1 im1

41%n o1 _
— Ly =y

4%n A n A
+ quly’“ oyt =200 ) llyE -t
=1

k—1 _ y*kHQ

Next, let ap = a3 + 4. Adding and subtracting y* in ||y , we get

1 k k _

= I = X+ pnlly® — g+ 20mllgt — 1P

pi:l

1< _ b1 202 2y o1 B B 4L2n ., B

SN I NI =S g = T 20mllgt T = R eyt - )
pi:l p =1
2

8Lyn

_ 8L2n k k = k
T =g P =l -yt - 2asnlly -y - 200 3k -yt
=1

2
8an

Choosing a3 > , and using the assumption [|y* =1 — |2 < [[y* — y*"||?, we get

1o k k _
;ZIM?—AZ I+ pnlly® — y** 117 + 2onlly* — v* 117
=1

1o o oLz o A .
S;ZIIA? - 1H2+TQZHyf ey T 2omlg T = AR 4 =y =
=1 =1

n
k
—2a4 Y [luF — "%
i=1
Let ay = a5 + ag, we write (67) as

1 k k _
;E [AF = N1 + onlly® — |17 + 2pnlly* — "1

=1

2
4an|

_ k—
A T

L~ ot itz L 2l O~ ke k—12 k=1 . k=22
SN =N =D e =y TP A 20mllt T = AR
Pi= e
n n
k k
=205 3y — v I” =206 Y lluF — y*"I1”.
i=1 i=1
Re-arrange terms, we obtain
1 n n
k k k _
;ZH/\f—/\? 1+ 205 > [lyf = v** 112 + pnlly® — v [1> + 2onlly* — y* 1|
i=1 i=1

1 . k—1 *xk—1)12 2L(21 - k—1 *xk—1)12 4L(21n k—1 *xk—1)12 k—1 k—212
< ;ZIIM =AY +TZIIny A e A A R e
=1 =1

n
— 206y _ |l — "%,
=1

(65)

(66)

(67)

(68)

(69)
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Let 81 = a5, and B2 = ag, Hence, we can write (69) as

1 n A n A A _
;Z INE = XER12 4280 Hlul — w17 + pnlly® — v** 117 + 20mlly* — o2
i=1 =1

2
4an

1 - k—1 k—1)2 2L2 - k—1 k—1)2 k—1 k—1 k—2112
SN IMT NP 2D e TP — T -y =y
pi:l p =1 p

k—
4 20mlly

—262 ) |lyf — )2 (70)
=1

Note that,

a=a1 + Qg
=aj +az+ B+ B
2

8L4n
>2.5p + p" + B+ B2 (71)

2
Hence, 51 + B2 < o — 2.5p — &an. That concludes the proof.

C. Proof of Theorem 1

From the statement of Lemma 2, we can write

IR k - k k _
;ZIIM“—A? 14280 ) Nk — y**11” + pnlly® — v** 117 + 2omlly* — %117
=1 =1

41°%n _ o _ _
— Il =y T+ 20m - R

2
<Lyt ke g 2R g e e
= i i P - Y; Yy
=1 i=

D=

— 268> llyF — ") (72)
1=1

2
Choosing « that satisfies (23) for 51 > L—p‘l, p > 2L, and B2 > 0 and from the definition of Lyapunov function V}, (24), we

can write

n
vh<vit- (2522 Iyt y*’“n?) . (73)
=1

Therefore, V* decreases in each iteration k. Consequently, since Vj, > 0, this implies that every term in V* goes to 0, i.e.
e )\jk, Yk — y**, and y* — y**, which completes the proof.



