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Abstract

Sparse coding strategies have been lauded for
their parsimonious representations of data that
leverage low dimensional structure. However,
inference of these codes typically relies on an
optimization procedure with poor computational
scaling in high-dimensional problems. For ex-
ample, sparse inference in the representations
learned in the high-dimensional intermediary lay-
ers of deep neural networks (DNN5s) requires an
iterative minimization to be performed at each
training step. As such, recent, quick methods in
variational inference have been proposed to infer
sparse codes by learning a distribution over the
codes with a DNN. In this work, we propose a new
approach to variational sparse coding that allows
us to learn sparse distributions by thresholding
samples, avoiding the use of problematic relax-
ations. We first evaluate and analyze our method
by training a linear generator, showing that it has
superior performance, statistical efficiency, and
gradient estimation compared to other sparse dis-
tributions. We then compare to a standard varia-
tional autoencoder using a DNN generator on the
Fashion MNIST and CelebA datasets.

1. Introduction

Variational inference has become a ubiquitous tool in unsu-
pervised learning of a distribution of latent features. These
variational distributions can offer approximations in cases
where inference over a true distribution is computationally
expensive. Once inference is performed, latent features can
be used for a variety of machine learning tasks, such as
summarizing a dataset or training a generative model. The
structure and statistical properties of latent features depend
on the practitioner’s choice of a prior distribution. Sparse
distributions, in which only a few features are non-zero for
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Figure 1. Comparison of standard black-box variational inference
and our proposed approach for variational sparse coding. Orange
arrows depict a forward pass, blue arrows depict automatic dif-
ferentiation. Top: Sampling from standard variational inference
approaches result in all features non-zero. Bottom: Our approach
incorporates sparsity via a shifted soft-threshold function. We
utilize a straight-through estimator, skipping the gradient of the
shifted soft-threshold, for exact sparsity without numerical insta-
bility during training.

each input data sample, have been favored for encouraging
statistically efficient representations, especially when in-
put data has low-dimensional structure (Olshausen & Field,
2004; Elad, 2010).

To perform inference in sparse models with low computa-
tional cost, recent black-box variational inference (BBVI)
(Ranganath et al., 2013) methods have been proposed to
learn distribution parameters with DNNs using automatic
differentiation (Kingma & Welling, 2014; Rezende et al.,
2014). Unfortunately, these approaches either do not explic-
itly learn sparse features (Barello et al., 2018) or rely on
relaxations that can lead to poor gradient estimation during
training (Tonolini et al., 2020).

Motivated by the success of soft-thresholding in iterative
optimization procedures (Daubechies et al., 2003; Donoho
& Johnstone, 1994), we propose a BBVI method to learn
sparse distributions by thresholding samples drawn from a
Laplacian or Gaussian distribution. We analytically show
that thresholded samples from the former are identically
distributed to a Spike-and-Slab distribution, giving practi-
tioners control over the extent of sparsity by adjusting a
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threshold hyper-parameter. In cases where the degree of
sparsity is not known beforehand, we also propose a tech-
nique to learn a distribution on the threshold parameter. To
train our inference network, we apply a straight-through
estimator (Bengio et al., 2013; Oord et al., 2018), leading to
favorable training stability and gradient estimation. Finally,
we propose a new sampling procedure that encourages fea-
ture reuse, encouraging the generator to learn more diverse
features. We showcase the performance of our method com-
pared to other inference strategies by training and analyzing
a linear generator on whitened image patches (Olshausen &
Field, 1996) and a DNN generator on the Fashion MNIST
(Xiao et al., 2017) and CelebA (Liu et al., 2015) datasets .

2. Related Work
2.1. MAP Estimate/Regressive Inference

Sparsity models have a long history in statistical modeling
with methods such as LASSO regularization (Tibshirani,
1996). These models often infer sparse latent features via a
maximum a posteriori (MAP) estimate, requiring an iterative
optimization procedure to be solved. The seminal work
of (Olshausen & Field, 1996) proposes sparse codes as a
means of unsupervised learning of a linear generator. Once
trained, columns of the generator qualitatively resemble
the receptive fields of mammalian cortical cells. Although
methods exist to solve this optimization in discrete (Beck &
Teboulle, 2009; Yang et al., 2012) and continuous (Rozell
et al., 2008) time, their computational cost often scales
poorly with dimensionality, making them prohibitive to use
in modern deep learning settings.

An alternative approach for inference has been to use DNNs
to regress sparse codes for given input data. One method
“unrolls” iterations of the ISTA algorithm (Gregor & LeCun,
2010). These methods are limited for unsupervised learning
since they require ground truth codes as supervision during
training.

2.2. Variational Inference

Early variational inference approaches applied exponential
families for sparse coding, using iterative procedures to fit a
variational posterior distribution (Girolami, 2001; Seeger,
2008). Later works explored variational methods for Spike-
and-Slab models (Goodfellow et al., 2012; Sheikh & Liicke,
2016), using approximations to analytic solutions for faster
inference. None of these approaches effectively scale infer-
ence to high-dimensional DNN representations.

The proposal of BBVI, where DNNs are used to estimate
parameters of a variational posterior distribution, has led

!Code available at: https://github.com/kfallah/
variational-sparse-coding.

to a leap in the computational efficiency of variational in-
ference (Kingma & Welling, 2014; Rezende et al., 2014).
As such, many recent methods have been proposed to train
DNN inference networks with various prior distributions.
These include Laplacian (Barello et al., 2018), Spike-and-
Slab (Tonolini et al., 2020), and Beta-Bernoulli (Singh
et al., 2017) distributions. Other work has incorporated
sparsity through hierarchical posterior distributions (Sal-
imans, 2016), evolutionary variational algorithms (Drefs
et al., 2022), or group-sparsity in connections to genera-
tor networks (Ainsworth et al., 2018; Moran et al., 2021).
We refer the reader to (Zhang et al., 2018) for a review of
variational inference.

2.3. Estimating the Variational Bound

Various sampling approaches have been proposed to es-
timate the variational bound. (Cremer et al., 2017) pro-
poses a sampling procedure based on a tighter bound on the
data likelihood introduced in (Burda et al., 2016). Counter-
intuitively, using this tighter bound in training leads to a
reduced signal-to-noise ratio in the inference network gra-
dient (Rainforth et al., 2018). In (Grover et al., 2014), the
authors apply rejection sampling using a computed accep-
tance probability for each sample. A later work (Bauer
& Mnih, 2019) learns this acceptance probability with an
additional DNN. Other work uses an alternative gradient
estimator in BBVI which ignores certain terms during au-
tomatic differentiation to reduce variance (Roeder et al.,
2017), with a bias-free estimator proposed by (Tucker et al.,
2018).

3. Methods

3.1. Black-box Variational Inference

The capability of DNNs as universal function approxima-
tors has been recently applied to learn complex distribu-
tions. Given a dataset of training samples [x!,...,xV]T €
RN>D from target density p(x), BBVI can be applied to
train an inference network ¢ (z | x) to learn a distribution
over latent features z* € R?. This distribution can be ap-
plied in various machine learning tasks, such as training
a generator pg(x | z). To do this, one may employ the
variational lower bound (ELBO) to maximize the marginal
likelihood over the training samples (Jordan et al., 1998):

log pe(x) = log Ep,(,) [pe(x | 2)]

=logE, ) ZZE: : SPG(X | 2)
> E,, [logpe(x | 2)] — Dir(96(z | x) || p(2))
= L(0, ¢;x). (D

Training under this bound requires the practitioner to select a
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Figure 2. Visual depiction of the shifted soft-threshold applied to
a Laplacian distribution. Probability mass ;2 &= A is collapsed to
the origin. The red points in the left are shifted to meet at 1 on the
right.

prior p(z) and a distribution family for the posterior ¢¢(z |
x). In this work, we follow the common assumption of
independence for both, p(z) = H?zl p(z),46(z | X) =
T, ¢ (2 | x). For each prior distribution we consider,
we will use the same distribution family for our variational
posterior.

Parameters (¢, ) can be trained via a stochastic version of
the variational expectation maximization algorithm (Neal
& Hinton, 1998; Barello et al., 2018). Using batched train-
ing samples x*, this algorithm iterates in two steps from
initializations (¢®), 8)):

1. Expectation: ¢(f’) = argmaxg L (O(t_l), o; xk)
2. Maximization: 0 = arg maxg £ (0, oM x’“).

In the expectation step a differentiable transform
gs(x*, €7F) of auxiliary samples €/** ~ p(e) is used to
estimate the expectation over the inference network distribu-
tion. Coined the “reparameterization trick,” this technique
has been show to reduce the variance of the gradient esti-
mates through the inference network (Kingma & Welling,
2014; Rezende et al., 2014). In practice, the two steps of the
EM algorithm are often approximated concurrently with a
gradient step using a single sample J = 1.

In the next sections, we will describe 1) a method for repa-
rameterization that results in sparse latent features and 2)
a new sampling procedure in the expectation step that im-
proves performance for distributions with sparse priors.

3.2. Reparameterization for Thresholded Samples

A favorable choice of sparse prior distribution is the Spike-
and-Slab p(z;) = p(si) + (1 — 7)0(z;) Mitchell &
Beauchamp, 1988), which allows sparse random variables
to be sampled by first sampling a Bernoulli random vari-
able with probability ~. If the random variable is non-zero,
then a sample is drawn from the slab distribution p(s;). A
Spike-and-Slab is favorable to setting p(z;) equal to Nor-

mal, Laplacian, or Cauchy distributions because these latter
distributions will never result in samples with features ex-
actly equal to zero. This allows one to benefit from precise
sparsity for downstream computations (e.g., decoding, im-
age generation). Unfortunately, current BBVI approaches
depend on continuous approximations (controlled by tem-
perature parameter 7) to each Bernoulli random variable
7 (Tonolini et al., 2020; Jang et al., 2017; Maddison et al.,
2017). Tuning 7 requires a trade-off between variance and
bias when estimating gradients, potentially leading to poor
performance.

Rather than parameterize p(z;) with discrete random vari-
ables, we propose an approach that applies shifted soft-
thresholding of samples drawn from a Laplacian distribu-
tion. Let p(s) = Laplace(y, b) be a Laplacian pdf with shift
w and scale b. We can draw a sample s ~ p(s) and apply
the shifted soft-threshold function:

T(s; A, 1) = sign(s — p) max(|s — p| = X,0)  (2)
+ 15 — pul > N .

For ease of notation, we will use the shorthand 7 (s) to refer
to 7 (s; A, ). Intuitively, this function is a soft-threshold
around u, where points mapped to p are set exactly to zero.
This is visualized in Figure 2. When p = 0, this function is
precisely the soft-threshold function (Donoho & Johnstone,
1994). Next, we will show how this shifted soft-threshold
can be used to reparameterize to a Spike-and-Slab without
needing discrete random variables.

Proposition 3.1 Samples from a Laplace distribution s ~
p(s) passed through a shifted soft-threshold z = Ty(s) are
equivalently distributed as a Spike-and-Slab distribution

PR p(2).

Note that under this rule for z, p(z | [s — p| < A) =
d(z), where the spike probability (1 — ) can be found by
computing p(|s — p] < A):

A
1
p(ls —ul <A) = 2/ —exp (—sb™')ds

=l-exp(-N"")=(1-7). 3

We show in Appendix A that p(z | |s—u| > A) is distributed
as p(s). Combining these facts and marginalizing over p(s)
yields:

z e~ %exp <|Zb/l|> + (1 —7)d(2).
Using this technique, we can sample sparse random vari-
ables z* for a corresponding input data x* from an inference
network trained via the EM algorithm (1). For a given input
data sample, we encode the parameters of a base distribu-
tion that is either a Gaussian or Laplacian via gg(s | x¥).
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These can be used to both compute the KL divergence and
to reparameterize a sample to be passed through the shifted
soft-threshold. The threshold parameter can be either set as
a fixed hyperparameter A = A (equating to a fixed prior
on the spike probability) or learned via variational infer-
ence with a factorial gamma prior p(A) = H?Il I'(ao, 52)
(Jankowiak & Obermeyer, 2018; Garrigues & Olshausen,
2010). In the case where we perform inference on A, we
assume independence with the base distribution p(s).

One challenge during training is dealing with the non-
differentiable T’ in the first term of (1). We have found
that the subgradient of this function leads to shrinkage of
the base distribution parameters, eventually leading to nu-
merical instability or posterior collapse (Lucas et al., 2019).
For further discussion on this issue, refer to Appendix C.
As a result, we employ a straight-through estimator (Bengio
et al., 2013; Jang et al., 2017; Oord et al., 2018), skipping
the shifted soft-threshold when we differentiate the loss by
passing the gradient from the generator directly to the base
distribution parameters. This is depicted in Figure 1.

This results in our final training objective with a reweighted
KL term (Higgins et al., 2017). Following the notation
of (Oord et al., 2018), we denote by sg[-] the stopgradient
operator (identity in the forward pass with partial derivatives
equal to zero).

zF =sF + Tr (sg [sk]) —sg [Sk] )

L (0, ob; xk) = Eq, [logpg(xk |”z'k)}
— B1Dkr(ge(s | X") [ p(s))  (5)
— B2Dkr (qe(X | x") || p(N))

Note that in the case where we fix A¥ = Ao, the second
term in (4) has no gradient and the third term in (5) is omit-
ted. More details on reparameterization for the sampling
procedure (s*, A*) ~ gg(s, A | x*) and on computing the
loss terms in (5) are included in Appendix B.

3.3. Max ELBO Sampling

A favorable property of MAP estimates is that priority of
which latent features are non-zero is given to those that best
represent features in input data. These developed features
lead to the highest decrease in loss, a property exploited in
greedy MAP inference procedures (Tropp & Gilbert, 2007).
Unfortunately, BBVI does not inherently have this property,
with the factorial prior in the KL divergence term in (5) en-
couraging all features to be equally likely for each input data
sample. To address this, we propose a sampling procedure
that biases towards reuse of developed features.

Before introducing our approach, we note the standard ap-
proach in BBVI for using multiple samples to approximate

Algorithm 1 Training with Thresholded Samples

Input: Training batch x*, threshold hyper-parameter A,
whether to use a GammaPrior (along with gamma hyper-
prior &), network initializations (qbo, 00), number of
samples J, and number of iterations 7.
fort =1to T do
for j = 1to J do
" ~ p(e)
if GammaPrior then
(sj’k, )\j’k) — 9o (Xk, ej’k)
else
stk g4 (xk, ej’k’)
MF X
end if
B s 4 Ty (s [$94]) — sg [s4]
ﬁj’k — Ingg(Xk ‘ Ej’k) — BDKL
end for
LF = argmax; Lk
(¢',0') = arg max LF
end for

the expectation with respect to q¢ in (5). Given a sampling
budget J, one may draw J i.i.d. samples z7* ~ g4 (z | x*)
from the posterior and compute the ELBO for each sample.

LI* = logpe(x* | 27*) — BDxr, (45 (2" | x") || p(2))

(6)
Then, to estimate the training objective, one may average
over the loss from each sample:

J
~ 1 )
Loy =5 L (7)
j=1

In the case where we have a sparse prior, each of the J
samples taken here will have different support and thus
encourage development of different latent features.

Rather than give each sample equal probability, we intro-
duce a new sampling strategy motivated by the approxima-
tion to expectations utilized in (Olshausen & Field, 1996;
Connor et al., 2020). In these works, it is observed that the
selected prior distribution concentrates most of its proba-
bility mass around the maximum value. This leads to an
approximation of the expectation over the prior latent vari-
able with a delta at the max value z, motivating a MAP
estimate:

log Ey ) [p(x | 2)] ~ log / po(x | 2)p()3(2)da

= maxlogpe(x | z) + logp(z).
(8)

Although our training setting differs in that we take our ex-

pectation over the variational posterior E,, , in many cases
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we explicitly regularize this distribution with a KL diver-
gence penalty against a sparse prior. To this same end, rather
than approximate our expectation E,, with the average over
several samples, we approximate it with a single sample
with the highest likelihood:

Ek

max

= mjax LIF, )

Although this provides a biased estimate of the loss, we will
show in later sections that this heuristic provides an increase
in performance and latent feature reuse during training. We
combine this method with our sampling approach to outline
our full training procedure in Algorithm 1.

4. Experiments
4.1. Linear Generator
4.1.1. SPARSE CODING PERFORMANCE

In our first experiment, we test different inference meth-
ods on sparse coding of the whitened image patches used
in (Olshausen & Field, 1996). We train on 80,000 16x16
training patches with a dictionary of 256 elements (i.e., a
linear generator @ = A € R256%256) We start in this sim-
plified setting since it allows us to compare against baseline
sparse coding strategies (that use MAP estimates) and so we
can analyze the dictionary we learn for each method. As a
baseline, we infer coefficients z* using the FISTA algorithm
(Beck & Teboulle, 2009) to optimize objective (10). This ob-
jective includes a data fidelity term, sparsity-encouraging ¢1
penalty on latent features, and a Frobenius norm regularizer
on the dictionary to prevent unbounded growth:

min [[x* — AZ¥( + A[2" | + £ AL (10)
In all of our experiments, we set the sparsity hyperparameter
such that roughly 10% features are non-zero for each batch
of data. For FISTA, this occurs when A\ = 20. We use
this objective to measure validation performance of our
variational methods.

To train our inference networks, we use an ELBO objective
with a Frobenius norm regularizer on the dictionary:

min — L(A, ¢:x") + sl |Al|% (1)
logpa (x*[z") = —[[x* — Az"|3, (12)
where z* is either found via the inference procedure out-

lined in section 3.2 or by previous methods that used Gaus-
sian (Kingma & Welling, 2014), Laplacian (Barello et al.,
2018), or Spike-and-Slab (Tonolini et al., 2020) prior dis-
tributions. For the Spike-and-Slab prior, we approximate
each Bernoulli random variable with a straight-through esti-
mator of a Gumbel-Softmax sample (Jang et al., 2017). For

each method, we apply the sampling procedure outlined in
Section 3.3 with J = 1 and J = 20. Details on training
hyper-parameters are provided in Appendix D.
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Figure 3. Entries of the learned linear generator (dictionary) for
different approaches for inferring sparse codes. FISTA uses an iter-
ative MAP estimate that optimizes objective (10) directly. Others
use a variational approach with different prior distributions using
J = 20 samples. The Spike-and-Slab, Thresholded Gaussian,
and Thresholded Laplacian methods learn dictionaries with most
entries visually resembling the dictionary learned by FISTA.

Figure 3 plots the columns of the learned dictionary for each
inference method for J = 20. As expected, FISTA learns
dictionary entries that qualitatively resemble Gabor wavelets
(Olshausen & Field, 1996). The Laplacian prior (Barello
et al., 2018) learns a few dictionary entries that resemble
wavelets, with most entries resembling noise. Although the
entries learned by all sparse priors resemble wavelets, only
the Thresholded Laplacian is capable of learning this struc-
ture with J = 1. Full learned dictionaries for all methods
under both sampling budgets are visualized in Appendix F.

Table 1 compares average quantitative performance over
three training runs for each inference method. The Lapla-
cian prior with a fixed threshold performs the best among
variational methods on objective (10). We note that meth-
ods that learn the threshold parameters tend to increase the
number of active latent features, leading to an increase in L1
penalty in the validation loss. Although the Spike-and-Slab
prior minimizes the importance weighted (IWAE) loss from
(Burda et al., 2016) with K = 200, it performs worse on
the sparse coding objective. We note that the IWAE loss
measures the tightness of the ELBO bound (reconstruction
+ KL loss), whereas the thresholding in our method has a
trade-off between deviation of the KL loss and posterior
expressivity.
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Table 1. Performance of different inference methods with a linear generator on whitened image patches. Validation loss computed on
objective (10). Multi-information measures the statistical efficiency of inferred codes. The importance weighted autoencoder (IWAE) loss
(Burda et al., 2016) is a tight bound on the ELBO, but does not necessarily depict success in the sparse coding task. A table with standard

deviations for J = 20 is included in Table 6 in Appendix F

Method/Prior Distribution Validation Loss Multi-Information IWAE Loss
J=1 J=20 J=1 J=20 J=1 J=20

FISTA (baseline) 1.01E+02 - 8.75E+01 - - -
Gaussian 1.35E+03  1.35E+03 | 7.34E+02 7.36E+02 | 2.57E-01 2.16E-01
Laplacian 5.96E+02 5.79E+02 | 5.36E+02 5.34E+02 | 2.20E-01 2.22E-01
Spike-and-slab 2.52E+02 2.39E+02 | 1.94E+02 1.96E+02 | 2.41E-01 2.12E-01
Thresholded Gaussian 2.32E4+02 2.30E+02 | 1.67E+02 1.76E+02 | 1.52E+00 1.33E+00
Thresholded Gaussian+Gamma | 2.85E+02 2.70E+02 | 2.35E+02 2.29E+02 | 1.17E+00 1.13E+00
Thresholded Laplacian 1.98E+02 1.94E+02 | 1.80E+02 1.91E+02 | 9.30E-01 1.13E+00
Thresholded Laplacian+Gamma | 2.23E+02 2.11E+02 | 2.38E+02 2.33E+02 | 9.81E-01 1.12E+00

To measure the statistical efficiency in the inferred codes, we
follow previous work in estimating the multi-information,
Z?:l h(z;) — h(z), of the inferred codes (Fallah et al.,
2020; Eichhorn et al., 2009; Bethge, 2006). This quantity is
minimized when the features have high joint entropy while
being independent of one another, denoting a reduction in
redundancy. Among variational methods, the Thresholded
Gaussian minimizes this quantity.

To further understand the benefit of our proposed method,
we investigate the quality of the gradient estimates through
both the dictionary and inference network at the end of
training. To measure this, we use the signal-to-noise ratio
(SNR) metric proposed in (Rainforth et al., 2018):

SNR(0) = [E [VoL] /o [VoL]|.

Where 6 is a single parameter from our dictionary or infer-
ence network and £ is our training loss. In our experiments,
we average the SNR over all parameters in our inference
network or dictionary.

The benefit of measuring the gradient quality through a
relative metric like SNR is that it weights the variance by
the importance of each parameter. For example, dictionary
entries that are rarely activated for a given input data will
have a low expected gradient, but may have high variance.
We evaluate the SNR over 1000 sparse code samples for
each data point in our validation set. Figure 4 compares
the SNR for both the dictionary and inference network for
various methods. It can be seen that the Spike-and-Slab
suffers from low SNR in the case of J = 1, with a significant
increase for J = 20. We speculate that this metric explains
the lack of clear wavelets in the dictionary learned by the
Spike-and-Slab for J = 1.

4.1.2. SAMPLING PERFORMANCE

To test whether our sampling procedure leads to more fea-
ture reuse, we measure the consistency in the features used
over several forward passes for fixed input data. Each for-
ward pass leads to a sparse code with a different support set,
indicating use of different features. Hence, we can compute
the Jaccard index between the support set of several sam-
ples zbF ... z7% ~ g4(z | x*) for fixed input to measure
consistency (Jaccard, 1912). Intuitively, the Jaccard index
measures similarity between discrete sets, providing a value
in [0, 1] based on how similar the support is over different
forward passes. Let S(z7"*) denote the support of z/-* (i.e.
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(a) Inference Network Gradient SNR
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Figure 4. Comparison of the SNR of the (a) inference network and
(b) linear generator gradients at the end of training. Thresholded
methods perform the best, with all sparse priors experiencing
higher SNR with J = 20 samples under max ELBO sampling.

0.00

(b) Generator Gradient SNR
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Figure 5. Histogram of the average pairwise Jaccard index over
20 forward passes on two trained inference networks. The pair-
wise Jaccard index measures the consistency of the support set of
inferred codes. Max ELBO sampling leads to a higher average
Jaccard index, indicating reuse of developed latent features.

i€ S(z"F)if sz # 0), the Jaccard index is computed as:

13)

For any given input data x* we can draw .J samples from our
inference network and compute the average pairwise Jaccard
index as ﬁ Z;; Z;;ém C(z™k,z™*). To normalize
for the fact that each training methods leads to a different
number of non-zero dictionary entries (e.g., an inference
network that only uses a subset of the available support is
more likely to be consistent), we measure consistency using
the support of features with ||a;||3 > 1E—01.

We use this metric to compare the consistency of inference
networks trained under the average ELBO scheme from (7)
and the proposed max ELBO scheme in (9) using J =
[20, 100] samples. We observe that both methods result in
10% of features non-zero on average.

We plot the consistency on the validation set averaged over
three training runs as a histogram in Figure 5. It can be seen
that the max ELBO sampling procedure leads to higher con-
sistency (indicating reuse of developed features) compared
to average sampling. Qualitatively, the dictionary entries
learned in the average sampling scheme has several repeated
entries, indicating poor reuse in comparison to the qualita-
tively diverse entries learned by max sampling. We visualize
the full dictionary for both in Figure F.2 in Appendix F.
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Figure 6. Selected entries of an estimated dictionary for variational
autoencoders trained with a (a) Gaussian prior and (b) Thresholded
Gaussian+Gamma prior with a 512 dimensional latent space®. For
each method, the first row denotes dictionary entries with the
highest magnitude and the bottom row denotes random entries
from the middle of the dictionary.

4.2. DNN Generator

We next investigate the efficacy of variational sparse coding
in unsupervised learning on the Fashion MNIST (FMNIST)
(Xiao et al., 2017) and CelebA datasets (Liu et al., 2015).
We follow a similar methodology as the previous section,
except that we apply a DNN generator in place of the lin-
ear dictionary (more details in Appendix E). Following the
principle of overcomplete representations in sparse coding,
where the robustness of latent features increases with the di-
mensionality (Olshausen, 2013), we compare performance
as we sweep dimensionality.

Figure 7 shows the quantitative performance of different
prior methods trained with either increasing latent dimen-
sionality or percentage of latent features non-zero. For both
datasets, as the dimensionality increases with a fixed degree
of sparsity, it can be seen that the Gaussian prior (corre-
sponding to a variational autoencoder (Kingma & Welling,
2014; Higgins et al., 2017)) has a significant increase in re-
dundancy, measured via the multi-information, with a slight
increase in the validation Fréchet inception distance (FID)
(Heusel et al., 2017) and MSE. Alternatively, all the sparse
priors show superior scaling with dimensionality, with the
Thresholded Gaussian and Thresholded Gaussian+Gamma
depicting superior performance to the Spike-and-Slab model
from Tonolini et al. (2020). Additionally, all thresholded
methods scale better with MSE as the degree of sparsity
(corresponding to the % of features non-zero) increases.

We observe the same qualitative generative interpretability

3This visualization is from a training run where the sparsity
prior is set to encourage 5% features non-zero.
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Figure 7. Comparison of variational autoencoder with different prior distributions as the latent feature dimensionality increases on the
Fashion MNIST (a-d) and CelebA (e-h) datasets. (a, ) Multi-information scales at a higher rate with the Gaussian prior, indicating
inferior statistical efficiency at higher latent dimensions. (b, f) The Fréchet Inception Distance of images reconstructed by learned DNN
generator. (¢, g) Mean squared error on validation data for a fixed degree of sparsity. (d, h) Mean squared error for a fixed dimensionality
with an increase in the degree of sparsity (indicating the % of non-zero latent features set by the prior).

when sweeping each individual latent feature as in previous
work that investigates Gaussian priors (Higgins et al., 2017)
and sparse priors (Tonolini et al., 2020). In these works, it
is observed that each latent feature corresponds to a specific
semantic change in the generated image (such as changes in
skin color, background color, hairstyle, etc.). Unfortunately,
in the case where one trains a DNN generator, they are
unable to observe the generator features the same way one
could with the columns of the linear dictionary.

To this end, we estimate a linear dictionary for each fully
trained CelebA inference network to visualize what is
encoded by each latent feature. Given a collection of
data samples X = [x!,... ,x”]T and corresponding in-
ferred codes Z = [zl, . ,z"}T from an inference net-
work with fixed weights fully trained with a DNN generator
z" ~ gy(z | x*), one can estimate a linear dictionary as
(Isely et al., 2010; Fallah et al., 2020):

X = AZ
A = (xz") (zz")"".

We use this technique with each trained inference network
to analyze which features in the training dataset are rep-
resented by each latent feature. We plot selected entries
from dictionaries estimated for the Gaussian and Thresh-
olded Gaussian+Gamma in Figure 6. Interestingly, the first
eight entries from the Gaussian prior resemble the qualita-
tive features observed in the 5-VAE (Higgins et al., 2017).
Poor statistical efficiency in the Gaussian prior indicates

Black
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Figure 8. Estimated dictionary entries for latent features with the
highest absolute point-biserial correlation with the CelebA binary
attribute labels. From top to bottom, the rows denote the Gaus-
sian prior, Thresholded Gaussian prior, and Thresholded Gaus-
sian+Gamma prior.
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that certain latent features are not encoding useful informa-
tion from training data, leading to corresponding estimated
dictionary entries that resemble noise (visualized in the sec-
ond row). Meanwhile, all the entries for the sparse prior
more clearly resemble features in the training dataset. While
the qualitative results here are similar to previous research
comparing learned features from principal component anal-
ysis (PCA) and independent component analysis (ICA) on
face datasets (Bartlett et al., 2002), a detailed quantitative
comparison with those results is beyond the scope of the
present paper. We visualize more estimated dictionary plots
in Appendix G.

Finally, we use the binary attribute labels included with the
CelebA dataset to measure correlation between latent fea-
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tures and attributes in the input data. Given vectors of 40
binary attributes for each data sample y*, ...,y and corre-
sponding latent features z*, . .. , z"V from a trained inference
network, we can compute the point-biserial correlation co-
efficient between each attribute m and each dimension of
latent feature n as:

man M1 — My /ning
Prb sv VN

Where M, and My are the sample mean of latent features z*

corresponding to when attribute label y*, equals one or zero,
respectively. sy is the sample standard deviation over all
features, and n; and ng respectively denote the total count
of attribute labels that equal 1 and 0.

We plot the estimated dictionary entry corresponding to the
feature with the highest absolute correlation for selected
attributes in Figure 8. Noting that features can be positive or
negative for a given input data, it can be seen that the sparse
priors lead to dictionary entries with features that visually
resemble the semantic meaning of each attribute label.

5. Discussion

In this work, we have presented a new method for variational
sparse coding by thresholding samples from an inference
network. This simple approach avoids discrete random vari-
ables in its parameterization, and we show that it leads to
superior performance and gradient estimation. Compared
to a standard Gaussian prior, it provides more statistical
efficiency in its use of latent features. One area of future
work may consider alternative discrete random variable es-
timators that employ control variates (Tucker et al., 2017).
Another interesting direction is the substitution of the KL di-
vergence with distance metrics that perform better when the
prior lies on a manifold (as is the case with sparse signals)
(Patrini et al., 2020).

6. Acknowledgements

The authors would like to thank Adam Charles, Francesco
Tonolini, and Linxing Preston Jiang for their correspondence
regarding their experience with variational sparse coding.
This work was partially supported by NSF CAREER award
CCF-1350954, ONR grant number N00014-15-1-2619 and
AFRL grant number FA8750-19-C-0200.



Variational Sparse Coding with Learned Thresholding

References

Ainsworth, S. K., Foti, N. J., Lee, A. K. C., and Fox, E. B.
0i-VAE: Output Interpretable VAEs for Nonlinear Group
Factor Analysis. pp. 10, 2018.

Barello, G., Charles, A. S., and Pillow, J. W. Sparse-Coding
Variational Auto-Encoders. preprint, Neuroscience, Au-
gust 2018. URL http://biorxiv.org/lookup/
doi/10.1101/399246.

Bartlett, M., Movellan, J., and Sejnowski, T. Face recogni-
tion by independent component analysis. IEEE Transac-
tions on Neural Networks, 13(6):1450-1464, November
2002. ISSN 1941-0093. doi: 10.1109/TNN.2002.804287.
Conference Name: IEEE Transactions on Neural Net-
works.

Bauer, M. and Mnih, A. Resampled Priors for Vari-
ational Autoencoders. arXiv:1810.11428 [cs, stat],

April 2019. URL http://arxiv.org/abs/1810.

11428. arXiv: 1810.11428.

Beck, A. and Teboulle, M. A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems.
SIAM Journal on Imaging Sciences, 2(1):183-202, Jan-
uary 2009. ISSN 1936-4954. doi: 10.1137/080716542.
URL http://epubs.siam.org/doi/10.1137/
080716542.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
Propagating Gradients Through Stochastic Neurons for
Conditional Computation. arXiv:1308.3432 [cs], Au-
gust 2013. URL http://arxiv.org/abs/1308.
3432. arXiv: 1308.3432.

Bethge, M. Factorial coding of natural images:
how effective are linear models in removing higher-
order dependencies? Journal of the Optical So-
ciety of America A, 23(6):1253, June 2006. ISSN
1084-7529, 1520-8532. doi: 10.1364/JOSAA.23.
001253. URL https://www.osapublishing.
org/abstract.cfm?URI=josaa-23-6-1253.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance
Weighted Autoencoders. arXiv:1509.00519 [cs, stat],
November 2016. URL http://arxiv.org/abs/
1509.00519. arXiv: 1509.00519.

Connor, M. C., Canal, G. H., and Rozell, C. J.
Variational Autoencoder with Learned Latent Struc-
ture. arXiv:2006.10597 [cs, stat], June 2020. URL
http://arxiv.org/abs/2006.10597. arXiv:
2006.10597.

Cremer, C., Morris, Q., and Duvenaud, D. Reinterpreting
Importance-Weighted Autoencoders. arXiv:1704.02916
[stat], August 2017. URL http://arxiv.org/
abs/1704.02916. arXiv: 1704.02916.

Daubechies, 1., Defrise, M., and De Mol, C. An itera-
tive thresholding algorithm for linear inverse problems
with a sparsity constraint. arXiv:math/0307152, Novem-
ber 2003. URL http://arxiv.org/abs/math/
0307152. arXiv: math/0307152.

Donoho, D. L. and Johnstone, I. M. Ideal spatial adap-
tation by wavelet shrinkage. Biometrika, 81(3):425—
455, September 1994. ISSN 0006-3444. doi: 10.
1093/biomet/81.3.425. URL https://doi.org/10.
1093/biomet/81.3.425.

Drefs, J., Guiraud, E., and Liicke, J. Evolutionary variational
optimization of generative models. Journal of Machine
Learning Research, 23(21):1-51, 2022. URL http:
//Jmlr.org/papers/v23/20-233.html.

Eichhorn, J., Sinz, F.,, and Bethge, M. Natural Image
Coding in V1: How Much Use Is Orientation Selec-
tivity? PLoS Computational Biology, 5(4):e1000336,
April 2009. ISSN 1553-7358. doi: 10.1371/journal.
pcbi.1000336. URL https://dx.plos.org/10.
1371/journal .pcbi.1000336.

Elad, M. Sparse and Redundant Representations. Springer
New York, New York, NY, 2010. ISBN 978-1-4419-7010-
7 978-1-4419-7011-4. doi: 10.1007/978-1-4419-7011-4.
URL http://link.springer.com/10.1007/
978-1-4419-7011-4.

Fallah, K., Willats, A. A., Liu, N., and Rozell, C. J.
Learning sparse codes from compressed represen-
tations with biologically plausible local wiring
constraints.  preprint, Neuroscience, October 2020.
URL http://biorxiv.org/lookup/doi/10.
1101/2020.10.23.352443.

Garrigues, P. and Olshausen, B. Group Sparse Coding with
a Laplacian Scale Mixture Prior. In Advances in Neu-
ral Information Processing Systems, volume 23. Curran
Associates, Inc., 2010.

Girolami, M. A Variational Method for Learning Sparse
and Overcomplete Representations. Neural Computation,
13(11):2517-2532, November 2001. ISSN 0899-7667,
1530-888X. doi: 10.1162/089976601753196003. URL
https://direct.mit.edu/neco/article/
13/11/2517-2532/6475.

Goodfellow, L. J., Courville, A., and Bengio, Y. Large-Scale
Feature Learning With Spike-and-Slab Sparse Coding.
pp- 8, 2012.

Gregor, K. and LeCun, Y. Learning Fast Approximations of
Sparse Coding. pp. 8, 2010.

Grover, A., Gummadi, R., Lazaro-Gredilla, M., Schuur-
mans, D., and Ermon, S. Variational Rejection Sampling.
pp. 10, 2014.


http://biorxiv.org/lookup/doi/10.1101/399246
http://biorxiv.org/lookup/doi/10.1101/399246
http://arxiv.org/abs/1810.11428
http://arxiv.org/abs/1810.11428
http://epubs.siam.org/doi/10.1137/080716542
http://epubs.siam.org/doi/10.1137/080716542
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://www.osapublishing.org/abstract.cfm?URI=josaa-23-6-1253
https://www.osapublishing.org/abstract.cfm?URI=josaa-23-6-1253
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/2006.10597
http://arxiv.org/abs/1704.02916
http://arxiv.org/abs/1704.02916
http://arxiv.org/abs/math/0307152
http://arxiv.org/abs/math/0307152
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1093/biomet/81.3.425
http://jmlr.org/papers/v23/20-233.html
http://jmlr.org/papers/v23/20-233.html
https://dx.plos.org/10.1371/journal.pcbi.1000336
https://dx.plos.org/10.1371/journal.pcbi.1000336
http://link.springer.com/10.1007/978-1-4419-7011-4
http://link.springer.com/10.1007/978-1-4419-7011-4
http://biorxiv.org/lookup/doi/10.1101/2020.10.23.352443
http://biorxiv.org/lookup/doi/10.1101/2020.10.23.352443
https://direct.mit.edu/neco/article/13/11/2517-2532/6475
https://direct.mit.edu/neco/article/13/11/2517-2532/6475

Variational Sparse Coding with Learned Thresholding

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler,
B., and Hochreiter, S. GANs Trained by a Two
Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/

8ald694707eb0fefe65871369074926d-Paper.

pdf.

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. Beta-
VAE: LEARNING BASIC VISUAL CONCEPTS WITH
A CONSTRAINED VARIATIONAL FRAMEWORK.
pp- 22, 2017.

Isely, G., Hillar, C., and Sommer, F. Deciphering
subsampled data: adaptive compressive sampling as
a principle of brain communication. In Advances
in Neural Information Processing Systems, vol-
ume 23. Curran Associates, Inc., 2010. URL https:
//papers.nips.cc/paper/2010/hash/

a0160709701140704575d499c997b6ca-Abstract.of the American Statistical Association,

html.

Jaccard, P. The Distribution of the Flora in the Alpine
Zone.1. New Phytologist, 11(2):37-50, 1912. ISSN 1469-
8137. doi: 10.1111/.1469-8137.1912.tb05611.x. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1111/73.1469-8137.1912.tb05611.
X.

Jang, E., Gu, S., and Poole, B. Categorical Reparameter-
ization with Gumbel-Softmax. arXiv:1611.01144 [cs,
stat], August 2017. URL http://arxiv.org/abs/
1611.01144. arXiv: 1611.01144.

Jankowiak, M. and Obermeyer, F. Pathwise Derivatives
Beyond the Reparameterization Trick. arXiv:1806.01851
[cs, stat], July 2018. URL http://arxiv.org/
abs/1806.01851. arXiv: 1806.01851.

Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An Introduction to Variational Methods for
Graphical Models. In Jordan, M. 1. (ed.), Learning
in Graphical Models, pp. 105-161. Springer Nether-
lands, Dordrecht, 1998. ISBN 978-94-010-6104-9 978-
94-011-5014-9. doi: 10.1007/978-94-011-5014-9_5.
URL http://link.springer.com/10.1007/
978-94-011-5014-9_5.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. arXiv:1312.6114 [cs, stat], May 2014. URL
http://arxiv.org/abs/1312.6114. arXiv:
1312.6114.

Liu, Z., Luo, P,, Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Lucas, J., Tucker, G., Grosse, R., and Norouzi, M. Don’t
Blame the ELBO! A Linear VAE Perspective on Pos-
terior Collapse. arXiv:1911.02469 [cs, stat], Novem-
ber 2019. URL http://arxiv.org/abs/1911.
02469. arXiv: 1911.02469.

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete Dis-
tribution: A Continuous Relaxation of Discrete Random
Variables. arXiv:1611.00712 [cs, stat], March 2017. URL
http://arxiv.org/abs/1611.00712. arXiv:
1611.00712.

Meyer, G. P. An Alternative Probabilistic Interpretation of
the Huber Loss. pp. 5261-5269, 2021. URL https:
//openaccess.thecvf.com/content/
CVPR2021/html/Meyer_An_Alternative_
Probabilistic_Interpretation_of_the_
Huber_Loss_CVPR_2021_paper.html.

Mitchell, T. J. and Beauchamp, J. J. Bayesian Vari-

able Selection in Linear Regression. Journal
83(404):
1023-1032, December 1988. ISSN 0162-1459.
doi: 10.1080/01621459.1988.10478694. URL
https://www.tandfonline.com/doi/abs/
10.1080/01621459.1988.10478694. Publisher:
Taylor & Francis.

Moran, G. E., Sridhar, D., Wang, Y., and Blei, D. M.
Identifiable Variational Autoencoders via Sparse Decod-
ing. arXiv:2110.10804 [cs, stat], October 2021. URL
http://arxiv.org/abs/2110.10804. arXiv:
2110.10804.

Neal, R. M. and Hinton, G. E. A View of the Em Algo-
rithm that Justifies Incremental, Sparse, and other Vari-
ants. In Jordan, M. 1. (ed.), Learning in Graphical Mod-
els, NATO ASI Series, pp. 355-368. Springer Nether-
lands, Dordrecht, 1998. ISBN 978-94-011-5014-9. doi:
10.1007/978-94-011-5014-9_12. URL https://doi.
org/10.1007/978-94-011-5014-9_12.

Olshausen, B. A. Highly overcomplete sparse coding. In
Human Vision and Electronic Imaging XVIII, volume
8651, pp. 168-176. SPIE, March 2013. doi: 10.1117/12.
2013504.

Olshausen, B. A. and Field, D. J. Emergence of
simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):
607-609, June 1996. ISSN 1476-4687. doi: 10.
1038/381607a0. URL https://www.nature.com/
articles/381607a0. Number: 6583 Publisher: Na-
ture Publishing Group.


https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://papers.nips.cc/paper/2010/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://papers.nips.cc/paper/2010/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://papers.nips.cc/paper/2010/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://papers.nips.cc/paper/2010/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1806.01851
http://arxiv.org/abs/1806.01851
http://link.springer.com/10.1007/978-94-011-5014-9_5
http://link.springer.com/10.1007/978-94-011-5014-9_5
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1911.02469
http://arxiv.org/abs/1911.02469
http://arxiv.org/abs/1611.00712
https://openaccess.thecvf.com/content/CVPR2021/html/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.html
https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478694
https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478694
http://arxiv.org/abs/2110.10804
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1007/978-94-011-5014-9_12
https://www.nature.com/articles/381607a0
https://www.nature.com/articles/381607a0

Variational Sparse Coding with Learned Thresholding

Olshausen, B. A. and Field, D. J. Sparse coding
of sensory inputs. Current Opinion in Neuro-

biology, 14(4):481-487, August 2004. ISSN
0959-4388. doi: 10.1016/j.conb.2004.07.007.
URL https://www.sciencedirect.com/

science/article/pii/s0959438804001035.

Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K. Neural
Discrete Representation Learning. arXiv:1711.00937
[cs], May 2018. URL http://arxiv.org/abs/
1711.00937. arXiv: 1711.00937.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F.,, Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024-8035. Curran
Associates, Inc., 2019.

Patrini, G., Berg, R. v. d., Forré, P., Carioni, M., Bhargav,
S., Welling, M., Genewein, T., and Nielsen, F. Sinkhorn
AutoEncoders. In Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, pp. 733—743. PMLR,
August 2020. URL https://proceedings.mlr.
press/v115/patrini20a.html. ISSN: 2640-
3498.

Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J.,
Igl, M., Wood, F., and Teh, Y. W. Tighter Variational
Bounds are Not Necessarily Better. arXiv:1802.04537
[cs, stat], March 2018. URL http://arxiv.org/
abs/1802.04537. arXiv: 1802.04537.

Ranganath, R., Gerrish, S., and Blei, D. M. Black Box
Variational Inference. arXiv:1401.0118 [cs, stat], Decem-

ber 2013. URL http://arxiv.org/abs/1401.

0118. arXiv: 1401.0118.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic Backpropagation and Approximate Inference in
Deep Generative Models. arXiv:1401.4082 [cs, stat],

May 2014. URL http://arxiv.org/abs/1401.

4082. arXiv: 1401.4082.

Roeder, G., Wu, Y., and Duvenaud, D. Sticking the
Landing: Simple, Lower-Variance Gradient Estimators
for Variational Inference. arXiv:1703.09194 [cs, stat],

May 2017. URL http://arxiv.org/abs/1703.

09194. arXiv: 1703.09194.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and OIl-
shausen, B. A. Sparse Coding via Thresholding and

Local Competition in Neural Circuits. Neural Com-
putation, 20(10):2526-2563, October 2008. ISSN
0899-7667, 1530-888X.  doi: 10.1162/neco.2008.
03-07-486. URL https://direct.mit.edu/
neco/article/20/10/2526-2563/7343.

Salimans, T. A Structured Variational Auto-encoder
for Learning Deep Hierarchies of Sparse Features.
arXiv:1602.08734 [cs, stat], February 2016. URL
http://arxiv.org/abs/1602.08734. arXiv:
1602.08734.

Seeger, M. W. Bayesian Inference and Optimal Design for
the Sparse Linear Model. pp. 55, April 2008.

Sheikh, A.-S. and Liicke, J. Select-and-Sample for Spike-
and-Slab Sparse Coding. In Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates,
Inc., 2016.

Singh, R., Ling, J., and Doshi-Velez, F. Structured Varia-
tional Autoencoders for the Beta-Bernoulli Process. pp.
9,2017.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267-288, 1996.

Tonolini, F., Jensen, B. S., and Murray-Smith, R. Variational
Sparse Coding. In Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, pp. 690-700. PMLR,
August 2020. URL https://proceedings.mlr.
press/v115/tonolini20a.html. ISSN: 2640-
3498.

Tropp, J. A. and Gilbert, A. C. Signal Recovery From
Random Measurements Via Orthogonal Matching Pursuit.
IEEE Transactions on Information Theory, 53(12):4655—
4666, December 2007. ISSN 1557-9654. doi: 10.1109/
TIT.2007.909108. Conference Name: IEEE Transactions
on Information Theory.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, D., and
Sohl-Dickstein, J. REBAR: Low-variance, unbiased
gradient estimates for discrete latent variable models.
arXiv:1703.07370 [cs, stat], November 2017. URL
http://arxiv.org/abs/1703.07370. arXiv:
1703.07370.

Tucker, G., Lawson, D., Gu, S., and Maddison, C. J.
Doubly Reparameterized Gradient Estimators for Monte
Carlo Objectives. arXiv:1810.04152 [cs, stat], Novem-
ber 2018. URL http://arxiv.org/abs/1810.
04152. arXiv: 1810.04152.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017. URL https://arxiv.org/abs/
1708.07747.


https://www.sciencedirect.com/science/article/pii/S0959438804001035
https://www.sciencedirect.com/science/article/pii/S0959438804001035
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
https://proceedings.mlr.press/v115/patrini20a.html
https://proceedings.mlr.press/v115/patrini20a.html
http://arxiv.org/abs/1802.04537
http://arxiv.org/abs/1802.04537
http://arxiv.org/abs/1401.0118
http://arxiv.org/abs/1401.0118
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1703.09194
http://arxiv.org/abs/1703.09194
https://direct.mit.edu/neco/article/20/10/2526-2563/7343
https://direct.mit.edu/neco/article/20/10/2526-2563/7343
http://arxiv.org/abs/1602.08734
https://proceedings.mlr.press/v115/tonolini20a.html
https://proceedings.mlr.press/v115/tonolini20a.html
http://arxiv.org/abs/1703.07370
http://arxiv.org/abs/1810.04152
http://arxiv.org/abs/1810.04152
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747

Variational Sparse Coding with Learned Thresholding

Yang, A. Y., Zhou, Z., Ganesh, A., Sastry, S. S., and
Ma, Y. Fast L1-Minimization Algorithms For Ro-
bust Face Recognition. arXiv:1007.3753 [cs], Au-
gust 2012. URL http://arxiv.org/abs/1007.
3753. arXiv: 1007.3753.

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S.
Advances in Variational Inference. arXiv:1711.05597
[cs, stat], October 2018. URL http://arxiv.org/
abs/1711.05597. arXiv: 1711.05597.


http://arxiv.org/abs/1007.3753
http://arxiv.org/abs/1007.3753
http://arxiv.org/abs/1711.05597
http://arxiv.org/abs/1711.05597

Variational Sparse Coding with Learned Thresholding

A. Thresholded Laplacian Derivation

To determine the distribution of our thresholded samples
p(z), we marginalize the conditional distribution with re-
spect to p(s). The shifted soft-threshold can be viewed
as a shift of the pdf of p(s) towards the mean value p, as
depicted in Figure 2.

We thus break up the marginalization over p(s) into two
disjoint regions: the region that gets collapsed into the origin
p(]s — | < A) and the regions that get shifted towards the
mean p(|s — p| > \). We can then write the expectation:

p(2) = Ep) (2 | 8)]
=p(z | |s—pl < N)p(|ls — p| < A)
+p(2 | |s = pol = Np(ls — ul > A)
=1 =7)d(2) +yp(z | |s —pl > A)

Where (1 —7) =1 —exp(—Ab~1) and v = exp(—=Ab~1),

as shown in the main text.

To derive p(z | |s — p| > X), we write the pdf of p(s) with
the shift applied from soft-thresholding:

1 ls—p+A|

55 €Xp | ——% s—pu<0
1 —p—A
57 €XD 7% s—pu>0

1 |s — 1+ sign(s — p) |
BT p( b

_ 1 7|3_M\ -1
2bexp< 5 >exp( Ab )

Where the third line follows from the equality condition of
the triangle inequality (both terms have the same sign) and
from the fact that X is always positive.

This is precisely equal to p(z | |s — p| > A) multiplied
by a normalizing constant - to become a valid distribution
(accounting for the probability mass that was moved to zero).
This normalizing constant is exactly one minus the mass
moved to zero Z = v = exp (—Ab~!). This leads to our
final conditional probability:

]_ _
p(z]|s—pol > A) = 25 &P <—|sb#|> (14)

B. Reparameterization Details for
Thresholded Samples

To reparameterize thresholded samples, we first draw sam-
ples s¥ for each feature space dimension from a base distri-
bution that is either Gaussian or Laplacian. For an input data
x*, our encoder network outputs a shift and log-scale for
each dimension of our latent feature for both distributions.
The KL divergence loss is always computed on the base

distribution, summing over each feature dimension.

For a Gaussian distribution, we apply the standard reparam-
eterization technique from (Kingma & Welling, 2014) using
(1%, 21og o¥) output from a DNN:

"~ N(0,1)

z b= go(x

with a KL divergence depending on scale prior o2 (Kingma
& Welling, 2014):

- 1
D%L = ((uf)Q + (Uf)2> <200> +log% ~3

k _gky _ _k_jk k
€0 ) =o€l 4 g

For a Laplacian distribution, we apply the reparameteri-
zation rule from (Connor et al., 2020) using (u%,log b%)
output from a DNN:

3.k ;
ik _- =
€; Unif ( , )

,ePk), = —bsign(e) )log( 2Jk)

Applying the KL divergence loss derived in (Meyer, 2021)
with a scale prior by:

b oo (<lek (09) )
iy
bo bo

ik
2" = gy(x”

bo
+logb—k—1

Diep, =
To prevent numerical 1n€tab1hty durlng training, we apply
clamping to the log term in g¢( ) to have a minimum
value of 1E—06. Additionally, we multiply a warm-up
variable w to the inferred scale variable b¥. At the beginning
of training we set this variable w(®) = 0.1 and increment
it at each training iteration by 2E—04 until it reaches a
maximum value of 1.0.

When applying thresholding to either distribution, we either
apply a fixed threshold set as a hyper-parameter \; = \g
or infer a threshold for each feature dimension. To perform
reparameterization, we follow the pathwise derivative meth-
ods proposed in (Jankowiak & Obermeyer, 2018) param-
eterized by a neural network that outputs (log a ,log 6’“)
For numerical stability, we clamp these Values to be be-
tween [IE—06, 1E+06]. We use both the reparameteriza-
tion and KL divergence implementations included in Py-
Torch 1.10 (Paszke et al., 2019). In all cases, we set the
prior ag = 3, B = % We find that on average this encour-
ages the inferred threshold values to equal \g.

Our reparameterization procedure differs from the Spike-
and-Slab from (Tonolini et al., 2020) in a few ways. First
and foremost, we avoid the need of applying continuous
approximations to Bernoulli random variables by applying
shifted soft-thresholding. This also results in our model
not needing to estimate a spike probability for each latent
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variable, but rather just parameters for the base distribution.
Finally, rather than use the KL divergence for Spike-and-
Slabs derived in (Tonolini et al., 2020), we only penalize
the base distribution with a KL divergence.

C. Straight-Through Estimator Details

The shifted soft-threshold is non-differentiable, with a sub-
gradient of 0 when a latent component z; = 0. This is
problematic since it serves as a block of gradient flowing
from the generator to the inference network whenever a
latent feature is not used (a common occurrence when spar-
sity is imposed on latent features). In these circumstances,
although the gradient is blocked from the generator, a gra-
dient is still computed for the KL divergence term. This
empirically causes numerical instability (gradients go to
NaN) or the inference network to primarily minimize the
KL divergence term, leading to posterior collapse (Lucas
et al., 2019). Note that this same problem would occur with
a reparameterization procedure that simply sets z; = 0 with-
out applying 7y in the cases where T would result in a
zero-valued latent component.

Posterior collapse measures the extent to which the infer-
ence network is indistinguishable from the prior (Lucas
etal., 2019):

wap(x) [DKL (q(i’(ZhX)Hp(Zz)) S 6] Z 1-4. (15)

To measure another tangible problem of all latent features
values going to zero, we also introduce the metric of feature
collapse to measure whether inferred latent features z are
zero for most images x:

Prpi |5 < ] 21—, (16)

x~p(x)

We measure these two quantities in Table 2 using subgra-
dient and straight-through estimators. It can be observed
that using a single sample, the subgradient leads to numer-
ical instability in all three runs. Increasing the number of
samples avoids this instability, at the cost of complete poste-
rior and feature collapse in all three runs. Meanwhile, the
straight-through estimator avoids this issue.

D. Linear Generator Training Details

For each method, we train using 80, 000 image patches and
validate using 16, 000 image patches of dimension 16 x 16
with a dictionary of 256 entries. We train for 300 epochs
using a batch size of 100. Our initial learning rate for the
dictionary is 5E—01 and we apply an exponential decay
by a factor of 0.99 each epoch. Our inference network
is trained with an initial learning rate of 1E—02, using
an SGD+Nesterov optimizer with a CycleScheduler. For
FISTA, we set k = 1E—03. For the variational methods,

we set K = 1E—04, and the scale parameter of our prior
p(z) equal to 0.1 when applicable. Unless specified, we
set the KL weight as 5 = 1E—02 for each method. We
run each method for three trials, using the random seeds
{0,1337,747}.

For FISTA, we multiply A by a warmup parameter w that
starts at w(®) = 0.1 and is incremented by 1E—04 each train-
ing iteration, capping at a maximum value of w®) = 1.0.
We find that this prevents all dictionary entries from going
to zero when training with a Frobenius norm regularizer.

For the Spike-and-Slab, we use the same warmup strategy
proposed in (Tonolini et al., 2020). We set w© = 0.0, incre-
menting by 2E—04 each iteration after iteration 1500. This
parameter is also capped out at w(®) = 1.0. Additionally,
we apply a warmup to the temperature parameter 7 for the
Gumbel-Softmax used in the Spike-and-Slab. This starts
at 7(¥) = 1.0 and is decreased by a multiplicative factor of
0.9995 until it reaches a minimum value of 7(¥) = 5E—01.
We set the prior for the spike probability as 0.1.

For the Thresholded Gaussian and Laplacian methods, we
use the analytic results to set Ay respectively as 0.52 and
0.25. We find that these values lead to 10% of the latent
features non-zero for each input data on average. When
using a Gamma prior on the threshold parameter, we reduce
the corresponding KL weight by a multiplicative factor of
1E—01 (resulting in 5; = 1E—02 and 82 = 1E—03). We
set a¢g = 3 for each method that uses a Gamma prior.

Each inference network uses an MLP backbone with the
same architecture, with a separate projection head for each
distribution parameter. The architecture for the backbone
is outlined in Table 3. For each distribution parameter, an
additional 256 x 256 linear layer is added on top of the
output of this network.

E. DNN Generator Training Details

For CelebA, we use 150, 000 training samples and 19, 000
validation samples. All samples are center cropped to
140 x 140 pixels and then resized to 64 x 64. We also
apply a random horizontal flip to training samples only. We
train for 300 epochs using a batch size of 512 across two
Nvidia RTX 3080s. We use an initial learning rate of 3E—04
using the Adam optimizer with 8 = (0.5,0.999), weight
decay equal to 1E—05, and a sample budget of J = 10.
Additionally, we use the automatic mixed precision (AMP)
and DistributedDataParallel implementations included in
PyTorch 1.10 (Paszke et al., 2019). We set 5 = 1E—03 for
the KL divergence term in all methods. In the case where
we have a Gamma distribution on the threshold parameter,
we multiply the KL term by a factor of 1IE—01 (leading to
£1 = 1E—03 and 33 = 1E—04). The network architecture
for the encoder and the decoder are included in Table 4. All
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Table 2. Posterior collapse and feature collapse for different sparsity estimators. Thresholding methods use a straight-through (ST)
estimator or a subgradient (SG) estimator. NaN denotes a run that failed due to gradients equal to NaN.

Method/Prior Distribution % Posterior Collapse 9% Feature Collapse
(e =1E-02,6 =5E—-02) (e =1E—-02,6 = 5E—02)
J=1 J=20 J=1 J=20
Thresholded Laplacian (SG)  NaN 100.00% NaN 100.00%
Thresholded Laplacian (ST) 4.17% 4.56% 0.00% 0.00%

Table 3. Inference Network Backbone for Linear Generator

Input € R16x16
Linear: 256 x 512
ReLU

Linear: 512 x 1024
RelLU

Linear: 1024 x 512
ReLU

Linear: 512 x 256
ReLU

Output € R?56

other methodology is kept consistent with the linear genera-
tor. We run each method for three trials, using the random
seeds {0, 1337, 747}.

For FMNIST, we train with all 60,000 training samples
and evaluate on all 10,000 validation samples. Hyper-
parameters are kept the same as CelebA experiments, except
for a KL divergence weight § = 1E—02 and sampling bud-
get J = 20. A smaller network architecture is used for
FMNIST, depicted in Table 5.

F. Additional Results for Linear Generator

F.1. Full Dictionary for Different Priors
F.2. Full Dictionary for Different Sampling Methods

G. Additional Results for DNN Generator

G.1. Recovered Dictionary at Different Dimensionality
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Table 4. Network Architecture for CelebA Experiments

Encoder Network

Decoder Network

ReLU

conv: chan: 64, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 64

RelLU

conv: chan: 128, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 128

ReLLU

conv: chan: 256, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 256

ReLU

conv: chan: 256, kern: 4, stride: 2, pad: 0
BatchNorm: feat: 256

ReLU

Output € R?56

Input € R64x64x3 Input € R?
conv: chan: 64, kern: 4, stride: 2, pad: 1 Linear: d x 1024 Units
BatchNorm: feat: 64 RelLU

convTranpose: chan: 128, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 128

ReLLU

convTranpose: chann: 128, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 128

RelLU

convTranpose: chan: 64, kernel: 4, stride: 2, pad: 1
BatchNorm: feat: 64

RelLU

convTranpose: chan: 64, kernel: 4, stride: 2, pad: 1
BatchNorm: feat: 64

ReLLU

convTranpose: chan: 3, kernel: 4, stride: 2, pad: 1
Sigmoid

Output c R64x64x3

Table 5. Network Architecture for FMNIST Experiments

Encoder Network

Decoder Network

ReLLU

conv: chan: 64, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 64

ReLU

conv: chan: 128, kern: 4, stride: 1, pad: 0
BatchNorm: feat: 128

ReLLU

conv: chan: 64, kern: 4, stride: 2, pad: 1
BatchNorm: feat: 128

RelLU

Output € R128

Input € R28x28x1 Input € R?
conv: chan: 64, kern: 4, stride: 2, pad: 1 Linear: d x 128 Units
BatchNorm: feat: 64 RelLU

convTranpose: chan: 128, kern: 4, stride: 2, pad: 0
BatchNorm: feat: 128

RelLU

convTranpose: chann: 64, kern: 4, stride: 1, pad: 0
BatchNorm: feat: 64

ReLU

convTranpose: chan: 64, kernel: 4, stride: 2, pad: 1
BatchNorm: feat: 64

RelLU

convTranpose: chan: 1, kernel: 4, stride: 2, pad: 1

Sigmoid

Output c R28x28x1

Table 6. A copy of Table 1 from the main text with J = 20 samples with standard deviations included

Method/Prior Distribution

Validation Loss

Multi-Information

IWAE Loss

FISTA (baseline)
Gaussian
Laplacian
Spike-and-slab
Thresholded Gaussian
Thresholded Gaussian+Gamma
Thresholded Laplacian
Thresholded Laplacian+Gamma

1.01E+02 + 7.00E-01
1.35E+03 + 2.08E+00
5.79E+02 + 1.51E+00
2.39E+02 + 4.27E+00
2.30E+02 + 1.87E+00
2.70E+02 + 1.87E+00
1.94E+02 + 1.66E+00
2.11E+02 + 1.47E+00

8.75E+01 + 5.43E-01
7.36E+02 + 3.06E-01
5.34E+02 + 5.29E-01
1.96E+02 + 2.57E+00
1.76E+02 + 2.08E-01
2.29E+02 + 3.79E-01
1.91E+02 + 1.53E-01
2.33E+02 + 5.77E-01

2.16E-01 £ 2.64E-04
2.22E-01 £ 7.97E-04
2.12E-01 £ 2.64E-02
1.33E+00 + 3.80E-03
1.13E+00 + 2.47E-03
1.13E+00 + 1.29E-02
1.12E+00 + 8.09E-03
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(a) Inference Network SNR
J=1 J=20

Figure 9. Comparison of SNR for (a) inference network and (b) linear generator for all methods using J = 1 and J = 20 with max ELBO
sampling.
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Figure 10. Full dictionary sorted by magnitude in descending order for FISTA with A = 20 and a Frobenius norm penalty of 1IE—03.
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Figure 17. Full dictionary sorted by magnitude in descending order for Thresholded Laplacian + Gamma threshold prior prior with
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1 and J = 20 under max ELBO sampling.
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Figure 18. Full dictionary sorted by magnitude in descending order for different sampling methods using J = 100 samples using the

Thresholded Laplacian prior. Average sampling and IWAE sampling learn repetetive features in their dictionary since they do not
encourage feature reuse during training. On the other hand, max ELBO sampling learns a larger dictionary of diverse features.
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(a) 64 Dimensions (b) 4096 Dimensions

Figure 19. Image reconstruction on CelebA using DNN generator for (a) 64 dimensions and (b) 4096 dimensions. From top to bottom,
the rows denote the ground truth images, a Gaussian prior, a Spike-and-Slab prior, a Thresholded Gaussian prior, and a Thresholded
Gaussian+Gamma prior.

1
i

- 1nn

L2
)
=
[
o
=
it

SRR ORI

TRER D Des

-
=35Ph W=

-
o
R
I
[,
R
'}
0

Qe
11 k)
AN
anw
 Ya
oF .
0«
ana

gean
| [ e
BOET
T 'an
e s
T W
PV Os
A

LR OEE

!
E

D e
| o)

(a) Gaussian (b) Thresholded Gaussian+Gamma

Figure 20. 64 dimensional latent space. Sampled entries from an estimated dictionary using an inference network trained with a DNN
generator on CelebA. Entries are shown in descending order of Frobenius norm magnitude, with each row taking linearly spaced entries
from the full dictionary. The sparse prior is set so to encourage 10% of latent features to be non-zero.
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(b) Thresholded Gaussian+Gamma

Figure 21. 512 dimensional latent space. Sampled entries from an estimated dictionary using an inference network trained with a DNN
generator on CelebA. Entries are shown in descending order of Frobenius norm magnitude, with each row taking linearly spaced entries
from the full dictionary. The sparse prior is set so to encourage 10% of latent features to be non-zero.
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(a) Gaussian (b) Thresholded Gaussian+Gamma

Figure 22. 2048 dimensional latent space. Sampled entries from an estimated dictionary using an inference network trained with a DNN
generator on CelebA. Entries are shown in descending order of Frobenius norm magnitude, with each row taking linearly spaced entries
from the full dictionary. The sparse prior is set so to encourage 10% of latent features to be non-zero.



Variational Sparse Coding with Learned Thresholding

J& e 1D

=
A ¥
1

W -,
G %
e, o

N
B
3
5
@
2

(a) Gaussian (b) Thresholded Gaussian+Gamma

Figure 23. 4096 dimensional latent space. Sampled entries from an estimated dictionary using an inference network trained with a DNN
generator on CelebA. Entries are shown in descending order of Frobenius norm magnitude, with each row taking linearly spaced entries
from the full dictionary. The sparse prior is set so to encourage 10% of latent features to be non-zero.



