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Abstract
Douglas-Rachford splitting/ADMM (henceforth
DRS) is a very popular algorithm for solving con-
vex optimisation problems to low or moderate
accuracy, and in particular for solving large-scale
linear programs. Despite recent progress, obtain-
ing highly accurate solutions to linear programs
with DRS remains elusive. In this paper we an-
alyze the local linear convergence rate r of the
DRS method for random linear programs, and
give explicit and tight bounds on r. We show that
1− r2 is typically of the order of m−1(n−m)−1,
where n is the number of variables and m is the
number of constraints. This provides a quantita-
tive explanation for the very slow convergence
of DRS/ADMM on random LPs. The proof of
our result relies on an established characterisation
of the linear rate of convergence as the cosine
of the Friedrichs angle between two subspaces
associated to the problem. We also show that
the cosecant of this angle can be interpreted as a
condition number for the LP.

1. Introduction
A linear program (LP) is an optimisation problem which
can be expressed in the following standard form1

minimise ⟨c, x⟩ s.t. Ax = Ax̄

x ∈ Rn
+.

(1)

The data for this LP consist of vectors x̄, c ∈ Rn, and a
matrix A ∈ Rm×n with full row rank m, 1 ≤ m < n. The
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1Our representation of the affine constraints as Ax = Ax̄
instead of the traditional Ax = b encodes the implicit assumption
that the corresponding affine space is nonempty.

dual linear program is

maximise ⟨Ax̄, y⟩ s.t. s := c−A⊤y ∈ Rn
+

y ∈ Rm.
(2)

Douglas-Rachford splitting (Lions & Mercier, 1979) is a
fundamental algorithm for convex optimisation (and more
generally, for finding the zeros of monotone operators). For
convex optimisation problems, Douglas-Rachford splitting
(DRS) is known to be equivalent to the equally well-known
Alternating Direction Method of Multipliers (ADMM) ap-
plied to the dual problem (Gabay, 1983; Eckstein & Bert-
sekas, 1992). One area where DRS/ADMM has found much
success is in solving large-scale conic programs – see e.g.
(O’Donoghue et al., 2016). A direct application of DRS for
solving (1) is listed in Algorithm 1. (See Appendix A.1 for
the derivation of this algorithm.)

Algorithm 1 Douglas-Rachford for (1)
Input: Initial point z0 ∈ Rn

k ← 0
repeat

sk ← ΠRn
+
(zk)− zk

xk ← (zk + 2sk)−A⊤(AA⊤)−1A
(
zk + 2sk − x̄

)
zk+1 ← xk − sk

k ← k + 1
until convergence, or other termination criterion satisfied

Like most other first-order methods (and as opposed to, say,
interior point methods), DRS is known to have an initial
phase of “fast” convergence towards an approximate solu-
tion, followed by a phase of slow convergence towards the
exact solution. For this reason, splitting algorithms have
typically only been used to obtain solutions of low to mod-
erate accuracy. However, there has been recent interest in
using splitting methods to solve large-scale linear programs
to high accuracy, see e.g., (Applegate et al., 2021; Lu &
Yang, 2021). For linear programs it has been known (Boley,
2013) that the “slow” phase of convergence of DRS/ADMM
is in fact linear convergence (i.e. the error decreases geo-
metrically). The catch is that the rate of ultimate linear
convergence may be very close to 1. This is illustrated in
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Figure 1, which shows the behaviour of DRS on small ran-
dom linear programs (n ≤ 40), and where DRS may require
more than 104 iterations to get within distance ϵ = 10−6

from the solution.
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Figure 1. Convergence of Algorithm 1 for random linear programs
with n variables and m = n/2 equality constraints. Note the
linear convergence after an initial transient phase. Also note that
the linear programs are fairly small in size, and yet DRS may
require more than ≈ 104 iterations to reach an accuracy of 10−6.

1.1. Contributions

In this paper we perform an average-case analysis of
Douglas-Rachford splitting for linear programs, and give
tight and explicit bounds on the rate of eventual linear con-
vergence for random linear programs generated from a nat-
ural distribution. Our main result, stated below, gives a
quantitative explanation for the very slow convergence of
DRS/ADMM on random LP instances.

Theorem 1.1. Let 1 ≤ m < n. Let c, x̄ be independent vec-
tors drawn from spherically symmetric distributions on Rn

which give zero probability to the point 0. Let the entries of
A ∈ Rm×n be i.i.d. N (0, 1) random variables independent
of c and x̄.

Let E be the event that (1) and (2) have unique optimal
solutions x∗ and (s∗, y∗), respectively. For any (A, c, x̄) ∈
E and z0 ∈ Rn, there are numbers r = r(A, c, x̄) < 1
and K = K(z0, A, c, x̄) ∈ N such that the iterates of
Algorithm 1 satisfy∥∥zk − z∗

∥∥ ≤ rk−K
∥∥zK − z∗

∥∥ ≤ rk−K
∥∥z0 − z∗

∥∥
for every k ≥ K. The distribution of r satisfies

P
(

δ2

m(n−m)
≤ 1− r2 ≤ 2 log(1/δ)

m(n−m)

∣∣ E)
≥ 1− 2δ

(3)
for every δ ∈ (0, 1

2 ).

Remark 1.2. It is well-known, going back at least to (Adler
& Berenguer, 1981), that the event E defined in Theo-
rem 1.1 occurs with probability exactly 1

2n

(
n
m

)
. See also

(Amelunxen & Bürgisser, 2015b).

Figure 2 shows a scatter plot of the quantity m(n−m)(1−
r2) for randomly generated LPs for 1 ≤ n ≤ 1000 and 1 ≤
m ≤ n−1. As expected, we observe that m(n−m)(1−r2)
is bounded both above and away from zero in probability,
as stated in Theorem 1.1.

The proof of Theorem 1.1 relies at its core on the notion of
angles between subspaces. It can be shown that, when the
LP is feasible and bounded with unique primal and dual so-
lutions, the local linear rate of convergence of DRS is equal
to sin θ, where θ is the largest principal angle between the
subspaces ker(A) and the coordinate subspace spanned by
the support of x∗ (Bauschke et al., 2014; Demanet & Zhang,
2016; Aspelmeier et al., 2016; Liang et al., 2017). This
angle is very difficult to estimate in general as it depends on
the optimal solution x∗ of the considered LP. The crux of
Theorem 1.1 is to show that for randomly generated LPs, the
distribution of this angle is the same as the one for two uni-
formly chosen random subspaces from Gr(n−m,m), the
Grassmannian manifold of (n−m)-dimensional subspaces
of Rn. In (Absil et al., 2006), a formula for the density of
this distribution was computed in terms of matrix hyperge-
ometric functions. Using properties of the latter, we prove
simple tail bounds which allow us to obtain the estimate (3),
and which we believe can also be of independent interest.

1.2. Related work

Average-case analysis has a long history in the analysis of al-
gorithms, and in particular for linear programming. Average-
case analyses of the simplex method were performed in
(Borgwardt, 1982; Smale, 1983) showing that the complex-
ity is polynomial in average, in constrast to the exponential
worst-case complexity. See also (Bürgisser & Cucker, 2013)
where average-case analyses of various problems in numeri-
cal linear algebra and optimisation are carried out from the
point of view of condition numbers. In fact, we will see in
Definition 4.1 that the quantity 1√

1−r2
can be interpreted

as a certain condition number for the primal-dual LP, i.e.,
it measures the sensitivity of the solution to perturbations
in the input. However, unlike the many notions of condi-
tion numbers for LP which have been introduced (Renegar,
1995; Cheung & Cucker, 2001; Amelunxen & Bürgisser,
2011) which measure sensitivity to pertubations of the triple
(A, x̄, c), the quantity 1√

1−r2
measures only the sensitivity

with respect to the “right-hand sides” (x̄, c) while keeping
the matrix A fixed. A byproduct of Theorem 1.1 will al-
low us to obtain a tight estimate on this condition number,
showing that E log

(
1√

1−r2

)
≈ log

(√
m(n−m)

)
(see

Remark 4.3).
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Figure 2. The defect of the eventual linear rate of convergence of
DRS for random LPs. r is computed in each case by SVD. The
ratio m

n
is indicated using colour.

1.3. Organisation

In Section 2 we recall some concepts related to linear pro-
gramming, DRS, and angles between subspaces which will
be used in the rest of the paper. We also characterise the rate
of local linear convergence of Algorithm 1 for a primal-dual
feasible LP geometrically, in terms of angles between sub-
spaces. We prove Theorem 1.1 in Section 3. In Section 4,
we discuss a connection to a condition number for LPs.

2. Preliminaries
2.1. Linear Programming

As we will see, Algorithm 1 only depends on the matrix A
through its kernel. Moreover, the algorithm simultaneously
solves (1) and its dual (2) in an entirely symmetric manner.
Consequently, in this paper it will be both convenient and
mathematically pleasing to recast the primal-dual pair of
LPs (1) and (2) in a form which includes only the essential
information about A, and emphasises the symmetry between
the primal and dual LPs. To this end, let us write L = kerA
(a subspace of Rn of codimension m). Define ŝ = ΠL(c),
x̂ = ΠL⊥(x̄), where, given a closed convex set C ⊆ Rn we
denote by ΠC the Euclidean projection onto C. The primal
is equivalent to

minimise ⟨x, ŝ⟩ s.t. x ∈ ( x̂+ L ) ∩ Rn
+ (LP)

while the dual is equivalent to

minimise ⟨x̂, s⟩ s.t. s ∈ ( ŝ+ L⊥ ) ∩ Rn
+. (LP-D)

This can be checked by substituting s = c− A⊤y and ob-
serving that L⊥ = ImA⊤; although the objective values of
(1) and (2) differ from those of (LP) and (LP-D), the opti-
mal solutions x∗ and s∗ (if they exist) are the same. In this
formulation, both the primal and the dual are minimisation
problems over the intersection of the nonnegative orthant

with an affine space, and weak duality corresponds to the
fact that for feasible x and s we have

−⟨x̂, s⟩ ≤ ⟨x− x̂, s⟩ = ⟨x− x̂,ΠLs⟩
= ⟨x− x̂, ŝ⟩ = ⟨x, ŝ⟩,

(4)

i.e. ⟨x, ŝ⟩ + ⟨x̂, s⟩ ≥ 0. Standard duality theory for LPs
states that if x is optimal for (LP) and s is optimal for
(LP-D), then equality holds (strong duality). If one of the
programs is infeasible, strong duality states that its dual
program admits feasible points of arbitrarily low objective
value.

From now on, we will only be concerned with the linear
programming formulation (LP) and (LP-D). The data for
the pair (LP), (LP-D) consists of the linear subspace L, and
the vectors (x̂, ŝ). Since (x̂, ŝ) live in orthogonal spaces
(L⊥, L) it is tempting to combine them into one vector
ẑ := x̂ − ŝ ∈ Rn. (x̂, ŝ) can always be recovered from
ẑ by projecting onto L⊥ or L. If x∗ is optimal for (LP)
and s∗ is optimal for (LP-D), strong duality necessitates
that they are complementary (their supports do not overlap),
so that x∗ = ΠRn

+
(x∗ − s∗) and −s∗ = ΠRn

−
(x∗ − s∗).

It is a fact that every primal-dual feasible LP has at least
one strictly complementary optimal solution pair, i.e. such
that z∗ := x∗ − s∗ has full support (Goldman & Tucker,
1957). Consequently, if both (LP) and (LP-D) have unique
solutions, these must be strictly complementary.

2.2. DRS for Linear Programming

The iteration for solving the pair (LP) and (LP-D) which we
will study is given in Algorithm 2. It is simply a fixed point
iteration of the Douglas-Rachford operator (for LPs)

TL
ẑ = ΠL ◦ΠRn

+
+ΠL⊥ ◦ΠRn

−
+ ẑ. (5)

In Appendix A.1, we derive Algorithm 2 as Douglas-
Rachford splitting applied to a reformulation of (LP) as
the minimisation of the sum of two convex functions. It
can be verified that Algorithm 2 is precisely equivalent to
Algorithm 1, expressed in terms of L and ẑ as introduced in
Section 2.1. Indeed the matrix A⊤(AA⊤)A represents the
operator ΠL⊥ .

Algorithm 2 Douglas-Rachford for Linear Programs
Input: Initial point z0, subspace L, vector ẑ
k ← 0
repeat

zk+1 ← TL
ẑ (zk)

k ← k + 1
until convergence, or other termination criterion satisfied
sk ← ΠRn

+
(−zk)

xk ← ΠRn
+
(zk)
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By Theorem A.3, for any initial z0, Algorithm 2 converges
to a fixed point of the Douglas-Rachford operator TL

ẑ , if one
exists. The point z ∈ Rn is a fixed point of TL

ẑ if and only
if

ΨL(z) = ẑ (6)

where

ΨL = ΠL⊥ ◦ΠRn
+
+ΠL ◦ΠRn

−
= Id−TL

ẑ + ẑ,

which depends only on L (not on ẑ), is the forward map
for linear programming. Indeed, it is easy to check that
if x is optimal for (LP) and s is optimal for (LP-D), then
z := x− s satisfies (6). The converse also holds.
Proposition 2.1. z ∈ Rn satisfies (6) if and only if x :=
ΠRn

+
(z) is an optimal solution to (LP) and s := ΠRn

+
(−z)

is an optimal solution to (LP-D).

Proof. See Appendix B.

Remark 2.2. Proposition 2.1 shows that (6) effectively en-
codes the KKT conditions for linear programming

x · s = 0

x ∈ x̂+ L, x ≥ 0

s ∈ ŝ+ L⊥, s ≥ 0

(7)

(here · denote elementwise multiplication in Rn). The cele-
brated class of interior-point methods work by solving these
KKT equations using Newton’s method. DRS/ADMM refor-
mulates KKT optimality conditions as a fixed point equation
TL
ẑ (x− s) = x− s and applies the fixed-point iteration.

Remark 2.3. Equation (6) suggests an interpretation of the
dual pair of linear programs (LP, LP-D) as an inverse prob-
lem parameterised by L and with observed data ẑ.

2.3. Angles between subspaces

Given subspaces L1, L2 ⊂ Rn there is a notion of minimal
angle between them. This is the angle in [0, π

2 ] whose cosine
equals

c0(L1, L2) := sup{⟨u, v⟩ | u ∈ L1 ∩B, v ∈ L2 ∩B},

where B is the unit ball for the Euclidean norm in Rn.
Equivalently,

c0(L1, L2) = ∥ΠL1
ΠL2
∥ . (8)

When this angle is zero (i.e. the subspaces share a straight
line in common), we will often be more interested in the
Friedrichs angle, obtained by quotienting out their intersec-
tion, which is positive. This angle has cosine given by

c(L1, L2) := c0
(
L1 ∩ (L1 ∩ L2)

⊥, L2 ∩ (L1 ∩ L2)
⊥).

Equivalently, by Lemma 10 in (Deutsch, 1995),

c(L1, L2) = ∥ΠL1ΠL2 −ΠL1∩L2∥ . (9)

One can easily see that

Fact 2.4. c(L1, L2) < 1. Moreover, c(L1, L2) =
c0(L1, L2) ⇐⇒ c0(L1, L2) < 1 ⇐⇒ L1 ∩ L2 = {0}.

However, the following important result is not obvious:

Proposition 2.5. c(L1, L2) = c(L⊥
1 , L

⊥
2 ).

Proof. See Theorem 16 in (Deutsch, 1995) for a proof of
this result in the more general setting of a (possibly infinite-
dimensional) Hilbert space.

2.3.1. RELATIONSHIP TO LARGEST PRINCIPAL ANGLE

In Section 3, we will need to study the distribution of the
minimal angle between random subspaces. In this subsec-
tion, we show that this is equivalent to studying the dis-
tribution of the largest principal angle between random
subspaces. This will allow us to apply the results of (Absil
et al., 2006) later on, in Section 3.1.

Definition 2.6. dp(W1,W2) := ∥ΠW1
−ΠW2

∥ is a dis-
tance on Gr(n,m) known as the projection distance. The
quanitity arcsin dp(W1,W2) is the largest principal angle
between W1 and W2.

Proposition 2.7. For any m-dimensional subspaces
W1,W2 ⊂ Rn such that W⊥

1 ∩W2 = {0},

c0(W
⊥
1 ,W2) = dp(W1,W2).

Proof. See Appendix B.

2.4. Local Linear Convergence

Local linear convergence of the Douglas-Rachford splitting
algorithm for linear programs was proved in (Boley, 2013).
In this section we will provide an explicit expression for the
local convergence rate in terms of the angle between certain
subspaces. The next result can be derived from (Liang et al.,
2017), which give several general conditions for local linear
convergence of the Douglas-Rachford splitting algorithm
using ideas of partial smoothness and metric subregular-
ity. However, for the reader’s convenience we provide an
elementary proof in Appendix B.

Theorem 2.8. Let (LP) and (LP-D) be feasible, so that
the DRS iteration (Algorithm 2) converges to a solution
z∗ of (6). Define W+ = span{ei | z∗i > 0} and W− =
span{ei | z∗i < 0}. Suppose that z∗ has full support, so
that W+ ⊕W− = Rn. Then there exists K ∈ N0 such that
for all k ≥ K ∥∥zk+1 − z∗

∥∥ ≤ r
∥∥zk − z∗

∥∥ (10)

where r = c(L,W+) = c(L⊥,W−).

This rate r is best possible in the sense that, given a solu-
tion z∗ to (6) with full support, we can choose z0 so that∥∥zk − z∗

∥∥ = rk
∥∥z0 − z∗

∥∥ for every k ≥ 0.
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The condition that z∗ has full support in the theorem above
is satisfied generically, and in particular when the pair of
primal-dual LPs have a unique solution. In fact, in the latter
situation, the quantity c(L,W+) is equal to c0(L,W

+).
This is the content of the next corollary.
Corollary 2.9. Suppose (6) has a unique solution z∗. Then
W+,W− defined in Theorem 2.8 do not depend on the
initial point z0 of the DRS iteration. They are orthogonal
complements in Rn, so (10) holds. Moreover, in this case

c0(L,W
+) = c(L,W+) = c(L⊥,W−) = c0(L

⊥,W−).

Proof. See Appendix B.

3. Probabilistic Analysis
In this section we analyze the behavior of DRS for random
LPs, and prove our main result, Theorem 1.1. We start by
formally defining the random model, in a coordinate-free
way. It can be easily shown that this random model contains
the model of Theorem 1.1 as a special case, as we explain
later.
Definition 3.1 (Symmetric random model). Let 1 ≤ m < n.
Let L be a random subspace drawn from the Haar measure
on the Grassmannian Gr(n, n−m). Conditional on L, let
x̂ ∈ L⊥ and ŝ ∈ L be random variables drawn from spheri-
cally symmetric distributions which give zero probability to
0.

We will see that under such a model, conditional on primal-
dual feasibility, (6) has a unique solution with (conditional)
probability one, so Corollary 2.9 applies. Moreover, we
show that the (conditional) probability distribution of the
relevant convergence rate r = c(L,W+) has a particularly
simple description. It is the same as the distribution of
c(L,W ) where W is a fixed m-dimensional subspace. We
emphasise that it is not a priori obvious that this should be
the case. Indeed the optimal primal support subspace W+

itself depends on L, as well as on ẑ = x̂− ŝ.
Theorem 3.2. Under a symmetric random model as in
Definition 3.1, with probability 2−n

(
n
m

)
, there are unique

solutions x∗ and s∗ for (LP) and (LP-D), respectively. In
this case, let W+ be as in Theorem 2.8, with z∗ = x∗ − s∗.
The distribution of c(L,W+) (conditioned on the existence
of unique solutions for (LP) and (LP-D)) is the same as
that of c(L,W ), where W is an arbitrary fixed subspace of
dimension m.

In Figure 3 we plot the empirical distribution of both
c(L,W+) [the convergence rate of DRS] and c(L,W )
where W is a fixed (arbitrary) subspace; we verify that
both distributions match.

We now introduce an important definition that will be used
in the proof of Theorem 3.2.

Figure 3. Empirical estimates of the probability distributions in
Theorem 3.2, with n = 10,m = 7, each based on 300 samples.
To obtain P (c(L,W+) ≤ r | feasible) we discarded sample LPs
that were not primal-dual feasible until we had 300 feasible ones.
Theorem 3.2 says these distributions should be the same, which is
consistent with these empirical estimates.
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Definition 3.3. We will use the notation

Jm := {β ∈ {±1}n | ♯{i : βi = +1} = m}.

Let L be a subspace of Rn of codimension m. For each
β ∈ Jm, define the complementary orthogonal subspaces

W+
β := span{ei | βi = +1}

W−
β := span{ei | βi = −1},

and the linear map

ΨL
β := ΠL⊥ΠW+

β
+ΠLΠW−

β
.

Note that ΨL
β coincides with the (nonlinear) map ΨL on

{z : sign(z) = sign(β)}. Given a pair (L, ẑ),

ΨL
β (z) = ẑ ⇐⇒ z = x− s and


x ∈W+

β , s ∈W−
β

x ∈ x̂+ L

s ∈ ŝ+ L⊥.
(11)

In other words, and in light of Remark 2.2, ΨL
β encodes a

linearisation of the KKT system, where the supports of x
and s are fixed. From this, we see that z = z∗ is a solution
of the LP if sign(z∗) = β and ΨL

β (z
∗) = ẑ.

The key to the proof of Theorem 3.2 is to consider the ac-
tion of the group {±1}n on (L, ẑ) which flips signs. Both
the quantity c(L,W+

β ), and the law of (L, ẑ), are invari-
ant under this action. However, the induced action on
sign

(
(ΨL

β )
−1(ẑ)

)
is transitive (provided L and ẑ are generic

enough that ΨL
β is invertible and (ΨL

β )
−1(ẑ) has full sup-

port). This observation, formalised in Lemma 3.6, will allow
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us to prove Theorem 3.2. First we need some technical lem-
mas – the main argument begins after Lemma 3.5.

Observe that, given β ∈ Jm, ΨL
β is invertible if and only if

rank(ΠL⊥ΠW+
β
) = m and rank(ΠLΠW−

β
) = n−m

⇐⇒ L ∩W+
β = {0} and L⊥ ∩W−

β = {0}
⇐⇒ L ∩W+

β = {0}.
(12)

The last equivalence can be seen as follows:

dim(L⊥∩W−
β ) = n− dim(L+W+

β )

= n− (dimL+ dimW+
β − dim(L ∩W+

β ))

= dim(L ∩W+
β ).

Given β ∈ Jm and λ ∈ {±1}n, let us define events

Fβ,λ := {L ∩W+
β = {0} and sign

(
(ΨL

β )
−1(ẑ)

)
= λ}.

Note that Fβ,λ is the set of instances where the linearised
KKT system (11) admits a unique solution (x, s) and
sign(x − s) = λ. In particular, Fβ,β is the event that
(LP) and (LP-D) have unique solutions (x∗, s∗) and that
sign(x∗ − s∗) = β.

Lemma 3.4. The event that (LP) and (LP-D) both have
unique optimal solutions is precisely the disjoint union⋃̇

β∈Jm

Fβ,β . (13)

Proof. See Appendix B.

Lemma 3.5. For each β ∈ Jm,

P
(⋃̇

λ∈{±1}n
Fβ,λ

)
= 1. (14)

Proof. See Appendix B.

Given β ∈ Jm, and t ∈ [0, 1], define the event

Gβ,t = {c(L,W+
β ) ≤ t}.

We need to show that

P
(⋃̇

β∈Jm

(Fβ,β ∩Gβ,t)

)
= 2−n

(
n

m

)
P(Gβ0,t) (15)

where β0 is an arbitrary element of Jm. Indeed, the left-
hand side is the probability that (LP) and (LP-D) are both
feasible and that c(L,W+

β ) ≤ t, while P(Gβ0,t) is the prob-
ability that c(L,W+

β0
) ≤ t where W+

β0
is a fixed subspace

of dimension m. First we will need one more lemma.

Lemma 3.6. P(Fβ,λ ∩ Gβ,t) does not depend on λ ∈
{±1}n.

Proof. In this proof, we use the notation · to denote ele-
mentwise multiplication in Rn. Let δ ∈ {±1}n. The new
random variables (L′, x̂′, ŝ′) := (δ · L, δ · x̂, δ · ŝ) have the
same law as (L, x̂, ŝ), by spherical symmetry of the laws
of x̂ and of ŝ, and since the map z 7→ δ · z is orthogonal.
Define the events F ′

β,λ and G′
β,t as usual, but replacing the

random variables (L, x̂, ŝ) by (L′, x̂′, ŝ′). We certainly have
P(Fβ,λ ∩Gβ,t) = P(F ′

β,λ ∩G′
β,t).

On the other hand, Gβ,t = G′
β,t because c(L′,W+

β ) =

c(L, δ ·W+
β ) = c(L,W+

β ).

Moreover, it can be verified from the definition of ΨL
β that

for all z, ΨL′

β (z) = δ ·ΨL
β (δ · z). Thus F ′

β,λ = Fβ,δ·λ.

Therefore, P(Fβ,λ∩Gβ,t) = P(F ′
β,λ∩G′

β,t) = P(Fβ,δ·λ∩
Gβ,t).

Proof of Theorem 3.2. Recall that (15) is what we need to
prove. We have for any β ∈ Jm

P(Fβ,β ∩Gβ,t) =
1

2n

∑
λ∈{±1}n

P(Fβ,λ ∩Gβ,t)

=
1

2n
P
((⋃̇

λ∈{±1}n
Fβ,λ

)
∩Gβ,t

)
=

1

2n
P(Gβ,t)

(16)
where in the first line we used Lemma 3.6, and in passing
to the third line we used Lemma 3.5. Equation (15) now
follows by summing over β ∈ Jm (since P(Gβ,t) does not
depend on β ∈ Jm).

3.1. Angles between random subspaces

In view of Theorem 3.2, we want to study the distribution
of c(L,W ), where W is a fixed m-dimensional subspace of
Rn and L is uniformly distributed in Gr(n, n−m). Note
that for generic L we have L ∩W = {0}, hence the distri-
bution of c(L,W ) matches that of c0(L,W ). Recall from
Section 2.3.1 that

c0(L,W ) = dp(L
⊥,W ) = sin θ̂

where θ̂ is the largest principal angle between L⊥ and W .

Since L⊥ is uniformly distributed in Gr(n,m), c0(L,W )
has the same distribution as the sine of the largest princi-
pal angle θ̂ between a fixed and a random m-dimensional
subspace of Rn (or equivalently, between two random m-
dimensional subspaces of Rn).

The distribution of θ̂ was studied in the paper (Absil et al.,
2006), where an expression for the distribution in terms of
the the Gaussian hypergeometric function of matrix argu-
ment 2F1 is derived. See Appendix C for a definition of this
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function. Assuming m ≤ n/2, the probability density of θ̂
is

p(θ) = m(n−m)
Γ(m+1

2 )Γ(n−m+1
2 )

Γ( 12 )Γ(
n+1
2 )

(sin θ)m(n−m)−1×

2F1(
n−m− 1

2
,
1

2
;
n+ 1

2
; (sin θ)2Im−1) (17)

and its cumulative distribution function is

P(θ̂ ≤ θ) = (sin θ)m(n−m)×(
2F1(

n−m
2 , 1

2 ;
n+1
2 ; (sin θ)2Im)

2F1(
n−m

2 , 1
2 ;

n+1
2 ; Im)

)
. (18)

Here, Im denotes the m×m identity matrix. From these for-
mulae we derive the following proposition, which is proved
in Appendix B. This result may be of independent interest,
as the formulae (17) and (18) are somewhat opaque. We
have not been able to find it elsewhere in the literature.

Proposition 3.7. Fix 0 < m < n and define the random
variable θ̂ as the largest principal angle between two inde-
pendent random subspaces drawn from the Haar measure
on Gr(n, n−m). We have

E[cos θ̂] <
1√

m(n−m)
. (19)

Moreover, for any ϵ ≥ 0

1−
√
m(n−m) ϵ ≤ P

(
sin2 θ̂ ≤ 1− ϵ2

)
≤ e−

m(n−m)
2 ϵ2 .

(20)

Proof. See Appendix B.

This tells us that each of the two following inequalities hold
with individual probabilities 1− δ:√

1− 2 log(1/δ)

m(n−m)
≤ sin θ̂ ≤

√
1− δ2

m(n−m)
.

By the union bound, both inequalities hold simultaneously
with probability 1− 2δ.

Corollary 3.8. Let m,n, θ̂ be as in Proposition 3.7. Then
cos θ̂ has geometric mean bounded above and below

e−1√
m(n−m)

≤ exp
(
E[log cos θ̂]

)
<

1√
m(n−m)

.

Proof. See Appendix B.

3.2. Proof of Theorem 1.1

The conditions of Theorem 1.1 guarantee that L = kerA,
x̂ = ΠL⊥ x̄, and ŝ = ΠLc follow a symmetric random
model as defined in Definition 3.1. Therefore Theorem 3.2
applies: the event E holds with probability 2−n

(
n
m

)
, and

conditional on E, c0(L,W+) has the same distribution as
sin θ̂ where θ̂ is the largest principal angle between two
random subspaces of dimension m. Also, since Algorithm 1
is equivalent to Algorithm 2, Algorithm 1 converges linearly
with rate r = c(L,W+) = c0(L,W

+) < 1 on E, by
Corollary 2.9. The bounds in probability on r follow from
the paragraph following Proposition 3.7.

4. Condition Number Interpretation
Recall that the primal-dual pair of linear programs (LP) and
(LP-D) are equivalent to the inverse problem (6) (we recall
that (6) reads

ΨL(z) = x̂− ŝ =: ẑ,

where ΨL = ΠL⊥ΠRn
+
+ΠLΠRn

−
). This was the content of

Proposition 2.1.

Suppose (6) has a unique solution z∗ with sign z∗ = β ∈
{±1}n. Then the nonlinear forward map for LP ΨL agrees
with the the linear map ΨL

β (defined in Definition 3.3) on
a neighbourhood of z∗. Moreover, ΨL

β is invertible (since
z∗ is a unique solution). It makes sense to think of the
spectral norm of (ΨL

β )
−1 as a local condition number for

the inverse problem (6) (and hence for the primal-dual LP
by Proposition 2.1). To see why, observe that if we perturb
ẑ 7→ ẑ + ∆ by a small enough displacement ∆, the new
primal-dual solution is given by z′ = z∗ + (ΨL

β )
−1∆, so

∥z′ − z∗∥ ≤
∥∥∥(ΨL

β )
−1

∥∥∥ ∥∆∥.
Definition 4.1. Given data (L, ẑ) such that (6) has a unique
solution z∗ with sign z∗ = β, we define

C(L, ẑ) =
∥∥(ΨL

β )
−1

∥∥ .
Our next result shows this condition number is the cosecant
of the minimal angle for which the eventual rate of linear
convergence of DRS is the cosine.

Proposition 4.2. Suppose (6) has a unique solution z∗ with
sign z∗ = β. Then

C(L, ẑ)2 =
1

1− c(L,W+
β )2

.

Proof. See Appendix B.

Remark 4.3. Consider a symmetric random model, as de-
fined in 3.1. By Theorem 3.2 and Corollary 3.8, the expected
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logarithm of this condition number (conditional on primal-
dual feasibility of the LP) satisfies

log
(√

m(n−m)
)
≤ E log (C(L, ẑ) | E)

≤ log
(√

m(n−m)
)
+ 1. (21)

Here, as in Theorem 1.1, E is the event that (6) has a unique
solution z∗.

4.1. Relationship with other condition numbers for LP

In this section, we describe how the local condition num-
ber C(L, ẑ) (defined in Definition 4.1) for the problem (6)
ties in with some other condition numbers for linear pro-
gramming from the literature. Specifically, we will consider
existing notions of condition for the homogeneous feasibility
problem

A⊤y ≤ 0, (22)

where A ∈ Rm×n is a matrix with (n −m)-dimensional
kernel L. Since our condition number C(L, ẑ) depends not
only on L but also on ẑ, we instead consider a “worst-case”
condition over ẑ:

Cmax(L) : = sup
{ẑ s.t. (6) has unique solution}

C(L, ẑ)

= sup
β∈Jm

(
1− c0(L,W

+
β )2

)−1/2
.

The following condition numbers are defined for strictly
feasible instances of (22), i.e. instances for which there
exists y with A⊤y < 0 (equivalently (intRn

−) ∩ L⊥ ̸= ∅).

1. The Grassmann condition number (Belloni & Freund,
2009; Amelunxen & Bürgisser, 2011) is a geometric
condition number defined by

CGr(L) :=
1

min
x≥0, ∥x∥=1

∥ΠL⊥x∥
.

By geometric, we mean it depends on A only through
its kernel L.

2. Renegar’s condition number (Renegar, 1995) is

CR(A) :=
∥A∥

min
x≥0, ∥x∥=1

∥Ax∥
.

It controls the number of iterations needed to solve
(22) using interior point methods.

3. The GCC condition number (Cheung & Cucker, 2001)
is

CGCC(A) :=
1

max
∥y∥=1

min
i
⟨y, āi⟩

,

where āi are the normalised columns of A. It controls
the convergence rate of the perceptron algorithm – see
Appendix B of (Cheung et al., 2003).

It has been shown (see (Cheung & Cucker, 2001;
Amelunxen & Bürgisser, 2011)) that CGCC(A) ≤√
nR(A) ≤

√
nκ(A) CGr(L). Here κ(A) is the matrix

condition number of A, defined as ∥A∥
∥∥A†

∥∥ where A† is
the Moore-Penrose pseudoinverse of A.

Proposition 4.4. Let L ∈ Gr(n, n−m) be generic in the
sense that L ∩W+

β = {0} for any β ∈ Jm, and strictly
feasible for (22) in the sense that (intRn

−)∩L⊥ ̸= ∅. Then

Cmax(L) ≥ CGr(L).

Proof. See Appendix B.

Therefore, for generic matrices A such that (22) is strictly
feasible, we have the chain of inequalities, which lower
bounds Cmax(L) in terms of the other notions of condition
numbers:

CGCC(A) ≤
√
nR(A)

≤
√
nκ(A) CGr(L)

≤
√
nκ(A) Cmax(L).

We note however that Cmax(L) ≥ C(L, ẑ), and in fact
we have observed numerically that Cmax(L) ≫ C(L, ẑ).
Indeed, for a particular subspace L and ẑ ∈ Rn such
that (6) has a unique solution z∗, we have C(L, ẑ) =(
1− c0(L,W

+
β∗)

)−1/2
, where β∗ = sign z∗, by definition.

On the other hand, Cmax(L) is the maximum of the
(
n
m

)
quantities {

(
1− c0(L,W

+
β )2

)−1/2
: β ∈ Jm}.

We also mention that various probabilistic analyses of both
the GCC condition and the Grassmann condition have
been carried out (Cheung & Cucker, 2002; Bürgisser &
Amelunxen, 2012; Amelunxen & Bürgisser, 2015a).

5. Further Work
Recently, several authors have considered the DRS algo-
rithm applied to infeasible conic programs (Liu et al., 2019;
Banjac et al., 2019; Bauschke & Moursi, 2020). It can be
shown that in this case, the sequence of differences between
subsequent iterates in Algorithm 2 converges to a certificate
of infeasibility. Using techniques similar to the ones pre-
sented here, one can show that, for random LPs, the rate
of convergence to a certificate of infeasibility is eventually
linear, and that the distribution of the local linear rate is no
worse than in the feasible case treated in this work. Due
to space constraints, we omit the details here and plan to
discuss these results in a future work.
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Also of interest will be to study different random models
than that introduced in Definition 3.1, and to study conic
programs over more general convex cones than Rn

+ (for
example, over the cone of positive semidefinite matrices).
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A. The Douglas-Rachford Splitting Algorithm
The Douglas-Rachford splitting algorithm (DRS) was intro-
duced by Lions and Mercier in (Lions & Mercier, 1979). It is
commonly applied to minimise the sum of two proper, lower-
semicontinuous convex functions f, g : Rn → (−∞,+∞],

minimise
x∈Rn

f(x) + g(x), (23)

assuming that efficient methods for computing the proximal
operators of f and g are available. The proximal operator of
a proper, lower-semicontinuous convex function f : Rn →
(−∞,+∞] is

proxf (x) := argmin
y

(
f(y) +

1

2
∥x− y∥2

)
.

Let z0 ∈ Rn be arbitrary. Then the general DRS algorithm
consists of the iteration listed in Algorithm 3.

Algorithm 3 Douglas-Rachford
Input: Initial point z0

k ← 0
repeat

sk ← zk − proxg(z
k)

xk ← proxf (z
k − 2sk)

zk+1 ← xk + sk

k ← k + 1
until convergence, or other termination criterion satisfied

We will need the following notions.

Definition A.1. Let T : Rn → Rn. T is nonexpansive if
∀x, y ∈ Rn

∥Tx− Ty∥ ≤ ∥x− y∥ .

T is firmly nonexpansive if ∀x, y ∈ Rn

∥Tx− Ty∥2+∥(Id−T )(x) + (Id−T )(y)∥2 ≤ ∥x− y∥2 .

Notice that the iteration in Algorithm 3 can be written in
terms of a single operator

T = Id−proxg +proxf ◦(2 proxg − Id)

i.e. zk+1 = Tzk. We have the following.

Proposition A.2. The Douglas-Rachford operator T is
firmly nonexpansive.

Proof. See Propositions 4.31 and 12.28 in (Bauschke &
Combettes, 2011).

The following important result says that if T has fixed points,
then the sequence zk converges to one of them.



Local Linear Convergence Rate of DRS for Random LPs

Theorem A.3. Let T : Rn → Rn be firmly nonex-
pansive, and suppose FixT ̸= ∅ (equivalently if 0 ∈
range(Id−T )). Let z0 ∈ Rn and for k ∈ N define
zk = T kz0. Then the sequence (zk)k≥0 converges to some
z∗ ∈ FixT .

Proof. See Example 5.18 in (Bauschke & Combettes, 2011).

A.1. Derivation of Algorithm 2

There are multiple ways to cast an LP in the form (LP)
into the form (23). One of the simplest is to set f(x) =
IL+x̂(x) + ⟨ŝ, x⟩ and g(x) = IRn

+
(x). Here, given a

nonempty closed convex set C, the indicator function IC
is defined by IC(x) = 0 if x ∈ C and +∞ otherwise. We
write ΠC = proxIC for the metric projection onto C with
respect to the Euclidean distance.

We have
proxf (z) = ΠL(z) + x̂− ŝ,

and
proxg(z) = ΠRn

+
(z).

We now consider the application of Algorithm 3 (Douglas-
Rachford) to this choice of f and g. Given an initial point
z0 ∈ Rn, the Douglas-Rachford sequence (c.f. Algorithm 3)
is controlled by the update rule

zk+1 = ΠL(2ΠRn
+
(zk)− zk) + x̂− ŝ+ΠRn

−
(zk)

= ΠLΠRn
+
(zk) + ΠL⊥ΠRn

−
(zk) + ẑ.

(24)

(recall that ẑ := x̂− ŝ). This is precisely Algorithm 2.

B. Proofs
Proposition 2.1. Observe that (6) can be rearranged to

ΠL⊥(x)− x̂ = ΠL(s)− ŝ. (25)

For the if direction, if x is feasible for (LP) and s is feasible
for (LP-D), then they certainly satisfy x−x̂ ∈ L, s−ŝ ∈ L⊥,
so both sides of (25) are 0.

For the only if direction, assume (25) holds. Since the left
hand side lies in L and the right hand side lies in L⊥, both
sides must vanish and hence the pair (x, s) are primal and
dual feasible. Moreover ⟨x, s⟩ = ⟨ΠRn

+
(z),ΠRn

+
(−z)⟩ = 0,

which means x and s are complementary, hence optimal.

Proposition 2.7. First note that

ΠW1
−ΠW2

= ΠW1
(Id−ΠW2

)− (Id−ΠW1
)ΠW2

= ΠW1
ΠW⊥

2
−ΠW⊥

1
ΠW2

,

so dp(W1,W2) =
∥∥∥ΠW1ΠW⊥

2
−ΠW⊥

1
ΠW2

∥∥∥.
Using Lemma B.1, we obtain dp(W1,W2) =
max{c0(W⊥

1 ,W2), c0(W1,W
⊥
2 )}. We will show

that c0(W⊥
1 ,W2) = c0(W1,W

⊥
2 ).

Using Fact 2.4 and W⊥
1 ∩ W2 = {0}, we have

c0(W
⊥
1 ,W2) = c(W⊥

1 ,W2) < 1. By Proposition 2.5 and
Fact 2.4, we have

c0(W
⊥
1 ,W2) = c(W⊥

1 ,W2)

= c(W1,W
⊥
2 ) = c0(W1,W

⊥
2 ).

It now follows that c0(W⊥
1 ,W2) = dp(W1,W2).

Lemma B.1. For any subspaces W1,W2 of Rn, we have∥∥∥ΠW1
ΠW⊥

2
±ΠW⊥

1
ΠW2

∥∥∥ =

max{c0(W⊥
1 ,W2), c0(W1,W

⊥
2 )}.

Proof. Write M = ΠW1
ΠW⊥

2
±ΠW⊥

1
ΠW2

. Denote by M∗

its adjoint operator. We have

MM∗ = ΠW1
ΠW⊥

2
ΠW1

+ΠW⊥
1
ΠW2

ΠW⊥
1
.

The largest eigenvalue of this self-adjoint operator is clearly
max{c0(W⊥

1 ,W2)
2, c0(W1,W

⊥
2 )2}.

Theorem 2.8. Combined with Proposition 2.1, Theo-
rem A.3 guarantees that if (LP) and (LP-D) are both feasible,
then Algorithm 2 converges to some z∗ satisfying (6).

Let
K > max{k | ∃ i sign zki ̸= sign z∗i },

which is finite because zk → z∗. Then for any k ≥ K

zk+1 − z∗ = TL
ẑ (zk)− TL

ẑ (z∗)

= (ΠLΠW+ +ΠL⊥ΠW−)(zk − z∗)

= M(zk − z∗),

where

M := ΠLΠW+ +ΠL⊥ΠW− = DTL
ẑ |z∗ (26)

is the Jacobian of TL
ẑ at z∗. By Lemma B.4, M is normal

– c.f. Lemma 6.2(iii) in (Liang et al., 2017) – so it can be
diagonalised by a unitary matrix U :

M = UΛU†,

where Λ = diag(λ1, . . . , λn). Also by Lemma B.4, M is
firmly nonexpansive, so for any vector u

∥Mu∥2 + ∥Mu− u∥2 ≤ ∥u∥2 .
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It follows that ∥Mu∥ ≤ ∥u∥, and if ∥Mu∥ = ∥u∥ then
Mu = u. So we must have |λi| ≤ 1 for each λi, and if
|λi| = 1, then λi = 1.

We now show that max{|λi| , λi ̸= 1} = r where r =
c(L,W+) = c(L⊥,W−).

Observe, by the definition of M in (26), that {u | Mu =
u} ⊇ L∩W+ +L⊥ ∩W−. On the other hand, if Mu = u
then ΠLu = ΠLΠW+u, hence ΠW+u ∈ L. Similarly
ΠW−u ∈ L⊥, so in fact {u |Mu = u} = L∩W++L⊥∩
W−. Consequently, {u | Mu = u}⊥ = (L ∩W+)⊥ ∩
(L⊥ ∩W−)⊥. Let û ∈ {u | Mu = u}⊥, i.e. û ∈ (L ∩
W+)⊥ and û ∈ (L⊥ ∩W−)⊥. Then

∥Mû∥2 = ∥MΠW+(û) +MΠW−(û)∥2

= ∥ΠLΠW+(û) + ΠL⊥ΠW−(û)∥2

= ∥ΠLΠW+(û)∥2 + ∥ΠL⊥ΠW−(û)∥2

≤ c(L,W+)2 ∥ΠW+(û)∥2 +

c(L⊥,W−)2 ∥ΠW−(û)∥2

= r2 ∥û∥2 .

The inequality holds because

ΠW+(û) ∈ (L ∩W+)⊥ +W− = (L ∩W+)⊥

(using the fact that û ∈ (L ∩W+)⊥) and

ΠW−(û) ∈ (L⊥ ∩W−)⊥ +W+ = (L⊥ ∩W−)⊥

(using the fact that û ∈ (L⊥ ∩W−)⊥).

This proves that max{|λi| , λi ̸= 1} ≤ r. To see that
equality holds, choose ū ∈ W+ ∩ (L ∩W+)⊥ such that
∥ΠLū∥ = c(L,W+) ∥ū∥. Then certainly ū ∈ (L ∩W+)⊥,
and ū ∈ W+ ⊆ (L⊥ ∩W−)⊥. So ū ∈ {u | Mu = u}⊥
and ∥Mū∥ = r ∥ū∥. It follows that for some i, r ≤ |λi| <
1, hence |λi| = r.

We can now prove (10). Let k ≥ K. From the diagonalisa-
tion of M , we have for all l ≥ 0

zK+l − z∗ = UΛlU†(zK − z∗). (27)

We know that zk − z∗ → 0, so it must be the case that
zK − z∗ ∈ {u | Mu = u}⊥. Then zk − z∗ ∈ {u | Mu =
u}⊥ for all k ≥ K, and∥∥zk+1 − z∗

∥∥ =
∥∥M(zk − z∗)

∥∥ ≤ r
∥∥zk − z∗

∥∥
which proves (10).

To see that r is best possible, first observe we have shown
that r is the largest singular value of the linear map M which
is strictly less than 1. Let U ′ be an eigenvector of M∗M
with eigenvalue r2. By Lemma B.4, M commutes with its

adjoint, so we can write∥∥MkU ′∥∥2 = ⟨U ′, (M∗)kMkU ′⟩
= ⟨U ′, (M∗M)kU ′⟩
= r2k.

By setting z0 = z∗ − ϵU ′ for sufficiently small ϵ, we can
arrange that zk has the same sign as z∗ for every k. It
suffices to take ϵ < mini |z∗i |.

Remark B.2. The first part of our proof shows that from
iteration K onward, the algorithm is nothing other than DRS
for finding the intersection of two linear subspaces. This
was shown to converge with linear rate equal to the cosine of
the Friedrichs angle in (Bauschke et al., 2014). We proved
this fact again above for completeness.
Remark B.3. Alternatively, Theorem 2.8 can be derived
from results in (Liang et al., 2017).

Corollary 2.9. Any primal-dual feasible LP has a strictly
complementary pair of solutions (Goldman & Tucker, 1957).
Since z∗ is unique, it follows from Proposition 2.1 that z∗

has full support. Thus W+ and W− are uniquely defined
and are orthogonal complements, hence (10) holds.

Again using the fact that z∗ has full support, z∗ has a neigh-
bourhood on which ΨL agrees with its Jacobian DΨL|∗z∗ =
ΠL⊥ΠW+ + ΠLΠW− . Since z∗ is a unique solution to
ΨL(z∗) = ẑ, it follows that DΨL|∗z∗ is invertible. This is
only possible if L∩W+ = {0} = L⊥∩W−, which implies
c(L,W+) = c0(L,W

+) and c(L⊥,W−) = c0(L
⊥,W−).

Finally, c(L,W+) = c(L⊥,W−) by Proposition 2.5.

Lemma B.4. Let L, W be subspaces of Rn. The linear map
ΠLΠW +ΠL⊥ΠW⊥ is normal (commutes with its adjoint)
and firmly nonexpansive.

Lemma B.4. Write M = ΠLΠW + ΠL⊥ΠW⊥ . We have
MM∗ = ΠLΠWΠL + ΠL⊥ΠW⊥ΠL⊥ and M∗M =
ΠWΠLΠW + ΠW⊥ΠL⊥ΠW⊥ . It is enough to check that
both operators have the same effect on each w ∈ W and
each w′ ∈W⊥. Because of the symmetry of the problem it
is enough to check this for w ∈W .

On the one hand, M∗Mw = ΠWΠLw. On the other,

MM∗w = ΠLΠWΠLw +ΠL⊥ΠW⊥(w −ΠLw)

= ΠL(ΠWΠLw)−ΠL⊥ΠW⊥ΠLw

= ΠL(ΠWΠLw) + ΠL⊥(ΠWΠLw −ΠLw)

= ΠL(ΠWΠLw) + ΠL⊥(ΠWΠLw)

= ΠWΠLw.

This proves that M is normal.
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To see that M is firmly nonexpansive, observe that

MM∗ + (Id−M)(Id−M∗)

= ΠLΠWΠL +ΠL⊥ΠW⊥ΠL⊥+

ΠL⊥ΠWΠL⊥ +ΠLΠW⊥ΠL

= Id . (28)

So
∥Mû∥2 + ∥(Id−M)û∥2 = ∥û∥2 .

Lemma 3.4. Since Fβ,β is the event that (LP) and (LP-D)
have unique solutions (x∗, s∗) and that sign(x∗ − s∗) = β,
the events Fβ,β are certainly disjoint. Moreover, each Fβ,β

is contained in the event that (LP) and (LP-D) both have
unique optimal solutions. It remains to show that if (LP)
and (LP-D) both have unique optimal solutions, then β :=
sign(x∗ − s∗) ∈ Jm and L ∩W+

β = {0}.

Since the solutions are unique, they are strictly complemen-
tary, so β ∈ {±1}n. Since ΨL agrees with ΠL⊥ΠW+

β
+

ΠLΠW−
β

on a neighbourhood of z∗ := x∗ − s∗, the linear
map ΠL⊥ΠW+

β
+ΠLΠW−

β
must be invertible (otherwise z∗

would not be an unique solution). Therefore

rank(ΠL⊥ΠW+
β
) = m and rank(ΠLΠW−

β
) = n−m.

But this implies dimW+
β ≥ m and dimW−

β ≥ n − m,
which means |β| = m, ie.e, β ∈ Jm. It now also follows
from (12) that L ∩W+

β = {0}.

Lemma 3.5. Fix β ∈ Jm. The union
⋃̇

λ∈{±1}nFβ,λ is
clearly disjoint, by definiton of Fβ,λ.

Note that⋃̇
λ∈{±1}n

Fβ,λ = {L∩W+
β = 0}∩{∀i (ΨL

β )
−1(ẑ)i ̸= 0}.

Since dimW+
β = m and dimL = n −m, L generically

intersects W+
β only at 0. Therefore P(L ∩W+

β = 0) = 1.

On the other hand, given L satisfying L ∩W+
β = 0, ΨL

β is
invertible and for each i ∈ [n],

P(ẑ ∈ ΨL
β ({z : zi = 0})) = 0,

since ẑ has a spherically symmetric law giving no mass to
0.

By conditioning on L, we deduce that

P
(⋃̇

λ∈{±1}n
Fβ,λ

)
= 1.

Proposition 3.7. First note that we may, without loss of
generality, assume that m ≤ n

2 . Indeed it follows from
Definition 2.6 that the largest principal angles between two
subspaces equals the largest principal angles between their
respective complements. So the distribution of θ̂ is un-
changed by replacing m by n−m. On the other hand, all
the other quantities in the statement are also invariant in this
substitution. So we may as well assume that m ≤ n

2 , which
allows us to use expressions for the distribution of θ̂ from
(Absil et al., 2006).

Changing variables in (17), we see that the probability den-
sity of cos θ̂ is

pcos(cos θ) = m(n−m)
Γ(m+1

2 )Γ(n−m+1
2 )

Γ( 12 )Γ(
n+1
2 )

×

(sin θ)m(n−m) ×

2F1(
n−m− 1

2
,
1

2
;
n+ 1

2
; (sin θ)2Im−1). (29)

Observe that when a, b, c > 0 are integer multiples of 1
2

with c ≥ m/2, the function t 7→ 2F1(a, b; c; tIm−1) equals
a power series with nonnegative coefficients on the interval
[0, 1) (see Appendix C), so it is increasing on this interval.
We will use this observation twice. First applying it to (18),
we see that

P(sin θ̂ ≤ sin θ) ≤ (sin θ)m(n−m). (30)

Next applying it to (29), we see that

pcos(cos θ) ≤ pcos(0)(sin θ)
m(n−m). (31)

It is easily shown, using Fact C.2, that

pcos(0) =
m(n−m)

2

Γ(m+1
2 )Γ(n−m+1

2 )

Γ(m+2
2 )Γ(n−m+2

2 )
.

Gautschi’s inequality says that for any positive real number
x and any t ∈ (0, 1) x1−t < Γ(x+1)

Γ(x+t) < (x+ 1)1−t. We use
it to bound

pcos(0) <
√
m(n−m).

We can now estimate

E[cos θ̂] =
∫ 1

0

t pcos(t)dt

≤
√

m(n−m)

∫ 1

0

t(1− t2)
m(n−m)

2 dt

=
√

m(n−m)

[
− (1− t2)

m(n−m)+2
2

m(n−m) + 2

]1

0

=

√
m(n−m)

m(n−m) + 2
<

1√
m(n−m)

,
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which proves (19). The first inequality used (31) and
pcos(0) <

√
m(n−m).

For the lower bound of (20), we first deduce from (31)
the weaker bound pcos(cos θ) ≤ pcos(0) <

√
m(n−m).

Integrating this, we have P(cos θ̂ ≤ ϵ) ≤
√
m(n−m) ϵ

which is equivalent to the lower of (20).

Now we prove the upper of (20). Starting from (30), we
have

P(sin2 θ̂ ≤ 1− ϵ2) ≤ (1− ϵ2)
m(n−m)

2

= exp

(
m(n−m)

2
log(1− ϵ2)

)
≤ e−

m(n−m)
2 ϵ2 ,

where in the last line we used log(1− ϵ2) ≤ −ϵ2.

Corollary 3.8. The upper bound is just Jensen’s inequality
applied to (19) in Proposition 3.7.

For the lower bound, we will make use of the lower bound
in Proposition 3.7.

E[− log cos θ̂] =

∫ ∞

0

P(− log cos θ̂ ≥ t)dt

≤
∫ log

√
m(n−m)

0

dt +√
m(n−m)

∫ ∞

log
√

m(n−m)

e−tdt

= log
√
m(n−m) + 1.

Proposition 4.2. We have

C(L, ẑ)−2 = min
∥z∥=1

∥∥ΨL
β (z)

∥∥2
= min

∥z∥=1

∥∥∥ΠL⊥ΠW+
β
z +ΠLΠWβ−z

∥∥∥2
= min

∥z∥=1

(∥∥∥ΠL⊥ΠW+
β
z
∥∥∥2 + ∥∥ΠLΠWβ−z

∥∥2)
= min

∥z∥=1

(
1−

∥∥∥ΠLΠW+
β
z
∥∥∥2 − ∥∥ΠL⊥ΠWβ−

∥∥2)
= 1− max

∥z∥=1

(∥∥∥ΠLΠW+
β
z
∥∥∥2 + ∥∥ΠL⊥ΠWβ−

∥∥2)
= 1− c(L,W+

β )2.

In the last equality, we used the fact that

c0(L,W
+
β ) = c(L,W+

β ) = c(L⊥,W−
β ) = c0(L

⊥,W−
β ).

by Corollary 2.9.

Proposition 4.4. Let x minimise ∥ΠL⊥x∥ subject to x ∈
Rn

+ and ∥x∥ = 1. We claim that |supp(x)| ≤ m. Suppose
instead that |supp(x)| > m, and using the notation of Sec-
tion 3, define β̄ ∈ {±1}n by β̄i = +1 ⇐⇒ i ∈ supp(x).
Then there exists w ∈ L∩W+

β̄
\{0}, since dim(L∩W+

β̄
) ≥

dimL + dimW+
β̄
− n > 0. Without loss of generality,

⟨w, x⟩ ≥ 0. For ϵ > 0 small enough, we have x+ϵw ∈ Rn
+,

howewever

∥ΠL⊥(x+ ϵw)∥2

∥x+ ϵw∥2
=

∥ΠL⊥x∥2

1 + ϵ⟨x,w⟩+ ∥ϵw∥2
< ∥ΠL⊥x∥2

which contradicts our assumption that x minimizes ∥ΠL⊥x∥
subject to x ∈ Rn

+ and ∥x∥ = 1. It follows that |supp(x)| ≤
m.

Now choose β ∈ {±1}n such that the set {i | βi = 1} has
cardinality exactly m and contains supp(x). By (12), ΨL

β is
invertible. Choose any z ∈ Rn such that sign(z) = β. Since
ΨL agrees with ΨL

β on small enough neighbourhoods of z,
and ΨL

β is linear and invertible, z is the unique solution to
ΨL(z)ẑ in a neighbourhood of z. Since the set of solutions
to ΨL(z)ẑ is convex, z is the unique solution to ΨL(z)ẑ in
general. So, Cmax(L) ≥ C(L, ẑ) = (1− c0(L,W

+
β )2)−1/2.

But x ∈W+
β and ∥x∥ = 1, so

Cmax(L)
−1 ≤

√
1− c0(L,W

+
β )2)

≤
√

1− ∥ΠLx∥)2)
= ∥ΠL⊥x∥
= CGr(L)

−1.

C. The Gaussian hypergeometric function of
matrix argument

We first introduce some notation/definitions.

• For x ∈ C, k ∈ N we have the rising factorial (x)k =
x(x+ 1) . . . (x+ k − 1) and (x)0 = 1.

• Given a partition κ of length m (i.e. a nonincreasing
sequence of nonnegative integers κ = (k1, . . . , km)),
and x ∈ C, the partition shifted factorial is [x]κ =∏m

j=1(x−
j−1
2 )kj

.

• Given a partition κ of length m, the zonal polynomial
Zκ : Sm → R is a homogeneous polynomial of degree
m, which depends only (and symmetrically) on the
eigenvalues of its argument. Here Sm is the set of real
symmetric m×m matrices. For arguments which are
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scalar multiples of the identity, we have

Zκ(sIm) = s|κ| |κ|!4|κ|[m/2]κ×∏
1≤j<k≤l(κ)(2kj − 2kl + l − j)∏l(κ)

j=1(2kj + l(j)− j)!
.

Here |κ| = k1+· · ·+km and l(κ) = max{i | ki > 0}.

Definition C.1 (Gaussian hypergeometric function of matrix
argument). Let m ∈ N, and let a, b, c ∈ C be such that for
every j ∈ [m] = {1, . . . ,m} j+1

2 − c /∈ N. Then we
define, for symmetric m×m matrices T with spectral norm
∥T∥ < 1,

2F1(a, b; c;T ) =

∞∑
k=0

∑
|κ|=k

[a]κ[b]κ
k! [c]κ

Zκ(T ).

The condition on c ensures that the denominator does not
vanish in any term. The series converges for ∥T∥ < 1.

Fact C.2 (see Eq. 35.7.7 in (DLMF)). Whenever
Re(c),Re(c− a− b) > m−1

2 ,

2F1(a, b; c; Im) =
Γm(c)Γm(c− a− b)

Γm(c− a)Γm(c− b)
.


