Fast Relative Entropy Coding with A* coding

Gergely Flamich* ! Stratis Markou* ! José Miguel Hernandez-Lobato

Abstract

Relative entropy coding (REC) algorithms encode
a sample from a target distribution () using a
proposal distribution P, such that the expected
codelength is O(Dx1,[Q]|P]). REC can be seam-
lessly integrated with existing learned compres-
sion models since, unlike entropy coding, it does
not assume discrete) or P, and does not require
quantisation. However, general REC algorithms
require an intractable Q(ePxL[QIP]) runtime. We
introduce AS* and AD* coding, two REC algo-
rithms based on A* sampling. We prove that,
for continuous distributions over R, if the den-
sity ratio is unimodal, AS* has O(D[Q|| P]) ex-
pected runtime, where D, [Q|| P] is the Rényi co-
divergence. We provide experimental evidence
that AD* also has O(D[Q||P]) expected run-
time. We prove that AS* and AD* achieve an
expected codelength of O(Dx1,[Q||P]). Further,
we introduce DAD*, an approximate algorithm
based on AD* which retains its favourable run-
time and has bias similar to that of alternative
methods. Focusing on VAEs, we propose the
IsoKL VAE (IKVAE), which can be used with
DAD* to further improve compression efficiency.
We evaluate A* coding with (IK)VAEs on MNIST,
showing that it can losslessly compress images
near the theoretically optimal limit.

1. Introduction

In recent years, there has been significant progress in com-
pression using machine learning, an approach known as
learned compression. Most of the prominent learned com-
pression methods, including the state-of-the-art in both loss-
less (Townsend et al., 2019; Hoogeboom et al., 2019; Zhang

*Equal contribution. 'Department of Engineering, Univer-
sity of Cambridge, Cambridge, UK 2Microsoft Research, Cam-
bridge, UK *Alan Turing Institute, London, UK. Correspon-
dence to: Gergely Flamich <gf332@cam.ac.uk>, Stratis Markou
<em626@cam.ac.uk>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copyright
2022 by the author(s).

123

et al., 2021) and lossy compression (Ballé et al., 2017),
perform non-linear transform coding (Ballé et al., 2020).

In transform coding, a datum is first mapped to a latent repre-
sentation and encoded with entropy coding. Entropy coding
assumes that the latent representation and the coding distri-
bution are discrete, which requires a non-differentiable quan-
tization step. Since gradient-based optimization requires
derivatives, most state-of-the-art methods use a continuous
approximation to quantization during training and switch to
hard quantization only during compression time (Ballé et al.,
2017). This mismatch has been argued to be harmful to-
wards the compression efficiency of these methods (Havasi
et al., 2018; Flamich et al., 2020; Theis & Agustsson, 2021).

Relative entropy coding (REC; Flamich et al., 2020) is a
recently proposed alternative, which does not require quan-
tization and avoids this mismatch. A REC algorithm uses
samples from a proposal distribution P to produce a random
code representing a sample from a target distribution @),
with expected length of approximately Dxr,[Q]| P]2, where
the subscript specifies that the KL is measured in bits rather
than nats. General-purpose REC algorithms place no restric-
tions on) and P beyond that Dky,[Q|| P]2 be finite, so they
can be applied even when @) and P are continuous. Thus
REC can be naturally applied to perform compression with
generative models trained via gradient descent, for applica-
tions including but not limited to: (1) data compression with
variational autoencoders (VAE; Kingma & Welling, 2014),
where () corresponds to a variational posterior over latent
variables and P to a prior over these latent variables; (2)
model compression (Havasi et al., 2018), where) corre-
sponds to an approximate posterior over parameters (Blun-
dell et al., 2015), and P to a prior over those parameters.

However, REC algorithms that make no further assumptions
on Q or P require Q) (2Px1[QlIPJ2) gteps to terminate in
expectation (Agustsson & Theis, 2020), which is a severe
limitation in practice. Thus, in order to make progress, it
is necessary to impose additional assumptions on () and
P. Universal quantisation (Ziv, 1985) can be regarded as a
REC algorithm that achieves O(Dxk1,[Q|| P]2) runtime and
has been demonstrated to work well with the state-of-the-
art VAE-based learned compression methods (Agustsson &
Theis, 2020). However, it places heavy limitations on ¢ and
P, which might be overly restrictive in many cases.

Fast Relative Entropy Coding with A* Coding

In this work, we introduce AS* and AD* coding, two closely
related REC algorithms based on A* sampling (Maddison
et al., 2014), which achieve significantly faster runtimes
than existing alternatives. For @ and P over R, and without
further assumptions, we show that the expected codelength
achieved by AS* and AD* is bounded by

A Dk, [Q|| P2 + A logy (Dkr[Q||Pl2 + 1) + O(1), (1)

where A\ =~ 2.41 and A = 1 for AS* and AD* respectively.
With the additional assumption that () and P are continuous
with unimodal density ratio, we show that the expected
runtime of AS* is O(Dy[Q||P]), where Do [Q||P] =
log sup,,.c v %(w) is the Rényi oo-divergence. While we
do not prove an analogous bound for the runtime of AD*,
we conduct extensive experiments on different (), P pairs,
and observe that the runtime of AD* is also O(Dw [Q]| P])-
Thus AS* and AD* significantly improve upon the runtime
of existing REC methods, without requiring as severe as-
sumptions as universal quantization. While AS* and AD*
require unimodality, this assumption is satisfied by many
models in learnt compression, such as most VAEs.

In addition, a practical limitation of REC algorithms is
that, since the codelength of a sample is random, additional
bits must be used to communicate the codelength itself
to ensure the message is decodable. This additional code,
which corresponds to the second and third terms of eq. (1),
accounts for a large portion of the overall codelength and
grows linearly with the number of dimensions. To remedy
this, we consider approximate REC algorithms, in which
the codelength is a parameter, which is set prior to coding.
This allows us to form blocks of variables which are coded
using the same codelength. Thus, the additional cost must
be paid only once per block, rather than once per variable,
thereby greatly reducing this overhead codelength.

To this end, we first introduce an approximate variant of
AD#* coding which, similarly to existing approximate REC
algorithms, has a tunable codelength and a provably low bias.
Unlike existing methods however, it retains the favourable
runtime of AD* coding. Second, we propose to parame-
terize latent variable distributions by explicitly specifying
Dk1,[Q||P]. For example, instead of parameterizing a Gaus-
sian () using a mean and variance, we can specify its mean
and Dk, [Q||P], from which the variance is uniquely deter-
mined. This allows us to construct blocks of latent variables
with tied KL divergences, which can be coded with the same
codelength. This codelength must be communicated once
per block instead of once per variable. We consider VAE
models using this parameterization, which we refer to as
isoKL VAEs (IKVAEs). We present experiments on loss-
less image compression on MNIST which demonstrate that
the performance of IKVAEs is comparable to that of VAEs,
while reducing the codelength overhead.

Our contributions can be summarised as follows:

* We introduce AS* and AD* coding, two REC algo-
rithms based on A* sampling, for coding samples from
one-dimensional distributions.

* We prove that, the expected codelength of AS* and
AD*is O(Dxkw[Q]| P])-

» We prove that if dQ /d P is bounded and unimodal, AS*
achieves O (D [Q]| P]) runtime. We present empirical
evidence that the runtime of AD* is also linear in D .
Therefore AS* and AD* significantly improve over the
exponential runtime of existing REC algorithms. A di-
rect consequence of the above is that A* sampling with
unimodal dQ/dP also has O(D[Q|| P]) runtime.

e We introduce an approximate variant of AD* and
bound its bias. Similar to existing ones, this algorithm
can code low-bias samples using fixed codelengths, but
retains the favourable runtime of AD*.

¢ We introduce a novel modification for VAEs, in which
the KL divergences across either all, or some of, the
latent dimensions are tied. This modification, which
we refer to as the isoKL VAE (IKVAE), can be used
with any fixed-codelength approximate REC algorithm,
such as our own, to greatly reduce overhead codes.

* We demonstrate the favourable performance of AS*
and AD* on toy problems, comparing it with that of
alternative methods. Lastly, we apply our approximate
AD* algorithm to VAE and IKVAE models on image
data, showing that it can losslessly compress images
near the theoretically optimal ELBO.

2. Background

Relative Entropy Coding: The central problem which we
tackle in this work is the REC problem, defined as follows.

Definition 1 (REC problem and algorithm). Let Q) be a tar-
get and P be a proposal distribution, with Dky,[Q||P] < oo,
and let S = (s1, Sa, . ..) be an infinite sequence of publicly
available independent fair coin tosses. Relative entropy cod-
ing (REC) is the problem of producing a uniquely decodable
code C representing a sample from QQ given S, such that the
codelength |C| satisfies

E[|C]] = O(DxL[QIP]), 2

An algorithm which solves this problem is a REC algorithm.

In practice, S is implemented by using a pseudo-random
number generator (PRNG) with a publicly available seed.
Crucially, REC applies to both discrete and continuous dis-
tributions, and can be integrated into learned compression
pipelines, without requiring quantization. Several existing
algorithms solve the REC problem without further assump-
tions on () or P, however, they are impractically slow.

Fast Relative Entropy Coding with A* Coding

Poisson Functional Representation: Li & El Gamal (2018)
introduced a REC algorithm for general () and P, here re-
ferred to as Poisson functional representation (PFR) coding.
Li & El Gamal showed that if T} are the ordered arrival
times of a homogeneous Poisson process on R* (Kingman,
1992), and X; ~ P, then

dP
argmin< T; - —(X; } ~ Q. 3)
ieN { dQ (%)

Further, Li & El Gamal showed that a sample may be rep-
resented by coding the index which minimises eq. (3), and
bounded the expected codelength of PFR by

K <E[C|] € K +logy(K +1) +0O(1), (&)

where K = Dg1,[Q|| P]2. We note that PFR converts REC
into a search problem, just like the A* sampling algorithm
(Maddison et al., 2014) converts sampling into a search
problem. In fact, it can be shown that the minimization in
eq. (3), is equivalent to a variant of A* sampling, called
Global Bound A* sampling. In particular

dpP
arg min {TZ(XZ)} = argmax {—logT; + log r(X;)}
ieN dQ ieN

2 arg max {Gi +1logr(X3)} (5
ieN

where r = dQ/dP, and G; is sampled according to
Gi ~ TG (07 Gifl)) (6)

where TG (1, k) denotes the Gumbel distribution with mean
w1 and unit scale, truncated to the interval (—oo, k], and
defining G ¥ 0. The maximisation in eq. (5) is identical
to the Global Bound A* sampling algorithm (see Appendix
of Maddison et al.). Thus, Global Bound A* sampling and
PFR are identical, with the exception that the former works
in the negative log-space of the latter (eq. 5).

Unfortunately, the runtime 7" of PFR is so large that it ren-
ders the algorithm intractable in practice. In particular, the
runtime of Global Bound A*, and thus also of PFR, can be
shown (see Appendix in Maddison et al.) to be equal to

E[T] = exp (Do QI P]) = exp (Dxr[QIIP]) . (7)

where Do [Q||P] = logsup,c m(x). This bound is per-
haps unsurprising, considering a more general result by
Agustsson & Theis (2020), who proved that without further
assumptions on () and P, the expected runtime of any REC
algorithm is Q(2Pxr[QIIP]2)

Additional assumptions: In order to develop a REC al-
gorithm that is fast enough to be practical, we must make
further assumptions about the target and proposal distribu-
tions. Focusing on continuous distributions over R, we will

show that an assumption which enables fast runtimes is
the unimodality of . While somewhat restrictive, this as-
sumption is satisfied by virtually all models used in learned
compression. We will show that A* sampling can be mod-
ified to solve the REC problem, achieving O(Du[Q||P])
runtime whenever r is bounded and unimodal.

Henceforth, we will assume that) and P are continuous
distributions on R with densities ¢ and p. However, we note
that the methods we present in this work can be generalised
to arbitrary measure spaces equipped with a total ordering
over their elements, using the Radon-Nikodym derivative in
place of the density ratio (Grimmett & Stirzaker, 2001).

A* sampling: The A* sampling algorithm (Maddison et al.,
2014) is an extension of the Gumbel-max trick (Papan-
dreou & Yuille, 2011) to arbitrary probability spaces. A*
sampling is a branch-and-bound algorithm (Land & Doig,
1960), which converts the problem of sampling from @
into the maximization in eq. (5). A* sampling builds a
binary search tree, where each node n is associated with
a triplet (B, X,,Gy), where: (1) B, C Q is a sub-
set of the sample space; (2) X,, ~ P|p, is a sample
distributed according to the restriction of P to B,; (3)
G, ~ TG (log P(B,), Gpar(n)) is a truncated Gumbel
sample, where par(n) is the parent of n. At each step, A*
sampling expands the children of n, partitioning B,, into
two disjoint subsets L,, U R,, = B,,, using some rule which
we refer to as partition. A* sampling then constructs
the children’s triplets following the definitions above. It then
bounds the objective from eq. (5) on each of the children,
and utilises the bounds to narrow the search and quickly
locate the maximum. Setting partition to be the degen-
erate splitting

partitiongpa-(B,X) = (), B) ®)

yields the Global Bound A* algorithm. Equation (8) hints
at why Global Bound A*, and by extension PFR, have large
runtimes. This partition function does not refine the
search as the algorithm progresses, maintaining the same
fixed global bound throughout a run. In this work we con-
sider using two different part it ion functions, yielding
the AS* and AD* coding algorithms. When applied to uni-
modal r, these partitioning schemes enable the algorithm to
quickly refine its search and achieve a fast runtime.

Approximate REC algorithms: Other lines of work have
introduced alternative algorithms, such as Minimal Random
Coding (MRC; Havasi et al., 2018) and Ordered Random
Coding (ORC; Theis & Yosri, 2022), which produce a code
representing an approximate, instead of an exact, sample
from (). Because these algorithms produce biased samples,
strictly speaking they do not satisfy the requirements of
definition 1, so we refer to them as approximate REC algo-
rithms. Both MRC and ORC accept the codelength |C| as

Fast Relative Entropy Coding with A* Coding

an input parameter. Increasing |C| reduces sample bias, but
increases compression cost and runtime. Unfortunately, the
runtime required to reduce the bias sufficiently in order to
make the samples useful in practice scales as O(2Pxx[4llPl2),
making MRC and ORC as expensive as PFR.

However, one benefit of a tunable codelength is that, when
communicating multiple samples, the overhead code corre-
sponding to the second and third terms in eq. (4), can be
significantly reduced. By grouping several random variables
into blocks, and coding all samples of a block with the same
codelength, we only need to communicate a codelength per
block, as opposed to one codelength per variable. This pro-
cedure reduces the codelength overhead by a factor equal to
the number of variables in each block.

3. A* Coding

A* sampling returns a node n with associated triplet
(Bn, Xn, Gr), where X, is an exact sample from) (Mad-
dison et al., 2014). Therefore, the only addition we need
to make to A* sampling to turn it into a REC algorithm,
is a way to represent n using a uniquely decodable code
C. Given such a C, we can decode the sample X,, by de-
termining the B,, corresponding to n, and then sampling
X, ~ P|pg, given the public source of randomness S.

Since A* sampling may return any node in its binary search
tree, we propose to use heap indexing, also known as the
ahnentafel or Eytzinger ordering to code nodes. Let the
parent of the root node be nil. Then, the heap index of a
node n is

1 if par(n) = nil
2H ar(n) if n is left child of par(n) (9)
2Har(ny + 1 if n is right child of par(n).

def

Hn =

Let D,, denote the depth of node n in the binary tree, where
D,oor = 1. We can see that D,, = |log, H,, | + 1. Thus,
assuming that D,, is known, H,, can be encoded in D,, bits.
Therefore, we can modify A* sampling to return the heap
index of the optimal node, from which n can be decoded.
This yields Algorithm 1, which we refer to as A* coding.
Maddison et al. (2014) show that A* sampling is correct
regardless of the choice of partition. The following the-
orem shows that under mild assumptions on partition,
the expected codelength of A* coding is O(Dx1[Q||P]).

Theorem 1 (Expected codelength of A* coding). Let (Q and
P be the target and proposal distributions passed to A* cod-
ing (Algorithm 1), respectively. Assume that partition
satisfies the following property: there exists € € [1/2,1) such
that for any node n we have

E[P(B,)] < ", (10)

where the expectation is taken over the joint distribution of
the samples associated with the ancestor nodes of n. Let k

be the node returned by A* coding. Then, we have
1 _
E[Dy] < “Toge [DkL[Q|IP]+ e ' +1og2]. (1)

In particular, when e = 1/2,

E[Dy] < Dkp[Q||Plz + e *logye + 1. (12)

Proof. See Appendix A for proof. O

Motivated by the results of Theorem 1, we examine two
variants of A* coding based on particular choices for
partition, which yield AS* and AD* coding.

AS* coding: For node n with triplet (B,,, X,,, G,,), where
B, = (a,), we define partition as

partitionyg«(Bn, Xn) = (o, Xn), (Xi, B). (13)

In this case, the following result holds.

Lemma 1. Let P be the proposal distribution passed to AS*
coding and let partition be as defined in eq. (13). Then
the condition in eq. (10) is satisfied with ¢ = 3/4, that is

E[P(B,)] < (3/4)P". (14)
Proof. See Appendix B for proof. O

Hence, the codelength of AS* sampling is bounded by
A Dk1[Q| P2 + A log(Dxr[Q|P] + 1) + O(1), (15)

where A = —log 2/ log(3/4) ~ 2.41. Further, we have the
following result.

Theorem 2 (Expected runtime of AS* coding). Let Q and
P be the target and proposal distributions passed to AS*
coding (Algorithm 1), and assume r = dQ/dP is quasi-
concave. Let T be the number of steps AS* takes before it
terminates. Then, we have

E[T] = O(Dws[Q[|P]) + O(1). (16)
Proof. See Appendix C for proof. [

Theorem 2 identifies a general class of target-proposal pairs
where REC and A* sampling can be performed much faster
than the Q(exp(DxkL[Q|P])) and O(exp(D[Q|P]))
bounds shown by Agustsson & Theis (2020) and Maddison
et al. (2014); Maddison (2016), respectively.

AD* coding: Unfortunately, the upper bound on the code-
length of AS* coding in eq. (15) is not tight enough to
be optimal. However, Theorem 1 suggests this may be
addressed by choosing a partition function for which

Fast Relative Entropy Coding with A* Coding

€ = 1/2. One such partition function is dyadic partitioning,
which splits B,, = («, 8) as

partitionyp«(Bn, Xn) & (0,7), (7, 8), a7

where + is chosen such that P((a,v)) = P((v, 3)), which
is always possible for continuous P. We refer to this par-
titioning as dyadic, and the corresponding algorithm AD*
coding, because for every node n in the search tree with
B,, = (a, 8), we have that (Fp(«), Fp(f)) forms a dyadic
subinterval of (0, 1), where F'p is the CDF of P.

Algorithm 1: A* coding. Blue parts show modi-
fications of A* sampling (Maddison et al., 2014).

Input

: Target (), proposal P, bounding function
M, maximum search depth D,

(LB, X*, k) + (—oo,null, 1)

IT + PriorityQueue

(Dl,Hl) — (1, 1)

Gl ~ TG (07 OO)

Xy ~P

M, «+ M(R)

MI.push(1,Gy + M)

while ! IT.empty() and
LB < Il.topPriority() do
n < Il.popHighest()
LB, + Gy + (dQ/dP)(X,)
if LB < LB, then
(LB, X*) (LB, X,)
H* <+ H,
end
if D,, < D,,q. then
L,R + partition(B,, X,)

for B € {L, R} do
(k,By) < (k+1,B)

Dy <+~ D, +1
H 2H,, ?fB =1L
2H,+1 ifB=R
Gk ~ TG (log P(Bk), Gn)
X ~ Plp,
if LB < Gy, + M,, then
My, <+ M(By,)

if LB < Gj, + My, then
| ILpush(k, Gk + My)
end
end

end
end

end
return (X*, H*)

We conjecture, that the expected runtime of AD* is
O(D«[Q]|P]) and in Section 5 we provide thorough ex-

perimental evidence for this.

Depth-limited A* coding: There is a natural way to set up
an approximate REC algorithm based on A*, which takes
|C| as an input parameter. Specifically, we can limit the
maximal depth D,,,. to which alg. 1 is allowed to search.
The number of nodes in a complete binary tree of depth D is
2P — 1, so setting D,,,q; = |C| ensures that each node can
be encoded using a heap index with |C| bits. By limiting
the search depth, A* coding returns the optimal node up to
depth D, ., instead of the global optimum. However, if we
set D4z large enough, then depth-limited algorithm should
also be able to find the global optimum. This intuition is
made precise in the following lemma.

Lemma 2. Let Q) and P be the target and proposal distribu-
tions passed to A* coding (Algorithm 1). Let H* be the heap
index returned by unrestricted A* coding and H; be the in-
dex returned by its depth-limited version with D ., = d.
Then, conditioned on the public random sequence S, we
have H; < H*. Further, there exists D € N such that for
alld > D we have H} = H*.

Proof. See Appendix E for proof. O

If the depth of the global optimum is larger than D, 4,
then depth-limited A* coding will not return an exact sam-
ple. As we reduce D, .., we force the algorithm to return
increasingly sub-optimal solutions, which correspond to
more biased samples. It is therefore important to quantify
the trade-off between D,,,,, and sample bias. Theorem 3
bounds the sample bias of depth-limited AD* coding, which
we refer to as DAD*, as a function of D,,,,,.. This result is
similar to existing bounds for MRC and ORC.

Theorem 3 (Biasedness of DAD* coding). Let QQ and P
be the target and proposal distributions passed to DAD*
coding (Algorithm 1). Let

K |DkLQ|P2), DEK +¢t, N¥22 (18)

where t is a non-negative integer, 1 = dQ/dP and Y ~ Q.
Let f be a measurable function and define

IflQ £ \/Eqlf?]. (19)

Let é D the distribution of the approximate sample returned
by DAD* coding with depth-limit D. Define

1/2

Then,

_ 2| fllgd

P[\E@D[f]—lﬁ@[f]]_ 15]326. 20)

Proof. See Appendix D for proof. O

Fast Relative Entropy Coding with A* Coding

Theorem 3 says that the bit budget for DAD* should be
approximately Dx1,[Q||P]2 in order to obtain reasonably
low-bias samples. As we increase the budget beyond this
point, we observe that in practice J, and by extension the
bias, decay quickly. In particular, as ¢ — oo, § — 0, and we
recover exact AD*. We note that it is also possible to depth-
limit other variants of A* coding, such as AS*. However,
for any fixed D, 4, the sample bias of these variants will be
larger than the bias of DAD*. This is because, as shown in
theorem 1, if we use a different partition withe > 1/2,
A* coding will need to search deeper down the tree to find
the global optimum. AD* achieves the lowest possible
average depth out of all variants of A* coding, because
it has e = 1/2. Equivalently, AD* can achieve the same
sample quality with a lower D,,,,, than any other variant of
A* coding. In practice, we observed that depth limited AS*
gives significantly more biased samples than AD*, in line
with the above reasoning, so we did not further pursue any
depth-limited variants other than DAD*.

Runtime of DAD* coding: Based on our conjecture for
exact AD* and the result of Lemma 2, we conjecture that
DAD#* runs in O(D[Q]| P]) time. We provide experimen-
tal evidence for this in Section 5.

Using all available codewords: When D,,,, = D, the
number of nodes in the binary search tree of DAD* is 2P —
1, which is one fewer than the number of items we can
encode in D bits. In particular, the codeword 0 is never
used, since heap indexing starts at 1. We can make AD*
slightly more efficient by drawing 2 samples and arrival
times at the root node instead of a single one. We found
that this has a significant effect on the bias for small D, and
becomes negligible for large D. In Section 5, we perform
our experiments with this modified version of DAD*.

Tying codelengths: Since the codelength is a parameter of
DAD*, we can code samples from different variables using
the same codelength, grouping them in a block and passing
D4z = |C] to Algorithm 1 for each variable in the block.
Since the variables have the same codelength, we only need
to communicate this codelength once per block.

4. IsoKL layers and VAEs

Tying KL divergences: Although DAD* can be used to tie
together the codelengths of different samples, Theorem 3
suggests that the search depth |C| used in DAD* affects the
sample bias. In order to obtain low-bias samples, we must
set |C| > Dx1|Q||P]. If we group variables with different
KL divergences and code them using the same |C|, one
of the two following unwanted effects might occur: (1) if
Dx1[Q||P] > |C]| for a variable, then the corresponding
sample will be highly biased; (2) if Dk1,[Q||P] < |C| for
a variable, then an excessive codelength is being used to
code its sample, which is inefficient. To avoid these cases,

H—~ N 3
01 —> ! ,—> !

KLy : w
19 —> | 1 |
o Le=@®

Op—1 —> ; 1
K Ly |

Fim = b |
Tn —> ! > !

Figure 1. Two different ways of parameterizing a Gaussian varia-
tional posterior (). Left: The usual mean-variance parameteriza-
tion. Right: IsoKL layer using our proposed mean-KL parameteri-
zation where the latent dimensions are divided into b blocks, and
the KLs are shared within each block.

it would be useful if |C| ~ Dk [Q||P] for all variables
in a block. We can achieve this by constraining the KL
divergences of all variables in a block to be equal.

Suppose @ and P are diagonal Gaussians over (X1, ... Xy)
with means (g1, ..., uy) and (v1,. .., vy), and variances
(0%,...,0%) and (p3,...,p%), respectively. We can pa-
rameterize () such that

DxLIN (fin, 02)||IN (Vn, p2)] = K and o, < pn. (21)
foreachn = 1,..., N, by setting

o = Val < pu2 22)
o2 = —poW (—exp (A2 =26 —1)), (23)

where A, = (i, — vy,)/prn and W is the principal branch
of the Lambert W function (Lambert, 1758). Note that
the condition that o,, < p,, will ensure that D [Q||P] <
oo. While the W is not elementary, it can be computed
numerically in a fast and efficient way. We refer to this as
an IsoKL Gaussian layer (see Figure 1), and call a VAE
model using such a) an [soKL VAE (IKVAE). Although
we focus on Gaussians, this approach can be extended to
other distributions. See Appendix F for implementation
details and mathematical details on deriving the necessary
quantities for IsoKL layers.

5. Experiments

Experiments for exact REC: We conducted experiments
using PFR, AS* and AD* coding to perform REC on Gaus-
sian, uniform and disjoint mixture of uniform distributions,
where we systematically vary the problem parameters.

Figure 2 shows measurements for PFR, AS* and AD* cod-
ing. We report the number of steps executed by each algo-
rithm rather than wall-clock time, as the former is propor-
tional to the runtime and is unaffected by specific differences

Fast Relative Entropy Coding with A* Coding

8 -0~ PFR -0~ As* -0- AD* —9“9__,9——9
g _ ___9___,9--—9 ,,9——9"9— Q------ Q---=-" Q=== Q‘“:::g
® 10% ____Q-—"Q_'_ Q "9— e =0==0==0 _—===@======6===:::6:: ____
2 e S-S0 S SR S 0= 0==0-=-0==0-= 0===
10°
5 6 7 8 9 10 5 6 7 8 9 10 1 2 4 8 16
Deo[Q]|P] Deo[Q]| P] Deo[Q]| P]
) Gaussian (), Gaussian P Uniform @, Uniform P Mixture of Uniforms @), Uniform P
= -0 PR -0 Ast -0~ AD* é’% g ______ g_'__
10 — o ae 200 RS SR Shinin - cimtmis & bt s B
5 s g
I i
3 o -O==OT" WO o]
o 0 2 14 6 8 10 0 2 1 6 8 10 1 2 4 8 16
Dkr|Q||P] Dy [Q||P] # modes

Figure 2. Number of steps (top) and codelength (bottom) for PFR, AS* and AD* coding. Reported codelengths do not include the
overhead terms. Circles show mean values, and error bars show first and third quantiles. AS* and AD* are significantly quicker than PFR.

Gaussian (), Gaussian P

-O- MRC -O- ORC -0O- DAD*

Gaussian (), Gaussian P

Gaussian (), Gaussian P

g 60 .---0 .-==8 .-==0

Q =" P T Ll

% o e B e s T — o-

¥+ mm======E s I m e Pt S O === -0 Pttt o S O--——————- -0

(Ds[QIIP] = 5) (Dso[QIIP] = 8) (Doo[Q| P] = 14)
0 1 2 3 0 1 2 3 0 1 2 3

extra bits # extra bits # extra bits

™ Gaussian @), Gaussian P Gaussian @), Gaussian P Gaussian (), Gaussian P

s

820 o -O- MRC -O- ORC -O- DAD*

c 15 o

2y 61l ST

e RS o S IRnCE o T TS

% 00 Osexcasacss | (D.QIF-5) O e Omenananf | (ufQF) -1 OO

m 0 1 2 3 0 1 2 3 0 1 2 3
extra bits # extra bits # extra bits

Figure 3. Number of steps (top) and bias (bottom) for MCR, OCR and DAD* coding. The bias is measured as the KL divergence from the

empirical distribution of samples, to the true target (discussion in

in implementation. We also report the codelength, in bits,
excluding the additional logarithmic and constant overhead.
First, we observe that the number of steps taken by PFR
scales exponentially with D, [Q]| P], as expected. This scal-
ing renders PFR computationally intractable for practical
problems. By contrast, the number of steps taken by AS*
and AD* coding increases linearly with Do, [Q|| P].

Second, we observe that the number of modes has an effect
on the runtime of both AS* and AD* coding. In the top right
of Figure 2 we have set () to a mixture of uniforms with
disjoint support, P to a uniform, and fixed D, [Q|| P] while
varying the number of modes in (). For a small number of
modes, AS* and AD* are both significantly faster than PFR.
As the number of modes increases, so does the number of
steps executed by AS* and AD*. This trend is expected,
because for unimodal @), A* coding can quickly bound the
objective for large regions of the input space which have
low dQ/dP throughout. As d@)/dP becomes increasingly
multimodal, the bounding function M becomes large in in-
creasingly many disconnected regions of the search space.
Thus both AS* and AD* must drill down to and search
increasingly many of these regions, before producing a sam-
ple, which requires a larger number of steps. By contrast,
PFR is unaffected by the number of modes in d@)/d P, since

text). DAD* has similar bias to MRC and ORC, but is much faster.

it is equivalent to Global Bound A*, which retains the entire
input space in a single active search branch. These results
suggest that the unimodality of d@Q /dP is a key attribute for
enabling fast coding with AS* and AD*.

Third, we observe that the codelengths of PFR, AS* and
AD* scale linearly with Dkr,[Q|| P], as expected. However,
in some cases AS* produces a larger mean codelength than
PFR and AD*. This can be explained by the fact that the
dominant term in the codelength bounds of the three algo-
rithms is A\ Dy, [Q||P], where PFR and AD* have A = 1,
while AS* has A =~ 2.41. AS* can produce larger |C| than
AD* because, as Lemma 1 states, the expected rate of shrink-
age of its search region is slower than AD*. Therefore, in
order to refine its search by the same amount, AS* needs a
greater number of steps, leading to a larger expected |C|.

Experiments for approximate REC: We conducted ex-
periments using MRC, ORC and DAD* coding to perform
approximate REC with Gaussian () and P, varying the bit
budget that is allowed to the coders, in addition to the base-
line budget of Dk1,[Q]| P]2 bits. Figure 3 shows the effect of
the additional bit budget on the number of steps and the sam-
ple bias for three problems with different D [Q]| P]. We
quantify the sample bias as the KL divergence, Dk1,[Q|| Q).
from the empirical distribution Q of the approximate sam-

Fast Relative Entropy Coding with A* Coding

ples, to the true (). In each case, we draw 100 samples
and follow the method of Pérez-Cruz (2008) to estimate
Dk1[Q]|Q]2. We observe that in all three cases (fig. 2 bot-
tom), while there is a slight difference in the level of bias
when no extra bits are allowed, the difference in bias be-
comes negligible when one or more extra bits are added.
However, DAD* achieves this bias far faster than MRC and
ORC (fig. 2 top), making it a far more tractable method.

LATENT NEG. ELBO AD* DAD*
20 1.43 £0.01 1.53 £0.01 —
VAE 50 1.40 £ 0.01 1.66 + 0.01 —
20 1.44 £0.01 1.554£0.01 1.51 £0.01
IKVAE 50 1.44 4+ 0.01 1.69 4+ 0.01 1.60 £ 0.01

Table 1. ELBO and lossless compression rates (bpp) on MNIST.

LATENT AD* DAD*
20 86.31 £0.01 5.00 £ 0.01
IKVAE 50 195.20 £ 0.01 5.00 & 0.01

Table 2. Overhead codelength (bits) on MNIST.

Image compression MNIST: We compared the perfor-
mance of AD* and DAD* on image compression exper-
iments on MNIST, using the feedforward VAE architecture
of Townsend et al. (2018), with Gaussian Q and P. We
also trained IKVAEs with the same architecture, using an
IsoKL Gaussian). As Theorem 1 shows and as we discuss
above, AS* has strictly worse expected codelength than
AD* and hence we did not include it in our experiments.
For DAD*, we set k = 2 based on preliminary experiments.
Table 1 shows the lossless compression rates of different
model and coder combinations, from which we observe the
following trends. First, the IKVAEs achieve similar ELBOs
to the VAEs, suggesting that tying the KLs does not degrade
model performance. Further, we observe that for the IKVAE
architectures, using DAD* improves the compression rate
over AD*. We do not provide results for DAD* applied to
a standard VAE posterior, as it would yield a strictly worse
performance than AD*. This is because the KLs in each
latent dimension are different, and hence not only do we
need to communicate the codelength for each dimension, but
DAD* returns approximate samples from the target distribu-
tion, as opposed to AD*. This is because, as corroborated
by table 2, DAD* significantly reduces codelength over-
heads, improving performance over AD*. We also note that
in this task, the number of latent dimensions is relatively
small (20 or 50) compared to the number of image pixels
(784). Since the overhead costs increase with the number of
latent variables, we expect the savings of DAD* to be more
pronounced for larger IKVAEs. Overall, this experiment
demonstrates that AD* can be effective for VAEs, while
DAD* and IKVAEs further reduce coding overheads.

6. Related Work

Quantization-based approaches: Most state-of-the-art
methods in both lossy and lossless compression are based
on including quantization in the compression pipeline, and
somehow circumventing its non-differentiability during
training. Current widespread approaches in lossy compres-
sion use VAEs with a particular choice of latent distributions
(Ballé et al., 2017; 2018). Instead of quantizing latent repre-
sentations during training, these methods perturb the latents
with uniform noise, a technique known as dithering. To per-
form compression, the methods switch back to hard quanti-
zation. Dithering is equivalent to using a uniform variational
posterior distribution, and has been demonstrated to work
well in practice (Ballé et al., 2020). However, this introduces
a mismatch between the training and compression phases
and it also constrains the design choices for new methods
to use uniform distributions. A related variant is the work
of Agustsson & Theis (2020), who propose to use universal
quantization (Ziv, 1985) for compression. Universal quan-
tisation can be regarded as a REC algorithm. While this
method performs very well in the experiments of Agustsson
& Theis (2020), it is limited to particular choice of distribu-
tion. Our work can be regarded as a step towards lifting the
restrictions imposed by quantization based methods.

Bits-back coding: Townsend et al. (2018) introduced a prac-
tical way to combine bits-back coding (Hinton & Van Camp,
1993) and VAEs to perform lossless data compression. The
method of Townsend et al. (2018) has later been applied to
normalizing flows (Ho et al., 2019), which, together with
discrete (van den Berg et al., 2020) and quantization based
approaches (Zhang et al., 2021) represent the state-of-the-art
in lossless image compression. However, bits-back coding
is only applicable to perform lossless compression. Further-
more, it is only asymptotically efficient, meaning that it has
a large constant codelength overhead that becomes insignifi-
cant as we compress larger batches of data. In contrast, our
method is applicable to both lossy and lossless compression
and can be used to perform one-shot compression.

REC and reverse channel coding: REC was first proposed
by Havasi et al. (2018), who developed MRC for compress-
ing Bayesian neural networks, and was later extended to data
compression using VAEs by Flamich et al. (2020). Both of
these works were inspired by reverse channel coding (Ben-
nett et al., 2002). REC and reverse channel coding can be
viewed as the worst-case and average-case approaches to
the same problem. Concretely, REC requires that for fixed
proposal P and public randomness .S, the codelength bound
in eq. (2) holds for any target (). In contrast, reverse chan-
nel coding assumes a distribution over a family of possible
targets and requires that eq. (2) holds in expectation.

The first general REC algorithm for discrete distributions
was proposed by Harsha et al. (2007), however this method

Fast Relative Entropy Coding with A* Coding

has an impractically long runtime. Li & EI Gamal (2018)
developed PFR coding, an alternative based on Poisson pro-
cesses, however this also is computationally impractical.
Recently, Theis & Yosri (2022) proposed ORC, which com-
bines some the benefits of MRC and PFR, but remains com-
putationally impractical. These algorithms all share the lim-
itation that their expected runtime is 2(exp(Dkr[Q]| P]))-

Hybrid Coding: To improve the runtime of REC/RCC al-
gorithms, Theis & Yosri (2022) proposed hybrid coding
(HC). HC is applicable whenever the support of the target
is compact, and can be combined with any of the exist-
ing REC/RCC algorithms to improve their runtime by a
multiplicative factor. However, HC does not change the
asymptotic complexity of the REC/RCC algorithm that it is
combined with. We note that while Theis & Yosri (2022)
used HC in conjunction with ORC, HC can equally well
be combined with A* coding. Thus the speedup that HC
provides is complementary to that of A* coding.

Efficient rejection sampling: While rejection sampling
is a applicable to any target () and proposal P where
D |Q||P] < oo and dQ/dP can be evaluated, the basic
algorithm has O(exp(D[Q]|P])) expected runtime com-
plexity (Maddison, 2016). Thus, a natural question is to ask
under what assumptions it is possible to perform rejection
sampling from a target () using a proposal P efficiently.

Recently, Chewi et al. (2022) consider the problem of con-
structing an upper envelope for rejection sampling from
discrete probability distributions. In particular, they study
the time complexity of constructing the envelope as a func-
tion of the alphabet size. They show that shape constraints
on the target distribution, such as monotonicity and log-
concavity can be utilized to design algorithms whose run-
time scales logarithmically in the alphabet size. Our work is
complementary to theirs, as Theorem 2 provides an initial
result showing that shape constraints can be leveraged to
design more efficient sampling algorithms for continuous
distributions as well.

7. Conclusion

Summary: In this work we proposed AS* coding and
AD* coding, two algorithms based on A* sampling for
performing REC with one-dimensional target and proposal
distributions) and P. We proved that the expected code-
lengths of AS* and AD* are O(Dxy,[@|| P]) and that, when-
ever dQ/dP is unimodal, the expected runtime of AS* is
O(D[Q]|P]). Experimental evidence suggests that the
runtime of AD* is also O(Du, [Q||P]). This runtime signifi-
cantly improves upon the existing runtimes of existing REC
algorithms, without placing severe conditions on () and P.

In addition, we proposed two methods to eliminate over-
head codelength when encoding multiple samples. First,
we introduced an approximate depth-limited variant of AD*

coding, DAD* coding, in which the codelength of the en-
coder is a tunable variable, and proved an upper bound for
its bias. Second, we introduced the IsoKL parameterization,
in which latent dimensions are grouped into blocks, and
the KL divergences of all latent dimensions in a block are
constrained to be equal. DAD* together with the IsoKL
parameterization allow us to encode multiple samples with
the same codelength, thereby amortising coding overheads,
while maintaining low sample bias. Experimentally, we
demonstrated the favourable runtimes of AS* and AD* cod-
ing on extensive toy experiments. We also showed that
DAD* coding achieves levels of bias comparable to ex-
isting approximate REC algorithms, while maintaining a
significantly faster runtime. On lossless image compres-
sion experiments on MNIST, DAD* together with an IsoKL
VAE (IKVAE) parameterization achieved a compression
rate close to the theoretically optimal ELBO.

Further work: One of the central remaining questions of
this work is the runtime of AD* coding. Based on our exper-
iments, we conjecture that the runtime of AD* coding is also
O(D Q]| P]) whenever dQ/d P is unimodal, however this
remains to be shown.

In general, for fixed Dx1,[Q||P] we can have arbitrarily
high Do, [Q||P], hence a second, more general question is if
there exists a REC algorithm with O(Dx1,[Q]| P]) expected
runtime. Adaptive rejection sampling (Gilks & Wild, 1992),
OS* sampling (Dymetman et al., 2012) and ideas from
(Theis & Yosri, 2022) could be good starting points for
developing such an algorithm.

Another promising direction is to apply the IsoKL parame-
terization to larger VAEs, such as those used by Townsend
et al. (2019), and scale our approach up to real-world com-
pression tasks. Lastly, our methods can also be readily
applied to lossy compression.

8. Author Contributions

GF discovered that A* sampling can be modified to obtain
A* coding (alg. 1), which can be used to perform relative
entropy coding, and provided proofs for theorems 1 and 3.
SM provided a proof for theorem 2. GF and SM contributed
equally to the experiments and the writing of this paper.
JMH supervised and steered the project.

9. Acknowledgements

We would like to thank Rich Turner and Lennie Wells for
useful feedback on an early manuscript of this paper. GF
acknowledges funding from DeepMind. SM acknowledges
funding from the Vice Chancellor’s & George and Marie
Vergottis scholarship of the Cambridge Trust.

Fast Relative Entropy Coding with A* Coding

References

Agustsson, E. and Theis, L. Universally quantized neural
compression. Advances in Neural Information Processing
Systems, 33, 2020.

Ballé, J., Laparra, V., and Simoncelli, E. P. End-to-end opti-
mized image compression. In International Conference
on Learning Representations, 2017.

Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. Variational image compression with a scale hyperprior.
In International Conference on Learning Representations,
2018.

Ballé, J., Chou, P. A., Minnen, D., Singh, S., Johnston, N.,
Agustsson, E., Hwang, S. J., and Toderici, G. Nonlinear
transform coding. IEEE Journal of Selected Topics in
Signal Processing, 15(2):339-353, 2020.

Bennett, C. H., Shor, P. W., Smolin, J. A., and Thapliyal,
A. V. Entanglement-assisted capacity of a quantum chan-
nel and the reverse Shannon theorem. IEEE Transactions
on Information Theory, 48(10):2637-2655, 2002.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. In Bach, F.
and Blei, D. (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pp. 1613—1622,
Lille, France, 07-09 Jul 2015. PMLR.

Brezinski, C. Extrapolation algorithms and Padé approxi-
mations: a historical survey, 1994.

Chatterjee, S. and Diaconis, P. The sample size required in
importance sampling. The Annals of Applied Probability,
28(2):1099-1135, 2018.

Chewi, S., Gerber, P.R., Lu, C., Le Gouic, T., and Rigollet, P.
Rejection sampling from shape-constrained distributions
in sublinear time. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 2249-2265. PMLR,
2022.

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J.,
and Knuth, D. E. On the lambertw function. Advances in
Computational mathematics, 5(1):329-359, 1996.

Dymetman, M., Bouchard, G., and Carter, S. The OS*
algorithm: a joint approach to exact optimization and
sampling. arXiv preprint arXiv:1207.0742, 2012.

Flamich, G., Havasi, M., and Hernandez-Lobato, J. M. Com-
pressing images by encoding their latent representations
with relative entropy coding. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Gilks, W. R. and Wild, P. Adaptive rejection sampling for
gibbs sampling. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 41(2):337-348, 1992.

Grimmett, G. and Stirzaker, D. Probability and random
processes. Oxford University Press, U.S.A., 2001.

Grimmett, G. and Welsh, D. Probability: an introduction.
Oxford University Press, 2014.

Harsha, P., Jain, R., McAllester, D., and Radhakrishnan,
J. The communication complexity of correlation. In
Twenty-Second Annual IEEE Conference on Computa-
tional Complexity (CCC’07), pp. 10-23. IEEE, 2007.

Havasi, M., Peharz, R., and Hernandez-Lobato, J. M. Mini-
mal random code learning: Getting bits back from com-
pressed model parameters. In International Conference
on Learning Representations, 2018.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference
on Computational learning theory, pp. 5-13, 1993.

Ho, J., Lohn, E., and Abbeel, P. Compression with flows via
local bits-back coding. Advances in Neural Information
Processing Systems, 32:3879-3888, 2019.

Hoogeboom, E., Peters, J., van den Berg, R., and Welling, M.
Integer discrete flows and lossless compression. Advances
in Neural Information Processing Systems, 32:12134—
12144, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations, 2014.

Kingman, J. Poisson Processes. Oxford Studies in Proba-
bility. Clarendon Press, 1992. ISBN 9780191591242.

Lambert, Johann, H. Observationes variae in mathesin
puram. Acta Helvetica Physico-Mathematico-Anatomico-
Botanico-Medica, 3:128-168, 1758.

Land, A. and Doig, A. An automatic method of solving
discrete programming problems. Econometrica, 28(3):
497-520, 1960.

Li, C. T. and El Gamal, A. Strong functional representa-
tion lemma and applications to coding theorems. IEEE
Transactions on Information Theory, 64(11):6967-6978,
2018.

Maddison, C. Poisson process model for Monte Carlo.
Perturbation, Optimization, and Statistics, pp. 193-232,
2016.

Fast Relative Entropy Coding with A* Coding

Maddison, C. J., Tarlow, D., and Minka, T. A* sampling.
Advances in Neural Information Processing Systems, 27:
3086-3094, 2014.

Markou, S. Notes on the runtime of A* sampling. arXiv
preprint arXiv.2205.15250, 2022.

Papandreou, G. and Yuille, A. L. Perturb-and-MAP random
fields: Using discrete optimization to learn and sample
from energy models. In 2011 International Conference
on Computer Vision, pp. 193-200. IEEE, 2011.

Pérez-Cruz, F. Kullback-Leibler divergence estimation of
continuous distributions. In 2008 IEEE international
symposium on information theory, pp. 1666—-1670. IEEE,
2008.

Theis, L. and Agustsson, E. On the advantages of stochastic
encoders. In Neural Compression Workshop at ICLR,
2021.

Theis, L. and Yosri, N. Algorithms for the communication
of samples. In International Conference on Machine
Learning, 2022.

Townsend, J., Bird, T., and Barber, D. Practical lossless
compression with latent variables using bits back coding.
In International Conference on Learning Representations,
2018.

Townsend, J., Bird, T., Kunze, J., and Barber, D. Hilloc:
lossless image compression with hierarchical latent vari-
able models. In International Conference on Learning
Representations, 2019.

van den Berg, R., Gritsenko, A. A., Dehghani, M., Sgnderby,
C. K., and Salimans, T. IDF++: Analyzing and improv-
ing integer discrete flows for lossless compression. In
International Conference on Learning Representations,
2020.

Zhang, S., Kang, N., Ryder, T., and Li, Z. iflow: Numeri-
cally invertible flows for efficient lossless compression
via a uniform coder. Advances in Neural Information
Processing Systems, 34, 2021.

Ziv, J. On universal quantization. IEEE Transactions on
Information Theory, 31(3):344-347, 1985.

Fast Relative Entropy Coding with A* Coding

A. Proof of Theorem 1

def def

Notation: Throughout the appendix, we will write [a : b] = [a,b] "N for a,b € N and [a] = [1 : a]. Furthermore, for a
vector we will write z7.,, = (1,...x,) forn € N.

We make use of the top-down construction of Gumbel processes (Algorithm 2; Maddison et al., 2014). The top-down
construction realizes samples from a base distribution P along with their associated Gumbel values, which together form a
Gumbel process. A Gumbel process can be thought of as a generalization of the Gumbel-Max trick (Papandreou & Yuille,
2011), where the log-probability of each member of a sample space is perturbed with i.i.d. Gumbel noise. Then, it can
be shown that the maximum of this process is Gumbel distributed, and the argmaximum has law P. Gumbel processes
can be shown to be equal in distribution to exponential races, where the time variable is mapped to its negative logarithm
(Maddison, 2016). This is important, as it allows us to switch between the Gumbel and Poisson process representations, to
leverage existing results in our analysis.

Algorithm 2 realizes its Gumbel process using a space partitioning binary tree construction while also recording the depths
and heap indices of nodes. It is therefore an extension of Algorithm 1 in Maddison et al. (2014). Algorithm 2 can be realized
using public randomness by anyone with access to the public seed S.

A* sampling can be viewed as performing a binary tree search on the Gumbel process with measure P, as realized by
Algorithm 2, to search for a sample with distribution (). The key observation is that for the search to proceed, the whole
realization of the Gumbel process with measure P is not needed, and in fact it can be realized on-the-go.

A* coding (Algorithm 1) first runs the regular A* sampling procedure by simulating the Gumbel process with the proposal
measure P using the publicly available randomness S. Then, it encodes the returned sample using the heap index H,, of the
node n with which the sample is associated. Since any node with a given heap index can be simulated without reference to
@ using Algorithm 2, the code returned by A* coding is always uniquely decodable given S, and the correctness of A*
sampling (Maddison et al., 2014) will guarantee that the sample A* coding returns has the correct distribution ().

PFR and ORC also operate on Gumbel/Poisson processes, however, they use a different encoding process. They encode
the index K of a sample as opposed to its heap index H. For a sample x, K is obtained by sorting the arrival times in the
Gumbel/Poisson process with measure P, and returning the index associated with x in the sorted list. PFR and ORC obtain
K easily, because they realize the Gumbel/Poisson process in-order (for example, see Algorithm 3 in (Maddison et al.,
2014)). Similarly, Algorithm 2 also constructs the process in order, however, it uses the top-down construction.

Theorem 1 shows that A* coding is not only correct and uniquely decodable, but its expected codelength is also optimal.
However, to show this, we first show the following intermediate result, which relates the index K of a sample to its expected
depth D in the top-down construction.

Lemma 3 (Average depth of nodes in a Gumbel process). Let P be a Borel probability measure over some Polish space
that is supplied to Algorithm 2. Assume that partition satisfies the following property: there exists € € [1/2, 1), such
that for any node n we have

E[P(B,)] <€, (24)

where the expectation is taken over the joint distribution of the samples associated with the ancestor nodes of n. Let K, be
the index of a node n realized by Algorithm 2 and let D,, be its depth in the tree. Then,

E[Dn | Kn] S _IOge Kn- (25)

Before delving into the proof, we clarify the allowed domain of e. First note that € is solely a property of partition.
Note that fixing e = 1 would imply that the bounds do not shrink. The reason why € > 1/2 is because if partition breaks
some region B into L and R with P(L) = er, P(B), then necessarily P(R) = eg P(B) = (1 — e1,) P(B), hence we need to
take e = max{ey, eg}. This means that the minimal € is achieved when €, = e = 1/2. Finally, since partition might
depend on the samples drawn up to reaching the node with bound B, we need to take expectation over these.

Proof. Let Fi, = (f1,. .. fx) be the frontier of alg. 2 after k steps. We shall say that alg. 2 or alg. 1 expand a node, which
means that they pop off the highest priority node from their priority queue. JFj, consists of all the nodes that could be
expanded, starting with /7 only containing the root node. In the search literature F}, is also commonly referred to as the
open set of nodes. A simple inductive argument shows, that for a binary tree on k nodes will always have k£ + 1 nodes on its
frontier, i.e. |Fx| = k.

Fast Relative Entropy Coding with A* Coding

Let {(X;,G;) f;ll be the samples and Gumbels realized by alg. 2, sorted in descending order by the G;s up to the k — 1
largest one. Let uy = log P(By) be the location parameter of the truncated Gumbel variate G for a node f € Fy.
Maddison et al. (2014) show (see their Appendix, the section titled “Equivalence Under partition”), that regardless of
the choice of partition,

VfeFr Gy~TG(up,Gpo1). (26)

Let F}, € F}, denote the node that is expanded in step £, i.e.

Fj, ~ argmax{Gy}. (27)
fe€Fk

Then a simple Gumbel-max trick-type argument shows (Maddison et al., 2014), that

p(Fk = f ‘ Gl:kflellk'*l) = z%
PEFy

__exp(log P(By))

> ser, exp(log P(By)) (28)
__ P(By)

quefk P(B<Z>)
= P(By),

where the last equality holds because the bounds associated with the nodes on F}, form a partition of the whole sample
space for any k. Then,

EP(Fk:flGlzk—th:k—l)[_lu’f] == Z P(Bf):uf
fE€FkK

=— > P(By)log P(By) (29)
fEFK

= HIF}]
<logk.

The last equality follows, since the maximal Shannon entropy of a distribution over k items is the uniform distribution with
entropy log k.

Now, taking expectations over G1.x—1, X1.x—1, We get

Ep(F=£.Grnr. Xupa k) [~ 1] < logk. (30)

Finally,
logh > Ep(ry=f.Grp_1 Xrna k) [—Hf]
= Ep(ro=£.Grn1. X101 k) [~ log P(By)]

2 - log Ep(Fk:f,Gl:k—l,Xlzk—1\k) [P(Bf)] (3D
> —log eDr
= —Dj loge,

where the second inequality holds by Jensen’s inequality and the third inequality holds by our assumption on partition.
Since 0 < — log e, rearranging the two sides of the inequality gives the desired result.

O

With this result in mind, we are now ready to prove Theorem 1, which we state again for completeness:

Theorem 4 (Expected codelength of A* coding). Let QQ and P be the target and proposal measures passed to A* coding
(Algorithm 1). Assume that partition satisfies the following property: there exists € € [1/2,1) such that for any node n
we have

E[P(By)] < ¢, (32)

Fast Relative Entropy Coding with A* Coding

where the expectation is taken over the joint distribution of the samples associated with the ancestor nodes of n. Let k be the
node returned by A* coding. Then, we have

E[Dy] < ——— [Dxw[QIIP] + ¢ + log2] . (33)
loge

In particular, when e = 1/2,
E[Dy] < Dki[Q||P]a + e *logy e + 1. (34)

Proof. Let K be the random variable that represents the index (not the heap index) of the sample returned by A* coding.
Maddison (2016) show that K is equal in distribution to the index returned by running global bound A* sampling, which is
equal in distribution to the index returned by PFR coding. In Li & El Gamal (2018), Appendix, section A it is shown, that

E[log K] < Dxp[Q||P] + e ! +log2. (35)

Putting this together with Lemma 3, we get the desired result. O

B. Proof of Lemma 1

In the main text, the result is stated for AS* sampling. However, the result does not depend on the target (), only the
realization of the Gumbel process with base measure P in alg. 2, hence we restate the lemma here as follows:

Lemma 4. Let P be a non-atomic proposal measure over a 1-dimensional sample space, passed to Algorithm 2, and let
partition be as defined in eq. (13). Then the condition in eq. (10) is satisfied with e = 3/4, that is

E[P(B,)] < (i)D | (36)

Proof. Let I denote the CDF of the measure P. we will prove the claim by induction. For the base case, note, that depth
D = 0 can be associated with not having drawn any samples yet, i.e. the next node that is expanded by alg. 2 will be the root
node. Since the sample is drawn from the whole space, we will have P(B;) = P(2) = 1 = (3/4)". For the hypothesis,
assume the claim holds for D = d. Let D = d + 1. Fix a node n such that D,, = d + 1. Let A(n) = (n1,...,np,—1)
denote the ancestors of n, where n; is the root of the tree and np, 1 = par(n) is the direct parent node of n in the tree
constructed by alg. 2. Then, by the law of iterated expectations, we have

EP(XA(n)) [P(Bn)] =

@37
EP(XA(PaY(n))) [Ep(xpar(n) ‘X.A(par(n))) [P(Bn)ﬂ :

Focusing on the inner expectation, let B,,.(,) = (a, b). Then, by the definition of partition, L = (a, X,), R = (Xy,,b).

Note, that since B,, is either L or R, we have P(B,,) < max{P(L), P(R)}. Furthermore, since the space is 1 dimensional,

we get P(L) = F(X,) — F(a) and P(R) = F(b) — F(X,). Let U (c,d) denote the uniform density on (c,d). Let
def

a = F(a), 8 = F(b). Then, by the generalized probability integral transform, we find, that U = F(X,,) ~ U («, 8). Thus,
by the law of the unconscious statistician, the inner expectation of eq. (37) can be rewritten as

Ep(Xpar(n) |X.A(par(n))) [P(Bn)]
< Epy[max{U — a, 8 - U}]

B - _
_ max{u — a, 8 —u} du
a B—a (38)
3
= Z(ﬂ - a)
3
— ZP(BpaI‘(TL))'
Now, by the induction hypothesis eq. (37) becomes
3 3 d+1
ZEP(XA(par(n)))[P(Bn)] < <4)) 39

which concludes the proof. O

Fast Relative Entropy Coding with A* Coding

C. Proof of Theorem 2

Note: Our original argument for the linear runtime of A* coding contained an error. Markou (2022) provided a proof for
theorem 2, which we reproduce here.

Overview: The proof breaks down the execution of AS* coding into two stages. For the first stage, we consider how AS*
shrinks its search bounds, until it obtains a sufficiently good candidate sample. Here, a sufficiently good sample is a sample
which falls within a predefined super-level set of the density ratio. Lemma 8 gives an upper bound on the expected number
of steps in this first stage of the algorithm.

For the second stage, we quantify how many additional steps AS* must subsequently make until it terminates, after obtaining
a good candidate sample in the first stage. Lemma 11 gives an upper bound on the expected number of steps in this second
stage of the algorithm. Putting lemmas 8 and 11 together, we obtain an upper bound on the runtime of AS*, stated in
corollary 1. This bound depends on, and holds for any, super-level set. Therefore, we can minimise this bound over all
super-level sets of the density ratio. Lastly, we show that even for the worst case density ratios of this bound, this minimum
results in a runtime is linear in the co-divergence, resulting in theorem 2.

Notation: In this section, all indices to random variables are integers corresponding to the depth of the variable within the
binary tree being searched. This is in contrast to other sections where the random variables are indexed by the node of the
binary tree to which they belong. We found this notational overloading makes the exposition clearer, and the meaning of the
indexing should be clear from the context.

Assumption 1 (Continuous distributions, finite D). We assume that measures (Q and P describe continuous random
variables, so their densities q and p exist. Since P >> @), the Radon-Nikodym derivative r(x) = (dQ/dP)(x) also exists.
We also assume r(x) is unimodal and satisfies

Do [Q||P] = log sup @(x) = 10g I'mag < 0. (40)
zER dP

Without loss of generality, we can also assume P to be the uniform measure on [0, 1], as shown by the next lemma. This is
because we can push P and @ through the CDF of P to ensure P is uniform, while leaving the Radon-Nikodym derivative
unimodal and the oco-divergence unchanged.

Lemma 5 (Without loss of generality, P is uniform). Suppose Q) is a target measure and P a proposal measure as specified
in Assumption 1. Let ® be the CDF associated with P and consider the measures P’ Q' : [0,1] — [0, 00) defined as

P =Pod®d ! and Q =Qod L. 41)
Then, P' is the uniform measure on [0, 1). Further, the Radon-Nikodym derivative dQ’ /dP'(z) is unimodal, and
g’ dQ
log su z) = logsup —(x). 42)
gze[ol?u dP’() gze% dP()

Proof. First, P’ is the uniform measure on [0, 1] since for any z € [0, 1]
P'([0,2]) = Po®7H([0,2]) = P((~00, 27" (2)]) = [0, 2]. (43)

Now, let the densities of @ and P be g and p, and the densities of Q" and P’ be ¢’ and p’. Then by the change of variables
formula

P(2) =p(271(2) (@7)'(2) and ¢'(2) =¢ (27 (2)) (@) (2). (44)
Therefore, we have

19y 1C) _a(P6) a9,
dp’ P(z) p(@'(2) dP
Now, since dQ/dP(x) is a unimodal function of z and ®~!(z) is increasing in z, the function (dQ/dP) o ®~1(z) is
unimodal in z. Also, by taking the the supremum and logarithm of both sizes

o7 1(z), (45)

!

d d
(z) = log sup aQ o0 ®71(2) = logsup

— (x), (46)
z€[0,1] ar z€R dP()

log sup
zefo,1] AP’

Fast Relative Entropy Coding with A* Coding

arriving at the result. O
We now define the super-level sets of the density ratio, and super-level set width functions, on which the argument relies.
Definition 2 (Superlevel set, width). We define the superlevel-set function S : [0,1] — 2[%1 as

S(y) ={z €[0,1][r(*) > V"maz}, 47

And let Ty, € {z € [0,1] | 7(2) < r(Xmaz)} be an arbitrary maximiser of the density ratio. We also define the
superlevel-set width function w : [0,1] — [0,1] as

w(y) =inf{é € [0,1] | 3z € [0,1], S(v) C [z, 2+ d]}. (48)

Because width functions are defined in terms of a ratio of probability densities, they satisfy certain properties, stated in
lemma 6 and proved below. We use these properties later to prove lemma 12.

Lemma 6 (Properties of w). The width function w(7y) is non-increasing in y and satisfies

1
1 1
/ w(y) dy = and w(0) > (49)
0 Tmaz Tmazx
Proof. First, we note that if 7, < 74, then S(y2) € S(+1) which implies w(72) < w(7;). Therefore
N <2 = w(r) <wln), (50)

so w(+y) is decreasing in «y. Second, let A = [0, 1] X [0, 'maqz], define B = {(x,y) € A | y < r(x)} and consider the integral

I:/ 1(z € B) d=. (51)
A
Since this the integrand is a non-negative measurable function, by Fubini’s theorem, we have
1 Tmazx Tmazx 1
I:/ / 1((z,y) € B) dy dx:/ / 1((x,y) € B) dx dy (52)
o Jo 0 0
1 Trmas
/ r(z) de = / w(Y/Tmaz) dy (53)
0 0
1 1
[ate)do= [w6 iy (54
0 0
1
/ w(y) dY = 70, (55)
0
Last, since w is non-increasing, we have w(0) > 7,1 . because otherwise fol w(y) dy <1k, O

Now we define the two stages in which we break down the execution AS* coding. In particular, we define N (v) as the
number of steps required until AS* gives a sample in the superlevel set S(vy), and we define K () as the number of
subsequent steps required for AS* to terminate.

Definition 3 (# steps to S(7y), # residual steps). Suppose AS* is applied to a target-proposal pair Q, P satisfying Assumption
1, producing a sequence of samples X1, Xs,.... We use T' € 7 to denote the total number of steps taken by AS* until it
terminates and define the random variables

N(y) =min{n € Z | X,, € S(v)} and K(v) =max{0,T — N(v)}. (56)

Fast Relative Entropy Coding with A* Coding

Because the bounds of AS* shrink exponentially quickly, we can bound the probability that AS* in the first stage, by a
quantity which also shrinks exponentially, as stated in lemma 7.

Lemma 7 (Upper bound on the probability of P(B,,) > w(v)). Let Z, = P(B,,). Then

1 /3\"!
P(Z, > w(v)) < o) (4> (57)

Proof. Let Z,, = P(B,,). Noting that Z,, > 0, we apply Markov’s inequality and lemma 4 to get

1 13\
Pz 2 ut) < oBlz) < o (3))
as required. O

Now using lemma 7 we can upper bound the expectation over N (v), which depends on the logarithm of the width w(~).
Lemma 8 (Bound on expected N(v)). The random variable N () satisfies

—1
E[N(v)] < alog ﬁ + 6, where o = (log g) . (59)

Proof. Let Ny = “gigﬂﬂ + 1. Also let By, By, . .. be the bounds produced by AS*. Noting that by the unimodality of ,

S(7y) is an interval with 2,4, € S(7), and 4, € By, we have
P(Bn) <w(y) = N(7) <n, (60)
that is, the event P(B,,) < w(~y) implies the event N(-y) < n. From this it follows that
P(P(Bn) <w(7)) <P(N(7) <n) = P(P(Bn) 2 w(y)) ZP(N(7) Zn+1). (61)

Using this together with lemma 7, we can write

Epyo [N(V)] =Y P(N(y) =n) n (62)
n=1
=Y P(N(y)>n) (63)
n=1
<No+ Y, P(N(y)>n) (64)
n=Nop+1
= No+ Y P(N() = No+n) (65)
n=1
< No+ Y P(Bnyin-1 > w(y)) (66)
n=1
%) 1 3 No+n—1
<No+» — = 67
= ; w(7) <4) ©7
<No+ > (i) (68)
n=1
— Ny +4 (69)
< logw) | ¢ (70)

~ log3/4

Fast Relative Entropy Coding with A* Coding

where the equality of 62 and 63 is a standard identity (Grimmett & Welsh, 2014), 63 to 64 follows by the fact that probabilities
are bounded above by 1, 64 to 65 follows by relabelling the indices, 65 to 66 follows from eq. (61), 66 to 67 follows from
follows from lemma 7 and 66 to 67 follows from our definition of Ng. O

Now we turn to bounding the expectation of K (). For this, we must consider how the difference between the upper and
lower bounds maintained by the search shrinks. To do so, we will use lemma 10. Lemma 9 is an intermediate result, which
we use to show lemma 10.

Lemma 9 (Exponentials and Truncated Gumbels). Let T ~ Exp(\) and Ty > 0. Then
7% log(T + To) L G where G ~ TG(log A, —log Tp). (71)

Proof. LetT ~ Exp(A), Tp > 0 and define

72 _log(T + Tp). (72)

We note that Z < —log T. For Z < —log Ty, we can apply the change of variables formula to obtain the density of Z. Let
pz and pr be the densities of Z and T". Then

dt
pz(z) = pr(t) - (73)
— e[L 1) (74)
dz 0
xe N Te? (75)
x e (76)
where x = log A. Therefore Z has distribution TG(log A, — log Tp). O

Lemma 10 (Mean of exponentiated negative truncated Gumbel). Let By, ..., By be the first N bounds produced by AS¥,
let G be the N Gumbel produced by AS* and define Ex = e~N. Then

N
1
E[Ey | Bi.n]| = . 77
[En | Bi:N] ;P(Bn) (77)
Proof. Define E,, = e~ C» forn = 1,2,. ... By the definition of AS*, we have
GN | GN—hBl:N NTG(logP(BN),GN_l). (78)
Negating G v and G y_1, taking exponentials and applying Jensen’s inequality together with ineq. (9), we obtain
En | Tn-1,Bon < 7x + Tiv_1, where 7y_1 ~ Exp(P(By)). (79)
Repeating this step and taking expectations, we have
N N 1
ElEy | Bo.n] =E n | Bo:n| = 80
[En | Bo:v] nZ::lT | Bo:v ;P(Bn) (80)
as required. O

Using lemma 10 we can bound the expectation over K (), as stated and proved in lemma 11. Note that this bound does not
depend on N (), which has been marginalised out.

Lemma 11 (Bound on expected K (7)). The random variable K (vy) satisfies

-1
> + 16, where o = <10g 4> . (81)

1
E[K < log — +1
K< a(log +1og :

1
w(7)

Fast Relative Entropy Coding with A* Coding

Proof. Let the global upper and lower bounds of AS* at step n be U,, and L,, respectively. Then, by the definition of the
upper bound of AS* coding

UN('y) = log rmas + GN('y)v (32)

and also, by the definition of the lower bound of AS* coding

LN('y) = HGHI?‘V}%W)] {IOgT(J?n) + Gn} > 10g’l" (xN('y)) + GN('y) > 10g’Y7“max + GN(’y) (83)

Now for k = 0,1,2,..., we have
UNe+k = Iney4r <0 = T < N(y) +F, (84)

that is, the event Up (y) 41 — Ln(y)+r < 0 implies the event " < N(vy) + k. This is because if Uy (y)+ — Ln(y)+x < 0,
then the algorithm has terminated by step N(y) + k, so it follows that 7" < N () + k. Further

Une+e = Lvey+k S Uney+k = Ly (85)
< logTmaz + GN(Py)qu — log Yrmaz — GN(Py) (86)
1
= log ; + GN('y)+k - GN('y)' 87)
Therefore, we have
GNeyy+k — Gy <logy = T < N(y)+k = K(y) <k, (88)

that is, the event G'n ()11 — G n(y) < logy implies the event K () < k. This holds because if G'n(y)+r — Gn(y) < log,
then Un (411 — Ln(y)+x < 0, which in turn implies K () < k. Therefore

P (GN(yy+k = GN(y) < logy) <P (K(y) < k) = P(Gn(y)+k — Gy 2logy) 2P (K(y) 2 k+1). (89)

Equation (89) upper bounds the probability that the second stage of the algorithm has not terminated, by the probability that
the Gumbel values have decreased sufficiently. To proceed, we turn to lower bounding the probability of the complementary
event Gy (y)+kx — Gn(y) < logv. Let ®7¢(g; i, k) denote the CDF of a truncated Gumbel distribution with location
parameter p and unit scale parameter, truncated at . Then

P(GN(y)+n — Gy <logy | N(7), Gniyys Bon(y)+n) = (90)
=Ecyiyin [P(GN)+n = Gy 1087 [N (), GNy)s GN) tn—15 Bon(y)4n)] D
=Eay(yina [(I)TG (log’y + GN(y)i 108 P(BN(y)4n); GN(W)+n—1)] 92)
> @1 (logy + G(y); 108 P(BN(y)4n)s o) 93)
_ e_e*(“g”*GN(v)*logP(Bzv(v)w)) 94)
— o2 P(Bniin) e N (95)

Taking an expectation over G () and By.n () 4n, We have

—1 P(Bn(yy4n) e N

NG| 96)

-G
> e_% IE“GN(W)’BO:N(“/H»n {P(BN('Y)‘F’IL) e TNM | N('Y)} (97)

P(Gxryin — Gy 1087 | N() 2 Eayy,Bosn €

Fast Relative Entropy Coding with A* Coding

Focusing on the term in the exponent, we have

EGy oy Bonyin [P (BN@y+n) € VO [N(7)] = (98)
= EBO:N(w)—l _]EGNM)’BN(w):N(an [P (BN(7)+n> e~V | BO:N(’Y)—l’N(IY)} ‘ NW)} ©9)
r 3 n4+1
S EBonen-1 |Eawe l<4) P (BN(’Y)—l) emGNe BO:N(V)—ll ‘ N(v) 1 (100)
[3 n+1 N(v)-1 1
= EB[):N('y)—l (4) P (BN(’Y)*1> nZ:o P(B,) ‘ N(v) (101)
3 n+1)
< (4) N(). (102)
Substituting eq. (102) into eq. (97), we obtain
_ NG (3)ynHl
P(GN(y)+n — Gn(y) <logy | N(7)) > e - @) (103)
and applying ineq. (69) to this we obtain
_1 (3)ntl
P(Gn(yy4n — Gy < logy) > 73 (1) (o), (104)
arriving at a deterministic lower bound on which does not depend on any random quantities. Now we also have
1 1 log w(7y)
log — + log(Ny + 4 zlog—i—log([+5 (105)
gl (No+4) gl log(3/4)
< log & + log (log“’mw) (106)
Ty log(3/4)
1 1
<log — 4+ log —— + 2, (107)
gl w(v)
where going from 106 to 107 can be verified numerically. Therefore, letting Ko = Fog(l/) ﬁoéﬁ(/%wm) + 2}, we have
E[K)] =Y P(K(y) =k)k (108)
k=0
oo
= P(K(7) > k) (109)
k=0
<Ko+ Y P(K(y) =k (110)
k=Ko+1
=Ko+ Y P(K(y) > Ko +k) (111)
k=1
< Ko+) P(Gneyirorh-1 — Gy > logy) (112)
k=1
<Ko+ (1-e(@)) (113)
k=1
<Ky+4 (114)
logy | logw(y) | 44 (115)

~ log(3/4) log(3/4)

Fast Relative Entropy Coding with A* Coding

where the equality of 108 and 109 is a standard identity (Grimmett & Stirzaker, 2001), 109 to 110 follows because
probabilities are bounded above by 1, 110 to 111 follows by relabelling the indices, 111 to 112 follows by ineq. (89), 112 to
113 follows by ineq. (104) and the definition of K, 113 to 114 can be verified by evaluating the sum using numerical means
and 114 to 115 follows by the definition of K. O

Putting lemmas 8 and 11 together, we obtain corollary 1, which is a bound on the expected runtime of AS*. This holds for
any width function w and any « € [0, 1]. Note that whenever v = 0 or w(+) = 0 this bound becomes vacuous.

Corollary 1 (Upper bound on T for given w). For any v € [0, 1], the total number of steps, T, satisfies

1 1 A
E[T] < 2« (log —— +2log) + 22, where o = (log) (116)
w(7) g 3

Proof. By the definition of N(v) and K (), we have

T<N()+K(y) = E[T]<E[N(7)+K()], (117)
for all v € [0, 1]. From lemma 8 and lemma 11, we have
1 1 1 1
E[T)<a|2log—— +log— | +22 <2a|(log—— +2log — | + 22, (118)
w(7) gl w(7) g
where o = log(4/3) ™! as required. O

Note that in eq. (118) we obtain a bound which we intentionally make looser. This step results in a looser bound but
facilitates subsequent manipulations easier. While a more careful analysis may result in a tighter bound, it can only improve
our bound by a scaling factor, and we leave this as a point for further work.

Since corollary 1 holds for any v € [0, 1], we can minimise the right hand side with respect to -y to make the bound as tight
as possible. This results in a bound that is a function of w, however we are interested in producing a bound that holds for all
w. Therefore, after minimising with respect to vy, we will consider the worst possible width functions which maximise
the resulting quantity, and show that even for these worst-case width functions, the bound is linear in 7,,,4,. Definition 4
introduces the family of these worst-case width functions for a given r,,4;-

Definition 4 (Bound functions f, g, h, worst-case width set W*). We define
1 1
f(v,w) =log ——, g(y) = 2log — and h(y,w) = f(v,w) +g(7). (119)
w(7) gl
For fixed 744, let W (Timas) be the set of all possible width functions. We define the set W* of worst-case width functions as
wW* = {w* € W(rmaz) | inf h(7/,w*) > inf h(y',w) Vw € W(rmam)} . (120)
,YI ,\//
We refer to members of this set as worst-case width functions.

Next, for a given 7,4, we define a width function @ with a particular form, and show that @ € W (7,4,). We also show
that if w € W (r,4.) is any other width function, then

inf h(y,w) > inf h(y,w), (121)
v v

from which it follows that <0 is a worst case width function, that is w € W*.
Lemma 12 (An explicit worst case width function). The function

<~ <A
- {1 for0 <~y <y (122)

(3/7)? fory<y<1’
where 5 =1 — \/1 — "mus, is a width function and @ € W (Tmaq). Further, if w € W (rpqz) then
inf h(y,w) > inf h(y,w). (123)
¥ ¥

Fast Relative Entropy Coding with A* Coding

Proof. Suppose w € W (7' ,4.) and let

m = ir71f h(vy,), (124)
let 7,, be the point where g equals m, that is
9(Ym) = 2log % =m = = "2 (125)
Define v : [0,1] x [0,1] — [0,1] as
v(,Y) = {(17,)2 S,S :f;ll : (126)

and consider v(y, 7m,) as a function of -y. Note that v(y, 7,,,) may not be in W (7,4,) because, while it is non-increasing
and continuous, it may not integrate to 71 . In particular it holds that

max*

1
h(v,v(7,7m)) < h(y, @) forall v € [0,1] = v(y,7m) = w(y) = / 0(Y,9m) dY > T (127)
0
Now, note that)
/ v(v,7) dy =29 = (v)*. (128)
0

By the intermediate value theorem, there exists some 0 < 5 < 7, such that 29 — 2 = ;.1 . For this 7, we define

w(y) = v(7,7), which is a width function because it is decreasing and integrates to 1. Specifically, w(7) is in W (7 qz)
because the probability density function

(%) = Trmas min{Lax*l/Q}, (129)

has w(+y) as its width function. In addition note that ¥ < ~,,, so we have

¥ <V = igfh(%u?(v)) = igfh(v,v(vﬁ)) > igfh(%v(%vm)) = igfh(%w(v))- (130)
Therefore it holds that
w € W(rmas) = inf h(y, @) > inf h(y,w), (131)
Y Y
from which it follows that w0 € W* is a width function. O

Last, we can put corollary 1 together with lemma 12 to arrive at the main result.

Theorem (AS* runtime upper bound). Let T' be the total number of steps taken by AS* until it terminates. Then

E[T] < 2alogrmas + 2alog 2 + 22. (132)

Proof. Suppose AS* is applied to a target) and proposal P with D, [Q||P] = rmaz, and corresponding width function
w € W (rmaz). Now consider the worst case width function @ defined in lemma 12, and note that

1
F=1-V1—rmks > : (133)
QTTVLLL"IJ
Then we have
E[T] < 2ainf h(y,w) + 22 < 2ainf h(y, w) + 22 < 2ah(7,0) + 22, (134)
v ¥
and substituting the expression for i we obtain
1 1
E[T] <2« | log ﬁ +2log = | + 22 < 4alogrpa: + 4alog?2 + 22, (135)
wy g

arriving at the result. O

Fast Relative Entropy Coding with A* Coding

D. Proof of Theorem 3

Before we state the precise form of Theorem 3, we clarify what the precise form the approximate distribution @ p of
the output of DAD* is for target) and proposal P for depth limit D,,,, = D. This means that there are N = 2° — 1

nodes in the binary tree constructed by alg. 1 with associated Gumbel values and samples {(G;, X;)}Y ;. Letr = % and

r; = r(X;). Then, DAD* searches for I = arg max; ¢y {log 7(X;) + G}, which can therefore be interpreted as simply
performing the Gumbel-max trick on N atoms. Hence, we know, that

.) exp(logr;
w Ep(I=1i| X1n) = — (log)
> j—1 exp(logr;)

B v (136)
—~
Zj:l Tj
Hence, we finally get
N
gp(X) = wid(X — X;) (137)
i=1
where 4 denotes the Dirac delta function.
Then, the @ p-expectation of a measurable function f is
N N
Zi: rif (Xi)
EQD[f]ZZwif(Xi)Zile _— (138)
i=1 j=1"J
Now, define
1 N
def
In(f) = & 2 F (X (139)

Note, that Zp(f) looks very similar to the usual importance sampling estimator for ()-expectation the function f using
N samples with distribution P. However, in this case the X;s used in Zp(f) are not identically distributed, though they
are independent. In particular, let n be a node in the tree realized by alg. 2 with D, = D. Then, X,, ~ P|p,. The
importance of Zp (f) is that the @ p-expectation of f in eq. (138) can be written as

Eg, [f] = (140)

where 1 in the above is the constant function identically equal to 1. Hence, we begin by investigating the properties of
Zp(f). First, we show that it is unbiased:

Lemma 13 (Unbiasedness of Zp(f)). Let Q, P, r, f and Zp(f) be defined as above. Then,

Epx,.n) Ip(f)] = Eg[f]- (141)

Proof. Let Tp denote the set of all nodes in the binary tree constructed by alg. 2 with D,,,,,, = D. We first note, that

for anode n € Tp, we know X,, ~ P|p, , hence dP(X,,)|p,= % for X,, € B,,. Furthermore, since partition

is dyadic, we know that for a fixed depth 1 < d < D, for every node n with D,, = d it holds, that P(B,,) = 9-(d=1),

Fast Relative Entropy Coding with A* Coding

Furthermore, by construction, the bounds at a given depth are disjoint and form a partition of the whole space. Therefore,

EP(XI:N) [ID(f)] =

:EP(XI:N) % Z rnf(Xn)]

R (142)

as required. O

Given the unbiasedness of Zp (f), the rest of the proof follows mostly that of Chatterjee & Diaconis (2018) with appropriate
modifications in the necessary places. Hence, we begin with the following lemma:

Lemma 14 (Mean absolute deviation bound for Zp (f)). Let Q, P, r, f and Zp(f) be defined as above. Let

def def

K = |DxL[Q||P)2], DEK +t, N=Z2P, (143)

where t is a non-negative integer, and Y ~ Q. Define

I1flQ = \/Eqlf?]. (144)
Let
= <2_t/4\/1+i]+2\/}}”[log2r(§/) > K+t/2]> (145)
Then,
E[[I7.(p)(f) — Eq[f]l] < bl fllq- (146)
Proof. Leta = 25K+t/2 and define
h(z) = f(z)1[r(z) < a], (147)

where 1[-] is an indicator function. Let ¢, € L?(Q), and define

(6. 0)0 & /Q Q. (148)

By the triangle inequality,
Ip(f) = Eqlf]l <

Eolf] — Eolhll + |Zo(f) — To(h)| + [In(h) — Eglhll. (149)

Fast Relative Entropy Coding with A* Coding

We will now proceed to bound each term on the right hand side of the inequality. First,

[Eqlf] — Eq[hl| = [Eq[f — Al
< Eq[|f|L[r > a]
= (If, 1[r > al)q

< flleVPrY) > d,

(150)

where the first inequality follows by Jensen’s inequality and the second follows by Cauchy-Schwarz. Next,

E[[Zo(f) —Zn(h)]

E[|lZp(f = h)]]
E[Zp(|f = h)]
EQllf11[r > al] (151)
(7], 1r > al)q

<|flleVPrY) > d,

I IA

where the first inequality holds by Jensen’s inequality, the second equality follows by Lemma 13 and the second inequality
follows by Cauchy-Schwarz. Finally,

1< d

where the first inequality holds by Jensen’s inequality. Now, examining a single variance term in the above sum:

Ve, [0 0] <

<Ep,, {h(XnFZ?,(Xn)Q}

g 8@, 2dP(X)
=), PO G

_ gi-1 /B B2 (Xn)r(X,)dQ(X,)

(153)

=241 /B PX)1[r(X,) < a]r(X,)dQ(Xo)

— a2t /B FX)AQ(X,).

Fast Relative Entropy Coding with A* Coding

Plugging this back into eq. (152), we get

E[[Ip(h) — Eq[h][}* <

D
<Y Y [roa)
S =d

d=1n€Tp
D

D
= %22*1/{2]‘2(2{”)@(%) (154)
d=1

all A3 S~ as
N2 22
d=1

allfI3
e,

Taking square roots of the very left and very right, we get

EllIn (k) — Eqlil] < /o2 ™*/*y/1+ . (155)

Putting the three bounds together gives us the desired result. O

We are now ready to state our result on the o @ p-expectation

Theorem 5 (Biasedness of DAD* coding). Let Q, P, r, f, Z, @ D, K, D, N and Y be defined as in Lemma 14. Define

1/2
e <2t/4m+ 2/Pllogy r(Y) > K + t/2]>

0
P |[Eq, 11 - Bolr] = 2110

Then,

] < 26. (156)

Proof. The proof is mutatis mutandis the same as the proof of Theorem 1.2 of Chatterjee & Diaconis (2018), as it only
relies on eq. (140) and Lemma 14. We simply repeat it here for completeness.

Let a = 25+%/2 and
[1
b= (2-“4 L+ 5+ 2¢/Pllogyr(Y) > K + t/2]> : (157)

Then, by Markov’s inequality and Lemma 14, for § € (0, 1) we have

PlZo(f) 1] 2 o] < 2D =1l
b (158)
< Z
<5
and for a € (0,1) we get
(159)

Iflle

IA

Fast Relative Entropy Coding with A* Coding

Now, if |Zp(f) — Eg[f]| < aand |Zp(f) — 1| < 6, then

< Zo(f) — Eolf]l + [Eq[f]lI1 = Zp(1)] (160)
- Ip(1)

a+ [Eq[f]]6
<y

Finally, setting § = v/b and o = || f|| 9 gives the desired result.

E. Proof of Lemma 2

Lemma 15. Let Q) and P be the target and proposal distributions passed to A* coding (Algorithm 1). Let H* be the heap
index returned by unrestricted A* coding and H; be the index returned by its depth-limited version with D4, = d. Then,
conditioned on the public random sequence S, we have H; < H*. Further, there exists D € N such that for all d > D we
have Hy = H*.

Proof. Letn,m € T be two nodes in the binary tree representation 7 of the Gumbel process with base measure P realized
by alg. 2 simulated using the public random sequence S, such that D,, < D,. It follows from the definition of heap
indexing that H,,, < H,,. Given S, A* and its depth-limited version search over the same tree 7, with the difference that the
depth-limited version only searches 73 C 7T, the tree truncated after depth D,,,,, = d. Let

n* = argmax{G, + logr(X,)}
neT

n} = argmax{G, + logr(X,)},
ne€Tq

(161)

the nodes from 7 returned by unrestricted A* coding and its depth-limited version, respectively. Clearly D,,» < d. Then,
we have the following two cases.

Case 1: d < D,,~. In this case, we have Dn:} < Dp=, hence H] < H*.

Case 2: d > D,,~. In this case, depth-limited A* coding finds and returns n*, and since it is the global maximum, increasing
the budget further will not make a difference in the returned node. Thus, for this case we get H; = H*, as required. [

F. KL Parameterization for Distributions
In this section, we demonstrate how Gaussian and uniform target distributions can be parameterized by their KL divergence
to some reference distribution, and give some details on how to implement these parameterizations in practice.
F.1. KL-Mean Parameterization for Gaussians
Given a reference Gaussian distribution P = N (v, p?), we want to parameterize Q = A (1, 02) such that
Dx1L[Q||P] =k and o < p. (162)

The condition that o < p incorporates the additional inductive bias, that since P in practical applications acts as a prior and
@ will be representing a variational approximation to a posterior, the posterior should have less uncertainty than the prior. It
is also a condition required by A* coding, as this condition is necessary and sufficient to ensure D, [Q||P] < oo.

The KL divergence from @ to P is

2
(2
DxL[Q|IP) = 1og§ TRl O R— (163)

Fast Relative Entropy Coding with A* Coding

Algorithm 2: Priority queue-based top-down construction of a Gumbel process.

Input :Base distribution P with density p, number of samples to realize K, maximum search depth D,
Output : Next realization from the Gumbel process GPp = (Xj, Gi)72 ;.
k,Di,H, < 1,1,1
Q < PriorityQueue
G4 ~ Gumbel(0)
X1~ P(")
II.pushWithPriority(1l,Gy)
while !IT.empty() do
i + Il.popHighest()
if D; < D,,,... then
L,R < partition(B,, X;)
for C € {L,R} do
k< k+1
By C
Dy, + Dp +1
2H ifC =1L
2H,+1 ifC=R
Gy ~ TruncGumbel(log P(By), Gp)
Xy ~ P(-)|p,/P(By)
II.pushWithPriority(k, Gi)

end

end
yield X;, G;, H;, D;
end

Fast Relative Entropy Coding with A* Coding

We observe that the largest value that |y« — v| can take while satisfying this equality and the constraint 0 < o < p, occurs
when o — p, in which case we have

(’”L;p;)zﬁ:»mukp\/ﬂ. (164)
Defining A = (u — v)/p, we can rearrange eq. (163) to
;j e P = AT (165)
We can rearrange this equation using the Lambert W function (Lambert, 1758), into the form
o2 = —p?W (—eA”'H) . (166)

While the Lambert W does not have an expression in terms of elementary functions, it can be estimated numerically (Corless
et al., 1996). While a numerical solver for the W function is supported in Tensorflow, we found it computationally faster
and numerically stabler method to use a Pade approximant of W in practice (Brezinski, 1994). We make this approximatant
method available in our code repository.

Implementing a Gaussian IsoKL layer: Note, that the parameters derived above are in a constrained domain. Thus, given
P = N (v, p?), we can reparameterize # and j to an unconstrained domain as follows:

1. Let a, 8 be real numbers.

2. Set k < exp(«). This will ensure that x > 0.

3. Set y1 < v + pv/2k tanh(3). This ensures the inquality on | — v| in Equation (164) is satisfied.
4. Set o2 — —p*W (—eXp (A2 — 2Kk — 1))

F.2. KL-Infinity Divergence Parameterization for Gaussians

Assume now, instead of just controlling the KL, we wish to control the Rényi oo divergence as well. Concretely, for a given
reference Gaussian distribution P = N (v, p?), we want to parameterize Q = N (1, o) such that

Dxi[Q|[P] =K and D[Q|P]=R. (167)
We know, that)
K = Dx[Q||P] = 5 (1% + 0% —logo? — 1]

168
R = logsup @(I) :Lfloga. oy
zer | dP 2(1 —0?)
From these, we get that
p? =2K — 0% +logo?® +1
) 9 (169)
p"=2(1—-0*)(R+logo)
Setting these equal to each other
2K — 0% +logo? 4+ 1=2R+logo? —202R — o2 log o
o%logo? — 02 +20°R=2R - 2K — 1
o?logo? +0?(2R—1) = A
o?(logo® + B) = A
o?log(0?e”) = A (170)
ePo?log(c?e?) = AeP
elosloe)log(azeB) = AeP
log(c2eP) = W(A4eP)
2 W (AeB)—B

where we made the substitions A = 2R — 2K —1and B = 2R — 1.

Fast Relative Entropy Coding with A* Coding

Note: This parameterization is only unique up to the sign of the target mean p due to the symmetry of the Gaussian
distribution.
F.3. KL-Mean parameterization for Uniforms

Given a uniform reference distribution P = U (v, p) with mean v and width p on the interval [v — p/2, v + p/2], we want
to parameterize Q = U (u, o) such that

Dxi[Q|P) = . (171)
Note, that we must have
v—p/2<p—oc/2<pu+0/2<v+p/2 (172)
to ensure () < P. Now, we have
K = Dki[Q| P] = log g, (173)
from which we get
o = pexp(—k). (174)

Implementing a Uniform IsoKL layer: Note, that the parameters derived above are in a constrained domain. Thus, given
P =U (v, p), we can reparameterize ~ and 4 to an unconstrained domain as follows:

1. Let «, 8 be real numbers.
2. Set k < exp(«). This will ensure that x > 0.
3. Set o < pexp(—k).

4. Set pi < v + £5% tanh(f3). This will ensure Q < P.

