
Label Ranking through Nonparametric Regression

Dimitris Fotakis 1 Alkis Kalavasis 1 Eleni Psaroudaki 1

Abstract

Label Ranking (LR) corresponds to the problem
of learning a hypothesis that maps features to
rankings over a finite set of labels. We adopt a
nonparametric regression approach to LR and ob-
tain theoretical performance guarantees for this
fundamental practical problem. We introduce a
generative model for Label Ranking, in noiseless
and noisy nonparametric regression settings, and
provide sample complexity bounds for learning
algorithms in both cases. In the noiseless set-
ting, we study the LR problem with full rankings
and provide computationally efficient algorithms
using decision trees and random forests in the
high-dimensional regime. In the noisy setting,
we consider the more general cases of LR with
incomplete and partial rankings from a statistical
viewpoint and obtain sample complexity bounds
using the One-Versus-One approach of multiclass
classification. Finally, we complement our theo-
retical contributions with experiments, aiming to
understand how the input regression noise affects
the observed output.

1. Introduction
Label Ranking (LR) studies the problem of learning a map-
ping from features to rankings over a finite set of labels.
This task emerges in many domains. Common practical il-
lustrations include pattern recognition (Geng & Luo, 2014),
web advertisement (Djuric et al., 2014), sentiment analy-
sis (Wang et al., 2011), document categorization (Jindal &
Taneja, 2015) and bio-informatics (Balasubramaniyan et al.,
2005). The importance of LR has spurred the development
of several approaches for tackling this task from the per-
spective of the applied CS community (Vembu & Gärtner,
2010; Zhou et al., 2014b).

1School of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece. Correspondence
to: Eleni Psaroudaki <epsaroudaki@mail.ntua.gr>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

The overwhelming majority of these solutions comes with
experimental evaluation and no theoretical guarantees; e.g.,
algorithms based on decision trees are a workhorse for prac-
tical LR and lack theoretical guarantees. Given state-of-
the-art experimental results, based on Random Forests (see
Zhou & Qiu, 2018), we are highly motivated not only to
work towards a theoretical understanding of this central
learning problem but also to theoretically analyze how effi-
cient tree-based methods can be under specific assumptions.

LR comprises a supervised learning problem that extends
multiclass classification (Dekel et al., 2003). In the lat-
ter, with instance domain X ⊆ Rd and set of labels
[k] := {1, . . . , k}, the learner draws i.i.d. labeled exam-
ples (x, y) ∈ X× [k] and aims to learn a hypothesis from
instances to labels, following the standard PAC model. In
LR, the learner observes labeled examples (x, σ) ∈ X× Sk
and the goal is to learn a hypothesis h : X → Sk from
instances to rankings of labels, where Sk is the symmet-
ric group of k elements. The ranking h(x) corresponds to
the preference list of the feature x and, as mentioned in
previous works (Hüllermeier et al., 2008), a natural way to
represent preferences is to evaluate individual alternatives
through a real-valued utility (or score) function. Note that if
the training data offer the utility scores directly, the problem
is reduced to a standard regression problem.

In our work, we assume that there exists such an underlying
nonparametric score function m : X → [0, 1]k, mapping
features to score values. The value mi(x) corresponds to
the score assigned to the label i ∈ [k] for input x and
can be considered proportional to the posterior probability
Pr(x,y)[y = i|x]. For each LR example (x, σ), the label
σ is generated by sorting the underlying regression-score
vector m(x), i.e., σ = argsort(m(x) + ξ) (with some
regression noise ξ). We are also interested in cases where
some of the alternatives of σ are missing, i.e., we observe
incomplete rankings σ ∈ S≤k; the way that such rankings
occur will be clarified later. Formally, we have:

Definition 1.1 (Distribution-free Nonparametric LR). Let
X ⊆ Rd, [k] be a set of labels, C be a class of functions
from X to [0, 1]k and Dx be an arbitrary distribution over
X. Consider a noise distribution E over Rk. Let m be an
unknown target function in C.

• An example oracle Ex(m, E) with complete rankings,

Label Ranking through Nonparametric Regression

works as follows: Each time Ex(m, E) is invoked, it
returns a labeled example (x, σ) ∈ X × Sk, where
(i) x ∼ Dx and ξ ∼ E independently and (ii) σ =
argsort(m(x) + ξ). Let DR be the joint distribution
over (x, σ) generated by the oracle. In the noiseless
case (ξ = 0 almost surely), we simply write Ex(m).

• LetM be a randomized mechanism that given a tuple
(x,y) ∈ X × Rk generates an incomplete ranking
M(x,y) ∈ S≤k. An example oracle Ex(m, E ,M)
with incomplete rankings, works as follows: Each time
Ex(m, E ,M) is invoked, it returns a labeled example
(x, σ) ∈ X× S≤k, where (i) x ∼ Dx, ξ ∼ E , (ii) y =
m(x) + ξ and (iii) σ =M(x,y). Let (x, σ) ∼ DMR .

We denote h : X→ Sk the composition h = argsort ◦m.
Note that the oracle Ex(m, E ,M) generalizes Ex(m, E)
(which generalizes Ex(m) accordingly) since we can set
M to beM(x,y) = argsort(y).

1.1. Problem Formulation and Contribution

Most of our attention focuses on the two upcoming learn-
ing goals, which are stated for the abstract Label Ranking
example oracle O ∈ {Ex(m),Ex(m, E),Ex(m, E ,M)}.
Let d be an appropriate ranking distance metric.
Problem 1 (Computational). The learner is given i.i.d. sam-
ples from the oracle O and its goal is to efficiently output a
hypothesis ĥ : X→ Sk such that with high probability the
error Ex∼Dx [d(ĥ(x), h(x))] is small.
Problem 2 (Statistical). Consider the median problem h? =
argminhE(x,σ)[d(h(x), σ)] where (x, σ) ∼ DR. The
learner is given i.i.d. samples from the oracle O and its
goal is to output a hypothesis ĥ : X → Sk from some hy-
pothesis class H such that with high probability the error
Prx∼Dx [ĥ(x) 6= h?(x)] against the median h? is small.

The main gap in the theoretical literature of LR was the lack
of computational guarantees. Problem 1 identifies this gap
and offers, in combination with the generative models of
the previous section, a natural and formal way to study the
theoretical performance of practical methods for LR such
as decision trees and random forests. We believe that this is
the main conceptual contribution of our work. In Problem 1,
the runtime should be polynomial in d, k, 1/ε.

While Problem 1 deals with computational aspects of LR,
Problem 2 focuses on the statistical aspects, i.e., the learner
may be computationally inefficient. This problem is exten-
sively studied as Ranking Median Regression (Clémençon
et al., 2018; Clémençon & Vogel, 2020) and is closely re-
lated to Empirical Risk Minimization (and this is why it is
“statistical”, since NP-hardness barriers may arise). We note
that the median problem is defined w.r.t. DR (over complete
rankings) but the learner receives examples from O (which

may correspond to incomplete rankings).

We study the distribution-free nonparametric LR task from
either theoretical or experimental viewpoints in three cases:

Noiseless Oracle with Complete Rankings. In this set-
ting, we draw samples from Ex(m) (i.e., Ex(m, E) with
ξ = 0). For this case, we resolve Problem 1 (under mild
assumptions) and provide theoretical guarantees for effi-
cient algorithms that use decision trees and random forests,
built greedily based on the CART empirical MSE criterion,
to interpolate the correct ranking hypothesis. This class
of algorithms is widely used in applied LR but theoretical
guarantees were missing. For the analysis, we adopt the
labelwise decomposition technique (Cheng et al., 2013),
where we generate one decision tree (or random forest) for
each position of the ranking. We underline that decision
trees and random forests are the state-of-the-art techniques
for LR.

Contribution 1: We provide the first theoretical performance
guarantees for these algorithms for Label Ranking under
mild conditions. We believe that our analysis and the iden-
tification of these conditions contributes towards a better
understanding of the practical success of these algorithms.

Noisy Oracle with Complete Rankings. We next replace
the noiseless oracle of Problem 1 with Ex(m, E). In this
noisy setting, the problem becomes challenging for theoreti-
cal analysis; we provide experimental evaluation aiming to
quantify how noise affects the capability of decision trees
and random forests to interpolate the true hypothesis.

Contribution 2: Our experimental evaluation demonstrates
that random forests and shallow decisions trees are robust
to noise, not only in our noisy setting, but also in standard
LR benchmarks.

Noisy Oracle with Incomplete Rankings. We consider the
oracle Ex(m, E ,M) with incomplete rankings. We resolve
Problem 2 for the Kendall tau distance, as in previous works
(so, we resolve it for the weaker oracles too). Now, the
learner is agnostic to the positions of the elements in the
incomplete ranking and so labelwise decomposition cannot
be applied. Using pairwise decomposition, we compute a
ranking predictor that achieves low misclassification error
compared to the optimal classifier h? and obtain sample
complexity bounds for this task.

Contribution 3: Building on the seminal results of (Korba
et al., 2017; Clémençon et al., 2018; Clémençon & Korba,
2018; Clémençon & Vogel, 2020), we give results for Prob-
lem 2 for incomplete rankings under appropriate conditions.

1.2. Related Work

LR has received significant attention over the years
(Shalev-Shwartz, 2007; Hüllermeier et al., 2008; Cheng

Label Ranking through Nonparametric Regression

& Hüllermeier, 2008; Har-Peled et al., 2003), due to the
large number of practical applications. There are mul-
tiple approaches for tackling this problem (see Vembu
& Gärtner, 2010; Zhou et al., 2014b, and the references
therein). Some of them are based on probabilistic models
(Cheng & Hüllermeier, 2008; Cheng et al., 2010; Grbovic
et al., 2012; Zhou et al., 2014a). Others are tree and en-
semble based, such as adaption of decision trees (Cheng
et al., 2009), entropy based ranking trees and forests (de Sá
et al., 2017), bagging techniques (Aledo et al., 2017), ran-
dom forests (Zhou & Qiu, 2018), boosting (Dery & Shmueli,
2020), achieving highly competitive results. There are also
works focusing on supervised clustering (Grbovic et al.,
2013). Decomposition techniques are closely related to
our work; they mainly transform the LR problem into sim-
pler problems, e.g., binary or multiclass (Hüllermeier et al.,
2008; Cheng & Hüllermeier, 2012; Cheng et al., 2013;
Cheng & Hüllermeier, 2013; Gurrieri et al., 2014).

Comparison to Previous Work. To the best of our knowl-
edge, there is no previous theoretical work focusing on
the computational complexity of LR (a.k.a. Problem 1).
However, there are many important works that adopt a sta-
tistical viewpoint. Closer to ours are the following seminal
works on the statistical analysis of LR: Korba et al. (2017);
Clémençon et al. (2018); Clémençon & Vogel (2020). Korba
et al. (2017) introduced the statistical framework of consen-
sus ranking (which is the unsupervised analogue of Prob-
lem 2) and identified crucial properties for the underlying
distribution in order to get fast learning rate bounds for em-
pirical estimators. A crucial contribution of this work (that
we also make use of) is to prove that when Strict Stochastic
Transitivity holds, the set of Kemeny medians (solutions of
Problem 2 under the KT distance) is unique and has a closed
form. Problem 2 was introduced in Clémençon et al. (2018),
where the authors provide fast rates (under standard condi-
tions) when the learner observes complete rankings, which
reveal the relative order, but not the positions of the labels in
the correct ranking. The work of Clémençon & Vogel (2020)
provides a novel multiclass classification approach to Label
Ranking, where the learner observes the top-label with some
noise, i.e, observes only the partial information σ−1x (1) in
presence of noise, under the form of the random label y
assigned to x. Our contribution concerning Problem 2 is a
natural follow-up of these works where the learner observes
noisy incomplete rankings (and so has only information
about the relative order of the alternatives). Our solution for
Problem 2 crucially relies on the conditions and the tech-
niques developed in (Korba et al., 2017; Clémençon et al.,
2018; Clémençon & Vogel, 2020). In our setting we have
to modify the key conditions in order to handle incomplete
rankings. Finally, our labelwise decomposition approach to
Problem 1 is closely related to Korba et al. (2018), where
many embeddings for ranking data are discussed.

Nonparametric Regression and CART. Regression trees
constitute a fundamental approach in order to deal with
nonparametric regression. Our work is closely related to
the one of Syrgkanis & Zampetakis (2020), which shows
that trees and forests, built greedily based on the CART
empirical MSE criterion, provably adapt to sparsity in the
high-dimensional regime. Specifically, Syrgkanis & Zam-
petakis (2020) analyze two greedy tree algorithms (they can
be found at the Appendix D): (a) in the Level Splits variant,
in each level of the tree, the same variable is greedily chosen
at all the nodes in order to maximize the overall variance
reduction; (b) in the Breiman’s variant, which is the most
popular in practice, the choice of the next variable to split
on is locally decided at each node of the tree. In general,
regression trees (Breiman et al., 1984) and random forests
(Breiman, 2001) are one of the most widely used estimation
methods by ML practitioners (Loh, 2011; Louppe, 2014).
For further literature review and preliminaries on decision
trees and random forests, we refer to the Appendix D.

Multiclass Prediction. In multiclass prediction with k la-
bels, there are various techniques such as One-versus-All
and One-versus-One (see Shalev-Shwartz & Ben-David,
2014). We adopt the OVO approach for Problem 2, where
we consider

(
k
2

)
binary sub-problems (Hastie & Tibshi-

rani, 1998; Moreira & Mayoraz, 1998; Allwein et al., 2000;
Fürnkranz, 2002; Wu et al., 2004) and we combine the bi-
nary predictions. A similar approach was employed for a
variant of Problem 2 by Clémençon & Vogel (2020).

1.3. Notation

For vectors, we use lowercase bold letters x; let xi be the i-
th coordinate of x. We write poly� to denote that the degree
of the polynomial depends on the subscripted parameters.
Also, Õ(·) is used to hide logarithmic factors. We denote
the symmetric group over k elements with Sk and S≤k for
incomplete rankings. For i ∈ [k], we let σ(i) denote the
position of the i-th alternative.

As distance metrics we use the Kendall Tau (KT) distance

dKT (π, σ) =
∑
i<j

1{(π(i)− π(j))(σ(i)− σ(j)) < 0},

the Spearman distance

d2(π, σ) =
∑
i∈[k]

(π(i)− σ(i))2,

and the KT coefficient

kτ = 1− 4dKT (π, σ)

k(k − 1)
,

i.e. the normalization of dKT to the interval [−1, 1].

The Mean Squared Error (MSE) of a function

f : {0, 1}d → [0, 1]

Label Ranking through Nonparametric Regression

is equal to

L̃(f, S) = E
x∼Dx

[(
f(x)− E

w∼Dx
[f(w)|wS = xS]

)2]
, (1)

where xS is the sub-vector of x, where we observe only
the coordinates with indices in S ⊆ [d] and xS ∈ {0, 1}|S|.
The VC dimension VC(G) of a class G ⊆ {−1,+1}X is the
largest n such that there exists a set T ⊂ X, |T | = n and G
shatters T. When VC(G) <∞, G is said to be a VC class.

2. Our Results
We provide an overview of our contributions on distribution-
free Label Ranking settings, as introduced in Definition 1.1.

2.1. Noiseless Oracle with Complete Rankings

We begin with Label Ranking as noiseless nonparamet-
ric regression (Tsybakov, 2008). This corresponds to the
example oracle Ex(m) of Definition 1.1 which we recall
now: For an underlying score hypothesism : X→ [0, 1]k,
where k is the number of labels and mi(x) is the score
of the alternative i ∈ [k] with respect to x. The learner
observes a labeled example (x, σ) ∼ DR. It holds that
σ = h(x) = argsort(m(x)).

We resolve Problem 1 for the Ex(m) oracle: We provide
the first theoretical guarantees in the LR setting for the per-
formance of algorithms based on decision trees and random
forests, when the feature space is the Boolean hypercube
X = {0, 1}d under mild assumptions, using the labelwise
decomposition technique (Cheng et al., 2013). We under-
line once again that this class of algorithms constitutes a
fundamental tool for practical works to solve LR; this heav-
ily motivates the design of our theory. We focus on the
performance of regression trees and forests in high dimen-
sions. Crucially, Definition 1.1 makes no assumptions on
the structure of the underlying score hypothesism. In order
to establish our theoretical guarantees, we are going to pro-
vide a pair of structural conditions for the score hypothesis
m and the features’ distribution Dx. We will now state
these conditions; for this we will need the definition of the
mean squared error that can be found at (1).
Condition 1. Consider the feature space X = {0, 1}d and
the regression vector-valued functionm : {0, 1}d → [0, 1]k

with m = (m1, . . . ,mk). Let Dx be the distribution over
features. We assume that the following hold for any j ∈ [k].

1. (Sparsity) The function mj : {0, 1}d → [0, 1] is r-
sparse, i.e., it depends on r out of d coordinates.

2. (Approximate Submodularity) The mean squared error
L̃j of mj is C-approximate-submodular, i.e., for any
S ⊆ T ⊆ [d], i ∈ [d], it holds that

L̃j(T)−L̃j(T ∪{i}) ≤ C ·
(
L̃j(S)− L̃j(S ∪ {i})

)
.

Some comments are in order: (1) The approximate submod-
ularity condition for the mean squared error is the more
technical condition, which however is provably necessary
(Syrgkanis & Zampetakis, 2020) to obtain meaningful re-
sults about the consistency of greedily grown trees in high
dimensions. (2) For the theoretical analysis, we constrain
ourselves to the case where all features are binary. However,
in the experimental part, we test the performance of the
method with non-binary features too. (3) Sparsity should be
regarded as a way to parameterize the class of functionsm,
rather than a restriction. Any function is r-sparse, for some
value of r. However, our results are interesting when r � d
and establish that decision trees and random forests provably
behave well under sparsity. As we will see in Theorem 2.1,
the sample complexity has an rr dependence, which cannot
be avoided, since the class of functions is nonparametric.
Observe that both mi and mj are r-sparse but they are not
constrained to depend on the same set of coordinates; the
functionm is at most (k · r)-sparse, where k · r � d, and
we say that m is r-sparse. These are the state-of-the-art
conditions for the high-dimensional regime (Syrgkanis &
Zampetakis, 2020).

Our algorithm for Problem 1 uses decision trees via the
Level Splits criterion. In this criterion, a set of splits S ⊆ [d]
is collected greedily and any tree level has to split at the
same direction i ∈ [d]. Intuitively, the approximate submod-
ularity condition captures the following phenomenon: “If
adding i does not decrease the mean squared error signifi-
cantly at some point (when having the set S), then i cannot
decrease the mean squared error significantly in the future
either (for any superset of S)”.

Our main result for Problem 1 using decision trees with
Level Splits follows. Recall that h(x) = argsort(m(x))
and d2 is the Spearman distance (i.e., L2 squared over the
rankings’ positions).

Theorem 2.1 (Noiseless LR (Informal)). Under Condi-
tion 1 with parameters r, C, there exists an algorithm (De-
cision Trees via Level-Splits - Algorithm 1) that draws
n = Õ

(
log(d) · polyC,r(k) · (Cr/ε)Cr+2

)
independent

samples from Ex(m) and, in polyC,r(d, k, 1/ε) time, com-
putes a set of splits Sn and an estimate h(n)(· ;Sn) :
{0, 1}d → Sk which, with probability 99%, satisfies
Ex∼Dx

[
d2(h(x), h(n)(x;Sn))

]
≤ ε .

See also Theorem A.4. This is the first sample complexity
guarantee in LR for decision tree-based algorithms. We also
provide results and algorithms for the Breiman’s criterion
(Appendix A.1) and for Random Forests (Appendix A.2).
Our result can be read as: In practice, sparsity of the in-
stance’s “score function” is one of the reasons why such
algorithms work well and efficiently in real world.

The description of Algorithm 1 follows. Given (x, σ) ∼

Label Ranking through Nonparametric Regression

DR, we transform the ranking-label σ to a vector y =
mC(σ) ∈ [0, 1]k, wheremC(σ) is the canonical represen-
tation of the ranking σ. Specifically, one can obtain the
score vector y by setting yi = mC,i(σ) equal to σ(i)/k,
i.e., the position of the i-th alternative in the permutation
σ, normalized by k, where k is the length of the permu-
tation (see Line 3 of Algorithm 1). Hence, we obtain a
training set of the form T = (x(i),y(i))i∈[N]. Our goal is
to fit the score vectors y(i) using decision trees (or random
forests depending on the black-box algorithm that we will
choose to apply). During this step, we have to feed our
training set T into a learning algorithm that fits the function
mC ◦ h : X → [0, 1]k, where ◦ denotes composition. We
remark that since the regression functionm is sparse, this
vector-valued function is sparse too. We do this as follows.

Algorithm 1 Algorithm of Theorem 2.1

1: Set n← Θ̃(log(d/δ) · polyC,r(k) · (Cr/ε)Cr+2)

2: Draw n samples (x(j), σ(j)) ∼ DR, j ∈ [n]
3: For any j ∈ [n], set y(j) ← (σ(j)(i)/k)i∈[k]

4: Create k datasets Ti = {(x(j), y
(j)
i)}j∈[n]

5: for i ∈ [k] do
6: m

(n)
i , S

(i)
n = LevelSplits(Ti, Θ̃(Cr log(k)))

7: endfor
8: Output argsort ◦ (m

(n)
1 (·;S(1)

n), ...,m
(n)
k (·;S(k)

n))

We decompose the training set T into k data sets Ti, where
the labels are no more vectors but real values (labelwise
decomposition, see Line 4 of Algorithm 1). For each Ti, we
apply the Level Splits method and finally we combine our
estimates, where we have to aggregate our estimates into a
ranking (see Line 8 of Algorithm 1). Algorithm 1 uses the
routine LevelSplits, which computes a decision tree
estimate based on the input training set (see Algorithm 9
(with h = 0) in Appendix D). The second argument of
the routine is the maximum number of splits H (height of
the tree) and in the above result H = Θ̃(Cr log(k)). The
routine iterates H times, one for each level of the tree: at
every level, we choose the direction i ∈ [d] that minimizes
the total empirical mean squared error (greedy choice) and
the space is partitioned recursively based on whether xi = 0
or 1. The routine outputs the estimated function and the set
of splits S ⊆ [d]. For a proof sketch, see Section 3.

2.2. Noisy Oracle with Complete Rankings

We remark that the term ‘noiseless’ in the above regres-
sion problem is connected with the output (the ranking),
i.e., in the generative process given x ∈ X, we will
constantly observe the same output ranking. Let us con-
sider the oracle Ex(m, E), that corresponds to noisy non-
parametric regression: Draw x ∼ Dx and independently
draw ξ ∈ [−1/4, 1/4]k from a zero mean noise distribu-

tion E . Compute y = m(x) + ξ, rank the alternatives
σ = argsort(y) and output (x, σ). Due to the noise vector
ξ, we may observe e.g., different rankings for the same x
feature. We provide the following notions of inconsistency.
Definition 2.2 (Output Inconsistency). Let σ =
argsort(m(x) + ξ) denote the observed ranking of
Ex(m, E). The noise distribution E satisfies

(i) the α-inconsistency property if there exists α ∈ [0, 1]
so that Ex∼Dx [Prξ∼E [h(x) 6= σ]] ≤ α, and

(ii) the β-kτ gap property if there exists β ∈ [−1, 1] so
that Ex∼Dx Eξ∼E [kτ (h(x), σ))] = β.

Property (i) captures the phenomenon that the probability
that the observed ranking σ differs from the correct one h(x)
is roughly α over the feature space. However, it does not
capture the distance between these two rankings; this is why
we need property (ii) which captures the expected similarity
(recall the definition of the KT coefficient kτ in Section 1.3).
The case α = 0 (resp. β = 1) gives our noiseless setting.
When α > 0 (resp. β < 1), the structure of the problem
changes and our theoretical guarantees fail. Interestingly,
this is due to the fact that the geometry of the input noise is
structurally different from the observed output. The input
noise acts additively to the vector m(x), while the output
is computed by permuting the elements. Hence, the relation
between the observed ranking and the expected one is no
more linear and hence one needs to extend the standard
‘additive’ nonparametric regression setting y = f(x) + ξ
to another geometry dealing with rankings σ = Eθ ◦ f(x),
where f : X→ Sk is the regression function and Eθ : Sk →
Sk is a parameterized noise operator (e.g., a Mallows model).
This change of geometry is interesting and to the best of our
knowledge cannot be captured by existing theoretical results
(see Appendix B for the experimental results of different
‘additive’ nonparametric noise settings).

Our experimental results aim to complement and go beyond
our theoretical understanding of the capability of the de-
cision trees and random forests to interpolate the correct
underlying regression function with the presence of regres-
sion noise. To this end, we consider the oracle Ex(m, E)
where the noise distribution E satisfies either property (i) or
(ii) of Definition 2.2.

For the experimental evaluation, two synthetic data set fam-
ilies were used, namely LFN (Large Features Number) and
SFN (Small Features Number), consisting of a single noise-
less and 50 noisy data sets, respectively. For either data set
family, a common m : {0, 1}d → [0, 1]k was employed,
accordingly. Each noiseless data set was created according
to the oracle Ex(m). It consists of 10000 samples (x, σ),
where x ∈ {0, 1}d (d = 1000 for LFN and d = 100 for
SFN) and σ ∈ S5 (k = 5), with r = 10 informative bi-
nary features per label (sparsity). The noisy data sets were

Label Ranking through Nonparametric Regression

0.0 0.1 0.2 0.3 0.4

α ∈ [0.0, 1.0]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m
ea
n
k
τ
∈

[−
1
.0
,1
.0

]

random forests (LFN)

random forests (SFN)

decision trees (LFN)

decision trees (SFN)

shallow trees (LFN)

shallow trees (SFN)

(a)

0.75 0.80 0.85 0.90 0.95 1.00

β ∈ [−1.0, 1.0]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m
ea
n
k
τ
∈

[−
1
.0
,1
.0

]

random forests (LFN)

random forests (SFN)

decision trees (LFN)

decision trees (SFN)

shallow trees (LFN)

shallow trees (SFN)

(b)

Figure 1. Illustration of the experimental results in terms of mean kτ for different noise distributions E with respect to (a) α-inconsistency;
(b) β-kτ gap.

produced according to the generative process Ex(m, E),
each using a different zero-mean noise distribution E . We
implemented modified versions of Algorithm 1. The shal-
low trees (•,•), fully grown decision trees (•,•) and random
forests (•,•) were built greedily based on the CART empiri-
cal MSE criterion, using the Breiman’s method instead of
Level Splits.

Figure 1 summarizes the experimental results for different
values of α ∈ [0, 1] and β ∈ [−1, 1]. Results are obtained
in terms of mean kτ , using the noisy data as training set
and noiseless data as validation set. The y axis of Figure 1
depicts the mean kτ of all the corresponding pairs of the
output of our model and the given noiseless ranking in the
test sets. At this point we remind the reader that kτ is a
normalization of dKT in [−1, 1] and measures the propor-
tion of the concordant pairs in two rankings, with kτ = 1
meaning that the two ranking have perfect agreement (i.e.,
the two rankings are exactly the same), while kτ = −1 that
the two rankings have perfect disagreement.

As expected, decision trees as well as random forests inter-
polate them function successfully in the noiseless setting,
since it is r-sparse. Moreover, the increase of noise level
leads to the decay of the decision trees’ performance, indi-
cated by the α-inconsistency. However, the β-kτ gap is a
more appropriate noise level measure, because it quantifies
the degree of deviation rather than the existence of it. The
ratio of the performance in terms of mean kτ over β-kτ
gap is approximately equal to one, revealing that decision
trees fit the noise. On the contrary, shallow trees have bet-
ter ability to generalize and avoid overfitting. Fully grown
honest random forests are also resistant to overfitting due
to bagging, and therefore are noise tolerant. This is visible
in Figure 1 where the graphs of the random forests and of
the shallow trees attain a mean KT coefficient close to 1 for

most values of α-inconsistency and β-kτ gap.

Appendix B presents the experimental setting in more
detail and additional experimental results of LR stan-
dard benchmarks and different ‘additive’ nonparamet-
ric noise settings. The code and data sets to repro-
duce our results are available: https://github.com/
pseleni/LR-nonparametric-regression.
Remark 2.3. We have encountered Problem 1 with the or-
acles Ex(m) and Ex(m, E). A natural question is what
happens if we use the incomplete oracle Ex(m, E ,M). In
this setting, the position of each alternative is not correctly
observed (we observe a ranking with size ` ≤ k, see Sec-
tion 2.3). Hence, we cannot apply our labelwise method for
this oracle. One could obtain similar results for Problem 1
for incomplete rankings using pairwise decomposition, but
we leave it for future work. Next we focus on Problem 2.

2.3. Noisy Oracle with Incomplete Rankings

We now study Problem 2, where we consider a metric d in
Sk, a distribution DR over X× Sk that corresponds to the
example oracle Ex(m, E) and set up the task of finding a
measurable mapping h : X → Sk that minimizes the ob-
jective R(h) = E(x,σ)∼DR [d(h(x), σ)]. In this work, we
focus on the Kendall tau distance (d = dKT) and ask how
well we can estimate the minimizer of the above population
objective if we observe i.i.d. samples from the incomplete
rankings’ oracle Ex(m, E ,M). We underline that in what
follows whenever we refer to Problem 2, we have d = dKT
in mind. A natural question is: What is the optimal solu-
tion? In binary classification, the learner aims to estimate
the Bayes classifier, since it is known to minimize the mis-
classification error among all classifiers (Massart & Nédélec,
2006). Problem 2 deals with rankings and is well-studied
in previous works when: d is the Kendall tau distance and

https://github.com/pseleni/LR-nonparametric-regression
https://github.com/pseleni/LR-nonparametric-regression

Label Ranking through Nonparametric Regression

the learner either observes complete rankings (Clémençon
et al., 2018) or observes only the top element (under some
BTL noise) (Clémençon & Vogel, 2020). As we will see
later, the optimal solution h? of Problem 2 is unique under
mild conditions on DR, due to Korba et al. (2017). Our goal
will be to estimate h? from labeled examples generated by
Ex(m, E ,M).

We are going to introduce the example oracle Ex(m, E ,M):
We are interested in the case where the mechanismM gen-
erates incomplete rankings and captures a general spectrum
of ways to generate such rankings (e.g., Hüllermeier et al.,
2008). We begin with the incomplete rankings’ mechanism
M. We assume that there exists a survival probabilities
vector q : X → [0, 1]k, which is feature-dependent, i.e.,
the vector q depends on the input x ∈ X. Hence, for
the example x and alternative i ∈ [k], with probability
qi(x), we set the score yi equal to a noisy value of the
score mi(x) (the alternative i survives) and, otherwise, we
set yi = ?. We mention that the events of observing i
and j are not necessarily independent and so do not nec-
essarily occur with probability qi(x)qj(x). We denote the
probability of the event “Observe both i and j in x” by
qi,j(x). We modify the argsort : [0, 1]k → Sk routine
so that it will ignore the ? symbol in the ranking, e.g.,
argsort(0.4, ?, 0.7, ?, 0.1) = (c � a � e). Crucially, we
remark that another variant would preserve the ? symbols:
this problem is easier since it reveals the correct position of
the non-erased alternatives. In our model, the information
about the location of each alternative is not preserved. In
order to model regression noise, we consider a noise distri-
bution E over the bounded cube [−1/4, 1/4]k. Hence, we
model Ex(m, E ,M) as follows:
Definition 2.4 (Generative Process for Incomplete Data).
Consider an underlying score hypothesism : X→ [0, 1]k

and let Dx be a distribution over features. Let y : [k] →
[0, 1] ∪ {?} and consider the survival probabilities vector
q : X → [0, 1]k. Each sample (x, σ) ∼ DqR is generated
as follows: (i) Draw x ∈ X from Dx and ξ ∈ [− 1

4 ,
1
4]k

from E ; (ii) draw q(x)-biased coins c ∈ {−1,+1}k; (iii)
if ci > 0, set yi = mi(x) + ξi, else yi = ?; (iv) compute
σ = argsort(y), ignoring the ? symbol.

In what follows, we resolve Problem 2 for the example
oracle of Definition 2.4 and d = dKT . As in the complete
ranking case, Definition 2.4 imposes restrictions neither on
the structure of the true score hypothesism nor on the noise
distribution E . In order to resolve Problem 2, we assume
the following. Recall that qi,j(x) is the probability of the
event “Observe both i and j in x”.
Condition 2. Let pij(x) = Prξ∼E [mi(x) + ξi > mj(x) +
ξj |x] for x ∈ Rd. For any 1 ≤ i < j ≤ k, we assume that
the following hold.

1. (Strict Stochastic Transitivity) For any x ∈ Rd and any

u ∈ [k], we have that pij(x) 6= 1/2 and (piu(x) >
1/2 ∧ puj(x) > 1/2)⇒ pij(x) > 1/2.

2. (Tsybakov’s Noise Condition) There exists a ∈ [0, 1]
andB > 0 so that the probability that a random feature
x ∼ Dx satisfies |pij(x)− 1/2| < 2t , is at most
B · ta/(1−a) for all t ≥ 0.

3. (Deletion Tolerance) There exists φ ∈ (0, 1] so that
qi,j(x) ≥ φ for any x ∈ Rd, where qi,j(x) is the
survival probability of the pair i < j in x.

Importance of Item 1: Our goal is to find a good estimate
for the minimizer h? ofR(h) = E(x,σ)∼DR [dKT (h(x), σ)].
As observed in previous works (Korba et al., 2017;
Clémençon et al., 2018), this problem admits a unique solu-
tion (with closed form) under mild assumptions on DR and
specifically this is assured by Strict Stochastic Transitivity
(SST) of the pairwise probabilities pij(x). The first condi-
tion guarantees (Korba et al., 2017) that the minimizer of
R(h) is almost surely unique and is given, with probability
one and for any i ∈ [k], by

h?(x; i) = 1 +
∑
j 6=i

1{pij(x) < 1/2} . (2)

This is the well-known Copeland rule and we note that SST
is satisfied by most natural probabilistic ranking models.

Importance of Item 2: The Tsybakov’s noise condition is
standard in binary classification and corresponds to a real-
istic noise model (Boucheron et al., 2005). In its standard
form, this noise condition naturally requires that the regres-
sion function of a binary problem η(x) = E[Y |X = x] =
2Pr[Y = +1|X = x]− 1 is close to the the critical value
0 with low probability over the features, i.e., the labels are
not completely random for a sufficiently large portion of
the feature space. We consider that, for any two alternatives
i 6= j, this condition must be satisfied by the true score
function m and the noise distribution E (specifically the
functions mi and mj and the random variables ξi, ξj). This
condition is very common in binary classification since it
guarantees “fast rates” and has been previously applied to
LR (Clémençon & Vogel, 2020).

Importance of Item 3: The last condition is natural in the
sense that we need to observe the pair (i, j) at some fre-
quency in order to achieve some meaningful results. Vari-
ants of this condition have already appeared in the incom-
plete rankings literature (see e.g., Fotakis et al., 2021) and in
previous works in Label Ranking (see Clémençon & Vogel,
2020). We note that if we relax this condition to state that
we only observe the pair i, j only in a portion of Rd (e.g.,
qij(x) = 0 for 40% of x’s), then we will probably miss
a crucial part of the structure of the underlying mapping.
This intuitively justifies the reason that we need deletion
tolerance to hold for any x ∈ Rd.

Label Ranking through Nonparametric Regression

Having described our conditions, we continue with our ap-
proach. We first remind the reader that the labelwise per-
spective we adopted in the complete case now fails. Second,
since our data are incomplete, the learner cannot recover
the optimal ranking rule h? = argminhE[dKT (h(x), σ)]
by simply minimizing an empirical version of this objec-
tive. To tackle this problem, we adopt a pairwise com-
parisons approach. In fact, the key idea is the closed
form of the optimal ranking rule: From (2), we can write
h?(x; i) = 1 +

∑
j 6=i 1{h?ij(x) = −1} where h?ij is the

Bayes optimal classifier of the binary sub-problem of the
pair i 6= j. We provide our result based on the standard
One-Versus-One (OVO) approach, reducing this complex
problem into multiple binary ones: We reduce the rank-
ing problem into O(k2) binary sub-problems and each sub-
problem corresponds to a pairwise comparison between the
alternatives i and j for any 1 ≤ i < j ≤ k. We solve each
sub-problem separately by obtaining the Empirical Risk
Minimizer ĥij (for a fixed VC class G, as in the previous
works) whose risk is compared to the optimal h?ij and then
we aggregate the

(
k
2

)
binary classifiers into a single output

hypothesis ĥ : Rd → Sk. We compare the generalization of
this empirical estimate ĥwith the optimal predictor h? of (2).
We set Lij(g) = E[g(x) 6= sgn(σ(i) − σ(j))|σ 3 {i, j}]
where (x, σ) ∼ DqR. Our main result in this setting follows.
Theorem 2.5 (Noisy and Incomplete LR). Let ε, δ ∈ (0, 1).
Consider a hypothesis class G of binary classifiers with finite
VC dimension. Under Condition 2 with parameters a,B, φ,
there exists an algorithm (Algorithm 2) that draws

n = Õ

(
k

4(1−a)
a

polya(φ · ε) ·max

{
log

(
k

δ

)
,VC(G)

})
samples from DqR, as in Definition 2.4, and computes an
estimate ĥ : Rd → Sk so that Prx∼Dx [ĥ(x) 6= h?(x)] is,
with probability 1− δ, at most

Ca,B
φ2

2
∑
i<j

(
inf
g∈G

Li,j(g)− L?i,j
)a+ ε , (3)

where h? is the optimal predictor of (2) and L?i,j is the loss
of the binary Bayes classifiers h?i,j for 1 ≤ i < j ≤ k,
where Ca,B is a constant depending on a,B.

Our result for incomplete rankings is a PAC result, in the
sense that we guarantee that, when optimizing over a VC
class G, the gap between the empirical estimate (the algo-
rithm’s output) and the optimal predictor of (2) is at most
C · OPT + rn(δ), where OPT is (a function of) the gap
between the best classifier in the class (argming∈G L(g))
and the Bayes classifier and rn(δ) is a function which tends
to 0 as the number of samples n increases (see (3)). We
remark that the algorithm does not come with a computa-
tional efficiency guarantee, since the results are based on the

computation of the ERM of each pairwise comparison i < j.
In general, this is NP-hard but if the binary hypothesis class
G is “simple” then we also obtain computational guarantees.

Algorithm 2 Algorithm of Theorem 2.5

1: T ← n i.i.d. samples (x, σ) ∼ DqR (as in Theorem 2.5)
2: For any i 6= j, set Tij = ∅
3: for 1 ≤ i < j ≤ k do
4: if (x, σ) ∈ T and σ 3 {i, j} then
5: Add (x, sgn(σ(i)− σ(j))) to Tij
6: endif
7: endfor
8: ŝ← EstimateAggregate(Tij for i < j, G)
9: On input x ∈ Rd, output argsort(ŝ(x)) breaking arbi-

trarily possible ties.

Algorithm 2 works as follows: Given a training set T of the
form (x(i), σ(i)) with incomplete rankings, the algorithm
creates

(
k
2

)
datasets Tij with the following criterion: For

any i < j, if (x, σ) ∈ T and σ 3 {i, j}, the algorithm
adds to the dataset Tij the example (x, sgn(σ(i)− σ(j))).
For any such binary dataset, the algorithm computes the
ERM and aggregates the estimates to ŝ (these routines
can be found as Algorithm 6). This aggregate rule is
based on the structure of the optimal classifier h? (that
is valid due to the SST condition). The final estimator is
the function ĥ that, on input x ∈ Rd, outputs the ranking
ĥ(x) = argsort(ŝ(x)) (by breaking ties randomly).

Remark 2.6. (i) The oracle Ex(m, E ,M) and Definition 2.4
can be adapted to handle partial rankings (see Appendix C).
(ii) Theorem 2.4 directly controls the risk gap R(ĥ) −
R(h?) ≤ Ex[dKT (ĥ(x), h?(x))], since dKT (π, σ) ≤
k21{π 6= σ}. (iii) We studied Problem 2 for Ex(m, E ,M).
Our results can be transferred to the oracles Ex(m, E) and
Ex(m) under Condition 2 with φ = 1. (iv) This result is
similar to Clémençon & Vogel (2020), where the learner
observes (x, y) where y = σ−1x (1) is the top-label. To adapt
our incomplete setting to theirs, we must erase positions
instead of alternatives. If q̃i is the probability that the i-th
position survives, then we have that, in Clémençon & Vo-
gel (2020): q̃1(x) = 1 and q̃i 6=1(x) = 0 for all x ∈ Rd.
Also, the generative processes of the two works are different
(noisy nonparametric regression vs. Plackett-Luce based
models). In general, our results and our analysis for Prob-
lem 2 are very closely related and rely on the techniques of
Clémençon & Vogel (2020).

3. Technical Overview
Proof Sketch of Theorem 2.1 Our starting point is the
work of Syrgkanis & Zampetakis (2020), where they pro-

Label Ranking through Nonparametric Regression

vide a collection of nonparametric regression algorithms
based on decision trees and random forests. We have to pro-
vide a vector-valued extension of these results. For decision
trees, we show (see Theorem A.3) that if the learner observes
i.i.d. samples (x,m(x) + ξ) for some unknown targetm
satisfying Condition 1 with r, C > 0, then there exists an al-
gorithm ALGO that uses n = Õ

(
log(d) · polyC,r(kCr/ε)

)
samples and computes an estimate m(n) which satisfies
Ex∼Dx

[∥∥m(x)−m(n)(x)
∥∥2
2

]
≤ ε with probability 99%.

In our setting, we receive examples from Ex(m) and set
h(x) = argsort(m(x)). As described in Algorithm 1, we
design the training set T = {x(i),y(i)}, where y(i) =
(h(x(i); j))j∈[k] (we make the ranking h(x) a vector). We
provide T as input to ALGO (with ξ = 0) and get a
vector-valued estimationm(n) that approximates the vector
(h(·; 1), ..., h(·; k)). Our next goal is to convert the estimate
m(n) to a ranking by setting ĥ = argsort ◦m(n). In The-
orem A.4, we show that rounding our estimations back to
permutations will yield bounds for the expected Spearman
distance Ex∼Dx [d2(h(x), ĥ(x))].

Proof Sketch of Theorem 2.5 Consider the VC class
G consisting of mappings g : Rd → {−1,+1}. Let
Gi,j = {gi,j : Rd → {−1,+1}} be a copy of G for the
pair (i, j). We let ĝi,j and g?i,j be the algorithm’s empirical
classifier and the Bayes classifier respectively for the pair
(i, j). The first key step is that the SST property (which
holds thanks to Item 1) implies that the optimal ranking pre-
dictor h? is unique almost surely and satisfies (2). Thanks
to the structure of the optimal solution, we can compute the
score estimates ŝ(x; i) = 1 +

∑
j 6=i 1{ĝi,j(x) = −1} for

any i ∈ [k] and we will set ĥ to be argsort◦ ŝ. We first show
that Prx∼Dx [ĥ(x) 6= h?(x)] ≤ ∑i<j Prx∼Dx [ĝi,j(x) 6=
g?i,j(x)] . Hence, we have reduced the problem of bounding
the LHS error to a series of binary sub-problems. At this mo-
ment the problem is binary classification, we can use tools
for generalization bounds (Boucheron et al., 2005), where
the population loss function for the pair (i, j) of the clas-
sifier g in the VC class is Li,j(g) = E(x,σ)∼Dq

R
[1{g(x) 6=

sgn(σ(i)− σ(j))}|σ 3 {i, j}]. We can control the incurred
population loss of the ERM against the Bayes classifier ex-
ploiting Condition 2, similar to Clémençon & Vogel (2020).
We show that for a training set Tn with elements (x, y)
with y = sgn(σ(i) − σ(j)) where (x, σ) ∼ DqR condi-
tioned that σ 3 {i, j}, it holds that: Li,j(ĝi,j)−Li,j(g?) ≤
2 · (infg∈G Li,j(g)− Li,j(g?)) + rn , with high probability,
where ĝi,j = argming∈G L̂i,j(g;Tn) and g? is the Bayes
classifier and rn = O(n−

1
2−a ·VC(G)

1
2−a), where a is the

parameter of the Tsybakov’s noise; note that when a = 1,
we obtain the fast rate 1/n and when a = 0, we get that stan-
dard rate 1/

√
n. It remains to aggregate the above O(k2)

binary classifiers into a single one (see Claim 3) in order to
get the result of Theorem 2.5. For the sample complexity

bound, see Claim 4. For the full proof, see Theorem A.7.

Acknowledgments
This work is supported by NTUA Basic Research Grant
(PEBE 2020) “Algorithm Design through Learning Theory:
Learning-Augmented and Data-Driven Online Algorithms
(LEADAlgo)”.

References
Aledo, J. A., Gámez, J. A., and Molina, D. Tackling the su-

pervised label ranking problem by bagging weak learners.
Information Fusion, 35:38–50, 2017.

Allwein, E. L., Schapire, R. E., and Singer, Y. Reducing
Multiclass to Binary: A Unifying Approach for Margin
Classifiers. Journal of machine learning research, 1(Dec):
113–141, 2000.

Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., and
Kämper, J. Clustering of gene expression data using a
local shape-based similarity measure. Bioinformatics, 21
(7):1069–1077, 2005.

Bartlett, P. L., Bousquet, O., and Mendelson, S. Local
Rademacher Complexities. The Annals of Statistics, 33
(4):1497–1537, 2005.

Baum, E. B. and Haussler, D. What Size Net Gives Valid
Generalization? Neural computation, 1(1):151–160,
1989.

Biau, G. Analysis of a Random Forests Model. The Journal
of Machine Learning Research, 13:1063–1095, 2012.

Boucheron, S., Bousquet, O., and Lugosi, G. Theory of Clas-
sification: A Survey of Some Recent Advances. ESAIM:
probability and statistics, 9:323–375, 2005.

Bousquet, O., Boucheron, S., and Lugosi, G. Introduction
to Statistical Learning Theory. In Summer school on
machine learning, pp. 169–207. Springer, 2003.

Breiman, L. Random Forests. Machine learning, 45(1):
5–32, 2001.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classi-
fication and Regression Trees. Wadsworth International
Group, 37(15):237–251, 1984.

Cheng, W. and Hüllermeier, E. Instance-Based Label Rank-
ing using the Mallows Model. In ECCBR Workshops, pp.
143–157, 2008.

Cheng, W. and Hüllermeier, E. Probability Estimation for
Multi-class Classification Based on Label Ranking. In
Joint European Conference on Machine Learning and

Label Ranking through Nonparametric Regression

Knowledge Discovery in Databases, pp. 83–98. Springer,
2012.

Cheng, W. and Hüllermeier, E. A Nearest Neighbor Ap-
proach to Label Ranking based on Generalized Labelwise
Loss Minimization. In International Joint Conference on
Artificial Intelligence (IJCAI-13). Citeseer, 2013.

Cheng, W., Hühn, J., and Hüllermeier, E. Decision Tree
and Instance-Based Learning for Label Ranking. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pp. 161–168, 2009.

Cheng, W., Dembczynski, K., and Hüllermeier, E. Label
Ranking Methods based on the Plackett-Luce Model. In
ICML, 2010.

Cheng, W., Henzgen, S., and Hüllermeier, E. Labelwise
versus Pairwise Decomposition in Label Ranking. In
Lwa, pp. 129–136, 2013.

Clémençon, S. and Korba, A. On Aggregation in Ranking
Median Regression. In ESANN, 2018.

Clémençon, S. and Vogel, R. A Multiclass Classification
Approach to Label Ranking. In International Conference
on Artificial Intelligence and Statistics, pp. 1421–1430.
PMLR, 2020.

Clémençon, S., Korba, A., and Sibony, E. Ranking Median
Regression: Learning to Order through Local Consensus.
In Algorithmic Learning Theory, pp. 212–245. PMLR,
2018.

Comminges, L. and Dalalyan, A. S. Tight conditions for
consistency of variable selection in the context of high
dimensionality. The Annals of Statistics, 40(5):2667–
2696, 2012.

de Sá, C. R., Soares, C., Knobbe, A., and Cortez, P. Label
Ranking Forests. Expert systems, 34(1):e12166, 2017.

Dekel, O., Singer, Y., and Manning, C. D. Log-Linear Mod-
els for Label Ranking. Advances in neural information
processing systems, 16:497–504, 2003.

Denil, M., Matheson, D., and De Freitas, N. Narrowing
the Gap: Random Forests In Theory and In Practice. In
International conference on machine learning, pp. 665–
673. PMLR, 2014.

Dery, L. and Shmueli, E. BoostLR: A Boosting-Based
Learning Ensemble for Label Ranking Tasks. IEEE Ac-
cess, 8:176023–176032, 2020.

Djuric, N., Grbovic, M., Radosavljevic, V., Bhamidipati, N.,
and Vucetic, S. Non-Linear Label Ranking for Large-
Scale Prediction of Long-Term User Interests. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

Dudley, R. M. Balls in Rk do not cut all subsets of k + 2
points. Advances in Mathematics, 31(3):306–308, 1979.

Fotakis, D., Kalavasis, A., and Stavropoulos, K. Aggre-
gating Incomplete and Noisy Rankings. In International
Conference on Artificial Intelligence and Statistics, pp.
2278–2286. PMLR, 2021.

Friedman, J., Hastie, T., Tibshirani, R., et al. The Elements
of Statistical Learning, volume 1. Springer series in
statistics New York, 2001.

Friedman, J. H. Multivariate Adaptive Regression Splines.
The annals of statistics, pp. 1–67, 1991.

Fürnkranz, J. Round Robin Classification. The Journal of
Machine Learning Research, 2:721–747, 2002.

Geng, X. and Luo, L. Multilabel Ranking with Inconsis-
tent Rankers. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3742–
3747, 2014.

George, E. I. and McCulloch, R. E. Approaches for
Bayesian Variable Selection. Statistica sinica, pp. 339–
373, 1997.

Grbovic, M., Djuric, N., and Vucetic, S. Learning from
Pairwise Preference Data using Gaussian Mixture Model.
Preference Learning: Problems and Applications in AI,
33, 2012.

Grbovic, M., Djuric, N., Guo, S., and Vucetic, S. Supervised
clustering of label ranking data using label preference
information. Machine learning, 93(2-3):191–225, 2013.

Gurrieri, M., Fortemps, P., and Siebert, X. Alternative
Decomposition Techniques for Label Ranking. In In-
ternational Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Sys-
tems, pp. 464–474. Springer, 2014.

Har-Peled, S., Roth, D., and Zimak, D. Constraint Classifica-
tion for Multiclass Classification and Ranking. Advances
in neural information processing systems, pp. 809–816,
2003.

Hastie, T. and Tibshirani, R. Classification by Pairwise
Coupling. The annals of statistics, 26(2):451–471, 1998.

Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker,
K. Label Ranking by Learning Pairwise Preferences.
Artificial Intelligence, 172(16):1897–1916, 2008. ISSN
0004-3702.

James, G., Witten, D., Hastie, T., and Tibshirani, R. An In-
troduction to Statistical Learning, volume 112. Springer,
2013.

Label Ranking through Nonparametric Regression

Jindal, R. and Taneja, S. Ranking in multi label classifica-
tion of text documents using quantifiers. In 2015 IEEE
International Conference on Control System, Computing
and Engineering (ICCSCE), pp. 162–166. IEEE, 2015.

Karpinski, M. and Macintyre, A. Polynomial Bounds for
VC Dimension of Sigmoidal and General Pfaffian Neural
Networks. Journal of Computer and System Sciences, 54
(1):169–176, 1997.

Korba, A., Clémençon, S., and Sibony, E. A Learning
Theory of Ranking Aggregation. In Artificial Intelligence
and Statistics, pp. 1001–1010. PMLR, 2017.

Korba, A., Garcia, A., and d'Alché-Buc, F. A Structured
Prediction Approach for Label Ranking. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Lafferty, J. and Wasserman, L. Rodeo: Sparse, greedy
nonparametric regression. The Annals of Statistics, 36(1):
28–63, 2008.

Laurent, H. and Rivest, R. L. Constructing Optimal Binary
Decision Trees is NP-Complete. Information processing
letters, 5(1):15–17, 1976.

Liu, H. and Chen, X. Nonparametric Greedy Algorithms
for the Sparse Learning Problem. In Proceedings of the
22nd International Conference on Neural Information
Processing Systems, pp. 1141–1149, 2009.

Loh, W.-Y. Classification and Regression Trees. Wiley
interdisciplinary reviews: data mining and knowledge
discovery, 1(1):14–23, 2011.

Louppe, G. Understanding Random Forests: From Theory
to Practice. arXiv preprint arXiv:1407.7502, 2014.

Lugosi, G. and Nobel, A. Consistency of Data-driven His-
togram Methods for Density Estimation and Classifica-
tion. The Annals of Statistics, 24(2):687–706, 1996.

Mallows, C. L. Non-Null Ranking Models. I. Biometrika,
44(1/2):114–130, 1957.

Mansour, Y. and McAllester, D. A. Generalization Bounds
for Decision Trees. In COLT, pp. 69–74. Citeseer, 2000.

Massart, P. and Nédélec, É. Risk bounds for statistical learn-
ing. The Annals of Statistics, 34(5):2326–2366, 2006.

Moreira, M. and Mayoraz, E. Improved Pairwise Coupling
Classification with Correcting Classifiers. In European
conference on machine learning, pp. 160–171. Springer,
1998.

Nobel, A. Histogram Regression Estimation Using Data-
Dependent Partitions. The Annals of Statistics, 24(3):
1084–1105, 1996.

Scornet, E., Biau, G., and Vert, J.-P. Consistency of random
forests. The Annals of Statistics, 43(4):1716–1741, 2015.

Shalev-Shwartz, S. Online Learning: Theory, Algorithms,
and Applications. PhD thesis, The Hebrew University of
Jerusalem, 2007.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
university press, 2014.

Smola, A. J. and Bartlett, P. L. Sparse Greedy Gaussian
Process Regression. In Advances in neural information
processing systems, pp. 619–625, 2001.

Syrgkanis, V. and Zampetakis, M. Estimation and Infer-
ence with Trees and Forests in High Dimensions. In
Conference on Learning Theory, pp. 3453–3454. PMLR,
2020.

Tsybakov, A. B. Introduction to Nonparametric Estimation.
Springer Publishing Company, Incorporated, 1st edition,
2008. ISBN 0387790519.

Vembu, S. and Gärtner, T. Label Ranking Algorithms: A
Survey. In Preference learning, pp. 45–64. Springer,
2010.

Wager, S. and Athey, S. Estimation and Inference of Hetero-
geneous Treatment Effects using Random Forests. Jour-
nal of the American Statistical Association, 113(523):
1228–1242, 2018.

Wang, Q., Wu, O., Hu, W., Yang, J., and Li, W. Ranking
social emotions by learning listwise preference. In The
First Asian Conference on Pattern Recognition, pp. 164–
168. IEEE, 2011.

Wu, T.-F., Lin, C.-J., and Weng, R. C. Probability Esti-
mates for Multi-Class Classification by Pairwise Cou-
pling. Journal of Machine Learning Research, 5(Aug):
975–1005, 2004.

Yang, Y. and Tokdar, S. T. Minimax-optimal nonparametric
regression in high dimensions. The Annals of Statistics,
43(2):652–674, 2015.

Zhou, Y. and Qiu, G. Random Forest for Label Ranking.
Expert Systems with Applications, 112:99–109, 2018.

Zhou, Y., Liu, Y., Gao, X.-Z., and Qiu, G. A label ranking
method based on Gaussian mixture model. Knowledge-
Based Systems, 72:108–113, 2014a.

Zhou, Y., Liu, Y., Yang, J., He, X., and Liu, L. A Taxonomy
of Label Ranking Algorithms. J. Comput., 9(3):557–565,
2014b.

Label Ranking through Nonparametric Regression

A. Main Theoretical Results: Statements and Proofs
In this section, we provide our results formally: In particular, Appendix A.1 contains our results for LR with complete
rankings and decision trees and A.2 contains our results for LR with complete rankings and random forests. Finally, in the
Appendix A.3, our results for noisy LR with incomplete rankings are provided.

A.1. Noiseless Oracle with Complete Rankings and Decision Trees (Level Splits & Breiman)

A.1.1. DEFINITION OF PROPERTIES FOR DECISION TREES

In this section, we study the Label Ranking problem in the complete rankings’ setting. We first define some properties
required in order to state our results. In the high-dimensional regime, we assume that the target function is sparse. We
remind the reader the following standard definition of sparsity of a real-valued Boolean function.
Definition A.1 (Sparsity). We say that the target function f : {0, 1}d → R is r-sparse if and only if there exists a set
R ⊆ [d] with |R| = r and a function h : {0, 1}r → R such that, for every z ∈ {0, 1}d, it holds that f(z) = h(zR). The set
R is called the set of relevant features. Moreover, a vector-valued functionm : {0, 1}d → Rk is said to be r-sparse if each
coordinate mj : {0, 1}d → R is r-sparse.1

For intuition about the upcoming Condition 3 and Condition 4, we refer the reader to the Appendix D.3 and Appendix D.4
respectively (and also the work of Syrgkanis & Zampetakis, 2020). Let us define the function Ṽ for a set S ⊆ [d], given a
function f and a distribution over features Dx:

Ṽ (S) := E
zS∼Dx,S

[(
E

w∼Dx
[f(w)|wS = zS]

)2
]
, (4)

where Dx,S is the marginal distribution Dx conditioned on the index set S. The function Ṽ can be seen as a measure of
heterogeneity of the within-leaf mean values of the target function f , from the leafs created by the split S, as mentioned by
Syrgkanis & Zampetakis (2020).
Condition 3 (Approximate Submodularity). Let C ≥ 1. We say that the function Ṽ with respect to f (Equation (4)) is
C-approximate submodular if and only if for any T, S ⊆ [d], such that S ⊆ T and any i ∈ [d], it holds that

Ṽ (T ∪ {i})− Ṽ (T) ≤ C · (Ṽ (S ∪ {i}))− Ṽ (S)).

Moreover, a vector-valued function m : {0, 1}d → Rk is said to be C-approximate submodular if the function Ṽ with
respect to each coordinate mj : {0, 1}d → R ofm is C-approximate submodular.

The above condition will be used (and is necessary) in algorithms that use the Level Splits criterion. Let us also set

Ṽ`(A,P) = E
x∼Dx

[(
E

z∼Dx
[f(z)|z ∈ P(x)]

)2 ∣∣∣x ∈ A] , (5)

where P is a partition of the hypercube, P(x) is the cell of the partition in which x lies and A is a cell of the partition. The
next condition is the analogue of Condition 3 for algorithms that use the Breiman’s criterion.
Condition 4 (Approximate Diminishing Returns). For C ≥ 1, we say that the function Ṽ` with respect to f (Equation (5))
has the C-approximate diminishing returns property if for any cells A,A′, any i ∈ [d] and any T ⊆ [d] such that A′ ⊆ A, it
holds that

Ṽ`(A
′, T ∪ {i})− Ṽ`(A′, T) ≤ C · (Ṽ`(A, i)− Ṽ`(A)) .

Moreover, a vector-valued functionm : {0, 1}d → Rk is said to have theC-approximate diminishing returns property if the
function Ṽ` with respect to each coordinate mj : {0, 1}d → R ofm has the C-approximate diminishing returns property.

A.1.2. THE SCORE PROBLEM

Having provided a list of conditions that will be useful in our theorems, we are now ready to provide our key results. In order
to resolve Problem 1, we consider the following crucial problem. The solution of this problem will be used as a black-box in
order to address Problem 1. We consider the following general setting.

1Note that each coordinate function mi can be sparse in a different set of indices.

Label Ranking through Nonparametric Regression

Definition A.2 (Score Generative Process). Consider an underlying score hypothesism : X→ [1/4, 3/4]k and let Dx be a
distribution over features. Each sample is generated as follows:

1. Draw x ∈ X from Dx.

2. Draw ξ ∈ [−1/4, 1/4]k from the zero mean noise distribution E .

3. Compute the score y = m(x) + ξ.

4. Output (x,y).

We let (x,y) ∼ D.

Under the score generative process of Definition A.2, the following problem arises.
Problem 3 (Score Learning). Consider the score generative process of Definition A.2 with underlying score hypothesis
m : X→ [1/4, 3/4]k, that outputs samples of the form (x,y) ∼ D. The learner is given i.i.d. samples from D and its goal
is to efficiently output a hypothesis m̂ : X→ Rk such that with high probability the error Ex∼Dx [‖m̂(x)−m(x)‖22] is
small.

In order to solve Problem 3, we adopt the techniques and the results of Syrgkanis & Zampetakis (2020) concerning
efficient algorithms based on decision trees and random forests (for an exposition of the framework, we refer the reader to
Appendix D). We provide the following vector-valued analogue of the results of Syrgkanis & Zampetakis (2020), which
resolves Problem 3. Specifically, we can control the expected squared L2 norm of the error between our estimate and the
true score vectorm.

Theorem A.3 (Score Learning with Decision Trees). For any ε, δ > 0, under the score generative process of Definition A.2
with underlying score hypothesism : {0, 1}d → [0, 1]k and given i.i.d. data (x,y) ∼ D, the following hold:

1. There exists an algorithm (Decision Trees via Level-Splits - Algorithm 3) with set of splits Sn that computes a score
estimatem(n) which satisfies

Pr
(x1,y1),...,(xn,yn)∼Dn

[
E

x∼Dx

[∥∥∥m(x)−m(n)(x;Sn)
∥∥∥2
2

]
> ε

]
≤ δ ,

and for the number of samples n and the number of splits log(t), we have that:

(a) Ifm is r-sparse as per Definition A.1 and under the C-submodularity condition (mi and Dx satisfy Condition 3
for each alternative i ∈ [k]), it suffices to draw

n = Õ
(
log(dk/δ) · kCr+2 · (Cr/ε)Cr+2

)
samples and set the number of splits to be log(t) = Cr

Cr+2 (log(n)− log(log(d/δ))).
(b) If, additionally to 1.(a), the marginal over the feature vectors Dx is a Boolean product probability distribution, it

suffices to draw
n = Õ

(
log(dk/δ) · 2r · k2 · (C/ε)2

)
samples and set the number of splits to be log(t) = r.

2. There exists an algorithm (Decision Trees via Breiman - Algorithm 4) that computes a score estimate m(n) which
satisfies

Pr
(x1,y1),...,(xn,yn)∼Dn

[
E

x∼Dx

[∥∥∥m(x)−m(n)(x;Pn)
∥∥∥2
2

]
> ε

]
≤ δ .

and for the number of samples n and the number of splits log(t), we have that:

(a) Ifm is r-sparse and under the C-approximate diminishing returns condition (mi and Dx satisfy Condition 4 for
each alternative i ∈ [k]), it suffices to draw

n = Õ
(
log(dk/δ) · kCr+3 · (Cr/ε)Cr+3

)
samples and set log(t) ≥ Cr

Cr+3 (log(n)− log(log(d/δ))).

Label Ranking through Nonparametric Regression

(b) If, additionally to 2.(a), the distribution Dx is a Boolean product distribution, it suffices to draw

n = Õ
(
log(dk/δ) · k3 · C2 · 2r/ε3

)
samples and set log(t) ≥ r.

The running time of the algorithms is polyC,r(d, k, 1/ε).

Algorithm 3 Level-Splits Algorithm for Score Learning

1: Input: Access to i.i.d. examples of the form (x,y) ∼ D.
2: Model: y = m(x) + ξ (Definition A.2) withm : {0, 1}d → [0, 1]k.
3: Output: An estimatem(n)(·;Sn) that, with probability 1− δ, satisfies

E
x∼Dx

[∥∥∥m(x)−m(n)(x;Sn)
∥∥∥2
2

]
≤ ε .

4: LearnScore(ε, δ):
5: Draw n = Θ̃(log(dk/δ)(Crk/ε)O(Cr)) samples from D {Under sparsity and Condition 3.}
6: D(n) ← {x(j),y(j)}j∈[n]
7: output LearnScore-LS(D(n))

8: LearnScore-LS (D(n)):
9: Set log(t) = Θ(r log(rk))

10: Create k datasets Di = {(x(j), y
(j)
i)}j∈[n]

11: for i ∈ [k] do
12: m

(n)
i , S

(i)
n = LevelSplits-Algo(0, Di, log(t)) {Call Algorithm 9.}

13: endfor
14: Outputm(n)(·;S(1)

n , ..., S
(k)
n) = (m

(n)
1 (·;S(1)

n), ...,m
(n)
k (·;S(k)

n))

Algorithm 4 Breiman’s Algorithm for Score Learning

1: Input: Access to i.i.d. examples of the form (x,y) ∼ D.
2: Model: y = m(x) + ξ (Definition A.2) withm : {0, 1}d → [0, 1]k.
3: Output: An estimatem(n)(·;Sn) that, with probability 1− δ, satisfies

E
x∼Dx

[∥∥∥m(x)−m(n)(x;Pn)
∥∥∥2
2

]
≤ ε .

4: LearnScore (ε, δ):
5: Draw n = Θ̃

(
log(dk/δ)(Crk/ε)O(Cr)

)
samples from D {Under sparsity and Condition 4.}

6: D(n) ← {x(j),y(j)}j∈[n]
7: output LearnScore-Breiman(D(n))

8: LearnScore-Breiman (D(n)):
9: Set log(t) = Θ(r log(rk))

10: Create k datasets Di = {(x(j), y
(j)
i)}j∈[n]

11: for i ∈ [k] do
12: m

(n)
i , P

(i)
n = Breiman-Algo(0, Di, log(t)) {Call Algorithm 10.}

13: endfor
14: Outputm(n)(·;P (1)

n , ..., P
(k)
n) = (m

(n)
1 (·;P (1)

n), ...,m
(n)
k (·;P (k)

n))

Proof. (of Theorem A.3) Let us set J = [1/4, 3/4] and let m : {0, 1}d → Jk be the underlying score vector hypothesis
and consider a training set with n samples of the form (x,y) ∈ {0, 1}d × Jk with law D, generated as in Definition A.2.

Label Ranking through Nonparametric Regression

We decompose the mapping as m(x) = (m1(x), . . . ,mk(x)) and aim to learn each function mi : {0, 1}d → J separately.
Note that sincem is r-sparse, then any mi is r-sparse for any i ∈ [k]. We observe that each sample of Definition A.2 can
be equivalently generated as follows:

1. x ∈ {0, 1}d is drawn from Dx,

2. For each i ∈ [k] :

(a) Draw ξ ∈ [−1/4, 1/4] from the zero mean distribution marginal Ei.
(b) Compute yi = mi(x) + ξ.

3. Output (x,y), where y = (yi)i∈[k].

In order to estimate the coordinate i ∈ [k], i.e., the function mi : {0, 1}d → J , we have to make use of the samples
(x, yi) ∈ {0, 1}d × [0, 1]. We have that

Pr

[
E

x∼Dx

[∥∥∥m(x)−m(n)(x;Sn)
∥∥∥2
2

]
> ε

]
= Pr

∑
i∈[k]

E
x∼Dx

[
(mi(x)−m(n)

i (x;Sn))2
]
> ε


≤ Pr[∃i ∈ [k] : Bi] ,

where we consider the events

Bi = E
x∼Dx

[(
mi(x)−m(n)

i (x;Sni)
)2]

> ε/k ,

for any i ∈ [k], whose randomness lies in the random variables used to construct the empirical estimate mn
i (·;Sni) =

mn
i (·;Sni , (x(1), y

(1)
i), . . . , (x(n), y

(n)
i)). We note that we have to split the dataset with examples (x,y) into k datasets

(x, yi) and execute each sub-routine with parameters (ε/k, δ/k). We now turn to the sample complexity guarantees. Let us
begin with the Level-Splits Algorithm.

Case 1a. If each mi is r-sparse and under the submodularity condition, by Theorem D.2 with f = mi, we have that

Pr[Bi] ≤ d exp(−n/(Cr · k/ε)Cr+2) .

By the union bound, we have that
Pr[∃i ∈ [k] : Bi] ≤

∑
i∈[k]

Pr[Bi] .

In order to make this probability at most δ, it suffices to make the probability of the bad event Bi at most δ/k, and, so, it
suffices to draw

n = Õ(log(dk/δ) · (Crk/ε)Cr+2) .

Case 1b. If each mi is r-sparse and under the submodularity and the independence of features conditions, by Theorem D.2
with f = mi, we have that

Pr[Bi] ≤ d exp(−n/(2r(Ck/ε)2)) .

By the union bound and in order to make the probability Pr[∃i ∈ [k] : Bi] at most δ, it suffices to draw

n = Õ
(
log(dk/δ) · 2r · (Ck/ε)2

)
.

Hence, in each one of the above scenarios, we have that

Pr

[
E

x∼Dx

[∥∥∥m(x)−m(n)(x;S1
n, ..., S

k
n)
∥∥∥2
2

]
> ε

]
≤ δ .

We proceed with the Breiman Algorithm.

Label Ranking through Nonparametric Regression

Case 2a. If each mi is r-sparse and under the approximate diminishing returns condition (Condition 4), by Theorem D.3
with f = mi, we have that

Pr[Bi] ≤ d exp(−n/(Cr · k/ε)Cr+3) .

By the union bound, we have that
Pr[∃i ∈ [k] : Bi] ≤

∑
i∈[k]

Pr[Bi] .

In order to make this probability at most δ, it suffices to make the probability of the bad event Bi at most δ/k, and, so, it
suffices to draw

n = Õ(log(dk/δ) · (Cr · k/ε)Cr+3) .

Case 2b. If each mi is r-sparse and under the approximate diminishing returns condition (Condition 4) and the indepen-
dence of features conditions, by Theorem D.3 with f = mi, we have that

Pr[Bi] ≤ d exp(−nε3/(k3 · C22r)) .

By the union bound and in order to make the probability Pr[∃i ∈ [k] : Bi] at most δ, it suffices to draw

n = Õ(log(dk/δ) · k3C22r/ε3) .

Hence, in each one of the above scenarios, we have that

Pr

[
E

x∼Dx

[∥∥∥m(x)−m(n)(x;P 1
n , ..., P

k
n)
∥∥∥2
2

]
> ε

]
≤ δ .

A.1.3. MAIN RESULT FOR NOISELESS LR WITH DECISION TREES

We are now ready to address Problem 1 for the oracle Ex(m). Our main theorem follows. We comment that Theorem 2.1
corresponds to the upcoming case 1(a).

Theorem A.4 (Label Ranking with Decision Trees). Consider the example oracle Ex(m) of Definition 1.1 with underlying
score hypothesism : {0, 1}d → [0, 1]k, where k ∈ N is the number of labels. Given i.i.d. data (x, σ) ∼ DR, the following
hold for any ε > 0 and δ > 0:

1. There exists an algorithm (Decision Trees via Level-Splits - Algorithm 5) with set of splits Sn that computes an estimate
h(n)(· ;Sn) : {0, 1}d → Sk which satisfies

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[
d2(h(x), h(n)(x;Sn))

]
> ε · k2

]
≤ δ ,

and for the number of samples n and the number of splits log(t), we have that:

(a) Ifm is r-sparse as per Definition A.1 and under the C-submodularity condition (mi and Dx satisfy Condition 3
for each alternative i ∈ [k]), it suffices to draw

n = Õ
(
log(dk/δ) · kCr+2 · (Cr/ε)Cr+2

)
samples and set the number of splits to be log(t) = Cr

Cr+2 (log(n)− log(log(d/δ))).
(b) If, additionally to 1.(a), the distribution Dx is a Boolean product distribution, it suffices to draw

n = Õ
(
log(dk/δ) · 2r · k2 · (C/ε)2

)
samples and set the number of splits to be log(t) = r.

Label Ranking through Nonparametric Regression

2. There exists an algorithm (Decision Tress via Breiman - Algorithm 5) with Pn that computes an estimate h(n)(· ;Pn) :
{0, 1}d → Sk which satisfies

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[
d2(h(x), h(n)(x;Pn))

]
> ε · k2

]
≤ δ ,

and for the number of samples n and the number of splits log(t), we have that:

(a) Ifm is r-sparse and under the C-approximate diminishing returns condition (mi and Dx satisfy Condition 4 for
each alternative i ∈ [k]), it suffices to draw

n = Õ
(
log(dk/δ) · kCr+3 · (Cr/ε)C·r+3

)
samples and set log(t) ≥ Cr

Cr+3 (log(n)− log(log(d/δ))).
(b) If, additionally to 2.(a), the distribution Dx is a Boolean product distribution, it suffices to draw

n = Õ
(
log(dk/δ) · k3 · C2 · 2r/ε3

)
samples and set log(t) ≥ r.

The running time of the algorithms is polyC,r(d, k, 1/ε).

Algorithm 5 Algorithms for Label Ranking with Complete Rankings

1: Input: Access to i.i.d. examples of the form (x, σ) ∼ DR.
2: Model: Oracle Ex(m) withm : {0, 1}d → [0, 1]k and h(x) = argsort(m(x)). (Definition 1.1)
3: Output: An estimate h(n)(·;Sn).

4: LabelRank(ε, δ):
5: Level-Splits Case
6: Draw n = Θ̃(log(dk/δ)(rk/ε)r) samples from DR {Under sparsity and Condition 3.}
7: For any j ∈ [n], compute y(j) ←mC(σ(j)) {See Equation (6).}
8: D(n) ← {x(j),y(j)}j∈[n]
9: output argsort(LearnScore-LS(D(n))) {Call Algorithm 3.}

10: Breiman Case
11: Draw n = Θ̃ (log(dk/δ)(rk/ε)r) samples from D {Under sparsity and Condition 4.}
12: For any j ∈ [n], compute y(j) ←mC(σ(j)) {See Equation (6).}
13: D(n) ← {x(j),y(j)}j∈[n]
14: output argsort(LearnScore-Breiman(D(n))) {Call Algorithm 4.}

Proof. (of Theorem A.4) We let the mapping mC : Sk → [0, 1]k be the canonical representation of a ranking, i.e., for
σ ∈ Sk, we define

mC(σ) = (σ(i)/k)i∈[k] . (6)

We reduce this problem to a score problem: for any sample (x, σ) = (x, argsort(m(x))) ∼ DR, we create the tuple
(x,y′) = (x,mC(σ)), wheremC is the canonical representation of the ranking σ. Hence, any permutation of length k is
mapped to a vector whose entries are integer multiples of 1/k. Let us fix x ∈ {0, 1}d.
So, the tuple (x,y′) falls under the setting of the score variant of the regression setting of Definition D.1 with regression
function equal tom′ (which is equal tomC ◦ argsort ◦m) and noise vector ξ′ = 0, i.e., y′ = m′(x) + ξ′. Recall that our
goal is to use the transformed samples (x,y′) in order to estimate the true label ranking mapping h : X→ Sk. Let us set
h′(n) be the label ranking estimate using n samples. We will show that h′(n) = argsort(m′(n)) is close to h′ = argsort(m′)
in Spearman’s distance, wherem′(n) is the estimation ofm′ using Theorem A.3. We have that

E
x∼Dx

∥∥∥m′(x)−m′(n)(x;S1
n, ..., S

k
n)
∥∥∥2
2
≤ ε

Label Ranking through Nonparametric Regression

with high probability using the vector-valued tools developed in Theorem A.3. By choosing an appropriate method, we obtain
each one of the items 1(a), 1(b), 2(a) and 2(b) (each sample complexity result is in full correspondence with Theorem A.3).
Hence, our estimate is, by definition, close tomC ◦ argsort ◦m, i.e.,

E
x∼Dx

∥∥∥mC(argsort(m(x)))−m′(n)(x;S1
n, ..., S

k
n)
∥∥∥2
2
≤ ε ,

thanks to the structure of the samples (x,y′). We can convert our estimate m′(n) to a ranking by setting h′ =
argsort(m′(n)). For any i ∈ [k], let us set mi and m̂i for the true and the estimation quantities for simplicity; intu-
itively (without the expectation operator), a gap of order ε/k to the estimate (mi− m̂i)

2 yields a bound |mi− m̂i| ≤
√
ε/k.

Recall that mi = σ(i)/k and so this implies that, in integer scaling, |σ(i)− k · m̂i| ≤ O(
√
ε · k). We now have to compute

σ̂(i), that is the rounded value of k · m̂i. When turning the values k · m̂i into a ranking, the distortion of the i-th element from
the correct value σ(i) is at most the number of indices j 6= i that lie inside the estimation radius. So, any term of the Spearman
distance is on expectation of orderO(ε·k). This is due to the fact that E[|mi−k ·m̂i|] ≤

√
E[(mi − k · m̂i)2] = O(

√
ε · k).

To conclude, we get that Ex∼Dx d2(argsort(m(x))), h′(x)) ≤ O(ε) · k2 .

A.2. Noiseless Oracle with Complete Rankings and Random Forests (Level Splits & Breiman)

In this section, we provide similar algorithmic results for Fully Grown Honest Forests based on the Level-Splits and the
Breiman’s criteria.

A.2.1. DEFINITION OF PROPERTIES FOR RANDOM FORESTS

For algorithms that use Random Forests via Level Splits, we need the following condition.
Condition 5 (Strong Sparsity). A target function f : {0, 1}d → [−1/2, 1/2] is (β, r)-strongly sparse if f is r-sparse with
relevant features R (see Definition A.1) and the function Ṽ (see Equation (4)) satisfies

Ṽ (T ∪ {j})− Ṽ (T) + β ≤ Ṽ (T ∪ {i})− Ṽ (T) ,

for all i ∈ R, j ∈ [d] \ R and T ⊂ [d] \ {i}. Moreover, a vector-valued function m : {0, 1}d → [−1/2, 1/2]k is
(β, r)-strongly sparse if each mj is (β, r)-strongly sparse for any j ∈ [k].

For algorithms that use Random Forests via Breiman’s criterion, we need the following condition.
Condition 6 (Marginal Density Lower Bound). We say that the density Dx is (ζ, q)-lower bounded if, for every set Q ⊂ [d]
with size |Q| = q, for every w ∈ {0, 1}q , it holds that

Pr
x∼Dx

[xQ = w] ≥ ζ/2q .

A.2.2. MAIN RESULT FOR NOISELESS LR WITH RANDOM FORESTS

Our theorem both for Score Learning and Label Ranking for Random Forests with Level-Splits follows.
Theorem A.5 (Label Ranking with Fully Grown Honest Forests via Level-Splits). Let ε, δ > 0. Let H > 0. Under
Definition A.2 with underlying score hypothesis m : {0, 1}d → [0, 1]k, where k ∈ N is the number of labels and given
access to i.i.d. data (x, σ) ∼ DR, the following hold. For any i ∈ [k], we have that: let m(n,s)

i be the forest estimator for
alternative i that is built with sub-sampling of size s from the training set and where every tree mi(x, Ds) is built using
Algorithm 9, with inputs: log(t) large enough so that every leaf has two or three samples and h = 1. Under the strong
sparsity condition (see Condition 5) for any i ∈ [k], if R is the set of relevant features and for every w ∈ {0, 1}r, it holds
for the marginal probability that Prz∼Dx(zR = w) /∈ (0, ζ/2r) and if s = Θ̃(2r · (log(dk/δ)/β2 + log(k/δ)/ζ)), then it
holds that

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[∥∥∥m(x)−m(n,s)(x)
∥∥∥2
2

]
≥ ε
]
≤ δ

using a training set of size n = Õ
(

2rk log(k/δ)
ε

(
log(d)
β2 + 1

ζ

))
. Moreover, under the generative process of Ex(m) of

Definition 1.1, it holds that there exists a poly(d, k, 1/ε)-time algorithm with the same sample complexity that computes an
estimate h(n,s) : {0, 1}d → Sk which satisfies

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[
d2(h(x), h(n,s)(x))

]
> ε · k2

]
≤ δ .

Label Ranking through Nonparametric Regression

Proof. (of Theorem A.5) Recall that each sample of Definition A.2 can be equivalently generated as follows:

1. x ∈ {0, 1}d is drawn from Dx,

2. For each i ∈ [k] :

(a) Draw ξ ∈ [−1/4, 1/4] from the zero mean distribution marginal Ei.
(b) Compute yi = mi(x) + ξ.

3. Output (x,y), where y = (yi)i∈[k].

In order to estimate the coordinate i ∈ [k], i.e., the function mi : {0, 1}d → [1/4, 3/4], we have to make use of the samples
(x, yi) ∈ {0, 1}d × [0, 1]. We have that

Pr

[
E

x∼Dx

[∥∥∥m(x)−m(n,s)(x)
∥∥∥2
2

]
> ε

]
= Pr

∑
i∈[k]

E
x∼Dx

[
(mi(x)−m(n,s)

i (x))2
]
> ε


≤ Pr[∃i ∈ [k] : Bi] ,

where we consider the events

Bi = E
x∼Dx

[(
mi(x)−m(n,s)

i (x)
)2]

> ε/k ,

for any i ∈ [k], whose randomness lies in the random variables used to construct the empirical estimate m(n,s)
i =

m
(n,s)
i (·; (x(1), y

(1)
i), . . . , (x(n), y

(n)
i)), where m(n,s)

i is the forest estimator for the alternative i using subsampling of size
s. We are ready to apply the result of Syrgkanis & Zampetakis (2020) for random forest with Level-Splits (Theorem 3.4)
with accuracy ε/k and confidence δ/k. Fix i ∈ [k]. Let m(n,s)

i be the forest estimator that is built with sub-sampling of size
s from the training set and where every tree mi(x, Ds) is built using Algorithm 9, with inputs: log(t) large enough so that
every leaf has two or three samples and h = 1. Under the strong sparsity condition for mi (see Condition 5), if R is the set
of relevant features and for everyw ∈ {0, 1}r, it holds for the marginal probability that Prz∼Dx(zR = w) /∈ (0, ζ/2r) and
if s = Θ̃(2r · (log(dk/δ)/β2 + log(k/δ)/ζ)), then it holds that

Pr
Dn∼Dn

[
E

x∼Dx

[(
mi(x)−m(n,s)

i (x)
)2]
≥ ε/k

]
≤ δ/k ,

using a training set of size n = Õ
(

2rk log(k/δ)
ε

(
log(d)
β2 + 1

ζ

))
. Aggregating the k random forests, we get the desired

result using the union bound. The Spearman’s distance result follows using the canonical vector representation, as in
Theorem A.4.

The result for the Breiman’s criterion is the following.

Theorem A.6 (Label Ranking with Fully Grown Honest Forests via Breiman). Let ε, δ > 0. Under Definition A.2 with
underlying score hypothesis m : {0, 1}d → [0, 1]k, where k ∈ N is the number of labels and given access to i.i.d. data
(x, σ) ∼ DR, the following hold. Suppose that Dx is (ζ, r)-lower bounded (see Condition 6). For any i ∈ [k], let m(n,s)

i be
the forest estimator for the i-th alternative that is built with sub-sampling of size s from the training set and where every tree
mi(x, Ds) is built using the Algorithm 10, with inputs: log(t) large enough so that every leaf has two or three samples,
training set Ds and h = 1. Then, using s = Θ̃(2r log(dk/δ)

ζβ2) and under Condition 5 for any i ∈ [k], we have that

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[∥∥∥m(x)−m(n,s)(x)
∥∥∥2
2

]
≥ ε
]
≤ δ ,

using n = Õ
(

2rk log(dk/δ)
εζβ2

)
. Moreover, under the generative process of Ex(m) of Definition 1.1, it holds that there exists

a poly(d, k, 1/ε)-time algorithm with the same sample complexity that computes an estimate h(n,s) : {0, 1}d → Sk which
satisfies

Pr
(x1,σ1),...,(xn,σn)∼DnR

[
E

x∼Dx

[
d2(h(x), h(n,s)(x))

]
> ε · k2

]
≤ δ .

Label Ranking through Nonparametric Regression

Proof. (of Theorem A.6) The proof is similar as in Theorem A.5 (by modifying the sample complexity and the value of
subsampling s) and is omitted.

A.3. Noisy Oracle with Incomplete Rankings

In this section, we study the Label Ranking problem with incomplete rankings and focus on Problem 2. In Definition 2.4,
we describe how a noisy score vector y and its associated ranking argsort(y) is generated. In order to resolve Problem 2,
we consider an One-Versus-One (OVO) approach. In fact, we consider a VC class G of binary class and our goal is to use
the incomplete observations and output a collection of

(
k
2

)
classifiers from G so that, for a testing example x ∼ Dx with

x ∈ Rd, the estimated ranking σ̂x, based on our selected hypotheses from G, will be close to the optimal one with high
probability. We propose the following algorithm (Algorithm 7).

Algorithm 6 Algorithm for Estimation and Aggregation for a VC class

1: Input: A collection of training sets Di,j for 1 ≤ i < j ≤ k, VC class G.
2: Output: An estimate ŝ : X→ Nk for the optimal score vector s?.

3: EstimateAggregate(Di,j for all i < j, G):
4: for 1 ≤ i < j ≤ k do
5: Find ĝi,j = argming∈G

1
|Di,j |

∑
(x,y)∈Di,j 1{g(x) 6= y}

6: endfor
7: for 1 ≤ i ≤ k do
8: ŝ(x; i) = 1 +

∑
j 6=i 1{ĝi,j(x) = −1} {Due to the Strict Stochastic Transitivity property (see Condition 2).}

9: endfor
10: Break ties randomly
11: output ŝ(·) = (ŝ(·; 1), ..., ŝ(·; k))

Algorithm 7 Algorithm for Label Ranking with Incomplete Rankings

1: Input: Sample access to i.i.d. examples of the form (x, σ) ∼ DqR, VC class G.
2: Model: Incomplete rankings are generated as in Definition 2.4.
3: Output: An estimate σ̂ : Rd → Sk of the optimal classifier σ? that satisfies

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Ca,B
φ2
·OPT(G) + ε .

4: LabelRankIncomplete(ε, δ):
5: Set n = Θ̃

(
k

4(1−a)
a max{log(k/δ),VC(G))}/polya(φ · ε)

)
{See Theorem A.7.}

6: Draw a training set D of n independent samples from DqR
7: For any i 6= j, set Di,j = ∅
8: for 1 ≤ i < j ≤ k do
9: if (x, σ) ∈ D and σ 3 {i, j} then

10: Add (x, sgn(σ(i)− σ(j))) to Di,j

11: endif
12: endfor

13: Training Phase: ŝ← EstimateAggregate(Di,j for all i < j, G) {See Algorithm 6.}
14: Testing Phase: On input x ∈ Rd, output argsort(ŝ(x))

In order to resolve Problem 2 under Condition 2, we will make use of the Kemeny embedding and the OVO approach.
Let D be the training set with labeled examples of the form (x, σ) ∼ DqR, where σ corresponds to an incomplete ranking
generated as in Definition 2.4. Our algorithm proceeds as follows:

1. As a first step, for any pair of alternatives i < j with i, j ∈ [k], we create a dataset Di,j = ∅.

Label Ranking through Nonparametric Regression

2. For any i < j and for any feature x ∈ D whose incomplete ranking σ contains both i and j, we add in the dataset Di,j

the example (x, y) := (x, sgn(σ(i)− σ(j))).

3. For any i < j, we compute the ERM solution (see Algorithm 6) to the binary classification problem ĝi,j =

argming∈G L̂i,j(g) where

L̂i,j(g) =
1

|Di,j |
∑

(x,y)∈Di,j

1{g(x) 6= y} .

4. We aggregate the binary classifiers (see Algorithm 6) using the score function:

ŝ(x; i) = 1 +
∑
j 6=i

1{ĝi,j(x) = −1} .

The structure of this score function comes from the SST property.

5. Break the possible ties randomly and output the prediction argsort(ŝ(x)).

Let us consider a binary classification problem with labels−1,+1. Let the regression function be η(x) = Pr(x,y)[y = +1|x]
and define the mapping g?(x) = 1{η(x) ≥ 1/2}. If the distribution over (x, y) were known, the problem of finding
an optimal classifier would be solved by simply outputting the Bayes classifier g?, since it is known to minimize the
misclassication probability Pr(x,y)[y 6= g(x)] over the collection of all classifiers. In particular, for any g ∈ G, it holds that
L(g)− L(g?) = 2Ex∼Dx [|η(x)− 1/2| · 1{g(x) 6= g?(x)}] .
In Problem 2, our goal is to estimate the solution of the ranking median regression problem with respect to the KT distance

σ? = argmin
h:X→Sk

E
(x,σ)∼DR

[dKT (h(x), σ)] .

When the probabilities pij(x) = Pr[σ(i) > σ(j)|x] satisfy the SST property, the solution is unique almost surely and has a
closed form (see (2)). Hence, we can use estimate the O(k2) binary optimal classifiers in order to estimate it. This is exactly
what we will do in Algorithm 7. Our main result is the following.

Theorem A.7 (Label Ranking with Incomplete Rankings). Let ε, δ ∈ (0, 1) and assume that Condition 2 holds, i.e., the
Stochastic Transitivity property holds, the Tsybakov’s noise condition holds with a ∈ (0, 1), B > 0 and the deletion
tolerance condition holds for the survival probability vector with parameter φ ∈ (0, 1). Set Ca,B = B1−a/((1− a)1−aaa)
and consider a hypothesis class G of binary classifiers with finite VC dimension. There exists an algorithm (Algorithm 7)
that computes an estimate σ̂ : Rd → Sk so that

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Ca,B
φ2

2
∑
i<j

(
inf
g∈G

Li,j(g)− L?i,j
)a+ ε ,

with probability at least 1− δ, where σ? : Rd → Sk is the mapping (see Equation (2)) induced by the aggregation of the
(
k
2

)
Bayes classifiers g?i,j with loss L?i,j , using n independent samples from DqR (see Definition 2.4), with

n = O

 Ca,B

φ4−2a ·
(
k
2

) ·(Ca,B(k2)
ε · φ

) 2−a
a

·M

 ,

where

M = max

log(k/δ),VC(G) · log

Ca,BVC(G)

φ3−2a
·
(
Ca,B

(
k
2

)
ε · φ

) 2−a
a

 .

In Table 1, we present our sample complexity results (concerning Theorem 2.5 (and Theorem A.7)) for various natural
candidate VC classes, including halfspaces and neural networks. We let a ∨ b := max{a, b}.

Label Ranking through Nonparametric Regression

Table 1. The table depicts the sample complexity for Problem 2 and Theorem A.7 for various concept classes. In the sample complexity
column, we set N0 = polya,B

(
k
φ·ε

)
. The VC dimension bounds for halfspaces and axis-aligned rectangles can be found in Shalev-

Shwartz & Ben-David (2014) and the VC dimension of L2-balls can be found in Dudley (1979). For the Neural Networks cases, M and
N are the number of parameters and of neurons respectively and the corresponding VC dimension bounds are from Baum & Haussler
(1989) and Karpinski & Macintyre (1997).

CONCEPT CLASS VC DIMENSION SAMPLE COMPLEXITY

HALFSPACES IN Rd d+ 1 N0 ·O(log(k/δ) ∨ d log(d))
AXIS-ALIGNED RECTANGLES IN Rd 2d N0 ·O(log(k/δ) ∨ d log(d))
L2-BALLS IN Rd d+ 1 N0 ·O(log(k/δ) ∨ d log(d))
NN WITH SIGMOID ACTIVATION O(M2N2) N0 ·O(log(k/δ) ∨M2N2 log(M ·N))
NN WITH SIGN ACTIVATION O(M log(M)) N0 ·O(log(k/δ) ∨M log2(M))

Remark A.8. We remark that, in the above results for the noisy nonparametric regression, we only focused on the sample
complexity of our learning algorithms. Crucially, the runtime depends on the complexity of the Empirical Risk Minimizer
and this depends on the selected VC class. Hence, the choice of the VC class involves a trade-off between computational
complexity and expressivity/flexibility.

We continue with the proof. In order to obtain fast learning rates for general function classes, the well-known Talagrand’s
inequality (see Fact 1 and Boucheron et al., 2005) is used combined with an upper bound on the variance of the loss (which
is given by the noise condition) and convergence bounds on Rademacher averages (see e.g., Bartlett et al., 2005).

Proof. (of Theorem A.7) We decompose the proof into a series of claims. Consider the binary hypothesis class G consisting
of mappings g : Rd → {−1,+1} of finite VC dimension. We let g? be the Bayes classifier. We consider

(
k
2

)
copies of this

class, one for each unordered pair (i, j) and let Gi,j = {gi,j : Rd → {−1,+1}} be the corresponding class. We let ĝi,j and
g?i,j be the algorithm’s empirical classifier and the Bayes classifier respectively for the pair (i, j).
Claim 1. It holds that

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤
∑
i<j

Pr
x∼Dx

[ĝi,j(x) 6= g?i,j(x)] .

Proof. The following hold due to the SST condition (Condition 2.i), which implies (2). Let ĝi,j = ĝi,j(Dn) be the output
estimator for the pair (i, j). We have that⋂

i<j

{x ∈ Rd : ĝi,j(x) = g?i,j(x)} ⊂ {x ∈ Rd : σ̂(x) = σ?(x)} ,

where σ̂, σ? : Rd → Sk are the mappings generated by aggregating the estimators {ĝi,j}, {g?i,j} respectively. Hence, we get
that

{x ∈ Rd : σ̂(x) 6= σ?(x)} ⊂
⋃
i<j

{x ∈ Rd : ĝi,j(x) 6= g?i,j(x)} .

So, we have that the desired probability is controlled by

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤
∑
i<j

Pr
x∼Dx

[ĝi,j(x) 6= g?i,j(x)] ,

where the above probabilities also depend on the input training set Dn.

Thanks to the union bound, it suffices to control the error probability of a single binary classifier. Note that the empirical
estimator ĝi,j : Rd → {−1, 1} is built from a random number of samples (x, σ) (those that satisfy σ 3 {i, j}, see also
Algorithm 7). Let us fix a pair (i, j) and, for σ 3 {i, j}, we set yi,j = sgn(σ(i)− σ(j)). For each classifier g ∈ Gi,j , we
introduce the risk

Li,j(g) = E
(x,σ)∼Dq

R

[1{g(x) 6= yi,j}|σ 3 {i, j}] =
E(x,σ)∼Dq

R
[1{g(x) 6= yi,j ∩ σ 3 {i, j}}]

E(x,σ)∼Dq
R

[1{σ 3 {i, j}}] ,

Label Ranking through Nonparametric Regression

and the empirical risk that is obtained using n i.i.d. samples

L̂i,j(g) =

∑
i∈[n] 1{g(x) 6= yi,j ∩ σ 3 {i, j}}∑

i∈[n] 1{σ 3 {i, j}}
.

We can control these quantities using the following result, which is a modification of a result that appears in Clémençon &
Vogel (2020). In our case, the estimator for the pair (i, j) is built from the samples (x, σ) ∼ DqR which contain both i and j.

Claim 2. Let δ > 0 and i 6= j with i, j ∈ [k]. Assume that the Tsybakov condition (Condition 2.ii) holds with parameters
a,B for the pair (i, j) and that the survival probabilities vector q satisfies Condition 2.iii with parameter φ ∈ (0, 1). Set
Ca,B = B1−a

(1−a)1−aaa . Then, for a training set Tn with elements (x, y) with y = sgn(σ(i) − σ(j)) where (x, σ) ∼ DqR
conditioned that σ 3 {i, j}, it holds that

Li,j(ĝi,j)− Li,j(g?) ≤ 2 ·
(

inf
g∈G

Li,j(g)− Li,j(g?)
)

+ rn(δ) ,

with probability at least 1− δ, where ĝi,j = argming∈G L̂i,j(g;Tn) and g? is the Bayes classifier and

rn(δ) = max

{
2

(
16Ca,B
n · φ3−2a

) 1
2−a

·
(

(C ·VC(G) · log(n))
1

2−a + (32 log(2/δ))
1

2−a
)
,
C ′ · log(2/δ)

φ · n

}
,

where C,C ′ are constants. Moreover, if the size of the training set Tn is at least

n ≥ nPC := max

{
(2/δ)

1
2C2·VC(G) , log(2/δ)

(
62−aφ1−a

Ca,B

) 1
1−a
}
,

we have that

rn(δ) = 2

(
16Ca,B
n · φ3−2a

) 1
2−a

·
(

(C ·VC(G) · log(n))
1

2−a + (32 log(2/δ))
1

2−a
)
.

Proof. Let us fix i 6= j. Consider the binary class G = Gi,j and let us set L?i,j = Li,j(g
?), where g? is the Bayes classifier.

Let us set yi,j = sgn(σ(i)− σ(j)) ∈ {−1,+1}. Consider the loss function for the classifier g ∈ G:

ci,j(g;x, σ) = 1{g(x) 6= yi,j ∩ σ 3 {i, j}} .

We introduce the class of loss functions Fi,j associated with Gi,j , where

Fi,j =
{

(x, σ) 7→ 1{σ 3 {i, j}} · (ci,j(g;x, σ)− 1{g?i,j(x) 6= yi,j}) : g ∈ Gi,j
}
.

Let F?i,j be the star-hull of Fi,j with F?i,j = {a · f : a ∈ [0, 1], f ∈ Fi,j}. For any f ∈ Fi,j , we introduce the function T
which controls the variance of the function f as follows: First, we have that

Var(f) ≤ Pr
x∼Dx

[g(x) 6= g?i,j(x)] ≤ Ca,B
φ

(Li,j(g)− L?i,j)a .

We remark that the first inequality follows from the binary structure of f and the second inequality follows from the fact that
the Tsybakov’s noise condition implies (see Fact 2) that

Pr
(x,σ)

[g(x) 6= g?i,j(x)|σ 3 {i, j}] ≤ Ca,B(Li,j(g)− L?i,j)a ,

and since Pr[σ 3 {i, j}|x] > φ for all i 6= j and x ∈ Rd. Next, we can write that

Ca,B
φ

(Li,j(g)− L?i,j)a =
Ca,B

φPr[σ 3 {i, j}]a (E f)a =: T 2(f) .

Label Ranking through Nonparametric Regression

We will make use of the following result of Boucheron et al. (2005). In order to state this result, we have to define the
functions ψ and w, (we also refer the reader to Boucheron et al. (2005) for further intuition on the definition of these crucial
functions). We set

ψ(r) = ERn{f ∈ F?i,j : T (f) ≤ r} ,

where Rn is the Rademacher average2 of a subset of the star-hull of the loss class Fi,j whose variance is controlled by r2

and
w(r) = sup

f∈F?i,j :E f≤r
T (f) ,

which captures the largest variance (i.e., the value
√

Var(f)) among all loss functions f in the star hull of the loss class
with bounded expectation.

Theorem A.9 (Theorem 5.8 in (Boucheron et al., 2005)). Consider the class G of classifiers g : X→ {−1,+1}. For any
δ > 0, let r?(δ) denote the solution of

r = 4ψ(w(r)) + 2w(r)

√
2 log(2/δ)

n
+

16 log(2/δ)

3n

and ε? the positive solution of the equation r = ψ(w(r)). Then, for any θ > 0, with probability at least 1− δ, the empirical
risk minimizer gn satisfies

L(gn)− inf
g∈G

L(g) ≤ θ
(

inf
g∈G

L(g)− L(g?)

)
+

(1 + θ)2

4θ
r?(δ) .

In our binary setting with i 6= j, the risk Li,j is conditioned on the event σ 3 {i, j}. Hence, with probability at least 1− δ,
we get that

Li,j(gn)− inf
g∈G

Li,j(g) ≤ θ
(

inf
g∈G

Li,j(g)− Li,j(g?)
)

+
(1 + θ)2

4θ

r?(δ)

Pr[σ 3 {i, j}] ,

where G = Gi,j . We set θ = 1 and, by adding and subtracting the Bayes error L?i,j = Li,j(g
?) in the left hand side, we

obtain

Li,j(ĝi,j)− L?i,j ≤ 2

(
inf
g∈G

Li,j(g)− L?i,j
)

+
r?(δ)

Pr[σ 3 {i, j}] .

The result follows by using the fact that Pr[σ 3 {i, j}] = Ω(φ) and by the analysis of Clémençon & Vogel (2020) for r?(δ)
(see the proof of Lemma 14 by Clémençon & Vogel (2020) and replace ε by φ). Finally, we set rn(δ) = r?(δ)/Pr[σ 3
{i, j}].

Crucially, observe that the above result does not depend on k, since it focuses on the pairwise comparison i, j.

Claim 3. For Ca,B and φ as defined in Claim 2, it holds that

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Ca,B
φ

2
∑
i<j

(
inf
g∈G

Li,j(g)− L?i,j
)a

+

(
k

2

)
ran

(
δ/

(
k

2

)) ,

with probability at least 1− δ.

Proof. Recall that (x, σ) ∼ DqR and fix the training examples given that σ 3 {i, j}. The Tsybakov’s noise condition over
the marginal over x given that σ 3 {i, j} implies (see Fact 2) that

Pr
(x,σ)

[gi,j(x) 6= g?i,j(x)|σ 3 {i, j}] ≤ Ca,B(Li,j(g)− L?i,j)a .

2The Rademacher average of a set A is Rn(A) := 1
n
E supa∈A |

∑n
i=1 σiai|, where σ1, ..., σn are independent Rademacher random

variables.

Label Ranking through Nonparametric Regression

We have that

Pr
x∼Dx

[gi,j(x) 6= g?i,j(x)|σ 3 {i, j}] =

∫
Rd

1{gi,j(x) 6= g?i,j(x)}Dx(x|σ 3 {i, j})dx =

= E
x∼Dx

[Dx(x|σ 3 {i, j})
Dx(x)

1{gi,j(x) 6= g?i,j(x)}
]
,

where Dx(·|σ 3 {i, j}) is the conditional distribution of x given that the label permutation contains both i and j. Then,
using the deletion tolerance property, we can obtain that Dx(x|σ 3 {i, j}) = Ω(φ · Dx(x)). So, we have that

Pr
x

[ĝi,j(x) 6= g?i,j(x)] ≤ Ca,B
φ

(Li,j(ĝi,j)− L?i,j)a .

Using Claim 2 for the pair i 6= j and Minkowski inequality, we have that

Pr
x

[ĝi,j(x) 6= g?i,j(x)] ≤ Ca,B
φ

(
2

(
inf
g∈G

Li,j(g)− L?i,j
)a

+ ran(δ)

)
.

Hence, via the union bound, we have that

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Ca,B
φ

2
∑
i<j

(
inf
g∈G

Li,j(g)− L?i,j
)a

+

(
k

2

)
ran

(
δ(
k
2

))
 ,

with probability at least 1− δ.

Claim 4. Let Ca,B and φ as defined in Claim 2. For any ε > 0, it suffices to draw

n = O

(
nPC

φ
(
k
2

))

samples from DqR in order to get
Ca,B
φ

(
k

2

)
ranPC

(
δ/

(
k

2

))
≤ ε .

Proof. Note that each pair (i, j) requires a training set of size at least nPC(δ) in order to make the failure probability at
most δ/

(
k
2

)
. These samples correspond the rankings σ so that σ 3 {i, j}. Hence, the sample complexity of the problem

is equal to the number of (incomplete) permutations drawn from DqR in order to obtain the desired number of pairwise
comparisons. With high probability, the sample complexity is

n = O

(
nPC(

k
2

)
mini 6=j Pr[σ 3 {i, j}]

)
= O

(
nPC

φ
(
k
2

)) ,

since the random variable that corresponds to the number of pairwise comparisons provided by each sample (x, σ) ∼ DqR is
at least φ ·

(
k
2

)
, with high probability. The desired sample complexity bound requires a number of pairwise comparisons

nPC so that
Ca,B
φ

(
k

2

)
ranPC

(
δ/

(
k

2

))
≤ ε .

The number of pairwise comparisons should be

rnPC

(
δ/

(
k

2

))
≤
(

εφ

Ca,B
(
k
2

))1/a

.

Let us set m = nPC. It remains to control the function rm. Recall that (see Claim 2)

rm(δ) = max

{
2

(
16Ca,B
m · φ3−2a

) 1
2−a

·
(

(C ·VC(G) · log(m))
1

2−a + (32 log(2/δ))
1

2−a
)
,
C ′ · log(2/δ)

φ ·m

}
,

Label Ranking through Nonparametric Regression

If the second term is larger in the above maximum operator, we get that

c1 · log(k/δ)

φ ·m ≤
(

εφ

Ca,B
(
k
2

))1/a

,

and so

m ≥ Ω

 log(k/δ)

φ
·
(
Ca,B

(
k
2

)
εφ

)1/a
 =: N1 .

On the other side, we get that(
c1Ca,B ·VC(G) · log(m)

m · φ3−2a
) 1

2−a

+

(
c2Ca,B log(k/δ)

m · φ3−2a
) 1

2−a

≤ 1

2

(
εφ

Ca,B
(
k
2

))1/a

,

and so we should take the maximum between the terms

m ≥ Ω

Ca,B log(k/δ)

φ3−2a
·
(
Ca,B

(
k
2

)
ε · φ

) 2−a
a

 =: N2 ,

and

m

log(m)
≥ Ω

Ca,BVC(G)

φ3−2a
·
(
Ca,B

(
k
2

)
ε · φ

) 2−a
a

 =: M3 .

Let m = ey and set ye−y = 1/M3. So, we have that −ye−y = −1/M3 and hence −y = W (−1/M3), where W is the
Lambert W function. Let N3 be the value of m that corresponds to the Lambert equation, i.e., − log(m) = W (−1/M3)
and so N3 ≈ e−W (−1/M3) with 1/M3 ∈ [0, 1/e]. Hence, the number of samples that suffice to draw from DqR is

n ≥ 1

φ
(
k
2

) max{N1, N2, N3} =
1

φ
(
k
2

) max{N2, N3} .

We remark that, in the third case, it suffices to take

m ≥ N3 ≈ 2M3 log(M3) = Ω̃

Ca,BVC(G)

φ3−2a
·
(
Ca,B

(
k
2

)
ε · φ

) 2−a
a

 ,

since 2M log(M) ≥M log(2M log(M)) for all M sufficiently large.

These claims complete the proof.

B. Additional Experimental Results for Noisy Oracle with Complete Rankings
Experimental Setting and Evaluation Metrics. We follow the setting that was proposed by Cheng & Hüllermeier (2008)
(it has been used for the empirical evaluation of LR since then). For each data set, we run five repetitions of a ten-fold
cross-validation process. Each data set is divided randomly into ten folds five times. For every division, we repeat the
following process: every fold is used exactly one time as the validation set, while the other nine are used as the training set
(i.e., ten iterations for every repetition of the ten-fold cross-validation process) (see James et al., 2013, p.181). For every test
instance, we compute the Kendall tau coefficient between the output and the given ranking. In every iteration, we compute
the mean Kendall tau coefficient of all the test instances. Finally, we compute the mean and standard deviation of every
iteration’s aggregated results. This setting is used for the evaluation of both our synthetic data sets and the LR standard
benchmarks.

Algorithm’s Implementation. The algorithm’s implementation was in Python. We decided to use the version of our
algorithms with Breiman’s criterion. Therefore there was no need to implement decision trees and random forests
from scratch. We used scikit-learn implementations. The code for reproducibility of our results can be found in:
https://github.com/pseleni/LR-nonparametric-regression.

https://github.com/pseleni/LR-nonparametric-regression

Label Ranking through Nonparametric Regression

Data sets. The code for the creation of the Synthetic bencmarks, the Synthetic benchmarks and the standard LR
benchmarks that were used in the experimental evaluation can be found in: https://github.com/pseleni/
LR-nonparametric-regression.

Experimental Results for Different Noise Settings. In our noisy nonparametric regression setting, the input noise acts
additively to the vectorm(x) for some input x and the output is computed by permuting the labels. We aim to understand
if the proposed algorithms’ performance differs in case the added noise is applied directly to the output ranking, by a
parameterized noise operator, instead of being added to the vectorm(x).

Hence, we resort to a popular distance-based probability model introduced by Mallows (Mallows, 1957). The standard
Mallows modelM(σ0, θ) is a two-parameter model supported on Sk with density function for a permutation σ equal to

Pr
σ∼M(σ0,θ)

[σ|θ, σ0] =
e−θD(σ,σ0)

Zk(θ, σ0)
.

The ranking σ0 is the central ranking (location parameter) and θ > 0 is the spread (or dispersion) parameter. In this
dispersion regime, the ranking σ0 is the mode of the distribution. The probability of any other permutation decays
exponentially as the distance from the center permutation increases. The spread parameter controls how fast this occurs.
Finally, Zk(θ, σ0) :=

∑
σ∈Sk exp(−θD(σ, σ0)) is the partition function of the Mallows distribution. In what follows, we

work with the KT distance (when D = dKT , the partition function only depends on the dispersion θ and k and not on the
central ranking i.e., Zk = Zk(θ)).

We once again use the noiseless data sets of the two families, namely LFN and SFN. We create 20 noisy data sets for each
family using the Mallows Model as a noise operator (we will refer to these data sets as MN - Mallows Noisy). For each
noiseless sample, we generate the corresponding output ranking by drawing a permutation from a Mallows distribution with
mode equal to the noiseless ranking and dispersion parameter θ ∈ [0.6, 4.4]3 .

We also generate 20 additional noisy data sets for each family (following the generative process Ex(m, E)) with different zero
mean Gaussian noise distributions (we will refer to these data sets as GN - Gaussian Noisy), matching the α-inconsistency
property of the MN data sets. Since the corresponding MN and GN data sets do not also share the β-kτ property, the
results are not directly comparable. Therefore we compare the MN and GN data sets, for each algorithm and data set family
separately, with respect to α-inconsistency and using β-kτ gap as a reference point. The results are obtained again in terms
of mean kτ from five repetitions of a ten-fold cross validation, using the noisy output as training data set and the noiseless
output data as validation set, and are visualized in Figure 2. The mean kτ values are shown as solid lines, the shaded area
corresponds to the standard deviation, and the dotted lines reveal the β-kτ gap.

We come to similar conclusions regarding the noise tolerance of each algorithm, e.g., shallow trees and fully grown random
forests are noisy tolerant while fully grown decision trees’ performance decays almost linearly. What is really interesting, is
that in spite of the β-kτ gap being higher in the MN data sets, i.e., the mean error in the input is smaller, the performance of
the algorithms is worse, in comparison to the GN data sets. This reveals that neither α-inconsistency nor β-kτ gap can be
strictly correlated to the ability of the models to interpolate the correct underlying function.

Some comments are in order. The geometry change of the input noise is not the one we should blindly blame for the
performance drop. It has to do more with the generative process used for the creation of the data sets. Specifically, in the GN,
for every x, k samples from a zero mean Gaussian distribution truncated to [−0.25, 0.25] were drawn (ξ ∈ [−1/4, 1/4]k)
and subsequently resulted to a permutation of the elements. The permutation of the elements depends on the noiseless
regression values and the additive noise of each label. This results to irregular changes, which in the presence of a big
number of samples ‘cancel’ each other. On the other hand, the MN data sets were created by drawing a sample from a
Mallows distribution, which means that certain permutations are more probable for each ranking than others. The noise
is no longer unbiased and it is highly likely that the same ranking almost constantly appears as output for a given center
permutation. This could also be linked to strategic addition of noise. With these in mind, we can safely conclude that the
noise tolerance of our models is directly affected not only by the error in terms of permutation distance, but also, quite
naturally, by the frequency of the repetitive errors, i.e., the frequency of the same erroneous noisy output ranking that arises
from the noiseless output ranking, as we have to observe the correct permutation at some frequency to achieve meaningful
results.

3We use a different dispersion parameter for each MN dataset. Specifically we use θ ∈ [0.6, 4.4] with 0.2 step.

https://github.com/pseleni/LR-nonparametric-regression
https://github.com/pseleni/LR-nonparametric-regression

Label Ranking through Nonparametric Regression

0.0 0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ea
n
k
τ
∈

[−
1
.0
,1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(a) SFN - fully grown random forests

0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.2

0.4

0.6

0.8

1.0

m
ea
n
k
τ
∈

[−
1
.0
,1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(b) LFN - fully grown random forests

0.0 0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.2

0.4

0.6

0.8

1.0

m
ea
n
k
τ
∈

[−
1.

0,
1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(c) SFN - fully grown decision trees

0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.2

0.4

0.6

0.8

1.0

m
ea
n
k
τ
∈

[−
1.

0,
1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(d) LFN - fully grown decision trees

0.0 0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ea
n
k
τ
∈

[−
1.

0,
1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(e) SFN - shallow decision trees

0.2 0.4 0.6 0.8

α ∈ [0.0, 1.0]

0.2

0.4

0.6

0.8

1.0

m
ea
n
k
τ
∈

[−
1.

0,
1
.0

]

mallows (β)

mallows

gaussian (β)

gaussian

(f) LFN - shallow decision trees

Figure 2. Illustration of the experimental results in terms of mean kτ for different noise operators E with respect to α-inconsistency and
with β-kτ gap as a reference point. The Gaussian operator gives a ranking σ = argsort(m(x) + ξ) with ξ ∈ [−1/4, 1/4]k being a zero
mean truncated Gaussian random variable. The Mallows operator gives a permutation σ ∼M(argsort(m(x)), θ) where θ ∈ [0.6, 4.4].

Evaluation on LR Standard Benchmarks. We also evaluate our algorithms on standard Label Ranking Benchmarks.
Specifically on sixteen semi-synthetic data sets and on five real world LR data sets. The semi-synthetic ones are considered
standard benchmarks for the evaluation of LR algorithms, ever since they were proposed in Cheng & Hüllermeier (2008).
They were created from the transformation of multi-class (Type A) and regression (Type B) data sets from UCI repository

Label Ranking through Nonparametric Regression

and the Statlog collection into Label Ranking data (see Cheng & Hüllermeier, 2008). A summary of these data sets and their
characteristics are given in Table 2. The real-world ones are genetic data, where the genome consists of 2465 genes and each
gene is represented by an associated phylogenic profile of length, i.e., 24 features. In these data sets we aim to predict a
‘qualitative’ representation of an expression profile. The expression profile of a gene is an ordered sequence of real-valued
measurements, converted into a ranking (e.g., (2.1, 3.5, 0.7,−2.5) is converted to (2, 1, 3, 4)) (Hüllermeier et al., 2008). A
summary of the real-world data sets is given in Table 3.

Table 2. Properties of the Semi-Synthetic Benchmarks

BENCHMARK TYPE NUMBER OF INSTANCES NUMBER OF ATTRIBUTES NUMBER OF LABELS

AUTHORSHIP A 841 70 4
BODYFAT B 4522 7 7
CALHOUSING B 37152 4 4
CPU-SMALL B 14744 6 5
ELEVATORS B 29871 9 9
FRIED B 73376 9 5
GLASS A 214 9 6
HOUSING B 906 6 6
IRIS A 150 4 3
PENDIGITS A 10992 16 10
SEGMENT A 2310 18 7
STOCK B 1710 5 5
VEHICLE B 846 18 14
VOWEL A 528 10 11
WINE A 178 13 3
WISCONSIN B 346 16 16

Table 3. Properties of the Real-Word Benchmarks

BENCHMARK NUMBER OF INSTANCES NUMBER OF FEATURES NUMBER OF LABELS

SPO 2465 24 11
HEAT 2465 24 6
DDT 2465 24 4
COLD 2465 24 4
DIAU 2465 24 7

We follow the same experimental setting as before, i.e., five repetitions of a ten-fold cross validation process for each data
set. In Table 4 we summarize our results. RF stands for the algorithm using Random Forest, DT for Decision Trees, SDT for
Shallow Decision Trees. These are the vanilla versions of the proposed algorithms, i.e., the parameters of the regressors
were note tuned (only MSE criterion and maximum depth were defined, while the other parameters were the default). RFT
and DTT stand for Random Forests Tuned and Decision Trees Tuned (each decision tree was tuned on the training data).
The parameters of the regressor were tuned in a five folds inner c.v. for each training set. The parameter grids are reported in
the anonymized repository.

Random Forests have the best result overall. Interestingly the tuning does not always lead to better results. In the majority of
the benchmarks RF and RFT have comparable results.

In Table 6, we compare our Random Forest results (RF and RFT) with other previously proposed methods, as in Cheng et al.
(2013) Labelwise Decomposition (LWD), Hüllermeier et al. (2008) Ranking with Pairwise Comparisons (RPC), Cheng &
Hüllermeier (2008) Label Ranking Trees (LRT), Zhou & Qiu (2018) Label Ranking Random Forests (LR-RF), Korba et al.
(2018) k-NN Kemeny regressor (kNN Kemeny) and Dery & Shmueli (2020) Boosting-based Learning Ensemble for LR
(BoostLR).

For the semi-synthetic data sets, our results are competitive in comparison to Cheng et al. (2013) LWD, Hüllermeier
et al. (2008) RPC and Cheng & Hüllermeier (2008) LRT results, but with no systematic improvements. As expected, in
comparison to the most recent and state-of-the-art results, the experimental results are comparable but cannot compete the

https://anonymous.4open.science/r/LR-nonparametric-regression-BC28/

Label Ranking through Nonparametric Regression

Table 4. Performance in terms of Kendall’s tau coefficient - Semi Synthetic Benchmarks

BENCHMARK RF DT DTS RFT DTT

AUTHORSHIP 0.85±0.04 0.78±0.05 0.81±0.05 0.87±0.04 0.77±0.05
BODYFAT 0.12±0.05 0.05±0.06 0.09±0.07 0.11±0.06 0.07±0.07
CALHOUSING 0.32±0.01 0.24±0.01 0.17±0.02 0.33±0.01 0.16±0.03
CPU-SMALL 0.29±0.01 0.21±0.02 0.28±0.01 0.30±0.02 0.28±0.01
ELEVATORS 0.60±0.01 0.47±0.01 0.50±0.01 0.61±0.01 0.55±0.02
FRIED 0.96±0.00 0.90±0.00 0.65±0.01 0.96±0.00 0.90±0.00
GLASS 0.88±0.06 0.80±0.06 0.79±0.06 0.80±0.07 0.80±0.07
HOUSING 0.44±0.07 0.40±0.06 0.39±0.06 0.37±0.07 0.31±0.08
IRIS 0.95±0.07 0.91±0.09 0.92±0.08 0.95±0.07 0.90±0.10
PENDIGITS 0.86±0.01 0.77±0.018 0.63±0.01 0.86±0.01 0.78±0.01
SEGMENT 0.90±0.02 0.87±0.02 0.82±0.02 0.91±0.02 0.87±0.02
STOCK 0.80±0.03 0.76±0.04 0.76±0.04 0.78±0.03 0.73±0.05
VEHICLE 0.84±0.03 0.78±0.04 0.79±0.04 0.83±0.03 0.78±0.04
VOWEL 0.67±0.04 0.63±0.05 0.55±0.04 0.68±0.04 0.58±0.06
WINE 0.90±0.09 0.84±0.12 0.86±0.10 0.91±0.08 0.84±0.11
WISCONSIN 0.14±0.04 0.08±0.04 0.1±0.04 0.14±0.05 0.09±0.04

Table 5. Performance in terms of Kendall’s tau coefficient- Real World Benchmarks

BENCHMARK RF DT DTS RFT DTT

COLD 0.10±0.03 0.06±0.03 0.07±0.03 0.09±0.03 0.07±0.04
DIAU 0.15±0.03 0.12±0.02 0.12±0.02 0.14±0.03 0.12±0.04
DTT 0.13±0.04 0.10±0.04 0.09±0.04 0.13±0.03 0.10±0.03
HEAT 0.07±0.02 0.05±0.02 0.05±0.02 0.08±0.03 0.05±0.02
SPO 0.05±0.02 0.05±0.02 0.04±0.02 0.01±0.01 0.01±0.01

highly optimized applied algorithms. But we believe that the insights gained using this technique may be valuable to a
variate of other Label Ranking methods.

For the real-world data sets there are not so many methods to compare our results with. Therefore we compare them with
the RPC method and BoostLR. The results are summarized in Table 7. The performance of our algorithm in the real-word
benchmarks is worse than in the other data sets. We suspect that the “non-sparsity” of these data sets (genome data) is one
of the main reasons that this pattern in the performance is observed. A more thorough investigation is left for future work.

C. Results on the Noisy Oracle with Partial Rankings
In this setting, we consider a distribution of partitions of the interval (of positive integers) [1..k], which depends on
the feature x ∈ Rd. Before a formal definition, we provide an intuitive example: for some feature x, let the noisy
score vector be equal to y = [0.2, 0.4, 0.1, 0.3, 0.5] (where y = m(x) + ξ, as in Definition 2.4). Then, it holds that
σ = argsort(y) = (e � b � d � a � c). In the partial setting, we additionally draw an increasing4 partition I of the
label space [k] from the distribution p(x). Assume that I = [1...2][3...3][4...5], whose size is 3. Then, the partial ranking is
defined as PartialRank(σ; I) and is equal to e = b � d � a = c.

Definition C.1 (Generative Process for Partial Data). Consider an instance of the Label Ranking problem with underlying
score hypothesis m : X→ [0, 1]k and let Dx be a distribution over features. Consider the partial partition distribution p.
Each sample is generated as follows:

1. Draw x ∈ X from Dx and ξ ∈ [−1/4, 1/4]k from the distribution E .

2. Compute y = m(x) + ξ.

4A partition I of the space [k] is called increasing if there exists an increasing sequence i1 < i2 < ... < im of indices of [k] so that
I = [1..i1][i1..i2]...[im + 1..k]. For instance, the partition [1, 2][3, 4][5] is increasing, but the partition [1, 4][2, 3][5] is not.

Label Ranking through Nonparametric Regression

Table 6. Evaluation in terms of Kendall’s tau coefficient - Semi-Synthetic Benchmarks

BENCHMARK RF RFT LWD RPC LRT LR-RF KNN KEMENY BOOSTLR

AUTHORSHIP 0.86±0.04 0.87±0.04 0.91±0.01 0.91 0.88 0.92 0.94±0.02 0.92
BODYFAT 0.12±0.05 0.11±0.06 - 0.28 0.11 0.19 0.23±0.06 0.20
CALHOUSING 0.32±0.01 0.33±0.01 - 0.24 0.36 0.37 0.33±0.01 0.44
CPU-SMALL 0.29±0.01 0.3±0.02 - 0.45 0.42 0.52 0.51±0.00 0.50
ELEVATORS 0.60±0.01 0.61±0.01 - 0.75 0.76 0.76 - 0.77
FRIED 0.96±0.00 0.96±0.00 - 1.00 0.89 1.00 0.89±0.00 0.94
GLASS 0.83±0.06 0.80±0.07 0.88±0.4 0.88 0.88 0.89 0.85±0.06 0.89
HOUSING 0.44±0.07 0.37±0.07 - 0.67 0.80 0.80 - 0.83
IRIS 0.95±0.07 0.95±0.07 0.93±0.06 0.89 0.95 0.97 0.95±0.04 0.83
PENDIGITS 0.86±0.01 0.86±0.01 - 0.93 0.94 0.94 0.94±0.00 0.94
SEGMENT 0.90±0.02 0.91±0.02 0.94±0.01 0.93 0.95 0.96 0.95±0.01 0.96
STOCK 0.80±0.03 0.78±0.03 - 0.78 0.90 0.92 - 0.93
VEHICLE 0.84±0.03 0.83±0.03 0.87±0.02 0.85 0.83 0.86 0.85±0.03 0.86
VOWEL 0.67±0.04 0.68±0.04 0.67±0.02 0.65 0.79 0.97 0.85±0.03 0.84
WINE 0.90±0.09 0.91±0.08 0.91±0.06 0.92 0.88 0.95 0.94±0.06 0.95
WISCONSIN 0.14±0.04 0.14±0.05 - 0.63 0.34 0.48 0.49±0.04 0.45

Table 7. Evaluation in terms of Kendall’s tau coefficient - Real Word Benchmarks

BENCHMARK RF RFT RPC BOOSTLR

SPO 0.05±0.02 0.01±0.01 0.14±0.02 0.14
HEAT 0.07±0.02 0.08±0.03 0.13±0.2 0.13
DTT 0.13±0.04 0.13±0.03 0.17±0.3 0.17
COLD 0.10±0.03 0.09±0.0 0.22±0.03 0.21
DIAU 0.15±0.03 0.14±0.03 0.33±0.02 0.33

3. Set σ̃ = argsort(y).

4. Draw a partition I = [1...i1][i1 + 1...i2]...[iL + 1...k] of size L+ 1 from a distribution p(x), for some L ∈ [0..k].

5. Set σ = PartialRank(σ̃; I)

6. Output (x, σ).

We let (x, σ) ∼ DpR.

Note that when L = 0, we observe a complete ranking σ. We remark that our generative model is quite general: It allows
arbitrarily complex distributions over partitions, which depend on the feature space instances. We aim to address Problem 2
when dealing with partial observations. We are going to address this question in a similar fashion as in the incomplete
regime. Specifically, we assume that Condition 2 still holds, but instead of the Item 3 (Deletion tolerance), we assume that
the property of partial tolerance holds.
Condition 7. For any 1 ≤ i < j ≤ k, we assume that the following hold: The Stochastic Transitivity and the Tsybakov’s
noise condition with parameters a,B (see Condition 2) are satisfied and the following condition holds:

1. (Partial tolerance): There exists ξ ∈ (0, 1) so that pi,j(x) ≥ ξ, where pi,j(x) is the probability that the pair i < j is
not in the same subset of the partial partition for x ∈ Rd.

Using similar technical tools as in Theorem 2.5, we obtain the following result.

Theorem C.2 (Label Ranking with Partial Permutations). Let ε, δ ∈ (0, 1) and assume that Condition 7 holds, i.e., the
Stochastic Transitivity property holds and both the Tsybakov’s noise condition holds with a ∈ (0, 1), B > 0 and the partial
tolerance condition holds for the partition probability vector p with parameter ξ ∈ (0, 1). SetCa,B = B1−a/((1−a)1−aaa)

Label Ranking through Nonparametric Regression

and consider a hypothesis class G of binary classifiers with finite VC dimension. There exists an algorithm (Algorithm 8)
that computes an estimate σ̂ : Rd → Sk so that

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Ca,B
ξ2

2
∑
i<j

(
inf
g∈G

Li,j(g)− L?i,j
)a+ ε ,

with probability at least 1− δ, where σ? : Rd → Sk is the mapping (see Equation (2)) induced by the aggregation of the
(
k
2

)
Bayes classifiers g?i,j with loss L?i,j , using n independent samples from DpR (see Definition C.1), with

n = O

 Ca,B

ξ4−2a ·
(
k
2

) ·(Ca,B(k2)
ε · ξ

) 2−a
a

·M

 ,

where

M = max

log(k/δ),VC(G) · log

Ca,BVC(G)

ξ3−2a
·
(
Ca,B

(
k
2

)
ε · ξ

) 2−a
a

 .

Algorithm 8 Algorithm for Label Ranking with Partial Rankings

1: Input: Sample access to i.i.d. examples of the form (x, σ) ∼ DpR, VC class G.
2: Model: Partial rankings are generated as in Definition C.1.
3: Output: An estimate σ̂ : Rd → Sk of the optimal estimator σ? that satisfies

Pr
x∼Dx

[σ̂(x) 6= σ?(x)] ≤ Cα,B
ξ2
·OPT(G) + ε .

4: LabelRankPartial(ε, δ):
5: Set n = Θ̃

(
k

4(1−α)
α max{log(k/δ),VC(G))}/polyα(ξ · ε)

)
{See Theorem C.2.}

6: Draw a training set D of n independent samples from DpR
7: For any i 6= j, set Di,j = ∅
8: for 1 ≤ i < j ≤ k do
9: if (x, σ) ∈ D and σ(i) 6= σ(j) then {i and j do not lie in the same partition.}

10: Add (x, sgn(σ(i)− σ(j))) to Di,j

11: endif
12: endfor

13: Training Phase: ŝ← EstimateAggregate(Di,j for all i < j, G) {See Algorithm 6.}
14: Testing Phase: On input x ∈ Rd, output argsort(ŝ(x))

Proof. The proof is similar to the incomplete rankings case and the difference lies in the following steps

1. For any i 6= j, the conditioning on the event σ 3 {i, j} should be replaced with the event that i does not lie in the
same partition (σ(i) 6= σ(j)). This implies that any φ term (which corresponds to a lower bound on the probability
Pr[σ 3 {i, j}]) should be replaced by the term ξ ∈ (0, 1).

2. For the final sample complexity, the following holds: With high probability, the number of pairwise comparisons
induced by a partial ranking is at least ξ ·

(
k
2

)
. Hence, with high probability, a number of nPC/(ξ ·

(
k
2

)
) independent

draws from the distribution DpR suffices to obtain the desired bound.

Label Ranking through Nonparametric Regression

D. Background on Regression with Trees and Forests
In this section, we provide a discussion on decision trees and forests. We refer to Shalev-Shwartz & Ben-David (2014),
Syrgkanis & Zampetakis (2020) and Breiman et al. (1984) for further details.

D.1. Further Previous Work

From an information-theoretic viewpoint, sample complexity bounds of decision trees and other data-adaptive partitioning
estimators have been established (Nobel, 1996; Lugosi & Nobel, 1996; Mansour & McAllester, 2000). However, from
a computational aspect, the problem of choosing the optimal tree is NP-complete (e.g., Laurent & Rivest, 1976) and,
hence, from a practical standpoint, trees and forests are built greedily (e.g., Level-Splits, Breiman) by identifying the most
empirically informative split at each iteration (Breiman et al., 1984; Breiman, 2001). Advances have shown that such greedily
constructed trees are asymptotically consistent (Biau, 2012; Denil et al., 2014; Scornet et al., 2015) in the low-dimensional
regime. On the other side, the high-dimensional regime, where the number of features can grow exponentially with the
number of samples, is studied by Syrgkanis & Zampetakis (2020). The literature related to the CART criterion (Breiman
et al., 1984) is vast; however, there are various other strands of research dealing with the problem of sparse nonparametric
regression (that we consider in the noiseless regression settings of our work). On the one side, several heuristic methods
have been proposed (Friedman et al., 2001; Friedman, 1991; George & McCulloch, 1997; Smola & Bartlett, 2001). On the
other side, various works, such as the ones of Lafferty & Wasserman (2008); Liu & Chen (2009); Comminges & Dalalyan
(2012); Yang & Tokdar (2015), design and theoretically analyze greedy algorithmic approaches that exploit the sparsity of
the regression function in order to get around with the curse of dimensionality of the input feature data.

D.2. Preliminaries on Regression Trees

Decision Trees. A decision tree is a predictor h : X→ Y , which, on the input feature x, predicts the label associated with
the instance by following a decision path from a root node of a tree to a leaf. At each node on the root-to-leaf path, the
successor child is chosen on the basis of a splitting of the input space. The splitting may be based on a specific feature of
x or on a predefined set of splitting rules and a leaf always contains a specific label or value, depending on the context
(classification or regression).

Nonparametric Regression. In the nonparametric regression problem, we consider that we observe independent samples
(x, y), generated as y = f(x) + ξ, where ξ corresponds to bounded zero mean noise. Specifically, we have the following
generative process:

Definition D.1 (Standard Nonparametric Regression). Consider the underlying regression function f : X→ [1/4, 3/4] and
let Dx be a distribution over features. Each sample is generated as follows:

1. Draw x ∈ X from Dx.

2. Draw ξ ∈ [−1/4, 1/4] from the zero mean distribution E .

3. Compute y = f(x) + ξ.

We let (x, y) ∼ D.

Note that the noise random variable does not depend on the feature x. In the high-dimensional regime, we assume that the
target function is sparse (recall Definition A.1).

Regression Tree Algorithms. Let us briefly describe how regression tree algorithms work in an abstract fashion. We will
focus on binary trees. In general, the regression tree algorithms operate in two phases, which are the following: first the
algorithm finds a partition P of the hypercube {0, 1}d. Afterwards, it assigns a single value to every cell of the partition P ,
which defines the estimation function f (n). Finally, the algorithm outputs this estimate. More concretely, we have that:

Phase 1 (Partitioning the space). First, a depth 0 tree contains a single cell {{0, 1}d}. If this single node splits based on
whether x1 = 0 or x1 = 1, we obtain a depth 1 tree with two cells {{0} × {0, 1}d−1, {1} × {0, 1}d−1}. In general, this
procedure generates a partition P of the space {0, 1}d. We let P(x) denote the unique cell of P that contains x.

Label Ranking through Nonparametric Regression

Phase 2 (Computing the estimation). Let D denote the training set that contains examples of the form (x, y), generated
as y = f(x) + ξ. For any cell c ∈ P , we create the dataset Dc of all the training examples (x, y) ∈ D that are contained in
the cell c, i.e., x ∈ c. Then, we compute the value of the cell as

f (n)(c;P) :=
1

|Dc|
∑

(x,y)∈Dc

y .

The main question not covered in the above discussion is the following:

How is the split of Phase 1 chosen?

There are various splitting rules in order to partition the space in Phase 1. We discuss two such rules: the Breiman’s
Algorithm and the Level-Splits Algorithm. In Breiman’s algorithm, every node can choose a different direction to split, by
using the following greedy criterion: every node chooses the direction that minimizes its own empirical mean squared error.
On the other side, in the Level-Splits algorithm, every node at the same level has to split in the same direction, by using
the greedy criterion: at every level, we choose the direction that minimizes the total empirical mean squared error. In the
upcoming sections, we elaborate on the algorithms based on the Level-Splits (Appendix D.3) and Breiman’s (Appendix D.4)
criterion.

D.3. Level-Splits Algorithm

We define xS as the sub-vector of x, where we observe only the coordinates with indices in S ⊆ [d]. Recall that in the
Level-Splits algorithm with set of splits S, any level has to split at the same direction. Hence, each level provides a single
index to the set S and the size of the set S is the depth of the decision tree. Given a set of splits S, we define the expected
mean squared error of S as follows:

L̃(S) = E
x∼Dx

[(
f(x)− E

w∼Dx
[f(w)|wS = xS]

)2
]

= E
x∼Dx

[
f2(x)

]
− E
zS∼Dx,S

(
E

w∼Dx
[f(w)|wS = zS]

)2

.

This function quantifies the population version of the mean squared error between the actual value of f at x and the mean
value of f constrained at the cell of P that contains x, i.e., the subspace of {0, 1}d that is equal to P(x). Observe that L̃
depends only on f and Dx. We set

Ṽ (S) := E
zS∼Dx,S

(
E

w∼Dx
[f(w)|wS = zS]

)2

. (7)

The function Ṽ can be seen as a measure of heterogeneity of the within-leaf mean values of the target function f , from the
leafs created by split S. The following condition is required.
Condition 8 (Approximate Submodularity). Let C ≥ 1. We say that the function Ṽ is C-approximate submodular if and
only if for any T, S ⊆ [d], such that S ⊆ T and any i ∈ [d], it holds that

Ṽ (T ∪ {i})− Ṽ (T) ≤ C · (Ṽ (S ∪ {i}))− Ṽ (S)).

We can equivalently write this condition as (this is the formulation we used in Condition 1):

L̃(T)− L̃(T ∪ {i}) ≤ C · (L̃(S)− L̃(S ∪ {i})).

The reduction of the mean squared error when the coordinate i is added to a set of splits T is upper bounded by the reduction
when adding i to a subset of T , i.e., if adding i does not decrease the mean squared error significantly at some point (when
having the set S), then i cannot decrease the mean squared error significantly in the future either (for any superset of S).
We remark that this condition is necessary for any greedy algorithm to work (see Syrgkanis & Zampetakis, 2020).

Label Ranking through Nonparametric Regression

Empirical MSE. For the algorithm, we will use the empirical version of the mean square error. Provided a set of splits S,
we have that

Ln(S) =
1

n

∑
j∈[n]

(
y(j) − f (n)(x(j);S)

)2
=

1

n

∑
j∈[n]

(y(j))2 − 1

n

∑
j∈[n]

f (n)(x(j);S)2 (8)

=:
1

n

∑
j∈[n]

(y(j))2 − Vn(S) . (9)

Algorithm 9 Level-Splits Algorithm (see (Syrgkanis & Zampetakis, 2020))

1: Input: honesty flag h, training dataset Dn, maximum number of splits log(t).
2: Output: Tree approximation of f .

3: LevelSplits-Algo(h,Dn, log(t)):
4: V ← Dn,x {Keep only training features x.}
5: if h = 1 then Split randomly Dn in half; Dn/2, D

′
n/2, n← n/2,V ← D′n,x

6: Set P0 = {{0, 1}d} {The partition that corresponds to the root.}
7: P` = ∅ for any ` ∈ [n]
8: level← −1, S ← ∅
9: while level < log(t) do

10: level← level + 1
11: Select the direction i ∈ [d] that maximizes Vn(S ∪ {i}) {For Vn, see Equation (9).}
12: for all C ∈ Plevel do
13: Partition the cell C into the cells Cik = {x : x ∈ C ∧ xi = k}, k ∈ 0, 1
14: if |V ∩ Ci0| ≥ 1 ∧ |V ∩ Ci1| ≥ 1 then
15: Plevel+1 ← Plevel+1 ∪ {Ci0, Ci1}
16: else
17: Plevel+1 ← Plevel+1 ∪ {C}
18: endif
19: endfor
20: S ← S ∪ {i}
21: endwhile
22: Output (Pn, f (n)) = (Plevel+1,x 7→ f (n)(x;S))

The following result summarizes the theoretical guarantees for algorithms with Decision Trees via the Level-Splits criterion
(see Syrgkanis & Zampetakis, 2020).

Theorem D.2 (Learning with Decision Trees via Level-Splits (see (Syrgkanis & Zampetakis, 2020))). Let ε, δ > 0. Let
H > 0. Let Dn be i.i.d. samples from the nonparametric regression model y = f(x) + ξ, where f(x) ∈ [−1/2, 1/2], ξ ∼
E ,Eξ∼E [ξ] = 0 and ξ ∈ [−1/2, 1/2]. Let also Sn be the set of splits chosen by the Level-Splits algorithm (see Algorithm 9),
with input h = 0. The following statements hold.

1. Given n = Õ
(
log(d/δ) · (Cr/ε)Cr+2

)
samples, if f is r-sparse as per Definition A.1 and under the submodularity

Condition 8, and if we set the number of splits to be log(t) = Cr
Cr+2 (log(n)− log(log(d/δ))), then it holds that

Pr
Dn∼Dn

[
E

x∼Dx

[
(f(x)− f (n)(x;Sn))2

]
> ε

]
≤ δ .

2. If f is r-sparse as per Definition A.1 and under the submodularity Condition 8 and the independence of features
condition, given n = Õ

(
log(d/δ) · 2r · (C/ε)2

)
samples and if we set the number of splits to be log(t) = r, then it

holds that

Pr
Dn∼Dn

[
E

x∼Dx

[
(f(x)− f (n)(x;Sn))2

]
> ε

]
≤ δ .

Label Ranking through Nonparametric Regression

Fully Grown Honest Forests with Level-Splits Algorithm. We first explain the term Fully Grown Honest Forests: The
term Fully Grown or (deep) means that we split every node until every leaf has exactly 1 training sample. The term Honest
(see Wager & Athey, 2018) corresponds to the following: the regression tree algorithms operate in two phases where in
both stages we use the same set of training examples. In honest trees, we split randomly the training set and use half of the
dataset (Dn/2) in find a partition of {0, 1}d and the other half (D′n/2) to assign the values in the cells. Finally, the term
Forest is used when we subsample s out of n samples and use them in order to build independent trees; we then output the
average of these trees and this function is denoted by f (n,s).

In the work of Syrgkanis & Zampetakis (2020), a result about Fully Grown Forests via the Level-Splits criterion is provided
under Condition 5. Shortly, it holds that, using a training set of size n = Õ

(
2r log(1/δ)

ε

(
log(d)
β2 + 1

ζ

))
and if for every

w ∈ {0, 1}r, it holds for the marginal probability that Prz∼Dx(zR = w) /∈ (0, ζ/2r) and if s = Θ̃(2r · (log(d/δ)/β2 +
log(1/δ)/ζ)), then it holds that PrDn∼Dn

(
Ex∼Dx [(f(x)− f (n,s)(x))2] ≥ ε

)
≤ δ. We remark that every tree f(x, Ds)

is built using Algorithm 9, with inputs: log(t) large enough so that every leaf has two or three samples and h = 1.

D.4. Breiman’s Algorithm

We now turn our attention to the Breiman’s criterion. We define the total expected mean square error that is achieved by a
partition P of {0, 1}d in the population model as follows:

L̃(P) = E
x∼Dx

[(
f(x)− E

z∼Dx
[f(z)|z ∈ P(x)]

)2
]

= E
x∼Dx

[f2(x)]− E
x∼Dx

(
E

z∼Dx
[f(z)|z ∈ P(x)]

)2

.

As in the Level-Splits criterion, we set

Ṽ (P) = E
x∼Dx

(
E

z∼Dx
[f(z)|z ∈ P(x)]

)2

.

In order to define the splitting criterion of the algorithm (due to the local nature of Breiman), one has to introduce the local
version of the expected MSE for the cell A:

L̃`(A,P) = E
x∼Dx

[(
f(x)− E

z∼Dx
[f(z)|z ∈ P(x)]

)2 ∣∣∣x ∈ A]

= E
x∼Dx

[f2(x)|x ∈ A]− E
x∼Dx

[(
E

z∼Dx
[f(z)|z ∈ P(x)]

)2 ∣∣∣x ∈ A] .
We set

Ṽ`(A,P) = E
x∼Dx

[(
E

z∼Dx
[f(z)|z ∈ P(x)]

)2 ∣∣∣x ∈ A] .
The following condition is required for decision tree-based algorithms that use the Breiman’s criterion.

Condition 9 (Approximate Diminishing Returns). For C ≥ 1, we say that the function Ṽ has the C-approximate diminishing
returns property if for any cells A,A′, any i ∈ [d] and any T ⊆ [d] such that A′ ⊆ A, it holds that

Ṽ`(A
′, T ∪ {i})− Ṽ`(A′, T) ≤ C · (Ṽ`(A, i)− Ṽ`(A)) .

For the algorithm, we need the empirical mean squared error, conditional on a cell A and a potential split direction i, which
is defined as follows: let Nn(A) be the number of training points in the cell A. Recall that Aiz = {x ∈ A|xi = z} for

Label Ranking through Nonparametric Regression

z ∈ {0, 1}. Also, set f (n)(x;P) = g(n)(P(x)). Then, we have that

L`n(A, i) =
∑

z∈{0,1}

Nn(Aiz)

Nn(A)

∑
j:x(j)∈Aiz

1

Nn(Aiz)
(y(j) − f (n)(x(j);P(x(j))))2 (10)

=
1

Nn(A)

∑
j:x(j)∈A

(y(j))2 −
∑

z∈{0,1}

Nn(Aiz)

Nn(A)
(g(n)(Aiz))

2 (11)

=:
1

Nn(A)

∑
j:x(j)∈A

(y(j))2 − V `n(A, i) . (12)

Algorithm 10 Breiman’s Algorithm (see (Syrgkanis & Zampetakis, 2020))

1: Input: honesty flag h, training dataset Dn, maximum number of splits t.
2: Output: Tree approximation of f.

3: Breiman-Algo(h,Dn, t):
4: V ← Dn,x

5: if h = 1 then Split randomly Dn in half; Dn/2, D
′
n/2, n← n/2,V ← D′n,x

6: Set P0 = {{0, 1}d} {The partition that corresponds to the root.}
7: P` = ∅ for any ` ∈ [n]
8: level← 0, nnodes ← 1, queue← P0

9: while nnodes < t do
10: if queue = ∅ do
11: level← level + 1, queue← Plevel
12: endif
13: Pick A the first element in queue
14: if |V ∩A| ≤ 1 then
15: queue← queue \ {A},Plevel+1 ← Plevel+1 ∪ {A}
16: else
17: Select i ∈ [d] that maximizes V `n(A, i) {See Equation (12).}
18: Cut the cell A to cells Aik = {x|x ∈ A ∧ xi = k}, k = 0, 1
19: queue← queue \ {A}, Plevel+1 ← Plevel+1 ∪ {Ai0, Ai1}
20: endif
21: endwhile
22: Plevel+1 ← Plevel+1 ∪ queue
23: Output (Pn, f (n)) = (Plevel+1,x 7→ f (n)(x;Plevel+1))

Theorem D.3 (Learning with Decision Trees via Breiman (see (Syrgkanis & Zampetakis, 2020))). Let ε, δ > 0. Let
H > 0. Let Dn be i.i.d. samples from the nonparametric regression model y = f(x) + ξ, where f(x) ∈ [−1/2, 1/2], ξ ∼
E ,Eξ∼E [ξ] = 0 and ξ ∈ [−1/2, 1/2]. Let also Pn be the partition that the algorithm (see Algorithm 10) returns with input
h = 0. The following statements hold.

1. If f be r-sparse as per Definition A.1 and if the approximate diminishing returns Condition 9 holds, then given
n = Õ

(
log(d/δ)(C · r/ε)C·r+3

)
samples and if we set log(t) ≥ Cr

Cr+3 (log(n)− log(log(d/δ))), then it holds that

Pr
Dn∼Dn

[
E

x∼Dx

[
(f(x)− f (n)(x;Pn))2

]
> ε

]
≤ δ .

2. If f is r-sparse as per Definition A.1, if the approximate diminishing returns Condition 9 holds and the distribution Dx
is a product distribution, given n = Õ

(
C22r log(d/δ)/ε3

)
samples and if we set log(t) ≥ r, then it holds that

Pr
Dn∼Dn

[
E

x∼Dx

[
(f(x)− f (n)(x;Pn))2

]
> ε

]
≤ δ .

Label Ranking through Nonparametric Regression

Finally, in the work of Syrgkanis & Zampetakis (2020), a result about Fully Grown Forests via the Breiman’s criterion is
provided under Condition 6. Shortly, it holds that, using a training set of size n = 2r log(d/δ)

εζβ2 and if s = Θ̃(2r log(d/δ)
ζβ2),

then it holds that PrDn∼Dn
(
Ex∼Dx [(f(x)− f (n,s)(x))2] ≥ ε

)
≤ δ. Note that every tree f(x, Ds) is built using the

Algorithm 10, with inputs: log(t) large enough so that every leaf has two or three samples, training set Ds and h = 1.

E. Background on Statistical Learning Theory
For a detailed exposition of a statistical learning theory perspective to binary classification, we refer to Bousquet et al.
(2003); Boucheron et al. (2005).

Talagrand’s Inequality. Let Pf = E f and Pnf be the corresponding empirical functional. Talagrand’s inequality
provides a concentration inequality for the random variable supf∈F (Pf − Pnf), which depends on the maximum variance
attained by any function over the class F .
Fact 1 (Theorem 5.4 in Boucheron et al. (2005)). Let b > 0 and F be a set of functions from X to R. Assume that all
functions in F satisfy Pf − f ≤ b. Then, with probability at least 1− δ, it holds that

sup
f∈F

(Pf − Pnf) ≤ 2E[sup
f∈F

(Pf − Pnf)] +

√
2 supf∈F Var(f) log(1/δ)

n
+

4b log(1/δ)

3n
.

On Tsybakov’s Condition. The following property holds for the Tsybakov’s noise condition.
Fact 2 (Tsybakov’s Condition). Let G be a class of binary classifiers. Under the Tsybakov’s noise condition (see Condi-
tion 2.(ii)) with a,B > 0 and for i 6= j, it holds that

Pr
(x,σ)∼Dq

R

[g(x) 6= g?i,j(x)|σ 3 {i, j}] ≤ Ca,B(Li,j(g)− Li,j(g?))a ,

where Ca,B = B1−a

(1−a)1−aaa , g? is the Bayes classifier and the loss function is defined as

Li,j(g) := E
(x,σ)∼Dq

R

1{g(x) 6= sgn(σ(i)− σ(j)) ∩ σ 3 {i, j}} .

Proof. Let us set L?i,j = Li,j(g
?). Define the quantity

η(x) = E
(X,σ)

[sgn(σ(i)− σ(j)) = +1|X = x] .

The loss of the classifier is equal to

Li,j(g)− L?i,j = E
(x,σ)∼Dq

R

[|2η(x)− 1| · 1{g(x) 6= g?i,j(x)}|σ 3 {i, j}] ,

and so
Li,j(g)− L?i,j ≥ tE[1{g(x) 6= g?i,j(x)} · 1{|2η(x)− 1| ≥ t}|σ 3 {i, j}] .

Using Markov’s inequality, we have that for all t ≥ 0:

Li,j(g)− L?i,j ≥ tPr[|2η(x)− 1| ≥ t|σ 3 {i, j}]
− tE[1{g(x) = g?i,j(x)}1{|2η(x)− 1| ≥ t}|σ 3 {i, j}] .

The Tsybakov’s condition implies that

Li,j(g)− L?i,j ≥ t(1−Bt
a

1−a)− tPr[g(x) = g?i,j(x)|σ 3 {i, j}] .
Hence,

Li,j(g)− L?i,j ≥ t(Pr[g(x) 6= g?i,j(x)|σ 3 {i, j}]−Bt a
1−a) .

Choosing t appropriately, one gets that

Pr[g(x) 6= g?i,j(x)|σ 3 {i, j}] ≤ B1−a

(1− a)1−aaa
(Li,j(g)− L?i,j)a .

The proof is concluded by setting Ca,B = B1−a

(1−a)1−aaa .

