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Abstract
Causal discovery in the form of a directed acyclic
graph (DAG) for time series data has been widely
studied in various domains. The resulting DAG
typically represents a dynamic Bayesian network
(DBN), capturing both the instantaneous and time-
delayed relationships among variables of interest.
We propose a new algorithm, IDYNO, to learn the
DAG structure from potentially nonlinear time
series data by using a continuous optimization
framework that includes a continuous acyclicity
constraint. The proposed algorithm is designed
to handle both observational and interventional
time series data. We demonstrate the promising
performance of our method on synthetic bench-
mark datasets against state-of-the-art baselines. In
addition, we show that the proposed method can
more accurately learn the underlying structure of
a sequential decision model, such as a Markov
decision process, with a fixed policy in typical
continuous control tasks.

1. Introduction & Related Work
Probabilistic graphical models (Pearl, 1988; Koller & Fried-
man, 2009; Pearl, 2009) have been widely adopted in appli-
cations of artificial intelligence since the 1990s. Dynamic
probabilistic graphical models are particularly applicable in
real-world problems, such as for neuroscience (Rajapakse &
Zhou, 2007), molecular biology (Linzner et al., 2019) and
computer vision (Meng et al., 2018) tasks, since they cap-
ture dynamics in temporal data like time series by explicitly
modeling how variables change over time.

Perhaps the most popular dynamic graphical models in the
literature are dynamic Bayesian networks (DBNs) (Dean &
Kanazawa, 1989; Murphy, 2002), which are discrete-time
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models with an underlying directed acyclic graph (DAG)
structure (e.g. Figure 1). While initial work in DBNs consid-
ered discrete variables, there has been plenty of subsequent
literature on models with continuous variables, which are
more appropriate for time series data involving continuous-
valued measurements. For instance, DBNs can represent
structured vector auto-regressive (SVAR) models from the
statistics and econometrics literature (Reale & Wilson, 2001;
2002; Demiralp & Hoover, 2003; Swanson & Granger,
1997; Lanne et al., 2017; Kilian, 2013; Tank et al., 2019).
Note that there are other related dynamic probabilistic graph-
ical models for (discrete-time) time series data (Eichler,
1999; Dahlhaus, 2000) as well as for a parallel stream of
research on continuous-time graphical models (Nodelman
et al., 2002; Didelez, 2008; Gunawardana et al., 2011; Meek,
2014; Bhattacharjya et al., 2018).

Typical learning tasks for graphical models include parame-
ter estimation and graph structure discovery. Structure dis-
covery for both static and dynamic models aims at learning
the graphical structure underlying the probabilistic model,
usually in the form of a DAG, given observational data.
Standard structure learning methods can be categorized as
score-based, constraint-based, or hybrid methods that com-
bine the approaches. Score-based DAG learning methods
find a graphical model that best fits the data while also con-
trolling the complexity of the DAG, according to a scoring
function (Heckerman et al., 1995; Chickering, 2002). On
the other hand, constraint-based methods identify a struc-
ture that conforms to conditional independencies between
variables as gauged by statistical tests (Spirtes et al., 2001;
Tsamardinos et al., 2006; Colombo et al., 2012; Malinsky
& Spirtes, 2019). Structure learning methods of both basic
types are often super-exponential in complexity due to a
combinatorial search over all possible graphs.

To address computational issues, there has been a recent
trend towards score-based approaches for models involv-
ing continuous variables that formulate a more tractable
continuous optimization problem, with algebraic characteri-
zation of the DAG (Zheng et al., 2018). Several works have
since successfully extended the initially proposed formula-
tion to nonlinear neural models (Yu et al., 2019; Lachapelle
et al., 2020; Kalainathan et al., 2018; Ng et al., 2019; Zheng
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et al., 2020). Recently, this continuous formulation has
been applied to dynamic DAG structure learning and shows
promising performance (Pamfil et al., 2020).

It is well known that structure discovery for DAGs with
observational data alone, i.e. independent and identically
distributed (i.i.d.) samples from a joint distribution over all
random variables, does not necessarily provide the entire
DAG structure (Spirtes et al., 2001; Pearl, 2009; Peters
& Bühlmann, 2014; Oates et al., 2016); the structure can
only be identified up to a Markov equivalence class in gen-
eral, if one makes further assumptions. The gold standard
for causal discovery is achieved when one can perform ex-
periments by intervening in a system and measuring the
ramifications. This results in interventional data, which can
be seen as an operation of replacing the observational dis-
tribution with another distribution and provides additional
information beyond observational data alone, which could
potentially identify the underlying DAG structure. With a
sufficient number of interventions, DAGs are fully identi-
fiable (Eberhardt et al., 2005; Eberhardt, 2012). There is
substantial prior work on identifiability results and structure
learning algorithms that incorporate interventional i.i.d. data
for (static) Bayesian networks (Hauser & Bühlmann, 2012;
Shanmugam et al., 2015; Yang et al., 2018; Brouillard et al.,
2020; Jaber et al., 2020; Ke et al., 2020; Squires et al., 2020).
However, we are not aware of prior work in structure learn-
ing for dynamic Bayes nets that considers interventional
data, potentially along with observational data.

In this paper, we propose a graph structure learning approach
for time series data, in the form of dynamic Bayesian net-
works, while leveraging interventional data in addition to
standard observational data. Similar to the case of i.i.d. data,
an intervention on time series data requires modifying the
process that generates the random variables over time; this
is achieved when an experimenter changes conditional dis-
tributions of random variables. Note that an intervention
can be made for any variable at any time slice in general.

To utilize interventional data, we formulate learning as a
continuous optimization problem, extending the recent al-
gebraic characterization of DAGs in time series datasets,
known as DYNOTEARS (Pamfil et al., 2020). There are
two crucial innovations: 1) While DYNOTEARS applies
a new (continuous DAG) constraint to observational linear
time series data, we introduce a non-linear objective through
neural models, thereby allowing for nonlinear temporal dy-
namics. 2) We formulate a modified objective and general
solution approach that can handle different distributions on
intervention targets, thereby vastly expanding the scope of
learning to general interventions in time series data.

Our work is closely related to aspects of reinforcement learn-
ing (RL) such as factored MDPs (Boutilier et al., 1995),
which involve optimizing a target node (reward) in a dynam-

ically evolving process with an underlying graphical model
(with partially or fully observable nodes), given control over
a subset of nodes (decision/action nodes). In the context
of offline RL (Levine et al., 2020), action nodes cannot be
actively intervened upon, as only pre-existing data from the
actions (possibly of other agents) are available; however, of-
fline data from multiple policies effectively provides access
to different interventions on fixed targets.

Contributions. Our main contributions are as follows:

• We propose a general DBN structure learning algo-
rithm called IDYNO – an interventional extension of
DYNOTEARS – that is capable of utilizing both observa-
tional and interventional time series data.

• We extend the baseline IDYNO to neural models for han-
dling potentially complex and nonlinear time series data.
The resulting methods can leverage perfect (hard) and
imperfect (soft) interventions with known targets.

• We present identifiability results around interventional
equivalence classes for our learning approach, under some
specified assumptions.

• Through synthetic as well as simulated offline RL datasets,
we show that our proposed IDYNO outperforms existing
score-based methods by utilizing such interventional data.

2. Background
Consider a set of independent realizations of a stationary
time series, with each individual realization of size T in the
form of Xt := [xt,i]

d
i=1 ∈ Rd. Here t ∈ {0, ..., T} repre-

sents the time index,Xt represents the observed values of all
d number of variables in an observational or interventional
time series dataset, and xt,i denotes the i-th component of
Xt. We use lower case letters for scalars, upper case letters
for vectors, bold letters for matrices. As typically assumed
in such models, there may exist instantaneous or contempo-
raneous influences as well as a time-delayed impact among
variables. This is illustrated in the simple DBN in Figure 1.

2.1. Basic Notation

A causal graphical model is defined by a distribution PX
over a set of random variables X ∈ Rd and a directed
acyclic graph (DAG) G = (V,E) with nodes V and edges
E. Each node i ∈ V = {1, ..., d} is associated with a
random variable xi and each edge (i, j) ∈ E represents a
direct causal relation from variable xi to xj . With a slight
abuse of notation, we will use X and V interchangeably.
We assume the distribution PX is Markov with respect to
graph G, which enables the factorized joint distribution as
P (X) =

∏d
j=1 pj(xj |xπG

j
), where πGj is the set of parents

of node j in the graph G and xB denotes the instantiations
of a subset of X whose indices are B ⊂ V . We also assume
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Figure 1. (a) A dynamic Bayesian network (DBN) with 3 nodes: A, B, C. The only intra-slice edges are from A to B and A to C. Note that
C has inter-slice edges from the prior two periods whereas A and B have only single period inter-slice edges. (b) DBN from (a) with soft
and hard interventions for variables B and C respectively.

causal sufficiency, i.e., there are no hidden common causes
between any pair of variables in X (Peters et al., 2017).

In time series datasets, there are many possible ways
to model PX . We follow the typical setting in recent
work (Pamfil et al., 2020), characterizing X through a stan-
dard SVAR model (Demiralp & Hoover, 2003; Swanson &
Granger, 1997; Kilian, 2013):

Xt = XtW +Xt−1A1 + ...+Xt−pAp + Zt, (1)

where t ∈ {p, ..., T} with horizon T , p is the autoregressive
order, and Zt ∈ Rd is a vector of noise variables drawn from
any continuous distribution. We assume Zt is independent
of Zt′ 6=t and of Xt′ for all t′. The d × d matrices W and
Ai, i ∈ {1, ..., p}, represent weighted adjacency matrices
for the intra-slice and inter-slice edges in G, respectively,
and model the contemporaneous and time-lagged causal
relations. As is typical in dynamic Bayesian networks, W
and Ai are constrained to ensure that the underlying graph
is acyclic; note that inter-slice edges are such that there are
only edges from the previous time slice to the current time
slice. Eq. 1 can be written in matrix form:

X = XW + Y1A1 + ...+ YpAp + Z (2)

where X ∈ Rn×d is a matrix whose rows are Xt, Z ∈
Rn×d is a matrix formed similarly by Zt, and Yj, j ∈
{1, ...p}, are time lagged versions of X. The number n is the
effective sample size, which is equal to T − p+ 1. Let Y =
[Y1, ...,Yp] be a matrix with size n × pd concatenation
of time-lagged data, A = [A1

T , ...,Ap
T ]T be a matrix

with size pd× d, then the formulation takes the structural
equation model (SEM) form:

X = XW + YA + Z (3)

We refer to such a data transformation as time-lagged, so
that it has the same matrix form as i.i.d. data.

2.2. Interventions

An intervention on a variable xj in a DAG G corresponds
to replacing its factored conditional distribution pj(xj |xπG

j
)

with another distribution p̂j(xj |xπG
j

). The intervention can
be performed on multiple variables simultaneously with a
set of interventional targets I ⊆ V . Denote the interven-
tional family by I := (I1, ..., IK), where K is the number
of interventions. The joint likelihood for the kth intervention
can be written as:

p(k)(X) :=
∏
j 6∈Ik

p
(1)
j (xj |xπG

j
)
∏
j∈Ik

p
(k)
j (xj |xπG

j
) (4)

The typical intervention on the data from Eq. 4 is referred
to as an imperfect (or soft) intervention. An intervention
can also be perfect (or hard), if it completely removes the
dependencies of a node xj on its parents,1 for example
by setting p(k)j (xj |xπG

j
) = p

(k)
j (xj), ∀j ∈ Ik. Real-world

examples of these types of interventions include gene knock-
outs/knockdowns in biology or performing a fixed action
for a decision variable with a deterministic policy in a rein-
forcement learning environment.

We note that while existing work can handle multiple in-
terventional families, they focus on only one interventional
target at a time (Brouillard et al., 2020). Our method in
comparison allows for multiple interventions at any time.

2.3. Causal Structure Learning

The goal of typical causal structure learning tasks is to
recover the DAG G using samples from PX and/or from the
interventional distributions. The exact recovery of the graph
is typically costly, due to the super-exponential search space
in number of nodes, and may not always be identifiable.
In Section 1, we mentioned some prior literature on the
subject.

The most relevant work here is the following continuous
constrained optimization re-formulation for DAG learning
that uses a continuous DAG constraint, h(W) = 0 on the
weighted adjacency matrix W to avoid the combinatorial

1A hard intervention in this sense can be stochastic, and does
not necessarily imply deterministically fixing the value of a node.
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search on the feasible solutions W (Zhang et al., 2019):

min
θ,W

Lθ(X;W)− λΩ(θ,W) s.t. h(W) = 0, (5)

where Lθ is the loss function and θ indicates parameters
other than W, Ω(θ,W) is a regularization term on model
parameters and/or the edge complexity in W with a tunable
regularization parameter λ. Zhang et al. (2019) propose
h(W) = Tr(eW)− d, where Tr represents the matrix trace,
and shows the graph is acyclic if and only if the constraint
h(W) = 0. Typically, the loss fθ can be the least square
loss (Zhang et al., 2019) in linear structured equation models
(SEM), or evidence lower bound (Yu et al., 2019), among
other losses (Kalainathan et al., 2018). The problem is then
approximately solved using an augmented Lagrangian pro-
cedure. Many extensions to the method have been proposed
(Lachapelle et al., 2020; Ng et al., 2019).

For time series datasets, DYNOTEARS (Pamfil et al., 2020)
extends the continuous optimization framework to DBNs
by explicitly modeling the intra- and inter-slice adjacency
matrices separately with a linear SEM model. Namely:

min
θ,W,A

Lθ(X;W,A)− λΩ(θ,W) s.t. h(W) = 0, (6)

where W is the matrix for intra-slice edges and A is the
matrix for inter-slice connections, and Lθ(X;W,A) =
1
n ||X − XW − YA||2F . Here n is the total sample size,
and || · ||F is the Frobenius norm. To distinguish with the
Frobenius norm, we use || · ||2 to denote the (vector) l2 norm.

3. IDYNO: Structure Learning from
Interventional Time Series Data

We make two major improvements of the existing graph
learning algorithms in the proposed algorithm, IDYNO.
First, we propose a new DAG learning method and algo-
rithm that can handle both observational and interventional
time series data. Second, we propose to use a more complex
nonlinear family of models to capture arbitrary distribution
PX more accurately.

3.1. Time Series Data with Interventions

First, we develop a method that can handle both interven-
tional and observational data together, based on a similar
idea from i.i.d. datasets (Brouillard et al., 2020). The main
idea is to learn a DAG from interventional data by con-
sidering a separate distribution family for the intervened
nodes (in the cases of perfect intervention, removing in-
tervened nodes) in the log-likelihood objective. Specifi-
cally, in a standard SVAR model, let a binary indicator
matrix RI = [rIkj ] ∈ {0, 1}K×d encode the interventional
family I, such that rIkj = 1 when xj is an intervened tar-
get in Ik and 0 otherwise. For each interventional fam-

ily k, we use W(k) ∈ Rd×d and A(k) ∈ Rpd×d to de-
note the corresponding weighted adjacency matrices, and
W := {W(1), ...,W(K)}, A := {A(1), ...,A(K)} repre-
sent the collection matrices of all interventional families,
with W(1) and A(1) corresponding to non-intervened data.
The loss function Lθ(X;W) in Eq (6) considers both ob-
servational and interventional data, namely:

Lθ(X;W,A) =

K∑
k=1

d∑
j=1

(
Lj(X;W(1),A(1))

1−rIkj

+ Lj(X;W(k),A(k))
rIkj
)

(7)

where Lj denotes the loss associated with the jth compo-
nent. Then, the optimization becomes:

min
W,A

1

n

K∑
k=1

d∑
j=1

(
||
(
X−XW(1) −YA(1)

)
j
||2(1−r

I
kj)

2

+ ||
(
X−XW(k) −YA(k)

)
j
||2r

I
kj

2

)
+ λΩ(θ)

s.t. T r(eW)− d = 0 (8)

Then the final estimated graph structure would be W(1) and
A(1), indicating the underlying graph structures under no
interventions.

In the case of perfect or hard interventions, intervened nodes
no longer depend on W or A, and hence their loss can be
removed from the objective without affecting the minimiza-
tion with respect to W and A.

3.2. Nonlinear Time Series Data

Nonlinear Observational Time Series Data In practice,
the relationships among variables can be highly nonlinear,
increasing the difficulty in modeling. To alleviate this issue,
we first adapt the nonlinear relationships in the continuous
constrained optimization DAG learning framework for time
series data to the IDYNO framework, with a nonlinear model
such as the neural network based NOTEARS method (Zheng
et al., 2020). In this class of models, there may not be
parameters directly representing the weighted adjacency
matrices W and A.

We assume that there exist functions fj : Rd → R and
gj : R→ R such that:

E[xj |xπG
j

] = gj(fj(X), fpj (Y )), E[fj(X)] = 0 (9)

where fj(x1, ..., xd) does not depend on xk if xk 6∈ πGj ,
and fpj is the time-lagged function. We assume gj follows a
generalized linear model (GLM) with possible non-additive
noise terms. In this work, we study the link function gj as
the sum of two terms. In this setting, we seek to learn f =
(f1, ..., fd) such that the DAG from f , W(f), represents
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the same DAG over the data X . The overall objective can
be written as:

min
f
Lθ(f)− λΩ(θ) s.t. W(f) is a DAG (10)

where Lθ(f) =
∑d
j=1 L(Xj , fj(X), fpj (Y )).

However, it is not straightforward to directly use a W and
A in the parametrization of the neural network, since neural
networks do not contain them, and the continuous acyclicity
constraint h(W) requires W explicitly. To remedy this
problem, we extend the nonparametric acyclicity to time
series datasets by using partial derivatives to measure the
dependence of each function fj on the qth variable.

Let H1(Rd) ⊂ L2(Rd) be the Sobolev space of square-
integrable functions whose derivatives are also square inte-
grable. Let fj ∈ H1(Rd) and ∂qfj be the partial derivative
with respect to xq . It can be shown that fj is independent of
xq if and only if ||∂qfj ||L2 = 0, where || · ||L2 is the usual
L2-norm (Zheng et al., 2020). For a formal argument for
this statement, please refer to Appendix A.

Then each entry of W(f) = W(f1, ..., fd) ∈ Rd×d can be
defined as:

[W(f)]qj := ||∂qfj ||L2

To use a neural network to approximate fj , we define fj ,
for each j, as a multi-layer perceptron (MLP) with h hidden
layers and activation σ : R→ R, given by

MLP (U ;M(1), ...,M(h)) = σ(M(h)σ(...M(2)σ(M(1)U)))

where M(l) is the (matrix) weight of each layer in MLP. If
the qth column of the first layer weight M(1) consists of
all zeros, then MLP (U ;M(1), ...,M(h)) is independent of
uq , the qth component of U .

The above analysis focuses on one variable xj at a time.
Let θj = (M

(1)
j , ...,M

(h)
j ) denote parameters for the

the jth MLP, and θ = (θ1, .., θd). Let [W(θ)]qj =

||qth-column(M
(1)
j )||2 and λa, λw as the regularization pa-

rameters for A and W, respectively. Then the overall ob-
jective becomes:

min
W,A,θ

1

n

d∑
j=1

Lj(X,MLP(X; θj,W,A) + λa||A(1)
j ||1,1

+ λw||W (1)
j ||1,1 s.t. W is acyclic

where MLP (X; θj ,W,A) produces the estimate X̂j .
Since there are two adjacency matrices W and A to
be learned, we use separate MLPs for them and con-
catenate the output from each MLP via a third MLP.
In other words, we set MLP (X; θj ,W,A) as the
combination of separate MLPs for W and A, i.e.,

MLP1(MLP2(X;A, θAj ),MLP3(X;W, θWj ); θj). A(1)

and W(1) are first layer parameters for W and A networks.

Solving the continuous program can be done with any off-
the-shelf solver. As typical in the continuous acyclic formu-
lation, the standard augmented Lagrangian transforms the
problem into a series of unconstrained objectives;

min
θ
L(θ) +

ρ

2
|h(W(θ))|2 + αh(W(θ))

+ λa||A(1)
j ||1,1 + λw||W (1)

j ||1,1 (11)

To solve the unconstrained l1-penalized smooth minimisa-
tion problem above, a number of possible optimizers could
be used. A natural choice would be the L-BFGS-B algo-
rithm (Byrd et al., 1995). Since Eq (11) is a nonconvex
program due to the acyclicity constraint, only a stationary
solution can be guaranteed.

Nonlinear Interventional Time Series Data With the
above proposal nonlinear model for time series data, we
propose a neural network version of IDYNO, denoted as
IDYNO-nn, to handle potentially complex nonlinear inter-
ventional time series data. The main difference from the
observational data is the use of interventional loss functions
for each interventional family.

min
W,A,θ

1

n

K∑
k=1

d∑
j=1

Lj(X,MLP (X; θj ,A(1),W(1)))
1−rIkj

Lj(X,MLP (X; θj ,A(k),W(k)))
rIkj

+ λa||A(1)
j ||1,1 + λw||W (1)

j ||1,1 (12)

s.t. T r(eW)− d = 0 (13)

Eqs (12)-(13) can be solved similarly as (11), to achieve
stationary point solutions.

After learning, we use a threshold on W(1) and A(1) to
remove small coefficients and obtain the final graphs. This
thresholding procedure is standard in continuous DAG learn-
ing algorithms.

3.3. Identifiability

Identifiability of the DAG structures for observational time
series data has been established (Pamfil et al., 2020), where
the inter-slice edges represented by A are identified from
standard results in vector autoregressive (VAR) models,
whereas the intra-slice edges W can be identified under
two special cases: 1) the errors Z are non-Gaussian, as a
well-known consequence of Marcinkiewicz’s theorem and
independent component analysis (Pamfil et al., 2020), or 2)
all errors Z are standard Gaussian with zero mean and equal
variance (Peters & Bühlmann, 2014). For linear time series
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interventional datasets with known targets, identifiability re-
sults have been studied in the i.i.d. case (Chen et al., 2018).
Specifically, if each variable is affected by a unique set
of intervened variables, the resulting model is identifiable.
For time series data, under the (linear) SVAR parametric
distribution assumption, one could establish the same iden-
tification results, since the reformulation with time-lagged
data can be seen as equivalent to an i.i.d. formulation.

With nonlinear interventional data, the identification results
above may not apply anymore. However, without further
distributional assumptions, Brouillard et al. (2020) estab-
lishes identifiability of the I-Markov equivalent class in
i.i.d. data. These results can be extended to IDYNO-nn for
time series data in the following fashion.

First, we define a generalized version of I-Markov equiv-
alence from prior work (Hauser & Bühlmann, 2012; Yang
et al., 2018) for graphs within a (domain or problem-
dependent) subset of DAGs rather than all DAGs:

Definition 3.1. ((I,D)-Markov Equivalence Class).
Given a set of interventions I on a DAG G in a subset D of
all possible DAGs over a set of variables, we define (I,D)-
MEC(G) as the subset of graphs in D which are I-Markov
equivalent to G.

As such, (I,D)-MEC(G) is simply the intersection of
D with the I-Markov equivalence class of G, i.e. D ∩
(I)-MEC(G). We also define the negative score func-
tion −SI(G) of a model graph G as the expectation
EX|{p(k)},G? [Lreg(X)] – where Lreg is the regularized loss
being minimized in Eq. (12) with the losses Lj being nega-
tive log-likelihoods – over data X generated from the true
graph G? with interventional distributions p(k) for each
Ik ∈ I.2 With these definitions, the following result holds:
(Please see the proof and related discussion in Appendix B.)

Theorem 3.2. For a graph Ĝ ∈ D, where D ⊂ DAG, if
Ĝ ∈ argmaxG∈DAGSI(G), and furthermore if (i) the den-
sity model, i.e. functions {gj , fj , fpj } along with noise terms,
has sufficient capacity to exactly represent the ground truth
distribution PX , (ii) a given set of interventions I satisfies
I-faithfulness for the true graph and distributions (G?, PX),
(iii) the density models are strictly positive, and (iv) the
ground truth densities p(k)(X) have finite differential en-
tropy, then Ĝ is (I,D)-Markov equivalent to G?, for small
enough λa, λw.

Setting D to be the subset Ds of DAGs which correspond
to stationary dynamics with constant-in-time inter-slice and
intra-slice conditional distributions (see Appendix B for
details), Theorem 3.2 takes the following form:

Corollary 3.3. For a graph Ĝ ∈ Ds and given the as-
sumptions mentioned in Theorem 3.2, Ĝ is (I,Ds)-Markov

2We omit the constraint, Eq. (13), since the theoretical analysis
applies to the space of DAGs, and does not consider cyclic graphs.

equivalent to G?, for small enough λa, λw.

Here, restricting to DAGs in Ds while allowing interven-
tions in I to change over time reduces the size of the equiv-
alence class (I,Ds)-MEC(G?).

4. Empirical Evaluation
We compare the proposed IDYNO methods, including both
linear/nonlinear and soft/hard regimes, with baseline meth-
ods for time series interventional datasets to show the supe-
rior performance of the proposed methods. We first com-
pare different methods on synthetic datasets and then ap-
ply them to control tasks to discover the underlying struc-
tures. Since there are no known structure learning algo-
rithms for interventional dynamic data, we compare our
method to implementations of various state-of-the-art obser-
vational baselines, including DYNOTEARS (Pamfil et al.,
2020), standard vector autoregressive models (VAR) (Jo-
hansen, 1991), tsGFCI (Malinsky & Spirtes, 2019), and
i.i.d. differential interventional method DCDI (Brouillard
et al., 2020). We need to transform time series data for
DCDI’s usage. We use the following 2-step procedure: 1)
fit VAR to compute the residual e = Z(I −W)−1 and
B = A(I−W)−1 and 2) use DCDI to learn W over the
residual data e = eW + Z. This two-step approach can
learn both the W and A = B(I −W), although errors
can propagate via estimation of earlier steps (Pamfil et al.,
2020). Moreover, since tsGFCI returns a partial ancestral
graph (PAG), an edge is counted as correct in our experiment
if it has the correct arrow in the desired direction, regardless
of the other direction. This procedure favors tsGFCI even
more than the setting in DYNOTEARS (Pamfil et al., 2020)
and hence may overstate the performance of tsGFCI. We
use an existing implementation of tsGFCI from Tetrad 3

with default parameter settings.

All experiments are done in Python on a machine with
3.7GHz CPU and 16GB memory.

4.1. Synthetic Dynamic Datasets

We first evaluate different approaches on synthetic time
series data. We simulate the data according to the SEM
from Eq (3), mostly following the setup and code from
Pamfil et al. (2020) for ease of comparison. The generating
process consists of 3 steps:

1. Generating weighted graphs in the form W and A.
2. Generating data matrices X and corresponding Y per

W and A.
3. Generating interventional data with random targets and

different distributions.

We repeat each experiment 5 times and compare the struc-

3https://github.com/cmu-phil/tetrad
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tural Hamming distance (SHD) between the learned graph
and the estimated graph (the lower, the better). We report
the mean and the standard error for each case. We generate
linear datasets first and then more complex datasets under
more difficult settings.

For the hyperparameter values in DYNOTEARS and our
proposed method, we use a separate validation dataset
to choose the best performing hyperparameters for each
method per SHD. We search for the best value of each
of 4 parameters sequentially, including λa, λw, the
threshold to obtain final W(1) and A(1), and the hidden
neuron size. For λa and λw, we search over a value
range of {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102}.
Graph threshold search range is set to be
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3},
and neuron size range is searched over {5, 10, 30, 50}.
For other baseline methods, we use the default parameter
settings.

Table 1. SHD Results for Synthetic Linear Datasets
Dataset DYNOTEARS IDYNO

Observational 2.0± 0.0 2.0± 0.0

Interventional 32± 0.4 19± 0.3

Linear Synthetic Interventional Datasets. In the linear
setting, we use the following steps and hyper-parameters to
generate the data.

• For step 1), we use the Erdos-Renyi model to generate
intra-slice graph W with degree of 3 for a total d = 10
nodes, with its weights sampled uniformly at random
from U([−2.0,−0.5]∪[0.5, 2.0]). We use the same Erdos-
Renyi model to generate inter-slice graph A with degree
of 3, with its weights sampled uniformly at random from
U([−0.5,−0.3] ∪ [0.3, 0.5]).

• For step 2), we focus on data with first autoregressive
order, i.e., p = 1, where data only depends on the previous
time slice. We generate 5 sequences with 500 time slices
each with standard Gaussian noises. We estimate one
graph from each sequence and report the average SHD
along with its standard error.

• For step 3), to generate interventional data, we flip a fair
coin to decide whether to intervene at any time slice, in
which case we sample one node uniformly to be the in-
tervened node. Here we deploy a perfect intervention,
setting the choosing the values of intervened nodes from
{0.25, 0.5, 0.75, 1} randomly. The number of interven-
tion families K is therefore 2. We also compare methods
for purely observational data (Obs).

As shown in Table 1, the proposed IDYNO method achieves
similar accuracy as DYNOTEARS on the observational
dataset, validating it can handle observational data. For

the interventional dataset, IDYNO significantly outperforms
DYNOTEARS, achieving almost half of the SHD.

Nonlinear Interventional Datasets. Next we test
IDYNO-nn, along with all other baselines, on nonlinear
synthetic dynamic datasets. The data generating process is
similar to the linear setting, except the underlying function
between a node and its parents becomes a two-layer MLP
with a sigmoid activation function. In the MLP setting,
the weights of the MLPs are sampled uniformly from
U([−2.0,−0.5] ∪ [0.5, 2.0]), and then weights in the first
layer are updated by the parental weights from W and
A structures. We also test the effect of varying sizes of
node d, from 5 to 20. The interventional data is generated
again with the same hard intervention regime as described
previously.

As shown in Figure 2, IDYNO and DYNOTEARS suffer
due to their linearity assumptions; IDYNO-nn is the most
accurate, performing much better than both linear models.

Figure 2. SHD Results for Nonlinear Hard-Intervention Datasets.

Nonlinear Soft-Interventional Datasets. Lastly, we also
test the methods under soft interventional regimes. We
follow the same nonlinear dynamic data generating process
as above, with two exceptions: 1) we increase the number of
potential interventions at each time slice, and 2) we sample
intervened nodes’ values from another distribution. We
assume every node has a probability of 0.1 to be intervened
upon at each time slice (hence up to d instead of 1), and if a
node is chosen, the soft intervention comes from a different
2-layer MLP, depending on the values of its parent nodes
per its graph. This soft intervention distribution can be very
different from the observation distribution.

As shown by the results in Figure 3, we compare the soft
version of the IDYNO-nn, or IDYNO-nn-soft, with all other
methods, for d = {5, 10, 20}. The results confirm that
IDYNO-nn is consistently better than DYNOTEARS and



Learning Nonparametric DAGs from Interventional Dynamic Data

IDYNO. IDYNO-nn-soft achieves much better performance
than IDYNO-nn, showing that the soft intervention loss
function might be necessary in these settings. tsGFCI ranks
second, with mean SHD 42.0 as opposed to IDYNO-nn-
soft’s 39.0 at d = 20.

Figure 3. SHD Results for Nonlinear Soft-Intervention Datasets.

4.2. Network Administration Experiments

Problem Setting. We consider a network administration
example from the factored MDP literature where a clus-
ter of computers are connected together in some under-
lying network topology such that failures of these com-
puters propagate probabilistically through network connec-
tions (Guestrin et al., 2001). The administrator can prevent
failure propagation by fixing computers that have failed.
The problem can be modeled as a DBN where there is a
variable Xi for every computer i in the network. Xi at any
epoch depends on its state at the previous period, its parent
computer states in the underlying topology (representing
physical dependencies in the network) as well as the bi-
nary repair action performed for the computer. At most one
computer can be repaired at any epoch due to resource con-
straints. In the original version of the problem, variables Xi

are binary such that 0 and 1 represent failure and operational
states respectively. We consider the continuous state version
of the problem where the states of each computer are values
between 0 and 1, such that a lower value indicates a poorer
condition (Hauskrecht, 2004; Kveton et al., 2006).

Data Generation. We consider the ring network topol-
ogy involving d computers, similar to prior work, where
there are only edges from computer i to computer i+ 1,
i = 1, · · · , d − 1 as well as an edge from computer d to
computer 1. We note that our data generation applies to any
network topology in general. Our approach for the DBN
sampling follows prior work (Hauskrecht, 2004; Kveton
et al., 2006) as follows. Action Ai is 1 if the computer

Figure 4. SHD Results for Network Administration Experiments

indexed i is fixed at any epoch, otherwise it is 0. For the
experiments, we consider a realistic policy where only the
worst state computer from the previous epoch is fixed. The
transition model captures propagation of network failures
and is encoded locally by beta distributions with parameters
a and b. Specifically, when Ai = 1, Xi is generated from a
Beta distribution with parameters a = 20, b = 2. In contrast,
when Ai = 0, Xi depends on variables from the previous
epoch with the following Beta distribution parameters:

a = 2 + 13x′i −

2x′i
∑

j∈Pa(Xi)

x′j

 ,

b = 10− 2x′i −

2x′i
∑

j∈Pa(Xi)

x′j

 ,

where x′i is the state of computer i from the previous epoch,
x′j is the state of computer j from the previous epoch, and
Pa(Xi) are the parents of Xi in the network topology. We
also enforce non-negativity constraints on the beta param-
eters above. In this fashion, failures are only propagated
when a computer is not fixed.

Results. Figure 4 compares results for structure learning
of the DBN for a ring network topology with a varying
number of computers (d). IDYNO-nn performs best on
this task since it is a hard-intervention dataset; it is better
than DYNOTEARS and IDYNO. tsGFCI’s performance is
closely behind (for example, mean SHD 35.0 against 32.4
at d = 20), possibly because there is only a limited amount
of interventional data.

4.3. Continuous Control Experiments

For these experiments, we apply the proposed methods to a
reinforcement learning environment, where data is provided
by RL agent actions. We work in the offline RL setting
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Table 2. Continuous Lunar Lander Experiment Results Of Various Algorithms.
Algorithm VAR DCDI tsGFCI DYNOTEAR IDYNO IDYNO-nn IDYNO-nn-soft

SHD 46.4± 0.4 34.8± 0.1 27.6± 0.1 32.6± 0.2 32.2± 0.1 31.2± 0.1 27.4± 0.1

where data trajectories are generated in advance by multiple
unknown policies (intervention families k) and are used
for structure learning without online acquisition of more
data (Sutton & Barto, 2018; Levine et al., 2020).

Problem Setting. We use the continuous version of the
Lunar Lander environment in OpenAI Gym (Brockman
et al., 2016), as DYNOTEARS handles only continuous
variables. Lunar Lander is a mini-game where an agent tries
to land a lunar lander safely in a desired location without
crashing. Let us denote the state and action space dimen-
sionalities as (ds, da) = (6, 2). States η1 through η6 are
the lander’s horizontal position, horizontal velocity, vertical
position, vertical velocity, angular orientation, and angular
velocity, respectively. Actions β1 and β2 are the forces from
the main engine and orientation engine. We omit two bi-
nary state variables indicating whether the lander legs have
landed.

State-action dynamics take the following form:4

∆η
(t)
1 = τη

(t)
2 ∆η

(t)
2 = τβ

(t)
2 /M (14)

∆η
(t)
3 = τη

(t)
4 ∆η

(t)
4 = τ(β

(t)
1 /M − g) (15)

∆η
(t)
5 = τη

(t)
6 ∆η

(t)
6 = τ · f(β

(t)
1 , β

(t)
2 ), (16)

where ∆η
(t)
i := η

(t+1)
i − η(t)i and f(β1, β2) is a function

which evaluates angular torque on the lander.

Note that the actions’ parents (which determine the policy in
RL) are missing from the above dynamics, which changes
depending on the different learned parents. NN-based agents
typically take all states as input in policy networks, hence
all states are the parents of each action. From the above
equation, we can construct the ground truth DBN structure
governing the MDP at a fixed policy in this setting. For
completeness, we show the resulting ground truth graph in
Appendix C.

Data Generation. We use one of the state-of-the-art learn-
ers, Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2016), as the policy learning agents. We use two
DDPG agents: a randomly initialized DDPG agent (inter-
vention family k = 1), and a fully trained agent with 2e5
total time steps (k = 2). We then save 10 different episodes
performed by both agents with 1000 time steps as the in-
terventional data. If the lander touched down early, we

4M , g, and τ are fixed parameters.

then remove redundant data after 5 maximal reward val-
ues (R = 1). To use the time-lagged transformation, we
combine one sequence from each agent, hence with 2 in-
tervention families, to form the training data. For more
details on the training and experimental setting, please refer
to Appendix C.

Results. We show the SHD results in Table 2. Variants of
IDYNO methods perform competitive and improve upon the
DYNOTEAR results. In addition, IDYNO-nn-soft performs
best here, with tsGFCI slightly behind with a potentially
favorable setting. Other methods are behind in term of SHD
performance.

5. Conclusion
In this paper, we have proposed IDYNO – an approach
for learning the DAG structure of a dynamic Bayesian net-
work from (dynamic) time series data. IDYNO can handle
linear and nonlinear dependencies, observational and inter-
ventional data, and perfect and imperfect interventions. To
the best of our knowledge, IDYNO is the first such pro-
posed algorithm. We show that under standard assumptions,
the underlying graph can be identified at least up to the
interventional Markov equivalent class. On various syn-
thetic datasets as well as on a continuous control task, we
show that IDYNO consistently outperforms its purely ob-
servational counterpart, exhibiting great potential to handle
interventional datasets. We have considered passive inter-
ventional data in this paper but future work could potentially
explore active intervention strategies as well as connections
to online RL, based on the proposed approach.
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A. Proof on “fj is independent of xq iff
∣∣∣∣∣∣ ∂fj∂xq

∣∣∣∣∣∣
L2(R)

= 0”

As a simple illustration of the argument, we take q = 1 without loss of generality here. For the “if” side: when∣∣∣∣∣∣ ∂fj∂x1

∣∣∣∣∣∣
L2(R)

= 0, for any a, b ∈ R of x1, we have |fj(b, x2 · · · , xd) − fj(a, x2 · · · , xd)|2 =
∣∣∣∫ ba ∂fj

∂x1
dx1

∣∣∣2 ≤ (b −

a)
∣∣∣∣∣∣ ∂fj∂x1

∣∣∣∣∣∣2
L2(R)

= 0 and hence the value of fj is independent of x1. Here, the inequality was guaranteed by the Cauchy-

Schwarz inequality. For the “only if” side: if fj(x1, x2, · · · , xd) is independent of x1, let a test function φ(x1) ∈
C∞c (a, b) (an infinitely differentiable functions with compact support in (a, b)), then

∫ b
a
fj(x1, x2, · · · , xd) ∂φ∂x1

dx1 =

fj(x1, x2, · · · , xd)
∫ b
a

∂φ
∂x1

dx1 = fj(x1, x2, · · · , xd)(φ(b)−φ(a)) = 0. Hence we have ∂fj
∂x1

= 0 in the distributional sense,

and the L2 norm of ∂fj
∂x1

= 0.

B. Identifiability
In this section we clarify the quantities and notation used in Section 3.3 to establish conditions for identifiability of
the “unrolled” temporally extended DAG which includes all variables at all timesteps. We define X ∈ Rn×d (where
n = T −p+1) – as in the main text – as the matrix whose elements form the set of random variables in a DAG G? = (V,E),
where V = {xt,i} for i ∈ {1, ..., d} and t ∈ {1, ..., n} is the set of indices for d variables across n timesteps, and
(xt,i, xt′,j) ∈ E if xt,i is an element of the parent nodes πG

?

xt′,j
of xt′,j . Due to the acyclicity of intra-slice connections and

the forward-in-time direction of inter-slice connections, G? is directed and acyclic.

We assume that the inter-slice and intra-slice edges in G? are constant in time, in the sense that (i) inter-slice edges connecting
a given pair of variables (xt,i, xt′,j) with a given time lag p = t′ − t are either elements of E for all p ≤ t2 ≤ n or for no
t2, and (ii) intra-slice edges (xt,i, xt,j) connecting a pair of variables at time t are either elements of E for all t or for no t.
Furthermore, we assume that the distribution PX over variables in this graph is invariant across time. That is, we restrict the
conditional distribution pj(xt,j |πGxt,j

) for any xj to be independent of the time index t. We will denote the subset of all
DAGs that can be partitioned in this way into a directed sequence of a repeated subgraph as Ds, in reference to the fact that
repetition of the same conditional distributions and edges over time corresponds to stationary or fixed dynamics.

We consider a family of interventions I on the temporally extended graph G?. An intervention Ik ∈ I need not modify
conditional distributions in the same way at all times, but may modify conditional distributions for any subset of edges
(xt,i, xt′,j) ∈ E. (Our algorithm IDYNO assumes a smaller subset of interventions which are constant in time, and can thus
be viewed as a special choice of I.)

With these definitions, along with those given in Section 3.3, our dynamical graphical setting reduces to the non-dynamical
graphical setting of Brouillard et al. (2020) and we can apply their Theorem 1 to the DAG G? as follows.

Proof of Theorem 1. We refer the reader to Brouillard et al. (2020) for precise statements of assumptions (i)-(iv) as stated
in Theorem 3.2. When these assumptions ho9ld, Theorem 1 of Brouillard et al. (2020) applies. Thus, as long as λa, λw
are sufficiently close to zero (such that the score SI(G) is equivalent to the log-likelihood score in Eq. (8) of Brouillard
et al. (2020) in the λ→ 0 limit), Ĝ is I-Markov equivalent to G?. Since furthermore Ĝ ∈ D, then by Definition 3.1, Ĝ is
(I,D)-Markov equivalent to G?.

C. Continuous Control Examples: Data Sampling from Reinforcement Learning Agent
For the continuous control task, the data are obtained via reinforcement learning agents taking actions in the simulated RL
environment. We save the action taken at each time step, along with current states, and hence the saved data can be seen as
standard offline RL data. In this experiments, different intervention families in the data correspond to different RL policies
from RL agents.

Specifically, we use the state of the art Deep Deterministic Policy Gradient (DDPG) as the learning agent (Lillicrap et al.,
2016). DDPG is an off-policy reinforcement learning algorithm specifically designed for environments with continuous
action spaces. It interleaves estimation of Q-function Q∗(s, a) and solving the optimal action a∗ = arg maxaQ

∗(s, a). In
our experiments, we adopt MLP for policy representation and utilize the package stable baselines 3 5 to train our DDPG

5https://stable-baselines3.readthedocs.io/en/master/modules/ddpg.html

https://stable-baselines3.readthedocs.io/en/master/modules/ddpg.html
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Figure 5. Ground Truth Graph for the Lunar Lander Experiment, between two consecutive time slices. We omit time index for clarity.

agent with the default hyperparameter settings.

We show the underlying graph structure as discussed in Section 4.3 in Figure 5, across two different time slices. We omit the
time for clarity. A1 and A2 represent two action nodes, and there are also 6 state nodes, labelled as S1 to S6, along with one
reward node R. The green arrows indicate that all state nodes are the parents of action A1 and A2.


