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Abstract

Generalising robustly to distribution shift is a ma-
jor challenge that is pervasive across most real-
world applications of machine learning. A recent
study highlighted that many advanced algorithms
proposed to tackle such domain generalisation
(DG) fail to outperform a properly tuned empir-
ical risk minimisation (ERM) baseline. We take
a different approach, and explore the impact of
the ERM loss function on out-of-domain general-
isation. In particular, we introduce a novel meta-
learning approach to loss function search based
on implicit gradient. This enables us to discover
a general purpose parametric loss function that
provides a drop-in replacement for cross-entropy.
Our loss can be used in standard training pipelines
to efficiently train robust models using any neural
architecture on new datasets. The results show
that it clearly surpasses cross-entropy, enables
simple ERM to outperform some more compli-
cated prior DG methods, and provides excellent
performance across a variety of DG benchmarks.
Furthermore, unlike most existing DG approaches,
our setup applies to the most practical setting of
single-source domain generalisation, on which we
show significant improvement.

1. Introduction

Deep learning is highly successful when the training and
testing samples meet the i.i.d. assumption. However, this
assumption is violated in many practical applications of ma-
chine learning from medical imaging to earth observation
imaging (Koh et al., 2021). This has led a large number of
studies to investigate approaches to training models with
increased robustness to distribution shift at testing-time, a
problem setting known as Domain Generalisation (DG). De-
spite the volume of research in this area (Zhou et al., 2021a),
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a recent careful benchmarking exercise, DomainBed (Gulra-
jani & Lopez-Paz, 2021) showed that simple empirical risk
minimisation (ERM) on a combination of training domains
is a very strong baseline when properly tuned. State-of-the-
art alternatives based on sophisticated architectures, regu-
larisers, and data augmentation schemes failed to reliably
beat ERM (Gulrajani & Lopez-Paz, 2021).

Rather than propose an alternative to ERM for DG, we in-
vestigate a previously unstudied hyperparameter of ERM,
namely the choice of loss function—which has been ubig-
uitously taken to be standard cross-entropy (CE) in prior
DG work. Loss function choice has been shown to impact
calibration (Mukhoti et al., 2020), overfitting (Gonzalez
& Miikkulainen, 2019), and label-noise robustness (Wang
etal., 2019) in standard supervised learning, so it is intuitive
that it would impact robustness to domain-shift. However,
it has not yet been studied in this context. Our preliminary
experiments showed that equipping ERM with some recent
robust loss functions in place of CE does lead to improve-
ments in DG performance where sophisticated alternatives
have failed (Gulrajani & Lopez-Paz, 2021). This raises the
question: can one design a loss function specialised for DG?

To answer this question, we define a meta-learning algo-
rithm to learn a parametric (white-box) loss function suit-
able for DG. Our desiderata are: (1) Performing ERM with
this loss on a source domain should lead to good perfor-
mance when tested on out-of-domain target data; and (2) It
should provide a ‘plug-and-play’ drop-in replacement for
cross-entropy that, once learned, can be used without fur-
ther modification or computational expense with any new
dataset or model architecture. While there has been growing
interest in meta-learning for loss function design (Li et al.,
2019a), they mostly fail to meet these criteria. They learn
problem-specific—rather than re-usable—losses. If applied
to DG, this would imply replacing simple ERM learning
with sophisticated meta-learning pipelines to train a loss on
a per-problem basis. In contrast, as illustrated schematically
in Fig. 1, we learn a loss function once on a simple DG
task (RotatedMNIST) and demonstrate that it subsequently
provides a drop-in replacement for CE that improves an
array of more challenging DG recognition tasks.

To train a general purpose robust loss function we need a
search space that is flexible enough to include interesting



Loss Function Learning for Domain Generalization by Implicit Gradient

new losses, but simple enough to generalise across tasks
without overfitting to the problem used for loss learning. We
choose a 12-dimensional space of fourth order Taylor poly-
nomials (Gonzalez & Miikkulainen, 2021). Furthermore,
we need a loss that is suitable for all stages of training. This
precludes the majority of loss-learning approaches based on
online meta-learning which update the loss and base model
iteratively (Li et al., 2019a;c), and also suffer from short-
horizon bias (Wu et al., 2018). Evolutionary methods (Gon-
zalez & Miikkulainen, 2019) and reinforcement-learning
(Li et al., 2019a) could support loss learning in principle,
but are too slow to be feasible. Therefore we develop the
first implicit-gradient based approach to loss learning. This
allows us to tractably compute meta-gradients of the target
recognition performance with respect to the loss used for
training in the source domain.

We use a simple DG task (RotatedMNIST) to train our ro-
bust loss, termed Implicit Taylor Loss (ITL), to replace CE
in ERM. Subsequent experiments show that ERM with ITL
surpasses CE across a range of DG benchmarks, and pro-
vides very strong performance, despite being much simpler
and faster than competitor DG methods. While the majority
of existing DG methods require multiple source domains to
conduct data augmentation or feature alignment strategies,
ITL improves single-source domain generalisation, a crucial
problem setting which has been minimally studied thus far.

To summarise our contributions: (i) We provide the first
study on the significance of supervised loss function choice
in DG (ii) We demonstrate the first efficient solution to
loss-learning based on meta-gradients computed by the Im-
plicit Function Theorem. (iii) Empirically, we show that
our learned ITL loss enhances simple ERM and achieves
competitive DG performance across a range of benchmarks,
including the challenging single-source DG scenario.

2. Related Work

Domain Generalisation: Domain Generalisation aims to
learn a model using data from one or more source domains,
but with the further requirement that it is robust to testing
on novel target domain data—without accessing target data
during training. DG is now a well studied (Zhou et al.,
2021a) area with diverse approaches including data aug-
mentation (Shankar et al., 2018; Zhou et al., 2021b), robust
training algorithms such as domain alignment objectives
(Li et al., 2018b), and other regularisers (Li et al., 2019c;
Balaji et al., 2018). Most DG studies have assumed the
multi-source setting, which enables new data-augmentation
strategies (Zhou et al., 2021b), and allows generalisation-
promoting design features to be tuned by domain-wise cross-
validation. In particular, a few studies (Li et al., 2019c; Bal-
aji et al., 2018) have considered meta-learning based DG,
where a regulariser applied in a training domain is tuned

by meta-gradients from the resulting validation-domain per-
formance. The resulting model is then deployed to the true
target domain within the same family. These methods re-
quire regulariser meta-learning for each given multi-source
DG problem family. In contrast, we propose to learn a
simple loss function once, which then provides a drop-in
replacement for CE in any single-, or multi-source DG prob-
lem (Fig. 1). A recent criticism of the DG literature showed
that no method consistently outperformed a well tuned ERM
baseline on the carefully designed DomainBed benchmark
(Gulrajani & Lopez-Paz, 2021). Rather than competing with
ERM, we simply enhance the ERM loss function and this
leads to a clear improvement on DomainBed.

Loss Function Learning: Loss function learning aims to
discover new losses that improve model optimisation from
various perspectives including conventional generalisation,
(Gonzalez & Miikkulainen, 2019; Liu et al., 2021), opti-
misation efficiency (Li et al., 2019a; Gonzalez & Miikku-
lainen, 2019; Wang et al., 2020; Bechtle et al., 2020), and
noise robustness (Li et al., 2019a; Gao et al., 2021). Key
dichotomies are in the search space of black box (neural)
(Bechtle et al., 2020; Li et al., 2019¢) vs white-box (human-
readable) (Li et al., 2019a; Gonzalez & Miikkulainen, 2019;
Wang et al., 2020) losses; whether learned losses are prob-
lem specific (Li et al., 2019a; Wang et al., 2020) or reusable
(Gonzalez & Miikkulainen, 2019); the meta-optimisation
algorithm (Hospedales et al., 2021) used—evolution (Liu
et al., 2021; Gonzalez & Miikkulainen, 2019), RL (Li et al.,
2019a; Wang et al., 2020; Bechtle et al., 2020), or gradient
(Li et al., 2019¢); and whether the loss is updated offline
(Liu et al., 2021; Gonzalez & Miikkulainen, 2019) (long
inner loop, typically intractable), or online (Li et al., 2019a;
Wang et al., 2020) (short inner loop, efficient but suffers
from short-horizon bias (Wu et al., 2018)). No studies have
yet investigated loss learning for domain-shift robustness. In
order to learn a reusable robust loss we use a white-box loss
search space of Taylor polynomials proposed in (Gonzalez
& Miikkulainen, 2021), and offline/long inner loop meta-
learning. To make meta-optimisation tractable, we exploit
the Implicit Function Theorem, to efficiently generate accu-
rate hypergradients of the validation domain performance
with respect to the training domain loss function parameters.
Besides being the first demonstration of loss learning for
DG, to our knowledge it is also the first demonstration of
any implicit gradient-based loss learning.

3. Method

The need for Domain Generalisation arises when one is us-
ing machine learning to build a model where the available
training data is not representative of the data that will be ob-
served by the model once it has been deployed. In particular,
it is assumed that there is an underlying distribution over do-
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mains, P, from which we can sample several source domain
distributions, {p{*, ..., p) ~ P}, to make use of during
training. We can construct a training set for each of these
source domain distributions by sampling K data points,

S) = {( 7%(5])) ~ pg NE j 1> and use the union of

all these sets as the full training set, D(¥) = Ui, DP.
Empirical Risk Minimisation (ERM) then simply finds the
model parameters, 6, that minimise the loss measured on
this training set,
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where L(-,-) is a loss function (typically cross entropy)

measuring how well the predicted labels match the ground
truth labels. One can empirically check the resulting model’s
robustness to domain shift by sampling one or more target
domain distributions, {p( ). ,pgn) ~ P}, from the same
distribution over domains that was used to generate the
training data. Data can then be sampled for each of these
target domains, yielding a test dataset D) = (J" | Dl(t).
Standard evaluation metrics such as accuracy can then be
computed using this data.

3.1. Meta-Learning Losses for DG

Our goal is to replace the standard CE loss typically used
in ERM with a learned loss function. We are motivated by
recent work showing that learned losses can enable models
to perform better for a variety of other problem settings,
such as training with label noise (Wang et al., 2019) and
improving calibration (Mukhoti et al., 2020). We formulate
the task of learning the parameters, w, of a loss function,
L., as a bilevel optimisation problem. The outer objective
is to find the w that maximises the performance of a model
evaluated on the target domain data, and the inner problem
is to train a model to minimise the value of £,, measured on
the source domain data. The loss parameters are optimised
using gradient-based methods that take advantage of the
implicit function theorem to efficiently compute gradients
for the outer optimisation problem. Crucially, once the
optimal loss function w™* has been found, new DG problems
can be solved via ERM on the L, loss.

The bilevel optimisation that we use to formalise the meta-
learning process is given by

w* —argmm—z Ay a0y

2
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s.t. 0" (w)

where M is a loss function used to measure the performance
of the model on the target domains, typically chosen to be
Cross entropy.

Optimising w is challenging due to the need to back-
propagate through the long inner loop optimisation of 6
(Hospedales et al., 2021). Existing approaches for learning
loss functions typically resort to slow evolutionary or rein-
forcement learning updates (Li et al., 2019a; Gonzalez &
Miikkulainen, 2019; 2021; Wang et al., 2020) in the outer
loop, or to an online approximation based on alternating
steps on w and 6 (Li et al., 2019a; Wang et al., 2020). The
latter approach leads to losses w* that cannot be transferred
to new tasks, as it suffers from a short-horizon bias (Wu

et al., 2018) To solve this problem, we use the Implicit
M . .

the inner optimisation problem to approximate 0* (w).

3.2. Implicit Gradient

The conceptually simplest way to optimise w is to store all
the intermediate iterates generated by the optimiser when
training the network in the inner loop, and to then back-
propagate through all of these weight updates (Maclaurin
et al., 2015). This becomes prohibitively expensive in both
memory and computation. Instead, after finding 0*(w) we
compute the gradient using the Implicit Function Theorem
(IFT). The implicit gradient computation takes advantage of
the fact that 859“ = 0, because we have found locally opti-
mal model parameters for the inner problem. The gradient
we want to compute is given by

oM _ oM o0 "
dw 09 Ow ’
w,0* (w)
and the IFT can be used to obtain
00 0°L, 11 0L,
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—— ——
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The inverse of the Hessian can be rephrased in terms of a
Neumann series,

9L, 1- :
{aeaeT} _Z&Tozj_ae s ©

and approximated by truncating the summation to a finite
number of terms. In practice, one can make use of vector-
Jacobian products to avoid explicitly constructing the Hes-
sian in the summation. Further details can be found in
(Lorraine et al., 2020), but we provide pseudo-code for com-
puting the implicit gradient in Algorithm 2.
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Algorithm 1 [FT-based loss learning for DG.

1: Input: P, w

2: Output: w*

3: Initw

4: while not converged or reached max steps do

5 sample p1, ..., p, from P

6 sample D1, ..., D,, from p1,...,p,
7. Init H =0 € R™Il
8
9

for all D; do
: Init 6; {Get random network weights}
10: D* ={Dy,...,D,}/D;, D'= D, {Construct
source/target splits }

11: 0 = argminy L,,(0;, D*) {Train the network }
12: h; = Hypergradient(L,,, M, (w, 67), @)

13: Hli,)|=h;

14:  end for

15:  h = grad-surgery(H)
16:  w = w — nh {Update the loss function}
17: end while

Algorithm 2 Computing the hypergradient of the meta-
objective M, with respect to the loss w. The grad(-, -, -)
function from PyTorch computes a Jacobian-vector product
when called with a non-scalar first argument. Inspired by
Lorraine et al. (2020), we use this to efficiently compute the
Hessian required for approximating the Neumann series.

Input: £, M, (w,0%),

2°L

Output: —p 5,52

vV=p= aaij\g/lkw,e*)
forallj=1,...,J do

v— = o - grad(%5 0, v)

p+=v
end for

3.3. Robust Gradient Estimation

Algorithm 1 summarizes the gradient estimation procedure.
To obtain high quality gradient estimates in each outer loop
iteration, we employ a leave-one-domain-out strategy. The
DG task, P, used for meta-training the loss parameters has
m domains associated with it. In each iteration of the outer
loop, we train m networks with the prospective loss (i.e., we
instantiate m different copies of the inner loop), where each
network has a different target domain and the remainder
of the domains are used to train the network. We can then
compute a gradient for each of the m networks and aggre-
gate them together in order to perform an update to the loss
parameters. Rather than using the mean gradient, we found
aggregation using gradient surgery (Yu et al., 2020), which
reduces the gradient noise caused by different source/target
domain splits in the inner loop, to work better in practice.

3.4. Taylor Polynomial Representation

The choice of loss function parameterisation is a crucial
factor in our framework. One must balance the ability to
represent a sufficiently broad range of loss functions, with
the susceptibility to overfitting the data used to learn the loss,
and hence failing to generalise to novel tasks as desired’.
The search space we consider is based on the truncated
Taylor polynomials proposed by Gonzalez & Miikkulainen
(2021) and successfully trained with evolution in Gonzalez
& Miikkulainen (2021) and Gao et al. (2021). This family
of loss functions treats the point around which the Taylor
polynomial is centred, and also the value of the derivatives
at this point, as learnable parameters. In this sense, it is a
variational learning method—though it should be stressed it
is not a variational Bayesian method. The family of 3 order
multivariate Taylor polynomials has the form

B
0(z) = %V"E(C)T(z — o, %
n=0

where c is a fixed point around which function is being
expanded. Because c is fixed, the values of the derivative
at this point are also fixed. As such, we can replace c
and V™{(c) with meta-learnable parameters. This allows
us to parameterize the learned loss function in terms of the
gradients it should have at a meta-learnable point. We define
our learnable loss as

1 c
Lo(3:¥) = 5 D_Lu(Firyi) ®)
=1

B
LalFiy) = 32 2 o, ) (95, ¥1] — [, )"
n=0 "

€))

where each V"{([wp, w1]) can actually be replaced by intro-
ducing more meta-parameters to w. Please see Appendix A.1
for an expanded definition of this loss function.

3.5. Algorithm Summary

Meta-train:  Given a set of training domains, the loss
function search space in Section 3.4, and efficient update
strategy in Section 3.2 and Algorithm 1, we are able to train
a robust loss function £,,. We conduct such loss function
learning only once using a small dataset, and then evaluate
the resulting loss on a variety of larger datasets that are
unseen during meta-training. Meta-test: Given the learned
loss function L, we fix it and use it together with the
ERM algorithm for novel DG tasks. Each target problem
is trained from scratch and has not been seen during loss
learning. An overview of the algorithm, and the learning
curve of the meta-train phase, are given in Figure 1.

"Eg: A linear combination of existing losses is likely insuffi-
ciently expressive, while a neural network is likely too expressive.
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Figure 1. Algorithm schematic. Loss L, is trained to optimize held-out domain performance on R-MNIST and then deployed on novel

datasets.

4. Experiments
4.1. Dataset and Implementation Details.

Meta-train stage: We aim to learn a general purpose loss
function that can be used in diverse DG problems. We
choose RotatedMNIST (Ghifary et al., 2015) as a small
dataset suitable for loss learning. It contains six different
domains that are all derived from MNIST (LeCun & Cortes,
2010) but with different rotations: 0%, 15%, 30%, 45%,
60%, and 75%. The leave-one-domain-out strategy for ro-
bust implicit gradient estimation, therefore, results in six
inner loop instantiations for each outer loop iteration. For
efficiency, we use 2-layer MLPs as the base model, which
contains 1024-256-10 units from the input layer to the out-
put one with ReLU as the activation function. The learning
rates in the inner loop and outer loop are both 0.01, a batch
size of 32 is used for the inner loop, and the Neumann series
used for approximating the inverse Hessian is truncated at
15 iterations. The result is a set of 12 parameters that de-
fine the learned fourth-order polynomial loss function. A
learned loss is plotted in Fig. 5, and its parameters are given
in Appendix A.l. The meta-train compute cost is reported
in Appendix A.S.

Meta-test (Deployment) Stage We now approach using
simple ERM, but replacing cross-entropy with our learned
loss. Our complete model is denoted by ITL-Net. We
evaluate the learned loss function on the four common DG
benchmarks: VLCS (Fang et al., 2013), PACS (Li et al.,
2018a), OfficeHome (Venkateswara et al., 2017), and Terra
Incognita (Beery et al., 2018). Two sets of experiments are
conducted: (i) We evaluate the conventional PACS bench-
mark, as it is the most widely used in the DG literature, and
enables comparison against the most recent state-of-the-art
competitors. (ii) We evaluate all four benchmarks using the
recent DomainBed platform, which is designed to enforce
fair and consistent hyperparameter tuning across different
methods.

4.2. Results

PACS: Setup A pre-trained ResNet18 backbone is used
throughout, together with the source and target domain
split described in (Li et al., 2018a). We train ResNet-18
with ITL on the training split and perform model selec-
tion using the validation set. We use same data split to
tune the hyperparameters for the baseline ERM with Cross-
Entropy (ERM +CE) and Binary Cross-Entropy (BCE). We
compare ITL-Net with several state-of-the-art alternatives
on this benchmark, including RSC (Huang et al., 2020),
data augmentation-based L2A-OT (Zhou et al., 2021b),
Mixstyle (Zhou et al., 2020) including random shuffle (rs)
and domain label (dl), regulariser-based Entropy (Zhao et al.,
2020), adversarial gradient-based CrossGrad (Shankar et al.,
2018), meta learning-based MASF (Dou et al., 2019) and
Epi-FCR (Li et al., 2019b) and self-supervision-based Ji-
Gen (Carlucci et al., 2019).

PACS: Results  We first conduct experiments using the
classic PACS protocol to facilitate comparison against many
recent competitors that were not evaluated on DomainBed.
Table 1 compares our ITL-Net performance vs state-of-the-
art methods. From the results we can see that: (i) Simply
swapping out the loss in ERM from CE to ITL, leads to
a significant 5.5% improvement. (ii) Overall our ITL-Net
provides strong performance on this benchmark, surpassing
recent and sophisticated competitors such as Mixstyle.

DomainBed: Setup We next evaluate ITL using the Do-
mainBed platform, which enforces careful and fair evalu-
ation by ensuring that all competitors use the same hyper-
parameter tuning strategy (random search, driven by source
domain validation performance), and the same number of
hyperparameter search iterations. We follow the standard
DomainBed protocol and use a ResNet-50, with experi-
ments conducted on VLCS, PACS, OfficeHome, and Terra
Incognita.

DomainBed: Results The results in Table 2 compare
ITL-Net with ERM and some of the competitive published
alternatives: SagNet (Nam et al., 2021), CORAL (Sun &
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Table 1. Resnetl8 Cross-domain recognition accuracy (%) on PACS.

Method / Target set Art Cartoon Photo Sketch Avg.
Epi-FCR (Li et al., 2019b) 82.1 71.0 93.9 73.0 81.5
JiGen (Carlucci et al., 2019) 79.4 75.3 96.0 71.6 80.5
MASF (Dou et al., 2019) 80.3 77.2 95.0 71.7 81.0
CrossGrad (Shankar et al., 2018) 79.8 76.8 96.0 70.2 80.7
Entropy (Zhao et al., 2020) 80.7 76.4 96.7 71.8 814
L2A-OT (Zhou et al., 2020) 83.3 78.2 96.2 73.6 82.8
RSC (reported in Huang et al. (2020)) 83.43 80.31 95.99 80.85 85.15
Mixstyle (rs) (Zhou et al., 2021b) 823£02 79.0+03 963+£03 73.8+09 828
Mixstyle (dl) (Zhou et al., 2021b) 84.1£04 788+04 961£03 759+09 83.7

RSC (reimplemented) + CE 79.3£0.7 776+05 93.6+04 78114 819
RSC (reimplemented) + ITL 81.7+£0.8 766+£05 95.6+02 771+£06 827
ERM + BCE 71.2+08 708+£03 93.14+08 57.7£1.0 732
ERM + CE 769+06 765+£0.7 933+01 688+£0.6 789
ERM + SCE (Wang et al., 2019) 804£0.7 73.6+07 923+£02 748+06 80.3

ERM + iSCE 812+0.6 744+05 93.6£01 79.2+£0.7 821

ERM + ITL (ITL-Net) 839+04 789+06 948+02 80.1+06 844

Saenko, 2016), CDANN (Li et al., 2018c) and RSC (Huang
et al., 2020) in the original DomainBed paper (Gulrajani
& Lopez-Paz, 2021). A detailed comparison is given in
Appendix 9. The conclusion of the DomainBed study was
that existing methods did not reliably beat ERM under this
hyperparameter tuning protocol, when using cross-entropy
loss. In contrast, we can see that ITL-Net (ERM with ITL
loss) provides a clear improvement on ERM and matches
or improves on the strongest competitor in each case, es-
pecially on Terralncognita and OfficeHome. To formally
compare ITL-Net with other methods, we perform signifi-
cance testing using a Friedman test with a post-hoc Nemenyi
test on the average ranks. Following the recommendation
of Demsar (2006), the plot in Figure 2 visualises the sta-
tistically significant differences between the performance
of all methods. From this we can see that our approach
statistically significantly outperforms all of our baselines
except for SagNet.

Single Source DG: Setup Most existing DG methods
rely on the availability of multiple source domains in some
form: For example to synthesise new domains for data
augmentation (Zhou et al., 2021b), or perform feature align-
ment among training domains (Sun & Saenko, 2016). A
unique feature of ITL-Net is that, since it is only a small
modification to ERM, it can be used to learn on a single
source domain. Although this setting is not well explored
in the literature, it is obviously highly practical as multiple
source domains are often not available in practice. To ex-
plore this challenging setting, we modify the DomainBed
benchmark to train on a single source at a time and average
over each source—target combination, rather than training

Table 2. DomainBed Cross-domain recognition accuracy (%) with
ResNet50 on ColoredMNIST VLCS, PACS, Terralncognita,
OfficeHome and DomainNet.

Models
Dataset ERM SagNet CORAL CDANN RSC ITL-Net
ColoredMNIST  51.5 51.7 51.5 51.7 51.7 52.0
VLCS 71.5 77.8 78.8 77.5 77.1 78.9
PACS 85.5 86.3 86.2 82.6 85.2 86.4
Terralncoginita ~ 46.1 48.6 47.6 45.8 46.6 51.0
OfficeHome 66.5 68.1 68.7 65.8 65.5 69.3
DomainNet 40.9 40.3 41.5 383 38.9 41.6
Avg. Rank 4.17 2.67 3.00 5.17 5.00 1.00

on the conjunction of all sources.

Single Source DG: Results From the results in Table 4,
we can see that performance drops across the board com-
pared to multi-source training (Table 2), as expected. How-
ever, the state of the art alternatives CORAL and SagNet are
no longer as competitive compared to ERM as they were in
the multi-source case (Table 2)—this is expected as they are
designed to exploit cues from multiple source domains. In
contrast, our ITL-Net maintains a clear lead over the con-
ventional ERM with cross entropy baseline in this setting.
This is a significant achievement as existing work has not
produced algorithms that reliably improve robustness under
the single-source setting.

4.3. Further Analysis on Training

Meta-Training Convergence Figure 3 shows the conver-
gence of ITL during meta-training on R-MNIST. The x-axis
shows outer loop iterations/loss function updates. The lines
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ITL-Net - L——— CDANN
SagNet RSC
CORAL ERM

Figure 2. A critical difference diagram showing the results of Ne-
menyi post-hoc test on the average ranks. Methods connected
by a thick black bar indicate the lack of a statistically significant
difference in performance. ITL-Net significantly outperforms all
competitors besides SagNet.

Table 3. Cross-domain recognition accuracy (%) on DomainBed-
PACS-Resnet50. Comparison with alternative manually-designed
robust losses.

Loss ERM+CE  ERM+FOCAL ERM+SCE
AvgPerf 83.9+0.5 84.6 £0.8 84.2+0.5
Loss ERM+GCE EMR+LS ERM+ITL
Avg Perf 83.0+0.2 84.9£0.6 86.4 £ 0.5

show (i) the inner loop accuracy (mean over all source do-
mains) after model training with the current loss function,
and (ii) and the outer loop accuracy (held out domain accu-
racy). Clearly the convergence process is quite smooth.

Implicit Gradient vs Evolutionary Optimisation An
evolutionary optimiser, such as Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES, (Hansen & Ostermeier,
1996)), is an alternative to gradient-based optimisation. We
compare the proposed implicit gradient-based algorithm
with CMA-ES in the meta-train stage. CMA-ES needs to
train K models (typically 5 < K < 50) to estimate gradient
by finite difference, and implicit gradient only trains one.
Thus implicit gradient is K-times faster than CMA-ES in
FLOPs. As can be seen in Figure 4, CMA-ES makes noisy
stochastic estimates of gradients w.r.t. the loss function pa-
rameters. The implicit gradient gets the exact gradient of
validation loss, which leads to a better solution and more sta-
ble convergence. In our empirical comparison, we can see
that our proposed method leads to smoother convergence to
a higher accuracy solution (while being K times faster).

Repeatability Analysis Our message thus far is that a
single loss produced by our pipeline can be re-used as a
plug-and-play modification to improve vanilla ERM+CE on
a wide variety of held-out downstream DG tasks. That said,
one might reasonably wonder about the reliability of the
loss function learning procedure itself. To investigate this,
we repeat our entire pipeline including the meta-train stage
five times. We then evaluate the consistency of the resulting

Table 4. Cross-domain recognition accuracy (%) on DomainBed
with a single source domain. The heading of the table denotes
the single source domain, and results average across all target
domains.

Source Dataset VLCS PACS OfficeHome Terralncognita
ERM 64.08 51.85 53.57 32.13
CORAL 64.07 51.84 53.51 32.13
SagNet 61.78 53.00 51.30 33.93
Mixup 59.01 54.92 52.70 30.80
ITL-Net 62.17 56.54 55.04 35.09
Learning Curve (meta-train)
0.8
0.6
o
3
8 0.4 |
< ‘ Inner loop
0.2 | 7 (mean over all the source domain)
Outer loop
ool _J (holding out domain)

0 25 50 75 100 125 150 175 200
Outer loop Iteration

Figure 3. The learning curve for ITL meta-training stage.

five loss functions on the downstream ColoredMNIST task.
Furthermore, to evaluate the dependence of our result on
the choice of meta-training dataset, we repeat the above
experiment using RotatedKMNIST (Clanuwat et al., 2018)
to replace the RotatedMNIST used previously. From the
results in Table 5, we can see that performance is quite
consistent over trials (small standard deviation). It also
differs little with choice of pre-training dataset - with both
options performing well compared to competitors in Table 2.

Task Specific Loss Learning We aimed to learn a
reusable loss function. This is because the cost to meta-

Outer Loop Learning Curve (meta-train)

0.8
0.6
[}
© —— CMAES
3 0.4 Implicit Grad(ours)
[}
<
0.2
0.0

0 25 50 75 100 125 150 175 200
Outer loop lteration

Figure 4. Meta-Learning curves for Implicit Gradient vs Evolution.
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Table 5. Cross-domain recognition accuracy (%) on OfficeHome: Impact of meta-train seed (& standard deviation), and choice of

pre-training dataset.

Target set Artistic

Clipart

Product Real World Avg.

ITL-NET (RotatedMNIST)

ITL-NET (RotatedKMNIST) 64.28 £ 0.30

64.22 £0.84 56.25+0.38 77.524+0.32
55.84£0.29 76.89+1.04 77.96+0.30 68.74=£0.35

78.12+0.32 69.03 £0.18

Table 6. MNIST NET Cross-domain recognition accuracy (%) on
coloredMNIST with Task-specific loss vs generic ITL-Net.
+90% +80% -90%

713+£06 734+0.1 11.3+£0.7 | 52.0
7224+07 739+£05 104+0.7 | 522

Target set |

ITL-NET
Task-specific ITL-NET

| Avg.

learn a loss is substantial and thus less practical to perform
on a per-dataset/task basis. That said, our framework sup-
ports task-specific loss learning, and this could potentially
outperform a general purpose loss. To demonstrate this we
deploy our proposed algorithm for task specific loss learn-
ing on a small benchmark — ColoredMNIST. The results in
Table 6 show a slight improvement on the generic ITL.

4.4. Further Analysis on Learned Loss

Visualising ITL  To interpret our learned loss, we visually
compare it in Figure 5 with several other loss functions: CE,
SCE (Wang et al., 2019), Label Smoothing (LS) (Pereyra
et al., 2017), and Focal (Mukhoti et al., 2020). Compared
to the standard cross entropy loss, we can see that ITL has
softer penalties for severe misclassification, and stronger
penalties for moderate misclassification. Among existing
losses, ITL is visually most similar to Focal.

Quantitative Comparison to Other Robust Losses We
next investigate whether the good cross-domain perfor-
mance of ITL can be easily replicated by applying existing
robust loss functions, or whether our meta-learning pipeline
has learned something new in terms of robust model train-
ing. SCE (Wang et al., 2019) and GCE (Zhang & Sabuncu,
2018) were designed with label-noise robustness in mind,
while Focal (Mukhoti et al., 2020; Lin et al., 2017) was de-
signed for class imbalance and calibration. Label-smoothing
(LS) (Pereyra et al., 2017) is for improving generalisation
and reducing overconfidence. From the results in Table 3,
we can see that while some losses improve on CE, ITL leads
to the clearest improvement. Note that all experiments in
Table 3 were run by us, while competitor performance in
Table 2 is taken from (Gulrajani & Lopez-Paz, 2021).

Choice of Loss Function Family We focused on Taylor
polynomials as the main family of loss functions to ex-
plore given the motivation in (Gonzalez & Miikkulainen,
2021). One might ask whether learning other loss fami-
lies are possible, and how they compare. To explore this

we consider Symmetric Cross Entropy (Wang et al., 2019),
SCE(p,q) = aCE(p,q) + BCE(q, p), which is a linear
combination of cross-entropy functions, and was shown to
improve learning robustness. We consider learning the linear
combination hyper-parameters («, 8) of SCE with our IFT-
based meta-learning pipeline, and denote the result iSCE.
Comparing ERM+CE with ERM+SCE and ERM+iSCE in
Tab 1, we see that SCE improves on CE; learning the linear
combination of losses in iSCE improves on a fixed linear
combination; but both perform worse than our ERM + ITL.
Thus we can conclude that (i) our framework is generic and
can be used with different loss paramaterisations, but (ii)
ITL provides a better loss family than SCE. In addition, we
analyse the effect introduced by different Taylor polynomial
orders. The selected order is determined by performance in
the meta-train stage. We compare the inner loop and outer
loop accuracy of the models trained by different with the
order ranging from 2 to 5 for selecting the order in Fig 6.

Combination with Other Base DG Methods Our train-
ing framework and evaluation focused on pairing ITL with
vanilla ERM. However, as a plug-in module, ITL can be
applied with any other downstream DG method. To illus-
trate this we re-implement the state of the art RSC method
(Huang et al., 2020) and plug in our ITL. While our re-
implementation slightly underperforms the previously re-
ported numbers, the direct comparison of RSC+CE vs
RSC+HITL in Tab 1 shows that ITL can also benefit other
more sophisticated methods than ERM.

In-distribution vs Out-of-distribution Our meta-
objective for loss learning is OOD performance after train-
test domain shift. One hypothesis (Li et al., 2022) for why
ITL works is that it leads to better regularised models than
CE for the purpose of OOD evaluation. To analyse this
we report accuracy and loss for training and testing, both
in-distribution and cross-distribution in Table 7. We can
see that: (i) ITL always leads to slightly worse training loss
than CE, which reaches zero; (ii) ITL leads to better testing
loss and accuracy than CE in cross-domain condition; (iii)
ITL leads to worse testing loss and testing accuracy than
CE for in-domain condition. Together this suggests that ITL
regularises more strongly than CE (worse training fit), pre-
venting over-learning the details of the source domain. This
in turn is beneficial for cross domain evaluation, but detri-
mental to performance within-domain. Worse in-domain
performance is a weakness of ITL.
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Figure 5. Comparison of loss functions (from left to right): CE, SCE, FOCAL and ITL. The range of ITL is normalised between 0 and 1.
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Figure 6. Dependence of loss order in meta-train Stage.

Table 7. In-distribution (Cross-distribution) comparison between
CE and ITL on PACS with loss measured by CrossEntropy.

Model Train accuracy (%) Train Loss

CrossEntropy 100.00 (100.00) 0.00 (0.00)

ITL 100.00 (100.00) 1.15 x 1074 (7.3 x 1073)
Test accuracy (%) Test Loss

CrossEntropy 99.34 (81.5) 6.61 x 1074 (3.64 x 1072)

ITL 98.96 (84.4) 7.67 x 107* (1.95 x 1072)

4.5. Discussion and Limitations

In terms of the full meta-training procedure, our framework
requires multiple source domains for training, though the
resulting loss can be deployed on single-source problems.
While our empirical results show that ITL generalises well
on the benchmarks tested, more evaluation is necessary to
fully validate the generality of the learned loss. For exam-
ple, if the source-target distribution shift D(ps(x), p:(x))
seen in meta-test deployment is much larger or smaller
than in meta-training, the loss may not be well tuned. Simi-
larly, all our empirical results involve benchmarks exhibiting

marginal shift in p(z). Whether performance improvement
is retained under conditional shift p(y|z) remains to be seen.

While our results showed ITL consistently improving on
ERM-+CE, state of the art competitors may perform simi-
larly or better than ITL-Net — when those competitors are
substantially better than ERM to start with. We empha-
sise that we are not trying to propose a state-of-the-art DG
method, (i) provide a simple and efficient baseline for use
when more complex alternatives are unsuitable, and (ii)
raise awareness of the loss function as an important design
parameter in DG. Our initial experiment with RSC showed
that ITL is potentially complementary with other state of
the art DG methods, but deeper exploration of this is left
to future work. To this end, better performance is likely
achievable by meta-training ITL together with a more so-
phisticated base model of interest, rather than meta-training
with ERM and deploying with RSC as we demonstrated
earlier. ERM-like methods such as SWAD (Cha et al., 2021)
would complement ITL naturally.

5. Conclusion

We provided the first study of the effect of loss functions
in ERM-based Domain Generalisation. We empirically ob-
serve that choice of loss function during ERM training im-
pacts domain generalisation performance. To discover the
best loss for DG, we perform meta-learning to find a re-
usable white-box loss function. This is tractably solved
using IFT to obtain gradients of the target domain perfor-
mance with respect to the source domain loss parameters.
This also provides the first demonstration of IFT-based loss
learning in the literature. The results show that a simple
modification to a simple ERM pipeline improves both multi-
source and single source DG, and even surpasses several
sophisticated purpose-designed state of the art models.
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A. Appendix
A.1. The Learned Loss Function

Taylor Loss Family We apply fourth order bi-variate Taylor polynomial to parameterise the learnable loss function. The
terms only contain y; are removed from the polynomial since these do not generate gradients with respect to the prediction
of the network. The final loss function contains 12 learnable parameters w and can be expressed as

L (§i,yi) = wa§i — wo) + ws(§i — wo)® + wa(§Fi — wo)® + ws(§i — wo)*
+ we (i — wo) (i — w1) + wr(Fi — wo)(yi — w1)® + ws(Fi — wo)?(yi — w1)
+ wo(§; — wo)*(yi — wi1) + wio(Fi — wo)(yi — w1)® + w11 (§i — wo)?(yi — w1)>. (10

ITL Recall that our experimental design trained a single loss function on RotatedMNIST, and then evaluated it from
different perspectives across all our main experiments. The specific set of loss function parameters for ITL (as plotted in
Fig. 5) are given in Table 8. Then reader can plug-and-play for their own Domain Generalisation problems.

Table 8. The parameters of the learned ITL

Loss parameters
wo, W2, ..., W11

ITL  -2.0193,-1.2234, 0.1363, 0.1269, -0.4566, -0.1016, -0.2545, 1.0971, -0.9203, 0.2368, 0.4795, 0.9975

A.2. Further Analysis

Entropy Analysis Since FOCAL (Mukhoti et al., 2020) is the most visually similar to ITL in Figure 5, and FOCAL is
designed for regularising networks to reduce overconfidence, one might ask whether ITL’s good performance can be can be
trivially replicated by existing regularisation techniques that simply reduce network confidence. As a measure of confidence,
we report the evolution of the target-domain entropy of correctly and incorrectly classified samples during training in
Figure 7(left) and Figure 7(right) respectively. Clearly, a byproduct of ITL compared to CE and SCE is a (desirable) increase
in uncertainty for misclassified instances. FOCAL has similar behaviour to ITL in general, especially for the entropy of
prediction distributions for misclassified instances. However, the results in Table 3, showed that these alternative losses
do not provide strong DG performance compared to ITL. Together this shows that ITL’s performance can not simply be
replicated by standard over-confidence reduction techniques.

Classified Entropy Misclassified Entropy

1.6 1.6
14 — CE FOCAL ITL — CE FOCAL ITL
: SCE Ls 1.4 SCE Ls
1.2 1.2
>1.0 >
=3 21.0
gos g
Zos gos
0.4 0.6 -
0.2 0.4 7/
0.0 e 0.2
0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Training iteration x100 Training iteration x100

Figure 7. The evolution of posterior entropy for target domain test samples during training. Left: Correctly classified samples. Right:
Misclassified samples.

Loss landscape analysis and Perturbation analysis  As as possible explanation of why ITL outperforms CE, we study
the loss landscape at convergence. Keskar et al. (2017); Chaudhari et al. (2019) observed that flatter loss landscapes lead to
good generalisation of the learned model. To this end, we compared a 1D slice through the loss landscape of ITL-Net with
that of ERM on both source domain and target domains. Namely, we perturb the converged parameters by moving it around
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though gradient direction which generated by the eigenvector of the Hessian matrix. From Figure 8, we can see that for
each held out target domain, ITL-Nets have flatter loss landscapes compared with models trained by CE with respect to the

source domains.
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Figure 8. 1D Loss Landscape: ITL-Net vs ERM on OfficeHome. Top row: Source domain loss landscape. Bottom row: Target domain
loss landscape.

A.3. Detailed results for DomainBed

In Table 2 of the main paper, we summarized performance across held out target domains for the standard multi-source DG
problem. In Table 9 we now give the detailed results of ITL-Net for each target domain.

A 4. Detailed Results for Single Source Domain Experiment

In Table 4 of the main paper, we reported single-source DG results, summarising performance across choice of source
domain and over all target domains. In Table 10 we now give the detailed results of ITL-Net for each choice of source and
target domain.

A.5. Meta-train compute cost

Due to the efficiency of implicit gradient, training our ITL required using PyTorch (Paszke et al., 2017) only required 8
hours on a single V100 GPU to complete 200 gradient descent steps on w. While the goals and base learning problems
are not directly comparable, this is dramatically faster than alternatives that require an entire cluster (Li et al., 2019a), and
where even very recent fast methods require about 12 GPU-days (Liu et al., 2021).
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Table 9. DomainBed Cross-domain recognition accuracy (%) with ResNet50 on ColoredMNIST VLCS, PACS, Terralncognita, Of-
ficceHome and DomainNet.

£, Target set +90% +80% -90% Avg.
€ ERM 717+ 0.1 729 +0.2 10.0 £ 0.1 515
2 SagNet 71.8 £0.2 73.0£0.2 103 £0.0 51.7
S CORAL 71.6 £0.3 73.1 £0.1 9.9 £0.1 51.5
S CDANN 720+£03 73.0+£0.2 102 £0.1 51.7
RSC 719 £03 729 £ 0.4 102 £0.2 51.8
ITL-Net 713 £0.6 734 £ 0.1 113 £0.7 52.0
Target set Caltech Labelme Sun V-Pascal Avg.
& ERM 97.7+£04 64.3£0.9 73.4+£0.5 T73+13 71.5
; SagNet 97.9+04 64.5+0.5 714+1.3 77.5+£0.5 77.8
CORAL 98.3£0.1 66.1+£1.2 73.4+£03 T75+£1.2 78.8
CDANN 97.3+£0.3 65.1+£1.2 70.7£0.8 T71£15 71.5
RSC 97.9£0.1 62.5+0.7 723+1.2 75.6+0.8 77.1
ITL-Net 98.3+04 65.4£0.7 75.1£0.6 76.8 £1.2 78.9
Target set Art Cartoon Photo Sketch Avg.
Y ERM 84.7+04 80.8 £0.6 97.2+0.3 79.3+1.0 85.5
< SagNet 87.4+1.0 80.7+ 0.6 97.1+0.1 80.0 £ 0.4 86.3
CORAL 88.3+£0.2 80.0£0.5 97.5+£0.3 788 +1.3 86.2
CDANN 84.6+1.8 75.5+£0.9 96.8+£0.3 73.5+0.6 82.6
RSC 85.4+£0.8 79.1+£0.6 96.9+0.5 T 84.9
ITL-Net 87.1+£04 83.3+£0.6 96.1+£0.4 79.3+0.6 86.4
,% Target set L100 L38 L43 L46 Avg.
éb ERM 49.8+4.4 421+14 56.9 £+ 1.8 35.7£3.9 46.1
.c_i SagNet 53.0£29 43.0£2.5 57.9+£0.6 404+£1.3 48.6
5 CORAL 51.6 £24 422+1.0 57.0+£ 1.0 39.8£29 47.6
&= CDANN 47.0+1.9 41.3+438 549+1.7 39.8£0.8 45.8
RSC 50.2+£2.2 39.2+14 56.3+£1.4 40.8 £0.6 46.6
ITL-Net 58.4+3.7 46.2 +£ 1.8 58.5+0.9 409 +£1.8 51.0
QE, Target set Artistic Clipart Product Real World Avg.
= ERM 61.3£0.7 52.4+0.3 75.8£0.1 76.6 0.3 66.5
8 SagNet 63.4+£0.2 54.8+04 75.8+£0.4 783+0.3 68.1
g CORAL 65.3+04 54.4+0.5 76.5+0.1 78.44+0.5 68.7
CDANN 61.0+14 50.4+£24 74.4+£09 76.6 0.8 65.8
RSC 60.7+14 51.4+0.3 748+1.1 75.1+1.3 65.5
ITL-Net 65.6 £0.4 55.6 £0.4 775+£03 78.6+0.4 69.3
2 Target set  Clipart Infograph  Painting Quickdraw Real Sketch Avg.
% ERM 58.1+03 188+03 467+03 122+04 59.6+0.1 498+04 409
g SagNet 57703 19.0+£02 453+03 127+£05 581+£05 488+02 403
S CORAL  592+0.1 197402 466+03 134404 598+02 50.1+£06 415

CDANN  546+04 173+0.1 437+£09 121+0.7 562+04 4594+05 383
RSC 550+12 183+£05 444+06 122+02 557+£07 478+09 389
ITL-Net 63.5+03 194+£01 463£01 137£04 532+£06 535+£03 41.6
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Table 10. DomainBed Single source domain recognition accuracy (%) with ResNet50 on VLCS, PACS, Terralncognita and Office-
Home. Each cell reports the accuracy for a set of target domains, and the source domain used for training corresponding to the column.
The performance of target domains is separated by ‘/‘. Average over target domains for a given source domain is given at the bottom of

the cell.

Source Caltech Labelme Sun V-Pascal Avg.
wnn set
Q
§ ERM 47.81/55.58/59.72  70.00/57.61/65.90 52.93/62.27/60.30 96.75/63.29/76.81
54.37 64.5 58.5 78.95 64.08
CORAL 47.81/55.58/59.72  70.00/57.61/65.90 52.93/62.27/60.30 96.75/63.29/76.81
54.37 64.5 58.5 78.95 64.08
SaoNet 48.76/53.14/56.93 35.69/53.53/63.33 67.28/62.05/66.70 96.96/62.88/75.20
& 52.94 50.85 65.34 78.35 61.87
ITL-Net 43.19/39.85/51.01 89.82/55.18/60.63 48.90/61.78/60.01 97.31/60.84/77.51
44.68 68.54 56.9 78.55 62.17
Source Art Cartoon Photo Sketch Avg.
w  set
Q
< ERM 65.36/96.23/45.41 70.17/86.17/66.02 68.07/20.05/16.62 24.76/36.05/27.25
69.0 74.12 3491 29.35 51.85
CORAL 65.36/96.21/45.41 70.20/86.15/66.01 68.03/20.04/16.62 24.70/36.05/27.24
68.99 74.12 34.9 29.33 51.84
SaoNet 66.60/93.41/55.61 61.42/79.76/64.93 69.04/30.38/25.88 26.17/36.86/25.93
aghe 71.87 68.7 41.77 29.65 53.0
ITL-Net 66.30/94.67/57.29 74.85/86.52/75.06 62.60/45.82/51.44 17.87/26.45/19.64
72.75 78.81 53.29 21.32 56.54
£ Source L100 L38 L43 L46 Avg.
B set
% ERM 43.82/60.93/69.15 39.97/51.27/54.40 40.96/39.11/64.70 58.26/46.53/73.73
5 57.97 48.55 48.26 59.51 53.57
F
CORAL 43.80/60.90/69.17 40.00/51.12/54.20 40.87/40.12/64.23 58.70/45.43/73.62
57.96 48.44 48.41 59.25 53.51
SaoNet 40.71/56.95/68.19  37.95/50.44/53.71 33.99/34.41/59.01 59.54/45.93/74.72
g 55.28 47.37 42.47 60.06 513
ITL-Net 44.79/55.71/67.62 44.66/53.62/58.07 40.97/39.29/66.35 61.68/51.36/76.41
56.04 52.12 48.87 63.15 55.04
o Source Artistic Clipart Product Real World Avg.
§ set
8 ERM 44.75/23.36/21.09 39.50/18.66/20.11 37.45/26.00/39.55 27.67/31.44/56.00
% 29.73 26.09 34.33 38.37 32.13
CORAL 44.75/23.36/21.09 39.49/18.67/20.11 37.45/26.01/39.55 27.77/31.46/55.98
29.73 26.09 34.34 384 32.14
SaoNet 47.98/22.33/17.85 46.40/23.98/14.89 34.84/34.34/41.62 33.30/35.41/54.25
g 29.39 28.42 36.93 40.99 33.93
ITL-Net 31.63/21.57/21.53 54.72/21.79/30.99 37.38/38.75/36.69 33.71/35.64/56.64
2491 35.83 37.61 42.0 35.09




