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Abstract

What is the best way to exploit extra data—be it
unlabeled data from the same task, or labeled data
from a related task—to learn a given task? This
paper formalizes the question using the theory
of reference priors. Reference priors are objec-
tive, uninformative Bayesian priors that maximize
the mutual information between the task and the
weights of the model. Such priors enable the
task to maximally affect the Bayesian posterior,
e.g., reference priors depend upon the number
of samples available for learning the task and
for very small sample sizes, the prior puts more
probability mass on low-complexity models in
the hypothesis space. This paper presents the first
demonstration of reference priors for medium-
scale deep networks and image-based data. We
develop generalizations of reference priors and
demonstrate applications to two problems. First,
by using unlabeled data to compute the reference
prior, we develop new Bayesian semi-supervised
learning methods that remain effective even with
very few samples per class. Second, by using la-
beled data from the source task to compute the
reference prior, we develop a new pretraining
method for transfer learning that allows data from
the target task to maximally affect the Bayesian
posterior. Empirical validation of these meth-
ods is conducted on image classification datasets.
Code is available at https://github.com/grasp-
lyrl/deep reference priors.
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1. Introduction
Exploiting extra data, e.g., labeled data from a related task,
or unlabeled data from the same task, is a powerful way
of reducing the number of training data required to learn a
given task. This idea lies at the heart of burgeoning fields
like transfer, meta-, semi- and self-supervised learning, and
these fields have developed a wide variety of methods to
incorporate such extra information. To give a few exam-
ples, methods for transfer learning fine-tune a representation
that was pretrained on labeled data from another—ideally
related—task. Methods for semi-supervised learning pre-
train the representation using unlabeled data, which may
come from the same task or from other related tasks, before
using the labeled data. In this paper, we ask the question:
what is the best way to exploit extra data for learning a
task? In other words, if we have some pool of data—be it
labeled or unlabeled, from the same task, or from another
task—what is the optimal way to pretrain a representation?

As posed, the answer to the question above depends upon
the downstream task that we seek to solve. But we can ask
a more reasonable question by recognizing that a pretrained
representation can be thought of as a Bayesian prior (or a
sample from it). Fundamentally, a prior restricts the set
of models that can be fitted upon the task. So we could
instead ask: how to best use the extra data to restrict the set
of models that we could fit on the desired task. This paper
formalizes the question using the concept of reference priors
and makes the following contributions.

(1) We formalize the problem of “how to best pretrain a
model” using the theory of reference priors, which are objec-
tive, uninformative Bayesian priors computed by maximiz-
ing the mutual information between the task and the weights.
We show how these priors maximize the KL-divergence be-
tween the posterior computed from the task and the prior,
on average over the distribution of the unknown future data.
This allows the samples from the task to maximally influ-
ence the posterior. We discuss how reference priors are
supported on a discrete set of atoms in the weight space. We
develop a method to compute reference priors for deep
networks. To our knowledge, this is the first instantia-
tion of reference priors for deep networks that preserves
their characteristic discrete nature.

https://github.com/grasp-lyrl/deep_reference_priors
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(2) We formalize semi-supervised learning as comput-
ing a reference prior where the learner is given access to a
pool of unlabeled data and seeks to compute a prior using
this data. This formulation sheds light upon the theoretical
underpinnings of existing state of the art methods such
as FixMatch. We show that techniques such as consistency
regularization and entropy minimization which are com-
monly used in practice can be directly understood using the
reference prior formulation.

(3) We formalize transfer learning as building a two-
stage reference prior where the learner gets access to data
in two stages and computes a prior that is optimal for data
from the second stage. Such a prior has the flavor of ignoring
certain parts of the weight space depending upon whether
data from the first stage was similar to that from the second
stage, or not. This formulation is useful because it is an
information-theoretically optimal way to pretrain using a
source task for the goal of transferring to the target task.
This objective is closely related to the predictive Information
Bottleneck principle.

(4) We show an empirical study of our formulations on
the CIFAR-10 and CIFAR-100 datasets. We show that our
methods to compute reference priors provide results that
are competitive with state of the art methods for semi-
supervised learning, e.g., we obtain an accuracy of 85.45%
on CIFAR-10 with 5 labeled samples/class. We obtain
significantly better accuracy than well-tuned fine-tuning for
transfer learning, even for very small sample sizes.

2. Background
2.1. Setup

Consider a dataset P̂n = {(xi, yi)}ni=1 with n samples that
consists of inputs xi ∈ Rd and labels yi ∈ {1, . . . , C}.
Each sample of this dataset is drawn from a joint distribution
P (x, y) which we define to be the “task”. We will use the
shorthand xn = (x1, . . . , xn) and yn = (y1, . . . , yn) to
denote all inputs and labels. Let w ∈ Rp be the weights of a
probabilistic model which evaluates pw(y |x). We will use
a random variable z with a probabilistic model pw(z) when
we do not wish to distinguish between inputs and labels.

Given a prior on weights π(w), Bayes law gives the poste-
rior p(w |xn, yn) ∝ p(yn |xn, w)π(w). The Fisher Infor-
mation Matrix (FIM) g ∈ Rp×p has entries g(w)kl =

1

n

n∑
i=1

C∑
y=1

pw(y |xi)∂wk
log pw(y |xi)∂wl

log pw(y |xi).

It can be used to define the Jeffreys prior πJ(w) ∝√
det g(w). Jeffreys prior is reparameterization invariant,

i.e., it assigns the same probability to a set of models irre-
spective of our choice of parameterization of those models.

It is an uninformative prior, e.g., it imposes some generic
structure on the problem (reparameterization invariance).

2.2. Reference Priors

To make the choice of a prior more objective, Bernardo
(1979) suggested that uninformative priors should maximize
some divergence, say the Kullback-Leibler (KL) divergence
KL(p(w | z), π(w)) =

∫
dw p(w | z) log (p(w | z)/π(w)),

between the prior and the posterior for data z. The rationale
for doing so is to allow the data to dominate the posterior
rather than our choice of the prior. Since we do not know the
data a priori while picking the prior, we should maximize
the average KL-divergence over the data distribution p(z).
This amounts to maximizing the mutual information

π∗ = argmax
π

Iπ(w; z)

:=

∫
dz dw p(z)p(w | z) log p(w | z)

π(w)

= H(w)−H(w | z)

(1)

where p(z) =
∫
dw π(w)p(z |w) and H(w) =

−
∫
dw π(w) log π(w) is the Shannon entropy; the condi-

tional entropy H(w | z) is defined analogously. Mutual in-
formation is a natural quantity for measuring the amount of
missing information about w provided by data z if the initial
belief was π. The prior π∗(w) is known as a reference prior.
It is invariant to a reparameterization of the weight space be-
cause mutual information is invariant to reparameterization.
The reference prior does not depend upon the samples P̂n

but only depends on their distribution P .

The objective to calculate reference prior π∗ above may
not be analytically tractable and therefore Bernardo also
suggested computing n-reference priors. We call n the
“order” and deliberately overload the notation for the number
of samples n; the reason will be clear soon.

π∗
n = argmaxπ Iπ(w; z

n) = H(w)−H(w | zn), (2)

using n samples and then setting π∗ := limn→∞ π∗
n un-

der appropriate technical conditions (Berger et al., 1988).
Reference priors are asymptotically equivalent to Jeffreys
prior for one-dimensional problems. In general, they differ
for multi-dimensional problems but it can be shown that
Jeffreys prior is the continuous prior that maximizes the
mutual information (Clarke and Barron, 1994).

2.3. Blahut-Arimoto algorithm

The Blahut-Arimoto algorithm (Arimoto, 1972; Blahut,
1972) is a method for maximizing functionals like (1)
and leads to iterations of the form πt+1(w) ∝
exp (KL(p(z |w), p(z)))πt(w). It is typically imple-
mented for discrete variables, e.g., in the Information Bottle-
neck (Tishby et al., 1999). In this case, maximizing mutual



information is a convex problem and therefore the BA al-
gorithm is guaranteed to converge. Such discretization is
difficult for high-dimensional deep networks. We therefore
implement the BA algorithm using particles; see Remark 2.

Example 1 (Estimating the bias of a coin). To ground
intuition, consider the estimation of the bias of a coin
w ∈ [0, 1] using n trials. If z denotes the number of
heads (which is a sufficient statistic), we have p(z |w) =
wz(1− w)n−zn!/(z!(n− z)!). For n = 1, since we know
that I(w; z1) ≤ log 2 with this one bit of information, we
can see that π∗

1(z) = (δ(w) + δ(1− w))/2 is the reference
prior that achieves this upper bound. This result is intuitive:
if we know that we have only one observation, then the opti-
mal uninformative prior should put equal probability mass
on the two exhaustive outcomes w = 0 (heads) and w = 1
(tails). We can numerically calculate π∗

n for different values
of n using the BA algorithm (Fig. 1).
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Figure 1. We calculated the reference prior for the coin-tossing
model for n = 1, 10, 50 (from left to right) using the Blahut-
Arimoto algorithm. Atoms are critical points of the gray line
which is KL(p(zn), p(zn |w)). The prior is discrete for finite
order n < ∞ (Mattingly et al., 2018). Atoms of the prior are
maximally different from each other, e.g., for n = 1, they are on
opposite corners of the parameter space. As the number of samples
increases, the separation between atoms of the prior reduces. The
prior converges to Jeffreys prior πJ(w) ∝ (w(1− w))−1 as n →
∞.

3. Methods
This section discusses a key property of reference priors that
enables us to calculate them numerically, namely that they
are supported on a discrete set in the weight space (§3.1). It
then formulates reference priors for semi-supervised (§3.3)
and transfer learning (§§3.4 and 3.5).

3.1. Existence and discreteness of reference priors

Rigorous theoretical development of reference priors has
been done in the statistics literature. We focus on their ap-
plications. We however mention some technical conditions
under which our development remains meaningful.

A reference prior does not exist if Iπ(w; z
n) is infi-

nite (Berger et al., 1988). For the concept of a reference
prior to remain meaningful, we make the following technical
assumptions. (i) π is supported on a compact set Ω ⊂ Rp,
and (ii) if pπ(zn) =

∫
Ω
dw π(w)p(zn |w) is the marginal,
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Figure 2. Reference prior (green) for binary classification on
MNIST. A three-dimensional embedding of the probability dis-
tributions of K = 3000 atoms in the reference prior after 50,000
iterations of the BA algorithm (green) for a binary classification
problem on MNIST (digits 3 vs. 5). Particles were initialized
randomly (blue) and they are nearby in this embedding because at
initialization, the logits of each particle are uniformly distributed.
Orange shows particle locations after 5,000 iterations. As the
reference prior objective in (2) is optimized, the particles increas-
ingly make more diverse predictions (orange) and towards the end
(green) these particles spread apart in the prediction space.

then KL(pw, pπ) is a continuous function of w for any π.
Under these conditions, the n-order prior π∗

n exists and
Iπn

(w; zn) is finite; see (Zhang, 1994, Lemma 2.14). Now
assume that π∗

n exists and is unique up to a set of measure
zero. Let Ωn = {w ∈ Ω : π∗

n(w) > 0} be the support of
π∗
n and zn be a discrete random variable with C atoms. If

{p(zn |w) : w ∈ Ωn} is compact, then π∗
n is discrete with

no more than C atoms (Zhang, 1994, Lemma 2.18)).

Remark 2 (Blahut-Arimoto algorithm with particles).
Since the optimal prior is discrete, we can maximize the mu-
tual information directly by identifying the best set of atoms.
We set the prior have the form π∗

n =
∑K

i=1 K
−1δ(w − wi)

where {w1, . . . , wK} are the K atoms. We call these atoms
“particles”. Using standard back-propagation, we can then
compute the gradient of the objective in (2) with respect
to each particle (note that each particle’s gradient depends
upon all other particles).

3.2. Visualizing the reference prior for deep networks

One cannot directly visualize the high-dimensional particles
w in π∗

n. But we can think of each particle w as representing
a probability distribution f(w) ∈ RnC given by(√

pw(y = 1 |x1),
√

pw(y = 2 |x1), . . . ,
√

pw(y = C |xn)
)
.

and use a method for visualizing such distributions devel-
oped in Quinn et al. (2019) that computes a principal compo-
nent analysis (PCA) of such vectors {f(w1), . . . , f(wK)}
shown in Fig. 2. See Appendix C for more details.

This experiment demonstrates that we can instantiate ref-
erence priors for deep networks in a scalable fashion even



for a large number of particles K. It provides a visual un-
derstanding of how atoms of the prior are diverse models in
prediction space, just like the atoms in Fig. 1.

How to choose the number of atoms K in the reference
prior? Each particle in this paper is a deep network, so
must be careful to ensure that we do not maintain an unduly
large number of atoms in the prior. Abbott and Machta
(2019) suggest a scaling law for K in terms of the number
of samples n, e.g., K ∼ n4/3 for a problem with two biased
coins. We will instead treat K as a hyper-parameter. This
choice is motivated from the emergent low-dimensional
structure of the green particles in Fig. 2; see the further
analysis in in §4.4.

Remark 3 (Variational approximations of reference pri-
ors). Nalisnick and Smyth (2017) maximize a lower bound
on Iπ(w; z) and replace the term p(z) =

∫
dw π(w)p(z |w)

in (1) by the so-called VR-max estimator maxw log p(z |w)
where the maximum is evaluated across a set of samples
from π(w) (Li and Turner, 2016). They use a continuous
variational family parameterized by neural networks. How-
ever, reference priors are supported on a discrete set. Using
a continuous variational family, e.g., a Gaussian distribu-
tion, to approximate π∗

n is computationally beneficial but it
is detrimental to the primary purpose of the prior, namely to
discover diverse models. This is also seen in Fig. 2 where
it would be difficult to construct a variational family whose
distributions put mass mostly on the green points. We there-
fore do not use variational approximations.

Remark 4 (Reference prior depends upon the number of
samples and its atoms are diverse models). (1) encourages
the likelihood p(zn |w) of atoms in the reference prior to
be maximally different from that of other atoms. This gives
us intuition as to why the prior should have finite atoms.
Consider the covering number in learning theory (Bousquet
et al., 2003) where we endow the model space with a metric
that measures disagreement between two hypotheses over
n samples. Smaller the number of samples n, smaller the
covering number, and smaller the effective set of models
considered. The reference prior is similar. If we only have
few samples n, then it is not possible for the likelihood
in Bayes law to distinguish between a large set of models
and assign them different posterior probabilities. The prior
therefore puts probability mass only on a finite set of atoms,
and just like the coin-tossing experiment in Example 1, these
atoms have diverse outputs on the n samples. This ability
of the prior to select a small set of representative models is
extremely useful for training deep networks with few data
and it was our primary motivation.

3.3. Reference priors for semi-supervised learning

Consider the situation where we are given inputs xn, their
corresponding labels yn and unlabeled inputs xu. Our

goal is semi-supervised learning, i.e., to use xu to build a
prior π∗(w) that selects models that can be learned using
the labeled data (xn, yn). Recall that since π∗ is a prior, it
should not depend on (xn, yn). Just like the construction of
the reference prior in §2.2, we can maximize

Iπ(y
n, xn;w) = E

xn,(yn | xn,w),w∼π

[
log

p(yn |xn, w)

pπ(yn |xn)

]
= E

xn,(yn | xn,w),w∼π
[log p(yn |xn, w)]

− E
xn,yn | xn

[log pπ(y
n |xn)]

= E
xu

[H(yu |xu)]− E
xu,w∼π

[H(yu |xu, w)] ,

(3)
where pπ(y

n |xn) =
∫
dw π(w)

∏n
i=1 p(yi |xi, w) and

likewise for pπ(yu |xu). The first step is simply the defi-
nition of Iπ: it is the KL-divergence of the posterior after
seeing (xn, yn) with respect to the prior π(w). The second
step is the key idea and its rationale is as follows. If we
know that inputs xu and xn come from the same task, then
we can use samples xu to compute the expectation over xn.
For the same reason, we can average over outputs yu which
are predicted by the network in place of the fixed labels yn.
Let us emphasize that both xu and yu are averaged out in
the objective above. Predictions on new samples x are made
using the Bayesian posterior predictive distribution

p(y |x, xn, yn) ∝
∫

dw π∗
n(w)p(y |x,w)p(yn |xn, w).

(4)

An intuitive understanding of (3) Assume for now that
we know the number of classes C (although the objective
is valid even if that is not the case). If our prior has K
particles, then the second term is the average of the per-
particle entropy of the predictions. The objective encourages
each particle wi to predict confidently, i.e., to have a small
entropy in its output distribution pwi

(y |x). The first term
is the entropy of the average predictions: pπ(yn |xn), and it
is large if particles predict different outputs yn for the same
inputs xn, i.e., they disagree with each other. We treat the
constant α (which should be 1 in the definition of mutual
information) as a hyper-parameter to allow control over
this phenomenon. The reference prior semi-supervised
learning objective encourages particles to be dissimilar
but confident models (not necessarily correct).

3.4. Reference priors for a two-stage experiment

We first develop the idea using generic random variables zn.
Consider a situation when we see data in two stages, first
zm, and then zn. How should we select a prior, and thereby
the posterior of the first stage, such that the posterior of the
second stage makes maximal use of the new n samples? We
can extend the idea in §3.3 in a natural way to address this



question. We can maximize the KL-divergence between
the posterior of the second stage and the posterior after
the first stage, on average, over samples zn.

Since we have access to samples zm, we need not aver-
age over them, we can compute the posterior p(w | zm)
from these samples given the prior π(w). First, no-
tice that p(w, zn | zm) = p(w | zm+n)p(zn | zm) =
p(zn |w)p(w | zm). We can now write

π∗
n |m = argmax

π
Ip(w | zm)(w; z

n)

:=

∫
dzn p(zn | zm) KL(p(w | zm+n), p(w | zm))

=

∫
dw p(w | zm)

∫
dzn p(zn |w) log p(zn |w)

p(zn | zm)
,

(5)
where p(w | zm) ∝ p(zm |w)π(w) and p(zn | zm) =∫
dw p(zn |w)p(w | zm). The key observation is that if the

reference prior (2) has a unique solution, we should have
that the optimal p(w | zm) ≡ π∗

n(w). This leads to

π∗
n |m(w) ∝ π∗

n(w) p(z
m |w)−1. (6)

This prior puts less probability on regions which have high
likelihood on old data zm whereby the posterior is maxi-
mally informed by the new samples zn. Given knowledge of
old data, the prior downweighs regions in the weight space
that could bias the posterior of the new data. We also have
π∗
n |m = π∗

n for m = 0 which is consistent with (2). As
m → ∞, this prior ignores the part of the weight space that
was ideal for zm. See Appendix D.3 for an example.

Remark 5 (Averaging over zm in the two-stage experi-
ment). If we do not know the outcomes zm yet, the prior
should be calculated by averaging over both zm, zn

π∗ = argmax
π

∫
dzm p(zm)Ip(w | zm)(w; z

n)

:= Iπ(w; z
m+n)− Iπ(w; z

m)

= H(w | zm)−H(w | zm+n).

(7)

The encourages multiple explanations of initial data zm, i.e.,
high H(w | zm), so as to let the future samples zn select the
best one among these explanations, i.e., reduce the entropy
H(w | zm+n). It is interesting to note that neither is this
two-stage prior equivalent to maximizing Iπ(w; z

m+n), nor
is it simply the optimal prior corresponding to objectives
Iπ(w; z

m) or Iπ(w; zn). Both (6) and (7) therefore indicate
that two-stage priors are useful when we have some data a
priori, this can be either unlabeled samples from the same
task, or labeled samples from some other task.

Remark 6 (A softer version of the two-stage reference
prior). The objective in (7) resembles the predictive in-
formation bottleneck (IB) of Bialek et al. (2001), or its

variational version in Alemi (2020), which seek to learn
a representation, say w, that maximally forgets past data
while remaining predictive of future data

maxp(w | zm) I(w; z
n)− βI(w; zm). (8)

The parameter β in (8) gives this objective control over how
much information from the past is retained in w. We take
inspiration from this and construct a variant of (6)

πβ
n |m(w) ∝ π∗

n(w)p(z
m |w)−β for β ∈ (0, 1).

⇒ p(w | zm+n) ∝ p(zn |w)p(zm |w)1−βπ∗
n(w).

(9)
We should use β = 0 when we expect that data from the
first stage zm is similar to data zn from the second stage.
This allows the posterior to benefit from past samples. If
we expect that the data are different, then β = 1 ignores
regions in the weight space that predict well for zm. This
is similar to the predictive IB where a small β encourages
remembering the past and β = 1 encourages forgetting.

3.5. Reference priors for transfer learning

Consider the two-stage experiment where in the first stage
we obtain m samples (xm

s , yms ) from a “source” task P s

and the second stage consists of n samples (xn
t , y

n
t ) from

the “target” task P t. Our goal is to calculate a prior π(w)
that best utilizes the target task data.

Bayesian inference for this problem involves first com-
puting the posterior p(w |xm

s , yms ) ∝ p(yms |w, xm
s )π(w)

from the source task and then using it as a prior to com-
pute the posterior for the target task p(w |xn

t , y
n
t , x

m
s , yms ).

Just like §2.2, the key idea again is to maxi-
mize the KL-divergence between the two posteriors
KL (p(w |xn

t , y
n
t , x

m
s , yms ), p(w |xm

s , yms )), but averaged
over samples xm

s and xn
t .

Case 1: Access to unlabeled data from the source xm
s and

the target task xn
t We should average the KL-divergence

over both the source and target predictions yms and ynt and
maximize

E
xm
s , xn

t , y
m
s |xm

s , ynt |xn
t

KL (p(w |xn
t , y

n
t , x

m
s , yms ), p(w |xm

s , yms ))

(10)
over the prior π. Here pπ(y

m
s |xm

s ) = Ew∼π p(y
m
s |xm

s , w)
and pπ(y

n
t |xn

t ) = Ew∼π p(y
n
t |xn

t , w), respectively. Note
that averages over xm

s and xn
t are computed using samples

while averages over yms |xm
s and ynt |xn

t are computed using
the model’s predictions.

Case 2: xm
s , yms are fixed and known, and we have a pool

of unlabeled target data xn
t Since we already know the

labels for the source task, we will only average over xn
t and



ynt and maximize

E
xn
t ,y

n
t | xn

t

KL (p(w |xn
t , y

n
t , x

m
s , yms ), p(w |xm

s , yms )) ;

(11)
here pπ(y

n
t |xn

t ) =
∫
dw π(w)p(ynt |xn

t , w).

Remark 7 (Connecting (10) and (11) to practice). Both
objectives can be written down as

π∗ = argmax
π

Iπ(w; y
n
t , x

n
t , x

m
s , yms )− Iπ(w;x

m
s , yms )

(12)
with the distinction that while in Case 1, we average over
all quantities, namely p(xm

s ), p(yms ), p(xn
t ), p(y

n
t ) while in

Case 2, we fix xm
s and yms to the provided data from the

source task. Case 2 is what is typically called transfer learn-
ing. Case 1, where one has access to only unlabeled data
from a source task that is different from the target task is
not typically studied in practice. Like (9), we can again in-
troduce a coefficient β on the second term in (12) to handle
the relatedness between source and target tasks.

3.6. Practical tricks for implementing reference priors

The reference prior objective is conceptually simple but it is
difficult to implement it directly using deep networks and
modern datasets. We next discuss some practical tricks that
we have developed.

(1) Order of the reference prior n versus the number of
samples Bernardo (1979) set the order of the prior n to be
the same as the number of samples. We observe that both
do not have to be identical and make a distinction between
the two. In our expierments, we restrict the order to n =
2, 3. Mathematically, this amounts to computing averages
in (2) or (3) over only sets of n-tuples. This significantly
reduces the class of models considered in the reference
prior by pretending that there is a small number of samples
available for training the task—which is useful, and also
true in practice, for over-parametrized deep networks. This
choice is also motivated by the low-dimensional structure in
the reference prior in Fig. 2. Note that we are not restricting
to small order n for computational reasons, i.e., computing
the expectation over all classes yn in (3) can be done in a
single forward pass.

(2) Using cross-entropy loss to bias particles towards
good parts of the weight space The posterior (4) suggests
that we should first compute the prior, and then weight each
particle by the likelihood of the labeled data. In practice,
we combine these two steps into a single objective

max
π

γIπ(w; y
u, xu) + E

w∼π
[log p(yn |xn, w)] , (13)

where γ is a hyper parameter, xn, yn are labeled samples.
(13) allows us to directly obtain particles that both have high

probability under the prior and a high likelihood. This is
different from the correct Bayesian posterior (which would
set γ = 1, we use γ = 1/2) but it is a trick often employed
in the SSL literature. The second term restricts the search
space for the particles in π(w).

(3) Data augmentation State of the art SSL methods use
heavy data augmentation, e.g., RandAugment (Cubuk et al.,
2020) and CTAugment (Berthelot et al., 2019a), which both
have about 20 transformations. Some are weak augmenta-
tions such as mirror flips and crops while some others are
strong augmentations such as color jitter. Methods such
as FixMatch (Sohn et al., 2020) or MixMatch (Berthelot
et al., 2019b) use weak augmentations to get soft labels for
predictions on strong augmentations.

We compute the entropy term H(yu |xu, w) in (3) using the
distribution pG(y |x,w) = Eg∼G[pw(y | g(x), w)] where
G = G1 ∪ G2 is the set of weak (G1) and strong (G2)
augmentations. Let gi ∼ Gi be an augmentation and denote
pgi ≡ pw(y | gi(x), w) for i ∈ {1, 2}. In every mini-batch
we use pG(y |x,w) ≈ τpg1 + (1 − τ)pg2 where τ is a
hyper-parameter. This gives accuracy that is reasonable
(about 87% for 500 samples) but a bit lower than state of
the art SSL methods. We noticed that if we use an upper
bound on the entropy from Jensen’s inequality

− E
xu

∫
dyu pG(y

u |xu, w) [τ log pg1 + (1− τ) log pg2 ]

(14)
then we can close this gap in accuracy (see Table 1). This is
perhaps because the cross-entropy terms, e.g., −pg1 log pg2 ,
force the predictions of the particles to be consistent across
both types of augmentations, just like the objective in Fix-
Match or MixMatch. Our formulation is thus useful to not
only understand SSL but also to tweak it to perform as well
as current methods and thereby shed light on the theoretical
underpinnings of their performance.

(4) Computing H(yu |xu, w) A number of SSL methods
work by creating pseudolabels from weakly augmented data,
which seems to be a key ingredient of good accuracy in our
experience with these methods. We tried two heuristics
to compute the entropy term H(yu |xu, w) that are moti-
vated by these papers. First, we follow FixMatch and only
use unlabeled data with confident predictions to compute
H(yu |xu, w). A datum x contributes to the objective only
if maxy pw(y|g1(x), w) > 0.95. Changing this threshold
does not lead to deterioration of the accuracy as we see in Ta-
ble S-6, so this heuristic need not be used while building
the reference prior. Second, if G1 is the set of weak aug-
mentations (see previous point), methods like FixMatch and
MixMatch use argmaxy p(y | g1(x), w) as a pseudo-label
but do not update this using the back-propagation gradi-
ent. This prevents the more reliable predictions on G1 from



changing. As a result, the entropy term −τ2pg1 log pg1 is
a constant in (14). To normalize the terms coming from τ
in (14), we set γ in (13) to 1/(1− τ2) instead of 1. We have
also developed an argument to choose the appropriate value
of τ = 1/3 that we explain in Appendix A. This second
heuristic seems essential, in Table S-6, we obtain only 10%
accuracy without this heuristic.

4. Empirical Study
4.1. Setup

We evaluate on CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). For SSL, we use 50–1000 labeled samples, i.e., 5–
100 samples/class and use the rest of the samples in the
training set as unlabeled samples. For transfer learning,
we construct 20 five-way classification tasks from CIFAR-
100 and use 1000 labeled samples from the source and 100
labeled samples from the target task. All experiments use
the WRN 28-2 architecture (Zagoruyko and Komodakis,
2016), same as in Berthelot et al. (2019b).

For all our experiments, the reference prior is of order n = 2
and has K = 4 particles. We run all our methods for 200
epochs, with τ = 1/3 in (14) and α = 0.1 in (3). We set
γ = (1 − τ2)−1 as discussed in §3.6. For inference, each
particle maintains an exponential moving average (EMA) of
the weights (this is common in SSL (Tarvainen and Valpola,
2017)). Appendix A provides more details.

4.2. Semi-supervised learning

Baselines We compare to a number of recent methods
such as FixMatch (Sohn et al., 2020), MixMatch (Berthelot
et al., 2019b), DASH (Xu et al., 2021), SelfMatch (Kim
et al., 2021), Mean Teacher (Tarvainen and Valpola, 2017),
Virtual Adversarial Training (Miyato et al., 2018), and
Mixup (Berthelot et al., 2019b).

Table 1 compares the accuracy of different SSL methods
on CIFAR-10. We find that the reference prior approach is
competitive with a number of existing methods, e.g., it is
remarkably close to FixMatch on all sample sizes (notice
the error bars). There is a gap in accuracy at small sample
sizes (40–50) when compared to recent methods. It is im-
portant to note that these recent methods employ a number
of additional tricks, e.g., FlexMatch implements curriculum
learning on top of FixMatch, DASH and FlexMatch use dif-
ferent thresholding for weak augmentations (this increases
their accuracy by 2-5%), SelfMatch has higher accuracies
because of a self-supervised pretraining stage, FixMatch
(CTA) outperforms its RA variant by 1.5% which indicates
CTA augmentation is beneficial (we used RA). It is also ex-
tremely expensive to train SSL algorithms for 1000 epochs
(all methods in Table 1 do so), we trained for 200 epochs.

Method Samples
50 100 250 500 1000

Mixup - - 52.57 63.86 74.28
VAT - - 63.97 73.89 81.32
Mean Teacher - - 52.68 57.99 82.68
MixMatch 64.21* 80.29* 88.91* 90.35* 92.25*

FixMatch (RA) 86.19 ± 3.37 (40) 90.12* 94.93 ± 0.65 93.91* 94.3*

FixMatch (CTA) 88.61 ± 3.35 (40) - 94.93 ± 0.33 - -
DASH (RA) 86.78 ± 3.75 (40) - 95.44 ± 0.13 - -
DASH (CTA) 90.84 ± 4.31 (40) - 95.22 ± 0.12 - -
SelfMatch 93.19 ± 1.08 (40) - 95.13 ± 0.26 - -
FlexMatch 95.03 ± 0.06 (40) - 95.02 ± 0.09 - -

Deep Reference Prior 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24

Table 1. Classification accuracy of different semi-supervised
learning methods on CIFAR-10. Note: RA and CTA in the
methods column indicate that RandAugment or CTAugment were
used for augmentations. Entries with * were evaluated by us using
open-source implementations from the original authors for 256
epochs. All other entries are from original papers. Entries with
“(40)” indicate that 40 labeled samples were used instead of 50.

This experiment shows that our approach to SSL can obtain
results that are competitive to sophisticated empirical meth-
ods without being explicitly formulated to enforce properties
like label consistency with respect to augmentations. This
also indicates that reference priors could be a good way to
explain the performance of these existing methods, which is
one of our goals in this paper.

4.3. Transfer learning

Just like we did in §3.6 for SSL, we instantiate (9) and (11),
by combining prior selection, pretraining on the source task
and likelihood of the target task, into one objective,

γIπ(w; y
u
t , x

u
t ) + E

w∼π
[log p(w, ynt |xn

t )]

+ (1− β) E
w∼π

[log p(w, yms |xm
s )] ,

(15)

where γ = 1/2 and β = 1/2 are hyper-parameters,
(xm

s , yms ) are labeled data from the source task (m = 1000),
(xn

t , y
n
t ) are labeled data from the target task (n = 100)

and xu
t are unlabeled samples from the target task (all other

samples).

Baselines We use three methods: (a) fine-tuning, which is
a very effective strategy for transfer learning (Dhillon et al.,
2020; Kolesnikov et al., 2020) but it cannot use unlabeled
target data, (b) using only labeled target data (this is stan-
dard supervised learning), and (c) using only labeled and
unlabeled target data without any source data (this is simply
SSL, or β = 1 in (15)). Fig. 3 compares the performance
for pairwise transfer across 5 tasks from CIFAR-100. Our
reference prior objective in (15) obtains much better accu-
racy than fine-tuning which indicates that it leverages the
unlabeled target data effectively. For each task, the accuracy



is much better than both standard supervised learning and
semi-supervised learning using our own reference prior ap-
proach (13); both of these indicate that the labeled source
data is being used effectively in (15).
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Method Task (→) Vehicles-1 Vehicles-2 Fish People Aq. Mammals

Supervised Learning 42.2 63.2 56.8 31.0 42.6
Deep Reference Prior (SSL) 63.6 75.2 54.6 34.0 47.4

Figure 3. Top: Accuracy (%) of deep reference priors (left) and
fine-tuning (right) for transfer learning tasks in CIFAR-100.
Cells are colored red/green relative to the median accuracy of
each row. Darker shades of green indicate that the source task is
more suitable for transfer. For example, Vehicles-1 as source is
the best for all tasks according to the reference prior (left) (which
is optimal in theory) but fine-tuning cannot replicate this. The
accuracy of cells in the left panel is better than the corresponding
cells on the right, e.g., the gap in accuracy is 34.8% for Vehicles 2
→ Vehicles 1. Bottom: Accuracy (%) of supervised learning
and SSL for all 5 tasks. Each number here should be compared
to the corresponding row of the matrices in the top panel, e.g.,
Vehicles 2 has 86% accuracy when transferred from Vehicles 1
using our transfer method (left), it has 66% accuracy from fine-
tuning (right), while the same task achieves 63.2% accuracy when
trained by itself using supervised learning (table first row) and
75.2% accuracy when trained using unlabeled target data (table
second row). Therefore the reference prior-based transfer objective
can leverage both labeled source data as well as unlabeled target
data. This pattern is consistent for all tasks.

4.4. Ablation and analysis

This section presents ablation and analysis experiments for
SSL on CIFAR-10 with 1000 labeled samples. We study the
reference prior for different settings (i) varying the order n
of the prior, (ii) varying the number of particles in the BA
algorithm (K), (iii) exponential moving averaging of the
weights for each particle. We also study the two entropy
terms in the reference prior objective individually.

We use a reference prior of order n = 2 in all our experi-
ments. We see in Table 2 that changing the order of the
prior leads to marginal (about 1%) changes in the accuracy.

We next vary the number of particles in the prior in Ta-
ble 3 and find that the accuracy is relatively consistent when
the number of particles varies from K = 2 to K = 16. This

Method Order (→) 2 3 4 5

Deep Reference Prior (K = 4) 91.76 90.53 91.51 91.36

Table 2. The order of the reference prior has a minimal impact on
the accuracy.

Method #Particles (→) 2 4 8 16

Deep Reference Prior (n = 2) 91.3 91.76 89.79 90.72

Table 3. Number of particles has a minimal impact on accuracy.

seems surprising because a reference prior ideally should
have an infinite number of atoms, when it approximates
Jeffreys prior. We should not a priori expect K = 2 par-
ticles to be sufficient to span the prediction space of deep
networks. But our experiment in Fig. 2 provides insight
into this phenomenon. It shows that the manifold of diverse
predictions is low-dimensional. Particles of the reference
prior only need to span these few dimension and we can
fruitfully implement our approach using very few particles.

Effect of exponential moving averaging (EMA) We use
EMA on the weights of each particle (independently). Ta-
ble 4 analyzes the impact of EMA. As noticed in other
semi-supervised learning works (Berthelot et al., 2019b;
Sohn et al., 2020), EMA improves the accuracy by 2-3%
regardless of the number of labeled samples used.

Method #Samples (→) 50 100 250 500 1000

EMA 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24

No EMA 82.36 ± 2.13 85.64 ± 0.43 89.75 ± 0.36 90.06 ± 1.71 91.57 ± 0.25

Table 4. Using EMA for weights of each particle is beneficial and
improves accuracy by 2-3%.

The two entropy terms in the reference prior objec-
tive Fig. 4 (left) shows how, because of the entropy term
H(yu |xu), the accuracy of particles is quite different dur-
ing training. Particles have different predictive abilities (
7% range in test error) but the Bayesian posterior predic-
tive distribution has a higher accuracy than any of them.
Fig. 4 (right) tracks the two entropy terms in the objec-
tive. For large number of labeled data (500, blue) the
entropy H(yu |xu) which should always be higher than
H(yu |xu, w) in (3) is lower (this is not the case for 50
samples, red). This is likely a result of the cross-entropy
term in the modified objective in (13) which narrows the
search space of the particles. This experiment is an impor-
tant insight into the working of existing semi-supervised
learning methods as well, all of which also have a similar
cross-entropy objective in their formulation. It points to the
fact that at large sample-sizes, the cross-entropy loss and
not the semi-supervised learning objective could dominate
the training procedure.
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Figure 4. (Left) Accuracy of individual particles in the prior during
training (250 labeled samples). The individual particles have di-
verse predictions due to the entropy term H(yn |xn), the accuracy
of the ensemble is larger than the accuracy of any single particle.
(Right) Evolution of entropy terms H(yu |xu, w) and H(yu |xu)
for two cases (500 labeled samples and 50 labeled samples). While
H(yu |xu) is expected to be larger than H(yu |xu, w) in (3) since
KL-divergence is non-negative, this is not always the case since
we approximate H(yu |xu, w) by an upper-bound obtained from
Jensen’s inequality for data augmentation as discussed in §3.6.

5. Related Work and Discussion
Reference priors in Bayesian statistics We build upon
the theory of reference priors which was developed in the ob-
jective Bayesian statistics literature Bernardo (1979); Berger
et al. (1988; 2009). The main idea used in our work is that
non-asymptotic reference priors allow us to exploit the fi-
nite samples from the task in a fundamentally different way
than classical Bayesian inference. If the number of samples
from the task available to the learner is finite, then the prior
should also select only a finite number of models. Reference
priors are not common in the machine learning literature.
A notable exception is Nalisnick and Smyth (2017) who
optimize a variational lower bound and demonstrate results
on small-scale problems. The main technical distinction of
our work is that we explicitly use the discrete prior instead
of a variational approximation.

Information theory Discreteness is seen in many prob-
lems with an information-theoretic formulation, e.g.,
capacity of a Gaussian channel under an amplitude
constraint (Smith, 1971), neural representations in the
brain Laughlin (1981), and biological systems (Mayer et al.,
2015). (Mattingly et al., 2018; Abbott and Machta, 2019)
have developed these ideas to study how reference priors se-
lect “simple models” which lie on certain low-dimensional
“edges” of the model space. We believe that the methods
developed in our paper are effective because of this phe-
nomenon. Our choice of using a small order n for the prior
is directly motivated by their examples.

Semi-supervised learning Our formulation sheds light
on the working of current SSL methods. For example, the
reference prior can automatically enforce consistency reg-
ularization of predictions across augmentations (Tarvainen
and Valpola, 2017; Berthelot et al., 2019b), as we discuss

in §3.6. Similarly, minimizing the entropy of predictions
on unlabeled data, either explicitly (Grandvalet et al., 2005;
Miyato et al., 2018) or using pseudo-labeling methods (Lee
et al., 2013; Sajjadi et al., 2016), is another popular tech-
nique. This is automatically achieved by the objective in (3).
Disagreement-based methods (Zhou and Li, 2010) employ
multiple models and use confident models to soft-annotate
unlabeled samples for others. Disagreements in our formu-
lation are encouraged by the entropy H(yn |xn) in (3). If
p(yn |xn) is uniform, which is encouraged by the reference
prior objective, particles disagree strongly with each other.

Transfer learning is a key component of a large number
of applications today, e.g, (Devlin et al., 2019; Kolesnikov
et al., 2020) but a central question that remains unanswered
is how one should pretrain a model if the eventual goal
is to transfer to a target task. There have been some at-
tempts at addressing this via the Information Bottleneck,
e.g., Gao and Chaudhari (2020). This question becomes
particularly challenging when transferring across domains,
or for small sample sizes (Davatzikos, 2019). Reference
priors are uniquely suited to tackle this question: our two-
stage experiment in §3.4 is the optimal way pretain on the
source task. As our experiments show, this is better than
fine-tuning in the low-sample regime §4.3.
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A. Details of the experimental setup
Architecture For experiments on CIFAR-10 and CIFAR-100 (§4), we consider a modified version of the Wide-Resnet
28-2 architecture (Zagoruyko and Komodakis, 2016), which is identical to the one used in Berthelot et al. (2019b). This
architecture differs from the standard Wide-Resnet architecture in a few important aspects. The modified architecture has
Leaky-ReLU with slope 0.1 (as opposed to ReLU), no activations or batch normalization before any layer with a residual
connection, and a momentum of 0.001 for batch-normalization running mean and standard-deviation (as opposed to 0.1, in
other words these statistics are made to change very slowly). We observed that the change to batch-normalization momentum
has a very large effect on the accuracy of semi-supervised learning.

For experiments on MNIST (Appendix D.1), we use a fully-connected network with 1 hidden layer of size 32. We use the
hardtanh activation in place of ReLU for this experiment; this is because maximizing the mutual information has the effect
of increasing the magnitude of the activations for ReLU networks. One may use weight decay to control the scale of the
weights and thereby that of the activations but in an effort to implement the reference prior exactly, we did not use weight
decay in this model. Note that the nonlinearities for the CIFAR models are ReLUs.

Datasets For semi-supervised learning, we consider the CIFAR-10 dataset with the number of labeled samples varying
from 50–1000 (i.e., 5–100 labeled samples per class). Semi-supervised learning experiments use all samples that are not a
part in the labeled set, as unlabeled samples.

For transfer learning, we construct two tasks from MNIST (task one is a 5-way classification task for digits 0–4, and task
two is another 5-way classification task for digits 5–9). For this experiment, we use labeled source data but do not use any
labeled target data. This makes our approach using a reference prior similar to a purely unsupervised method.

The CIFAR-100 dataset is also utilized in the transfer learning setup (§4.3). We consider five 5-way classification tasks
from CIFAR-100 constructed using the super-classes. The five tasks considered are Vehicles-1, Vehicles-2, Fish, People and
Aquatic Mammals. The selection of these tasks were motivated from the fact that some pairs of tasks are known to positively
impact each other (Vehicles-1, Vehicles-2), while other pairs are known to be detrimental to each other (Vehicles-2, People);
see the experiments in Ramesh and Chaudhari (2022).

Optimization SGD with Nesterov momentum on a Cosine-annealed learning rate schedule with warmup was used in our
experiments on CIFAR-10 and CIFAR-100. The initial learning rate was set to 0.03×K where K denotes the number of
particles. The scaling factor of K exists to counteract the normalization constant in the objective from averaging across all
particles. The momentum coefficient for SGD was set to 0.9 and weight decay to 5K−1 × 10−4. Mixed-precision (32-bit
weights, 16-bit gradients) was used to expedite training. Training was performed for 200 epochs unless specified otherwise.

Experiments on MNIST also used SGD for computing the reference prior. SGD was used with a constant learning rate of
0.001 with Nesterov’s acceleration, momentum coefficient of 0.9 and weight decay of 10−5.

Definition of a single Epoch Note that since we iterate over the unlabeled and labeled data (each with different number
of samples), the notion of what is an epoch needs to be defined differently. In our work, one epoch refers to 1024 weight
updates, where each weight update is calculated using a batch-size of 64 for the labeled data of batch size 64, and a batch-size
of 448 for the unlabeled data.

Exponential Moving Average (EMA) In all CIFAR-10 and CIFAR-100 experiments, we also implement the Exponential
Moving Average (EMA) (Tarvainen and Valpola, 2017). In each step, the EMA model is updated such that the new weights
are the weighted average of the old EMA model weights, and the latest trained model weights. The weights for averaging
used in our work (and most other methods) are 0.999 and 0.001 respectively. Note that EMA only affects the particle when
it is used for testing, it does not affect how weight updates are calculated during training. We exclude batch-normalization
running mean and variance estimates in EMA.

Data Augmentations We use random-horizontal flips and random-pad-crop (padding of 4 pixels on each side) as weak
augmentations for the CIFAR-10 and CIFAR-100 datasets. For SSL experiments on CIFAR-10, we use RandAugment (Cubuk
et al., 2020) for strong augmentations. No data augmentations were used for MNIST.



Picking the value of τ in (14) Let G1 and G2 be the sets of weak and strong augmentations respectively. For g1 ∼ G1

and g2 ∼ G2, let us write down the upper bound in (14) from Jensen’s inequality in detail

E
xu

∫
dyu

[
−τ2pg1 log pg1 − τ(1− τ)pg2 log pg1 − (1− τ)τpg1 log pg2 − (1− τ)2pg2 log pg2

]
.

The upper bound is thus a weighted sum of the entropy terms −pg1 log pg1 ,−pg2 log pg2 , and cross entropy terms
−pg2 log pg1 ,−pg1 log pg2 . If we were to pick τ = 1/2 like FixMatch, then since (1 − τ)2 + τ2 = 2τ(1 − τ) for
τ = 1/2, the entropy and cross entropy terms will contribute equally to the loss function. However in practice, since we do
not update pg1 using the back-propagation gradient to protect the predictions from deteriorating on the weakly augmented
images, one of the entropy terms −pg1 log pg1 is dropped. In such a situation, to ensure that cross entropy and entropy terms
provide an equal contribution to the gradient, we would like (1− τ)2 = 2τ(1− τ) which gives τ = 1/3.

B. Overview of the Implementation
We provide an overview of the implementation of deep reference priors.
For more details see https://github.com/rahul13ramesh/deep reference priors.

Let a mini-batch from the labeled dataset be denoted by {(xi, yi)}bi=1 and a mini-batch from the unlabeled dataset be denoted
by {(xu

i0, x
u
i1, · · · , xu

in))}
bu
i=1 where n is the order of the reference prior. Note the distinction in the two mini-batches, i.e.

the unlabeled mini-batch consists of a set of n-tuples unlike the labeled mini-batch. Let g1 and g2 be functions that perform
weak and strong augmentations respectively. The reference prior objective is used to train K particles {pwk

}Kk=1.

For the sample xu, we compute p(y |xu, wk) as follows:

p(y |xu, wk) = τp(y | g1(xu), wk) + (1− τ)p(y | g2(xu), wk)

The reference prior loss ,requires us to compute the terms

Ew∼π [H(yui |xu
i , w)] =

K∑
k=1

π(wk)
∑
y∈Yn

(−p(y |xu
i , wk) log(p(y |xu

i , wk)))

=

K∑
k=1

π(wk)
∑
y∈Yn

−
n∏

j=1

p(y |xu
ij , wk)

 log

 n∏
j=1

p(y |xu
ij , wk)


=

K∑
k=1

π(wk)

n∑
j=1

∑
y∈Y

−p(y |xu
ij , wk) log

(
p(y |xu

ij , wk)
)

≤
K∑

k=1

π(wk)

n∑
j=1

∑
y∈Y

−p(y |xu
ij , wk)

[
τ log p(y | g1(xu

ij), wk) + (1− τ) log p(y | g2(xu
ij), wk)

]
,

and

H(yui |xu
i ) =

∑
yn∈Yn

−p(yn |xu
i ) log(p(y

n |xu
i ))

=
∑

yn∈Yn

−

(
K∑

k=1

π(wk)p(y
n |xu

i , wk)

)
log

(
K∑

k=1

π(wk)p(y
n |xu

i , wk)

)
.

In our implementation, we set π(wk) =
1
K . We observed no improvement in accuracy if the elements of π were trainable

weights.

C. Visualizing the reference prior
We can think of each particle w as representing a probability distribution

RnC ∋ f(w) =
(√

pw(y = 1 |x1),
√
pw(y = 2 |x1), . . . ,

√
pw(y = C |xn)

)
.

https://github.com/rahul13ramesh/deep_reference_priors


Input data consists of a mini-batch of labeled data {(xi, yi)}bi=1 and unlabeled data {xu
i0, x

u
i1, · · · , xu

in)}
bu
i=1 and a

user-determined order n.
Trainable weights are the weights of the K neural networks (also called particles) {pwk

}Kk=1.
Define

f(x, y, w) = τpw(y | g1(x)) + (1− τ)pw(y | g2(x)),
flog(x, y, w) = τ log pw(y | g1(x)) + (1− τ) log pw(y | g2(x)).

Compute the two entropy terms as

hyw = − 1

bu

bu∑
i=1

K∑
k=1

1

K

n∑
j=1

∑
y∈Y

f(xu
ij , y, wk)flog(x

u
ij , y, wk),

hy = − 1

bu

bu∑
i=1

∑
yn∈Yn

 1

K

K∑
k=1

n∏
j=1

f(xu
ij , y

n
j , w)

 log

 1

K

K∑
k=1

n∏
j=1

f(xu
ij , y

n
j , w)

 .

Compute the loss ℓ as
ℓu = αhy − hyw

ℓx = − 1

bK

b∑
i=1

K∑
k=1

log(pwk
(yi |xi))

ℓ = ℓx −
(

1

1− τ2

)
ℓu.

Figure S-5. The pseudo-code to compute the loss of one mini-batch of data while computing the reference prior.

and use a method for visualizing such distributions developed in Quinn et al. (2019) that computes a principal component
analysis (PCA) of such vectors {f(w1), . . . , f(wK)}. This method computes an isometric embedding of the space of
probability distributions. The rationale behind the choice of f(w) is that for two weight vectors w,w′, the Euclidean distance
between f(w) and f(w′) is the Hellinger divergence between the respective probability distributions,

∥f(w)− f(w′)∥2 =
1

2n

n∑
i=1

C∑
k=1

(√
pw(y = k |xi)−

√
pw′(y = k |xi)

)2
=

1

n

n∑
i=1

d2H (pw(· |xi), pw′(· |xi)) ,

where
d2H(P,Q) =

1

2

∫ (√
dP −

√
dQ
)2

is the Hellinger distance. In other words, the prediction vector f(w) maps the weights w into a (nC)−dimensional
space. The Euclidean metric in this space corresponds to the Hellinger distance in the space of probability distributions.
We can therefore compute the principal component analysis (PCA) of these vectors and project the vectors f(w) into
lower-dimensions to visualize them, as done in Fig. 2.

D. Additional Experiments
D.1. Unsupervised transfer learning on MNIST

For the following experiments on MNIST, the reference prior is of order n = 2 and has K = 50 particles. We run our
methods for 1024 epochs.

We first compare deep reference priors with fine-tuning for transfer learning. The parameter β controls the degree to which



the posterior (9) is influenced by the target data. If we have β = 1, then the posterior is maximally influenced by target data
after being pretrained on the source data. We instantiate (9), by combining prior selection, pretraining on the source task
into one objective,

maxπ γIπ(w; y
u, xu) + (1− β)Ew∼π log p(w; y

s |xs), (S-16)
where γ and β are hyper-parameters. Solving (S-16) requires no knowledge from target data labels, therefore the setting
here is pure unsupervised clustering for target task dataset. We compare this objective to fine-tuning which adapts a model
trained on labeled source to the labeled target data. In this experiment, all samples from the source task (about 30,000
images across 5 classes) were used for both the reference prior and fine-tuning.

Method # Labeled target data (→) 0 50 100 250 500

Source (0–4) to Target (5–9)
Fine-Tuning - 71.1 78.8 86.6 93.0
Deep Reference Prior Unsupervised Transfer 87.4 - - - -

Source (5–9) to Target(0–4)
Fine-Tuning - 90.2 92.4 94.7 96.2
Deep Reference Prior Unsupervised Transfer 95.2 - - - -

Table S-5. Accuracy (%) of unsupervised reference-prior based transfer (digits 0–4) to the target task (digits 5–9). We see that transfer
using source and unlabeled target data using the reference prior performs as well as fine tuning with labeled source data and 250 labeled
target data. Even if MNIST is a simple dataset, this is a remarkable demonstration of how effective the reference prior is at making use of
both the labeled source data and unlabeled target data.

D.2. More ablation studies

§3.6 describes a few implementation tricks that we employ when computing H(yu |xu, w). The unlabeled samples
consist of both weak and strong augmentations of the same image x which we denote by g1(x) and g2(x) and we define
pgi ≡ pw(y|gi(x), w). The objective can be upper-bounded using Jensen’s inequality as follows

H(yu |xu, w) = − E
xu

∫
dyu pG(y

u |xu, w) [log(pG(y
u |xu, w))]

= − E
xu

∫
dyu pG(y

u |xu, w) [log(τpg1 + (1− τ)pg2)]

≤ − E
xu

∫
dyu pG(y

u |xu, w) [τ log pg1 + (1− τ) log pg2 ]

The first trick is to use the above bound from Jensen’s inequality to compute H(yu |xu, w). The second trick we employ is
to not update p(y | g1(x), w) with back-propagation gradients. Table S-6 shows that both these tricks are needed to achieve
good accuracy.

The third trick is to include x in the loss only if max pw(y | g1(x), w) > 0.95 – an implementation detail also employed in
(Sohn et al., 2020). Table S-6 shows that this has very little impact on accuracy.

Implementation trick Accuracy (%)

Deep reference priors (All 3 tricks) 92.13
No stop gradient to pg1 10
No Jensen’s inequality 86.55
No masking using probability threshold 92.35

Table S-6. We perform an ablation study over the three implementation tricks considered in §3.6 and compute the accuracy after removing
each one of the tricks. The accuracy (%) is computed for 250 labeled samples, with 4 particles and using order 2.

D.3. Two-stage experiment for coin tossing

In §3.4, we consider a situation when we obtain data in two stages, first zm, and then zn. We propose a prior π∗ (7) such
that the posterior of the second stage makes the maximal use of the new n samples. In this section, we visualize π∗ in the



parameter space using a two-stage coin tossing experiment. Consider the estimation of the bias of a coin w ∈ [0, 1] using
two-stage m+ n trials. There are m trials in first stage and n trails in second stage. If z denotes the number of heads in
total, we have p(z |w) = wz(1− w)m+n−z(m+ n)!/(z!(m+ n− z)!). We numerically find π∗ for different values of m
and n using the BA algorithm (Fig. S-6 and Fig. S-7).
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Figure S-6. Reference prior for the two stage coin-tossing model (see (7)) for m = 1 and n = 1, 10, 40 (from left to right)
computed using the Blahut-Arimoto algorithm. Atoms are critical points of the gray line which is KL(p(zm+n), p(zm+n |w)) −
KL(p(zm), p(zm |w)). The prior is again discrete for finite order n < ∞. We see how this reference prior behaves for different values
of α = m/n, e.g., for α → 0 this prior π∗ is close to π∗

n in (2) but there are still some differences between them. This shows that the
two-stage reference prior is not the same as the single-stage reference prior.
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Figure S-7. Reference prior for the two stage coin-tossing model (see (7)) for n = 1 and m = 10, 30 (from left to right) computed using
the Blahut-Arimoto algorithm. Atoms are critical points of the gray line which is KL(p(zm+n), p(zm+n |w))− KL(p(zm), p(zm |w)).


