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Abstract
As opaque predictive models increasingly impact
many areas of modern life, interest in quantify-
ing the importance of a given input variable for
making a specific prediction has grown. Recently,
there has been a proliferation of model-agnostic
methods to measure variable importance (VI) that
analyze the difference in predictive power be-
tween a full model trained on all variables and
a reduced model that excludes the variable(s) of
interest. A bottleneck common to these methods
is the estimation of the reduced model for each
variable (or subset of variables), which is an ex-
pensive process that often does not come with
theoretical guarantees. In this work, we propose
a fast and flexible method for approximating the
reduced model with important inferential guar-
antees. We replace the need for fully retraining
a wide neural network by a linearization initial-
ized at the full model parameters. By adding a
ridge-like penalty to make the problem convex,
we prove that when the ridge penalty parame-
ter is sufficiently large, our method estimates the
variable importance measure with an error rate of
O( 1√

n
) where n is the number of training samples.

We also show that our estimator is asymptotically
normal, enabling us to provide confidence bounds
for the VI estimates. We demonstrate through sim-
ulations that our method is fast and accurate under
several data-generating regimes, and we demon-
strate its real-world applicability on a seasonal
climate forecasting example.

1. Introduction
As predictive modeling becomes ubiquitous across a wide
swath of application areas, it is especially critical to under-
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stand which variables contribute most to making a particular
prediction. Black-box machine learning methods are insuffi-
cient in the face of algorithmic decision-making about things
like sentencing, healthcare, and education, and working to-
ward developing more interpretable methods is becoming
more and more relevant (Rudin & Radin, 2019; Guidotti
et al., 2018).

Traditional statistical tools based on parametric models (e.g.
p-values, ANOVA) for VI inference are dissatisfying due
to restrictive assumptions often violated in modern datasets.
Non-parametric extensions thus have been explored (Dok-
sum & Samarov, 1995). In recent decades, many VI meth-
ods designed for modern deep learning models have been
investigated; most of these methods are gradient-based and
depend on the structure and the weights of nodes in a given
specific neural network (Shrikumar et al., 2019; Sundarara-
jan et al., 2017; Smilkov et al., 2017; Bach et al., 2015).
Few statistically rigorous properties are provided for these
methods, and the VI definition is always intimately attached
to the network itself, making it hard to interpret in a model-
agnostic setting.

In a model-agnostic setting, a natural definition of VI that
is independent of the estimation procedure is to measure
the loss of predictive power when the variables of interest
are deleted. To estimate such model-agnostic VI, retraining
is the most widely used type of method, which involves
training separate models on the reduced data with the vari-
ables of interest deleted and assessing the predictive skill
difference (Williamson et al., 2021; Lei et al., 2018; Sapp
et al., 2014). Retraining often acts as the best benchmark to
evaluate other VI estimation methods (Hooker et al., 2019)
due to its accuracy, yet it is computationally infeasible in
high-dimensional settings. Other methods for VI estimation
include knockoff methods (Barber & Candes, 2018; Candes
et al., 2017) and Floodgate (Zhang & Janson, 2021), which
require the co-variate distribution to be known. An alterna-
tive approach is to use a dropout-type method (Chang et al.,
2017). Dropout is best-suited for assessing how much a
variable affects a predictive model, as opposed to our goal
of assessing how much a variable affects the response. De-
spite the resulting issues with VI estimation accuracy, it is
still widely used in practice as a proxy for VI due to its
computational tractability.
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In this work, we propose a computationally efficient variable
importance estimation procedure for model-agnostic and
distribution-free settings with theoretical guarantees that
leverages a lazy retraining framework inspired by (Chizat
et al., 2020). The key idea is to train a new model on
the transformed training data, akin to retraining, but on a
linearized version of the model centered around model pa-
rameters learned from the original (unreduced) training data.
We perform ridge regression on this linearized model in the
gradient feature space, meaning that our lazy retraining pro-
cedure can be computed very quickly. The resulting method,
when applied to wide neural network models, admits error
bounds that show it is nearly as accurate as full retraining,
while computationally it is nearly as fast as dropout. Our
theoretical bounds are complemented by a collection of sim-
ulations that explore the limitations of dropout and benefits
of lazy retraining under a variety of conditions and an appli-
cation to understanding the importance of various climate
indices in a seasonal forecasting task.

In summary, the main contribution of this paper is a new,
computationally efficient VI estimation method with sta-
tistical performance guarantees in a model-agnostic and
distribution-free setting when using large neural networks.
Our theoretical analysis facilitates statistical inference, and
we illustrate our approach on both synthetic and real-world
data to support the theoretical claims and demonstrate the
utility of our method. Other empirically-driven VI esti-
mation methods exhibit similarities to our approach; our
theoretical analyses may provide new insights into those
methods as well as the one we propose in this paper.

2. Notation and preliminaries
Suppose we have samples Zi = (Xi, Yi), i = 1, . . . , n
for data Z = (X,Y ) ∼ P0, where Xi ∈ Rp is the i-th
p-dimensional feature vector and Yi is the i-th observed
response. X denotes the multi-variate random variable con-
taining features, Y denotes the response random variable.
Let X−j ∈ Rp−1 (resp. Xi,−j) denote the features in X
(resp. Xi) with the j-th variable removed; on the other hand,
if we replace the j-th random variable in X (resp. Xi) by its
marginal mean µj = E(Xj), we denote it as X(j) (resp.
X

(j)
i ), i.e., X(j) = (X1, . . . , Xj−1, µj , Xj+1, . . . , Xp).

Let P0, P0,−j be the population distributions for X and
X−j and let Pn, Pn,−j be the empirical distributions of X
and X−j for j ∈ [p]. δZi denotes the point mass probability
measure at the i-th observation Zi. We denote E0,E0,−j as
the expectations taken with respect to P0 and P0,−j .

Let f0 denote the true function mapping X to the expected
value of Y conditional on X , and let f0,−j denote the func-
tion mapping X(j) to the expected value of Y conditional

on X(j):

f0(X) :=E0[Y |X]; (1)

f0,−j(X
(j)) :=E0,−j [Y |X−j ]. (2)

Let fn be the empirical model trained using all p variables
in X within a certain function class F(we refer to this as
the full model):

fn ∈ argmin
f∈F

1

n

n∑
i=1

[Yi − f(Xi)]
2. (3)

To measure the accuracy of an approximation fn(x) to its
target function f0, we use the L2(µ)-norm

∥fn − f∥2 =

∫
|fn(x)− f(x)|2dµ(x), (4)

where µ is the probability measure for X .

Further, we use ϵ and ϵ(j) to denote the respective remainder
terms for any j ∈ [p]:

ϵ := Y − E0[Y |X]; ϵ(j) := Y − E0,−j [Y |X−j ]. (5)

We will define our measure of variable importance (VI)
in terms of a predictive skill measure V (f, P ) (the same
measure in (Williamson et al., 2021)). Larger values of
V (f, P ) should indicate better predictive performance. For
Z = (X,Y ), we denote V̇ (f, P ; δP ) as the Gateaux deriva-
tive of V (f, P ) at P in the direction δP .

3. Estimating variable importance
The VI measure we consider, which makes no assumptions
on the data generating mechanism, is

VIj := V (f0, P0)− V (f0,−j , P0,−j). (6)

VIj quantifies the difference in predictive skill between the
full model and the reduced model for any j ∈ [p]. Consider
the following simple linear model example, where we take
the negative MSE as the predictive skill measure.

Example 3.1. Suppose Y = β1X1 + β2X2 + ϵ, where
Xi ∼ N (0, σ2), i = 1, 2, Cov(X1, X2) = ρ, and ϵ is a
N (0, σ2

ϵ ) noise that is independent of the features. The
variable importance of the first variable is

VI1 = β2
1 · Var(X1|X2) = β2

1(1− ρ2)σ2

due to the fact that X1|X2 ∼ N (ρX2, (1 − ρ2)σ2) (see
Appendix B.6)

In general, we see from this example that the variable im-
portance measure is determined not only by the relationship
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between Xj and Y , but also the covariance structure in the
features.

Our goal is to estimate VIj for any variable Xj from data
{(Xi, Yi)}ni=1 with no assumptions on the relationship be-
tween X and Y . For empirical estimators fn and fn,−j of
f0 and f0,−j , a plug-in estimator of our VI measure is

V̂Ij = V (fn, Pn)− V (fn,−j , Pn,−j). (7)

The key problem we are concerned with in this paper is how
to estimate fn,−j in an accurate and computationally effi-
cient way. Traditionally, people use the following two types
of methods to do the estimation: dropout and retraining.

3.1. Dropout

The method we are calling dropout estimates E(Y |X−j)
by plugging the dropout features X(j) into the full model
fn. In this case, the variable importance measure can be
estimated by

V̂I
(DR)
j = V (fn, Pn)− V (fn, Pn,−j). (8)

For the negative MSE measure of predictive skill for in-
stance, the dropout estimate measures the difference be-
tween the squared error on the original training set and the
squared error on the training set after replacing feature j
with its mean. Dropout is superior among all plug-in estima-
tors in terms of computational cost – we only need to train
the model once to get fn. This is desirable, especially when
the function class F is large and complicated, such as with
neural networks, and the computational cost for training the
model is high. Despite this benefit, dropout is unreliable in
many settings, as we will revisit in Section 3.3.

3.2. Retrain

An alternative to dropout is what we call retraining. Given
a function class F , the retraining method estimates VIj by
training separate models

fn,−j ∈ argmin
f∈F

[Yi − f(X
(j)
i )]2 (9)

for each variable j ∈ [p] to estimate f0,−j . Hence, VI under
this framework is estimated via

V̂I
(RT)
j = V (fn, Pn)− V (fn,−j , Pn,−j). (10)

When taking negative MSE as the predictive skill measure,
the retraining estimate in this case measures the difference
between the squared error of a model trained without feature
j and the squared error of a model trained with feature
j. Retraining is more accurate than dropout as long as
the function class F is large enough, but requires training
p+ 1 models, which can be prohibitively computationally
expensive in many settings. In this paper, we are especially
interested in the setting when the function class is as large
as a wide neural network.

3.3. Dropout vs. Retrain for Linear Models

The dropout method is widely used to estimate variable
importance due to its efficiency. However, in cases where
variables in X are highly correlated, dropout behaves prob-
lematically. Below, we will illustrate and quantify the dif-
ference of the variable importance estimation in the random
design linear model case, where we take the negative MSE
as the V (f, P ) measure as in (??). For simplicity, we re-
strict the function space F to the linear function space here.

Suppose X ∈ Rp ∼ N (0,Σ), ϵ ∼ N (0, σ2
ϵ ). Assume Σ is

positive definite. Let β∗ := argminw∈Rp E[Y −X⊤w]2, so
β∗ = Σ−1E(XY ). In the population version, the dropout
method uses the predictor X⊤

−jβ
∗
−j (where β∗

−j ∈ Rp−1 is
β∗ with its j-th element removed) to estimate E(Y |X−j),
while the retraining method uses the predictor X⊤

−jβ
(j),

where β(j) ∈ Rp−1 is β(j) = argminw∈Rp−1 E[Y −
X⊤

−jw]
2. The following proposition characterizes the differ-

ence between VI estimates corresponding to the retraining
and dropout methods.
Proposition 3.2. In the linear function space, the difference
between the variable importance estimates for variable j
from the population version of the dropout and retraining
methods is:

V̂I
(DR)
j − V̂I

(RT)
j

=
γ⃗j

⊤Σ−1
(j)γ⃗j

(Σjj − γ⃗j
⊤Σ−1

(j)γ⃗j)
2

[
E(XjY )− γ⃗j

⊤Σ−1
(j)E(X−jY )

]2
,

where γ⃗j = E(XjX−j) ∈ Rp−1.

If the true model between Y and X is linear, i.e., Y =
X⊤β∗ + ϵ, and X ⊥⊥ ϵ, the variable importance estimated
by retraining linear regression is:

V̂I
(RT)
j = β∗

j
2(Σjj − γ⃗j

⊤Σ−1
(j)γ⃗j); (11)

furthermore, in this setting V̂I
(RT)
j is exactly the true vari-

able importance defined in (6). In contrast, the dropout
framework will give

V̂I
(DR)
j = β∗

j
2 · Σjj . (12)

If feature j is important and highly correlated with feature
k (but independent of all other features), then γ⃗j

⊤Σ−1
(j)γ⃗j

may be very large, making the difference between V̂I
(DR)
j

and V̂I
(RT)
j similarly large. This example illustrates how

dropout can significantly overestimate variable importance,
even in simple settings.

4. Lazy Training
Our central interest is in inferring VI using complex models
that are time-consuming to train, making the baseline re-
training method described above computationally infeasible.
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With this in mind, we turn our attention to neural network
(NN) models, a setting in which dropout is widely used.

Motivated by the need for faster and more accurate methods
for estimating VI with NN, we propose a computationally
efficient VI estimate inspired by the lazy training frame-
work of (Chizat et al., 2020) that estimates the difference
between the full model parameters and the model parame-
ters when the j-th variable is removed. Like dropout, our
procedure only requires us to train the NN once on the full
data, and then we solve a linear system to update the full
model parameters for each variable j ∈ [p].

Given the training data {(X(j)
i , Yi)} sampled from

(X,Y ) ∼ P0 for i = 1, . . . , n and the underlying func-
tion f0(X) = EP0

[Y |X], there exists a a neural network
function class {hθ(x) : Rp 7→ R|θ ∈ RM} that is param-
eterized by a vector θ, such that when we train the model
parameters over this class by

θf = argmin
θ∈RM

1

n

n∑
i=1

[Yi − hθ(Xi)]
2, (13)

the estimation error can be bounded by ∥hθf (x)−f0(x)∥ =
O(n−1/2) up to some log terms (Barron, 1994). To achieve
this, the scale of the number of parameters M depends on
the complexity of the target function. For very complex
functions, we can still achieve this accuracy with M =
O(
√
n).

In order to estimate VIj , we need an estimate of what we
are calling the reduced model hθ−j

, where

θ−j = argmin
θ∈RM

1

n

n∑
i=1

[Yi − hθ(X
(j)
i )]2. (14)

Instead of retraining a NN to estimate θ−j , we can instead
estimate the difference between the full model parameters
θf and θ−j using this linear approximation, and simply
update the full model parameters with this correction to
estimate hθ−j

. We are essentially regressing the error re-
sulting from the dropout estimation against the gradient to
estimate this correction, and to do so we solve the following
convex problem based on the training data {(X(j)

i , Yi)} for
i = 1, . . . , n and a 2-norm penalty on the parameters:

∆θj(λ, n) = argmin
ω∈RM

{ 1

n

n∑
i=1

[
Yi − hθf (X

(j)
i ) (15)

− ω⊤∇θhθ(X
(j)
i )|θ=θf

]2
+ λ∥ω∥22

}
,

where λ > 0 is the penalty parameter.

Accordingly, the reduced neural network parameters are
∆θj(λ, n) + θf . For the simplicity of notation, we write

∆θj(λ, n) as ∆θj for short. Then the reduced model ap-
proximation without the j-th feature is Rp 7→ R : x 7→
hθf+∆θj (x).

Hence, the variable importance measure under lazy training
is

V̂I
(LAZY)
j = V (hθf , Pn)− V (hθf+∆θj , Pn,−j). (16)

Under the negative MSE measure V (f, P ), we have

V̂I
(LAZY)
j =

1

n

n∑
i=1

{[Yi−hθf+∆θj (X
(j)
i )]2−[Yi−hθf (Xi)]

2}.

(More precisely, we use data splitting for training and es-
timating VI as detailed in Algorithm 1.) Essentially, the
linearized approximation of the NN is linear in the gradient
feature map x 7→ ∇θhθ(x)|θf . In fact, this gradient feature
map induces the Neural Tangent Kernel (NTK, (Jacot et al.,
2020)): for any x, x′ ∈ Rp,

kerθf (x, x
′) := ⟨∇θhθ(x)|θf ,∇θhθ(x

′)|θf ⟩. (17)

Thus ∆θj can be viewed as the solution for a kernel ridge
regression problem with kernel kerθf .

4.1. Theoretical Guarantee

By (Williamson et al., 2021), when the empirical estimates
for E(Y |X) and E(Y |X−j) converge to the target functions
f0 and f0,−j at the rate of Op(n

−1/4) in function norm, we
achieve an asymptotically normal and efficient estimator
for the VI measure. In this section, we give a theoretical
guarantee to show that the lazy prediction hθf+∆θj (X

(j))
for the reduced model achieves such convergence rate, so
that the lazy training procedure gives an accurate estimate
of VI with an error in the order of O( 1√

n
) and we can make

inference accordingly.

Let e(j) denote the difference between the true reduced func-
tion f0,−j(X

(j)) and the corresponding dropout estimation:

e(j) := f0,−j(X
(j))− hθf (X

(j)) ∈ Rn. (18)

Further, we denote the kernel matrix on X(j) induced by
the gradient feature map as K(j) ∈ Rn×n, whose elements
are defined as:

K(j)
ik := kerθf (X

(j)
i ,X

(j)
k ), i, k ∈ [n]. (19)

Before diving into the main results, we first clarify two types
of notation for order of approximation:

• f(n) = O(g(n)) if there exists M > 0 and N > 0,
such that |f(n)| ≤Mg(n) for all n > N .

• Xn = Op(an) as n→∞ if for any ϵ > 0, there exists
M > 0 and N > 0, such that P(|Xn

an
| > M) < ϵ for

any n > N .
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Assumption 4.1. For any j ∈ [p] and the regularization
parameter λ = O(

√
n), we assume:

(a) ∥[K(j) + λIn]
−1e(j)∥2 = Op(1/

√
n);

(b) tr(K(j)) = Op(n).

The above assumption (b) is commonly used in NTK lit-
erature (see e.g. Hu et al. (2019)). For a two-layer neural
network, we can verify this numerically (see Appendix C.1).
For the assumption (a), by the fact that K(j) is positive semi-
definite, this assumption can be satisfied when we have a
large regularization λ = O(

√
n).

Assumption 4.2. For the noise term ϵ(j), we have the fol-
lowing assumption on its conditional tail probability: there
exists σ such that for any j ∈ [p],

E
[
eλϵ

(j)

|X(j)
]
≤ eσ

2λ2/2, for all λ ∈ R. (20)

Assumption 4.3. Denote the gradient feature matrix as
Φ ∈ Rn×M = (∇θhθ(X1)|θ=θf , . . . ,∇θhθ(Xn)|θ=θf )

⊤.
We assume ∥Φ⊤e(j)∥2 ≤ Op(1).

This assumption essentially requires that the linear space
of neural tangent kernels can well represent e(j). We know
that e(j)i is a function of X(i)

i , thus as long as the neural
network function class is large enough, this can be satisfied
with respect to the sample size n.
Theorem 4.4. Suppose Assumption 4.1, 4.2 and 4.3 hold,
then for a neural network structure hθ(·) which is L-smooth
with respect to its parameters θ, as long as we take the ridge
penalty parameter in the order λ = O(n1/2), then the lazy
training method can accurately predict the reduced model
without the j-th covariate, i.e.,

∥hθf+∆θj (x)− E(Y |X(j))∥2 = Op(n
−1/4). (21)

Therefore our variable importance estimator V̂I
(LAZY)
j is

asymptotically normal and has an error rate Op(n
−1/2):

V̂I
(LAZY)
j − VIj = ∆n,j +Op(n

−1/2); (22)

where

∆n,j =
1

n

n∑
i=1

[
V̇ (f0, P0; δZi − P0) (23)

− V̇ (f0,−j , P0,−j ; δZi − P0,−j)
]
→d N (0, τ2n,j);

here the variance is τ2n,j = Var(ϵ(j)
2 − ϵ2)/n, where ϵ and

ϵ(j) is defined in Equation (5).

This result enables us to construct Wald-type confidence
intervals around our LazyVI estimates. In particular, the
α−level confidence intervals are given by

V̂I
(LAZY)
j ± zα

2
τ̂n,j (24)

where τ̂n,j is the plug-in estimate of τn,j in (23) and zα
2

is
the α/2 quantile of the standard normal distribution.

4.2. Proof Overview

The challenge of proving Theorem 4.4 is to bound the er-
ror of the lazy neural network trained using data without
a certain variable – note that we are bounding the estima-
tion error (∥hθf+∆θj − f0,−j∥) instead of the prediction
error (∥hθf+∆θj − f0∥) that is the focus of much of the
deep learning community, since the predictive skill of the
reduced model is expected to decrease when an important
variable is removed. At a high level, our proof reduces the
estimation error of the neural network from lazy training to
the error between the NTK estimation and the target func-
tion, where we use techniques from kernel ridge regression.
The difference here is that most NTK papers (see e.g. (Jacot
et al., 2020)) use random initialization for the parameters
and optimization without penalty, while our method starts
from a specific initialization (the full model), and requires
the penalty parameter λ to be large (λ = O(n1/2)) to ensure
convergence.

The following two lemmas give some intuition on how the
neural network trained by the lazy procedure can accurately
estimate the reduced model. Basically, the bound for the
error consists of two parts: the error from the kernel ridge
regression (discussed in Lemma 4.5), and the error from the
linear approximation of the neural network (in Lemma 4.6).
More proof details are deferred to the Appendix.

Denote the linear approximation of the network as

h̃θf+∆θj (x) := hθf (x) + ⟨∇θhθ(x)|θ=θf ,∆θj⟩. (25)

Lemma 4.5. Let λ be penalty parameter in Equation (15),
we have with probability at least 1− δ,

∥h̃θf+∆θj (X
(j))− f0,−j(X

(j))∥n (26)

≤ λ∥[K(j) + λIn]
−1e(j)∥√

n
+ σ

√
tr[K(j)]

4λn
+ σ

√
2 log(1/δ)

n
.

Lemma 4.5 combined with Assumption 4.1 when the penalty
parameter is λ = O(n1/2), yields a bound on the em-
pirical error of the kernel ridge regression component of
Op(n

−1/4). Based on this empirical bound, we could then
further bound the generalization error of the estimated func-
tion using function complexity (See Appendix B.3).

Lemma 4.6. For a large neural network with width in the
order O(

√
n), with high probability we have for all j ∈ [p],

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥ ≤ O(n−1/4). (27)

Lemma 4.6 shows that as long as the neural network is suf-
ficiently large, the neural network with updated parameters
θf +∆j is close to its linear approximation.
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Algorithm 1 Lazy training for VI
Require: Data: {Xi, Yi}ni=1; λ > 0; training size: 0 <
n1 < n; n2 ← n− n1; NN structure: θ ∈ RM 7→ hθ(·)
LazyVI{Xi, Yi}ni=1; λ, n1

θf ← argminθ∈RM
1
n1

∑n1

i=1[Yi − hθ(Xi)]
2

vn ← − 1
n2

∑n
i=n1+1[Yi − hθf (Xi)]

2

for j ∈ [p] do
X

(j)
i ← Xi; X

(j)
ij ← 1

n1

∑n1

i=1 Xij

e
(j)
i ← Yi − hθf (X

(j)
i ), i = 1, . . . , n1

Φ
(j)
i ← ∇θhθ(X

(j)
i )|θ=θf , i = 1, . . . , n1

∆θj ← argmin
ω∈RM

1

n1

n1∑
i=1

[e
(j)
i − ω⊤Φ

(j)
i ]2 + λ∥ω∥22

vn,−j ← −
1

n2

n∑
i=n1+1

[Yi − hθf+∆θj (X
(j)
i )]2

V̂Ij ← vn − vn,−j

ti,j ← (Yi − hθf+∆θj (X
(j)
i ))2 − (Yi − hθf (Xi))

2

τ̂j ← 1
n2

∑n2

i=1(ti,j − t̄j)
2/n2

end for
Ensure: V̂Ij , j = 1, . . . , p.

4.3. Implementation

We estimate hθf and hθ−j using n1 < n samples as training
data, and use the remaining n2 = n − n1 samples to esti-
mate VI. For the dropout method, VI is estimated simply
by plugging the modified testing data {X(j)

i }ni=n1+1 into
hθf . For the retraining method, first hθ−j is estimated by re-
training the NN h with {X(j)

i }
n1
i=1, and then VI is estimated

by plugging the modified testing data into this retrained
estimate.

For the lazy training method, which we call LazyVI, we
use the training data to estimate the full model parameters,
compute the gradient of the network with respect to each
model parameter for each training sample, and then regress
these gradients against the difference between Y the dropout
estimates from the training data to estimate the parameter
correction ∆θj for variable j. We then update the full model
parameters using this learned correction to compute the VI
estimate and its associated standard errors. See Algorithm 1
for full details.

Theorem 4.4 makes the assumption that the ridge param-
eter λ from Equation (15) is large. Since we are ulti-
mately interested in estimating hθ−j

and not ∆θj , we
evaluate hθf+∆θj (·) through K-fold CV to choose λ̂j for
each variable (Algorithm 2 in Appendix C.2). Our im-
plementation is available at https://github.com/
Willett-Group/lazyvi.

5. Simulations
We first assess the performance of LazyVI on simulated
data to highlight key theoretical claims and assumptions and
show that our method is empirically practical. For these
experiments, we train a wide, fully connected two-layer
neural network with ReLU activation for all simulations.
Unless otherwise specified, the width of the hidden layer in
the training network is m = 50.

5.1. Impact of correlation in linear systems

Our first set of simulations serve to support key details of
our theoretical analysis. We consider data generated from
the linear model f(X) = 1.5X1 + 1.2X2 +X3 + ϵ, where
ϵ ∼ N (0, 0.1) and X ∼ N (0,Σ6×6), so the response only
depends on the first three of the six variables. All variables
are independent except for X1 and X2, whose correlation
is ρ. As discussed in Example 3.1, the true VI of X1, X2,
and X3 are given by (1.5)2(1− ρ2), (1.2)2(1− ρ2), and 1,
respectively, and the VI of the remaining 3 variables is zero.
In this simple setting, we find that LazyVI approximates
the true VI well with desirable coverage and a considerable
speed-up relative to retraining (Appendix C.3).

We show in Prop. 3.2 that, when data are generated from
a linear model, the difference between the dropout and re-
training variable importance estimates is a function of the
covariance of X . After training the full model, we use both
the dropout and our lazy procedure to estimate VI for in-
creasing values of ρ. In Figure 1, we show the difference
between the dropout and LazyVI estimates for variables X1

and X2 alongside the analytic difference between V̂I
(DR) and

VI (dotted line). We see that the gap between LazyVI and
dropout evolves with ρ according to the theoretical analysis,
providing evidence that LazyVI behaves as expected.

Figure 1. Difference between the dropout and LazyVI estimates
for X1 and X2. Dotted line is theoretical gap and shading shows
std. across 10 repetitions.

We use this simple linear setting to explore two additional
assumptions from our theoretical resuts. First, the lineariza-
tion in (25) is a first order Taylor approximation and as-
sumes the full model parameters are close to the reduced
model parameters. If we try to linearize a neural network
around a random initialization, our LazyVI estimates are
much less accurate and more highly variable (Appendix C.4).

https://github.com/Willett-Group/lazyvi
https://github.com/Willett-Group/lazyvi
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Next, our theory assumes that our training network is over-
parameterized and sufficiently wide. We compute empiri-
cal confidence intervals for LazyVI for increasing network
widths and find that coverage increases as the width in-
creases, but at a computational cost (Appendix C.5).

5.2. Binary classification

Because we borrow much of our theoretical framework
from (Williamson et al., 2021), we also leverage their sim-
ulation framework as a useful point of comparison. We
draw independent samples X ∼ N (0, I4×4) and gen-
erate a binary outcome Y ∼ Bernoulli(Φ(Xβ)) where
β = (2.5, 3.5, 0, 0). Because the outcome is binary, we
use accuracy as our predictive skill measure, and the true
VI values are given by (0.136, 0.236, 0, 0), respectively. We
first directly compare the LazyVI and retrain estimators by
estimating VI across 100 simulated datasets of sample size
n = 1000 and computing the empirical 95% confidence
intervals. In Figure 2, we see that the LazyVI and retrain
estimates both achieve the desired level of coverage with
low bias. In this simulation, LazyVI took on average 0.6
seconds (including cross-validating to find the optimal ridge
parameter), while retraining took 7.5 seconds. In this set-
ting, LazyVI is just as accurate as retraining with a more
than 10x speed-up.

Figure 2. Left: Average coverage of empirical 95% confidence
intervals from the LazyVI and retrain estimates across 100 simu-
lations. Right: Average empirical bias (VI − V̂I) of LazyVI and
retrain estimates.

5.3. Nonlinear, high-dimensional regression

The computational burden of retraining is most pronounced
in high-dimensional settings, since estimating V̂I

(RT) for
all variables requires refitting at least p models. For this
simulation, we have data X ∼ N(0,Σ100×100), where vari-
ables are independent except Corr(X1, X2) = 0.5. Let-
ting β = (5, 4, 3, 2, 1, 0, . . . , 0)⊤ ∈ R100, we construct a
weight matrix W ∈ Rm×p such that the W:,j ∼ N (βj , σ

2)
(i.e. the weights associated with variable j are centered
at βj). Letting V ∼ N (0, 1), we generate the response
Yi = V σ(WXi) + ϵi where σ is the ReLU function. Be-
cause the “true” VI values are unknown and difficult to
estimate, we present the accuracy of different estimation

methods relative to the retraining estimates, which we take
as ground truth. We estimate VI for X1 across 10 simulated
datasets (n = 1000) and benchmark against retraining using
both a linear regression (OLS) and random forest (RF).In
Figure 3, we show the spread of both the computation time
and normalized error (relative to retrain) for all methods. We
see that LazyVI is the most accurate method and is substan-
tially faster than retraining, which is especially beneficial in
this high-dimensional setting.
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Figure 3. Distribution of computation time vs. normalized estima-
tion error relative to retrain for the VI of X1 ((V̂I − V̂I

(RT)
)/V̂I

(RT)
)

across 10 repetitions.

6. Predicting seasonal precipitation
Extreme precipitation events have become more and more
common in recent years, and are expected to intensify with
climate change (Tabari, 2020; Li et al., 2019). Early and
reliable precipitation forecasting is thus critical for regional
water resource management, which increasingly impacts
large swaths of the population (AghaKouchak et al., 2015).
Many studies have shown that the sea surface temperature
(SST) over various regions of the ocean, such as the El Niño-
Southern Oscillation (ENSO), are predictive of precipitation
in the United States (Mamalakis et al., 2018; Dai, 2013;
Lenssen et al., 2020). Understanding which ocean regions
are most predictive is challenging, however, due to a short
observational record and strong correlations among SSTs
(Stevens et al., 2021).

6.1. Importance of Ocean Climate Indices

We estimate the importance of different ocean regions for
seasonal precipitation forecasting using our lazy training
method. The response is the average winter precipitation
over the Southwestern US, and as predictors we use 10
ocean climate indices (OCIs), which are defined as the aver-
age detrended SST anomalies over different ocean regions
(Chen et al., 2016). As data, we use simulations from the
Community Earth System Model-Large Ensemble project
(CESM-LENS; Kay et al. (2015); de La Beaujardière et al.
(2019)). Details about data processing can be found in
Appendix C.6.
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Figure 4. Left: sample covariance matrix of the OCIs across the
40 LENS ensemble members; Right: estimated VI for each OCI
across 10 different train/test splits.

There are strong correlations among the various OCIs (Fig-
ure 4)) — in particular, the various Niño indices appear to be
nearly collinear. Because of this, we would expect methods
like linear regression to inaccurately estimate coefficients
and their importance (see appendix for more discussion).

We apply LazyVI to this problem by first training a two-layer
neural network with a hidden width of 50 and then removing
each climate index and linearly estimating the correction.
When comparing with the dropout and retraining VI esti-
mates, we see that dropout drastically overestimates VI of
Niño 3 and Niño 3.4 relative to retraining, and that LazyVI
results in estimates much closer to the retraining estimates.
These results are consistent with recent literature indicat-
ing that the predictive ability of Niño is often overstated
relative to other OCIs (Mamalakis et al., 2018), suggesting
that LazyVI could potentially help us better understand the
relative importance of different climate mechanisms.

6.2. High-dimensional seasonal forecasting

Aggregating climate regions into OCIs is standard in the
climate literature and a critical tool for understanding cli-
mate dynamics. However, while more difficult to interpret
and estimate, disaggregating OCIs and investigating individ-
ual SST locations offers important insights into the rapidly
changing climate system (Stevens et al., 2021). Neural
networks have increasingly been used to make these types
of high-dimensional forecasts, and with that comes an in-
creased interest in explainability (Mamalakis et al., 2022b).
However, standard gradient-based attribution/saliency meth-
ods used to interpret NNs, while powerful for particular
networks, are often subjective and difficult to interpret (Ma-
malakis et al., 2022a).

The ROAR (RemOve and Retrain) framework introduced by
(Hooker et al., 2019) offers a helpful way to evaluate such
importance measures. This work provides a retraining-based
benchmark for evaluating NN attribution/saliency methods
by removing variables in order of estimated importance and

measuring the drop in predictive power. This work finds that
many common attribution methods are no more informative
than a random baseline, and aruges that retraining the net-
work after dropping out variables is key in understanding
this behavior.

Using all summer SSTs across the Pacific basin on a
10◦ × 10◦ grid, for a total of 220 predictors, we show
that LazyVI can achieve similar results to retraining in the
ROAR framework at a computational speed-up. We train
fully-connected three-layer neural network of widths (100,
50) on all variables, and from this trained network, we
estimate feature importance using the baseline Gradients
importance method (GRAD, (Simonyan et al., 2013)). We
then remove t = (.1, .25, .5, .75, .9, .99) proportion of vari-
ables by removing them in order of GRAD importance (in
addition to a random ordering as a baseline, see Figure 12 in
Appendix C.6 for a visualization of this procedure). We es-
timate model performance on these modified datasets using
the Dropout, Retraining (ROAR) and LazyVI approaches
and find that LazyVI closely approximates ROAR in nearly
half the time (Figure 5) and the ordering of variables re-
moved does not matter much; Dropout, on the other hand,
vastly overestimates the degradation of the model perfor-
mance, even with a small number of variables removed.

Figure 5. Average MSE across 5 runs after removing increasing
proportions of variables with the specified importance orderings.
On average, LazyVI took 1.8s and Retrain took 3.2s.

7. Discussion and extended applications
Assessing variable importance in machine learning is a vital
task as learning-based tools are increasingly integrated into
societally-impactful systems, including autonomous vehi-
cles, financial and healthcare decision-making, and social
and criminal justice. In this work, we propose a method,
LazyVI, for efficiently estimating variable importance based
on a linearization of a fully trained neural network. We
prove that our method provides an accurate estimate of VI
and can achieve the same rate of accuracy as a computa-
tionally expensive retraining method nearly as quickly as
the inaccurate dropout method. We further show how to
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Figure 6. (Left) Average accuracy of estimator across 5 repetitions.
(Right) Average computation time for a single run of each method.
(Bottom) Example MNIST image with different proportions of
variables removed.

construct confidence intervals around these estimates.

The theory developed in this paper provides an important
step toward making interpretability in neural networks more
computationally efficient, and we suspect this theoretical
framework can extend to other settings, which we discuss
here.

7.1. Early stopping and regularization

A potential alternative to our proposed LazyVI method is to
first train a full model (as we do) and then train the reduced
model using a gradient-based method initialized with the
full model parameters and stopped early. Empirical evi-
dence suggests that this approach would have similar speed
and accuracy to our LazyVI approach due to the implicit
regularization associated with early stopping. This approach
has the potential to extend LazyVI to far more complicated
architectures than the standard feedforward networks we
have experimented with thus far. As a proof of concept, we
train a convolutional neural network on the MNIST ben-
chark dataset, and then follow the ROAR procedure with
random ordering. We see in Figure 6 that Dropout results
in a consistent decline in predictive performance when vari-
ables are removed, while the accuracy remains relatively
high when the network is retrained up until around 75% of
variables are removed - remarkable, given how relatively
uninformative the image appears (Figure 6, bottom). Im-
portantly, we see that taking a single step from a model
initialized at the full model parameters (LazyVI-ES) results
in nearly identical performance to the full retraining at a 5×
speed-up.

While these results are promising, we currently lack theoreti-
cal guarantees for early stopping in this setting. It is possible
that our theoretical results could lead to new insights into

early stopping for assessing VI due to the intimate con-
nection between kernel ridge regression and early stopping
algorithms (Raskutti et al., 2014). In fact, if the eigenvalues
of the NTK matrix at the full model initialization decay in
a sufficiently fast rate, early stopping of the reduced model
training should give an as good estimate of the reduced
model. However, analyzing early stopping in this setting
requires characterizing the spectrum of the NTK with the
full model initialization, whereas most spectral properties
of the NTK have been developed under the assumption of
a random initialization (Nguyen et al., 2021; Montanari &
Zhong, 2020). Better understanding the NTK spectrum af-
ter full-model initialization in the future could provide new
insights into fast algorithms for VI estimation.

7.2. Shapley values

When features are correlated, the quantity VI defined in
(6) tends to zero. Recent work proposes using Shapley
values to measure variable importance, arguing that their
handling of correlated variables, which assigns similar posi-
tive weights to correlated important variables, is desirable
(Owen & Prieur, 2016; Williamson & Feng, 2020) in some
settings. These papers also note that Shapley values are
prohibitively expensive to compute, as they require fitting a
new model for each of the 2p possible subsets of variables.
However, we note that computing the Shapley values re-
quires many calculations of the quantity in (6); an important
avenue is investigating the use of our LazyVI framework to
accelerate the computation of Shapley values. We perform a
preliminary experiment on calculating Shapley values using
our LazyVI framework, and compare it with the retraining
method used in (Williamson & Feng, 2020). We estimate
the Shapley values for a sparse high-dimensional data gener-
ated by a logistic model, and perform the retraining/lazyVI
method on a two-layer neural network. When using LazyVI
training, the computation is roughly 5 times faster and the
estimated Shapley values are close to retraining. Moreover,
when the sample size is relatively small with respective to
the dimension, we observe Lazy training has a smaller vari-
ance of estimated Shapley values on non-important variables
than retraining method, due to the regularization proposed
in our method. See Appendix C.7 for our initial exploration
into this line of work.
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A. SUPPORTING LEMMAS
Conditions

(A1) There exists some constant C > 0 such that, for each sequence f1, f2, · · · ∈ F such that ∥fi−f0∥F → 0, |V (fj , P0)−
V (f0, P0)| ≤ C∥fj − f0∥2F for each j large enough;

(A2) There exists some constant δ > 0 such that for each sequence ϵ1, ϵ2, · · · ∈ R and h, h1, h2, · · · ∈ R satisfying that
ϵj → 0 and ∥hj − h∥∞ → 0, it holds that

sup
f∈F :∥f−f0∥F<δ

|V (f, P0 + ϵjhj)− V (f, P0)

ϵj
− V̇ (f, P0;hj)| → 0;

(B2)
∫
[gn(z)]

2dP0(z) = oP (1);

Lemma A.1. ((Williamson et al., 2021)) Suppose (A1-A2, B2) regularity conditions hold. Denote fn(X) and fn,−j(X−j)
as the estimate for f0 and f0,−j , Then for a predictive skill measure V (f, P ) satisfying conditions (A1)-(A2), (B2) in
Appendix, as long as the estimators satisfy the following condition:

∥fn − f0∥F = Op(n
− 1

4 ), ∥fn,−j − f0,−j∥F = Op(n
− 1

4 ), (28)

for all j ∈ [p], then we have

vn − v0 =
1

n

n∑
i=1

V̇ (f0, P0; δZi − P0) +Op(
1√
n
),

vn,−j − v0,−j =
1

n

n∑
i=1

V̇ (f0,−j , P0,−j ; δZi
− P0,−j) +Op(

1√
n
),

(29)

where vn = V (fn, Pn) and vn,−j = V (fn,−j , Pn,−j), ∀j ∈ [p].

B. MISSING PROOFS
B.1. Proof of Lemma 4.5

In this section, we present the detailed proof of Lemma 4.5, which gives the empirical estimation error bounds for the NTK
kernel ridge regression estimation. The proof follows the proof framework provided in (Hu et al., 2019).

[Proof.]

First of all, according to kernel ridge regression, denote

• Y = (Y1, . . . , Yn)
⊤;

• h
(j)
θf

= (hθf (X
(j)
1 ), . . . , hθf (X

(j)
n ))⊤;

• f0,−j = (f0,−j(X
(j)
1 ), . . . , f0,−j(X

(j)
n ))⊤.

we have
(h̃θf+∆θj (X

(j)
1 ), . . . , h̃θf+∆θj (X

(j)
n ))⊤ = K(j)(K(j) + λIn)

−1(Y − h
(j)
θf

) + h
(j)
θf

. (30)

Recall that ϵ(j) = Y − E(Y |X−j) = Y − f0,−j(X
(j)), we define its observed samples as

ϵ(j) =
(
Y1 − f0,−j(X

(j)
1 ), . . . , Yn − f0,−j(X

(j)
n )
)⊤

= Y − f0,−j ;

Recall the definition of e(j), we have
e(j) = f0,−j − h

(j)
θf

.
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Hence we have
√
n∥h̃θf+∆θj (X

(j))− f0,−j(X
(j))∥n

=

√√√√ n∑
i=1

[
h̃θf+∆θj (X

(j)
i )− f0,−j(X

(j)
i )
]2

=∥K(j)(K(j) + λIn)
−1(Y − h

(j)
θf

) + h
(j)
θf
− f0,−j∥

=∥K(j)(K(j) + λIn)
−1(f0,−j + ϵ(j) − h

(j)
θf

) + h
(j)
θf
− f0,−j∥

=∥K(j)(K(j) + λIn)
−1(e(j) + ϵ(j))− e(j)∥

=∥K(j)(K(j) + λIn)
−1ϵ(j) − λ(K(j) + λIn)

−1e(j)∥
≤∥K(j)(K(j) + λIn)

−1ϵ(j)∥+ ∥λ(K(j) + λIn)
−1e(j)∥.

(31)

According to Assumption 4.2 and (Hsu et al., 2012), we have

P
(
∥Aϵ(j)∥2/σ2 > tr(Σ) + 2

√
tr(Σ2)t+ 2∥Σ∥t |X(j)

)
≤ e−t, (32)

where A = K(j)(K(j) + λIn)
−1, and Σ = A⊤A. Hence we have with probability at least 1− δ for any δ > 0, we have

∥K(j)(K(j) + λIn)
−1ϵ(j)∥ ≤ σ

√
tr(Σ) + 2

√
tr(Σ2) log(

1

δ
) + 2∥Σ∥ log(1

δ
). (33)

Let λ1, . . . , λn > 0 be the eigenvalues of K(j), we then have

tr[Σ] = tr[A⊤A] =

n∑
i=1

λ2
i

(λi + λ)2
≤

n∑
i=1

λ2
i

4λi · λ
=

tr[K(j)]

4λ
,

tr[Σ2] = tr[A⊤A2A⊤] =

n∑
i=1

λ4
i

(λi + λ)4
≤

n∑
i=1

λ4
i

44λ(λi

3 )3
=

33tr[K(j)]

44λ
≤ tr[K(j)]

4λ
,

∥Σ∥ = ∥K(j)(K(j) + λIn)
−2K(j)∥ ≤ 1.

(34)

Hence we have with probability at least 1− δ,

∥K(j)(K(j) + λIn)
−1ϵ(j)∥

≤σ

√
tr[K(j)]

4λ
+ 2

√
tr[K(j)]

4λ
+ 2 log(

1

δ
)

≤σ

√
tr[K(j)]

4λ
+ 2

√
tr[K(j)]

2λ
+ 2 log(

1

δ
)

=σ

√
tr[K(j)]

4λ
+ σ

√
2 log(

1

δ
).

(35)

By the fact that

∥λ(K(j) + λIn)
−1e(j)∥ = λ

√
(e(j))⊤(K(j) + λIn)−2e(j), (36)

we have

∥h̃θf+∆θj (X
(j))− f0,−j(X

(j))∥n ≤
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

1

δ
). (37)

□
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B.2. Lemma B.1 and its proof

Define the Hilbert norm for a function f(x) = α⊤K(x,X(j)), ∀α ∈ Rn in the NTK kernel space is: ∥f∥H =
√
α⊤K(j)α.

The following lemma is to bound the Hilbert norm for h̃θf+∆θj − hθf so that we could bound the complexity of the function
class it lies in.

Lemma B.1. With probability at least 1− δ, for any j ∈ [p] we have

∥h̃θf+∆θj (x)− hθf (x)∥H ≤
√

(e(j))⊤(K(j) + λIn)−1e(j) +
σ√
λ

(
√
n+

√
2 log(

1

δ
)

)
. (38)

[Proof.] Recall that h̃θf+∆θj (x) = kerθf (x,X
(j))(K(j) + λIn)

−1(Y−h
(j)
θf

) + hθf (x). Based on the fact that Y−h
(j)
θf

=

e(j) + ϵ(j), we have

∥h̃θf+∆θj (x)− hθf (x)∥H
=∥(Y − h

(j)
θf

)⊤(K(j) + λIn)
−1kerθf (X

(j), x)∥H

=
√

(e(j) + ϵ(j))⊤(K(j) + λIn)−1K(j)(K(j) + λIn)−1(e(j) + ϵ(j))

≤
√
(e(j) + ϵ(j))⊤(K(j) + λIn)−1(e(j) + ϵ(j))

≤
√
(e(j))⊤(K(j) + λIn)−1e(j) +

√
(ϵ(j))⊤(K(j) + λIn)−1ϵ(j)

≤
√
(e(j))⊤(K(j) + λIn)−1e(j) +

√
(ϵ(j))⊤ϵ(j)

λ
.

(39)

Using the concentration inequality in (Hsu et al., 2012) again, we have with probability at least 1− δ, we have

√
(ϵ(j))⊤ϵ(j) ≤ σ

√
n+ 2

√
n log(

1

δ
) + 2 log(

1

δ
) ≤ σ

(
√
n+

√
2 log(

1

δ
)

)
. (40)

Hence we prove Lemma B.1 by combining Equation (39) and Equation (40).

B.3. Generalization error bound and its proof

In the following, we will bound the generalization error based on the above empirical error bound.

Lemma B.2. For any j ∈ [p], let ∥ · ∥ be the L2(P0) norm defined as ∥f∥ =
√∫
|f(x(j))|dP0(x), then we have with

probability at least 1− δ for any δ > 0,

∥h̃θf+∆θj − f0,−j∥ ≤

{
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)

}

+
2
√

tr[K(j)]

n

[
O(1) +

σ√
λ
(
√
n+

√
2 log(3/δ))

]
+

√
log(3/δ)

2n
.

(41)

Under Assumption 4.1 and Assumption 4.2, when we take the penalty parameter in the rate λ = O(
√
n), we have with high

probability that ∥h̃θf+∆θj − f0,−j∥ ≤ Op(n
−1/4).

[Proof.] According to Lemma 4.5, we know that with probability at least 1− δ/3,

∥h̃θf+∆θj − f0,−j∥n ≤
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
). (42)
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By (Bartlett & Mendelson, 2002), we know that the empirical Rademacher complexity for a function class FB = {f(x) =
α⊤kerθf (X

(j), x) : ∥f∥H ≤ B} is bounded as

R̂S(FB) ≤
B
√

tr[K(j)]

n
.

According to (Mohri et al., 2018), with probability at least 1− δ/3, we have

sup
h̃θf+∆θj

−hθf
∈F

{∥∥∥h̃θf+∆θj (x
(j))− hθf (x

(j))−
(
f0,−j(x

(j))− hθf (x
(j))
)∥∥∥− ∥h̃θf+∆θj (x)− f0,−j(x

(j))∥n
}

≤2R̂S(F) +
√

log(3/δ)

2n
.

(43)

From Assumption 4.1 and Lemma B.1, we have with probability 1− δ/3

∥h̃θf+∆θj (x)− hθf (x)∥H := B′ ≤ O(1) +
σ√
λ

(
√
n+

√
2 log(

3

δ
)

)
. (44)

Then we have with probability 1− δ,

∥h̃θf+∆θj − f0,−j∥

≤∥h̃θf+∆θj − f0,−j∥n + 2R̂S(F) +
√

log(3/δ)

2n

≤

{
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)

}
+

2B′
√

tr[K(j)]

n
+

√
log(3/δ)

2n

≤

{
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)

}

+
2
√

tr[K(j)]

n

[
Op(1) +

σ√
λ
(
√
n+

√
2 log(3/δ))

]
+

√
log(3/δ)

2n

(45)

By the assumptions that ∥[K(j) + λIn]
−1e(j)∥2 = Op(1/

√
n) and tr[K(j)] = Op(n) in Assumption 4.1 (a) (b), when we

take λ = O(
√
n), we have

∥h̃θf+∆θj − f0,−j∥ ≤ Op(n
−1/4). (46)

B.4. Proof of Lemma 4.6

Lemma 4.6 For a large neural network whose width is in the order of O(
√
n) where n is the training sample size, our lazy

trained neural network is close to its linearization with high probability:

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥ ≤ O(n−1/4). (47)

[Proof.] Since h̃θf+∆θj (x) = hθf + ∆θ⊤j ∇θhθ(x)|θ=θf is a linearization of hθf+∆θj (x) around the initialization θf ,
according to Theorem 2.1 in (Lee et al., 2020), when the neural network has a width M , the neural network is close to its
linearization with probability arbitrarily close to 1:

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥2 = O(
1√
M

). (48)

Specifically, when the neural network M takes the order of O(
√
n), we have ∥h̃θf+∆θj (x)− hθf+∆θj (x)∥2 = O(n−1/4).



Lazy Estimation of VI for Large NNs

B.5. Proof of the Main Theorem (Theorem 4.4)

Based on Lemma B.2 and Lemma 4.6 , for a neural network with width at least M = O(
√
n) when the assumptions hold

true, by triangular inequality we have

∥hθf+∆θj − f0,−j∥ ≤ ∥hθf+∆θj − h̃θf+∆θj∥+ ∥h̃θf+∆θj − f0,−j∥ = Op(n
−1/4). (49)

This holds true for any j ∈ [p]. Then by Lemma A.1, we finish the proof for Theorem 4.4.

B.6. Proof of Example 3.1

The density of X1 given X2 in the setting of Example 3.1 is:

f(x1|x2; ρ, σ) =
1

2πσ2
√
1− ρ2

exp

{
− 1

2(1− ρ2)σ2
(x2

1 − 2ρx1x2 + x2
2)

}
, (50)

thus we have X1|X2 ∼ N (ρX2, (1− ρ2)σ2).

C. ADDITIONAL EXPERIMENTS
C.1. Trace divergence rate of the Neural Tangent Kernel Matrix

In Assumption 4.1(b), we assume the trace of the neural tangent kernel matrix with full-model parameters as initialization
diverges in the order of n in probability: tr(K(j)) = Op(n). In the following experiment, we’ll verify this through a
simulation.

We consider a two-layer neural network with 128 nodes in the hidden layer. The data is generated from a sparse linear
model Y = 1.5X1 + 1.2X2 +X3 + ϵ where ϵ ∼ N (0, 0.12) and we have 6 predictors X1, X2, . . . , X6 generated from a
normal distribution N (0, I6 + C) with C1,2 = C2,1 = 0.5 and Ci,j = 0 for (i, j) /∈ {(1, 2), (2, 1)} (this is to add some
correlation to the predictors); The total sample size of the data varies in the set {1000, 1100, . . . , 4000}; Among these
simulated samples at each sample size, 2/3 data are sampled into the training set and 1/3 samples fall in the testing set.

We’ll first train the full NN model on the training set and get inferred parameters θ̂f in the neural network from the full
training data. Then we use θ̂f as initialization for the reduced neural network. Then we could calculate the neural tangent
kernel matrix and its corresponding trace the testing data with one feature (e.g.the first feature) dropped. We will repeat this
process at each sample size level five times (with different random seed to generate data each time), and record the traces
with respect to the test data sample size. As shown in Figure 7, there is a clear trend that the trace diverges linearly as the
sample size, which numerically verifies of Assumption 4.1 (b).

C.2. Choosing the regularization parameter

LazyVI involves solving a ridge regression to estimate the difference between the full and reduced model parameters. For
variable j, we choose the regularization parameter λj through K-fold cross validation on the prediction made using the
estimated ∆θλj . Algorithm 2 below shows the entire procedure.

C.3. Full linear experiment

Figure 8 shows the distribution of computation time vs. VI estimation accuracy for three different groups of variables
(important and correlated, important and uncorrelated, unimportant and uncorrelated). We see that LazyVI and retrain are
both accurate across all groups of variables, but LazyVI is much faster. Dropout is consistently the fastest method, but
is highly inaccurate in estimating VI for the first group of variables due to their strong correlations. Also in Figure 8 we
show the empirical coverage of the LazyVI and retrain 95% confidence intervals. We see that both retrain and LazyVI
achieve desirable coverage for the three important variables; poor coverage of unimportant variables is expected and possibly
remedied with a sample-splitting procedure (Williamson et al., 2021).
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Figure 7. The divergence of the NTK trace with respect to the sample size

Algorithm 2 K-Fold CV for λj

Require: {X(j)
i , Yi, e

(j)
i ,Φ

(j)
i }

n1
i=1 and θf from Algorithm 1 in main paper; candidate λ values Λ

Partition [n1] into K subsets, each denoted St

for λ ∈ Λ do
for k = 1, . . . ,K do
∆θλj = argminω∈RM

1
n1−|Sk|

∑
i/∈Sk

[e
(j)
i − ⟨ω,Φ

(j)
i ⟩]2 + λ∥ω∥22

Ŷi = hθf+∆θλ
j
(X

(j)
i ) for i ∈ Sk

ϵλ,k = 1
|Sk|

∑
i∈Sk

(Yi − Ŷi)
2

end for
ϵλ = 1

K

∑K
k=1 ϵλ,k

end for
Ensure: λ̂j = argminλ{ϵλ}λ∈Λ

Figure 8. Distribution of computation time vs. estimation error relative to retrain (V̂I − V̂I
(RT)

) for three different groups of variables:
important, correlated ({X1, X2}); important, uncorrelated (X3); and unimportant, uncorrelated ({X4, X5, X6}). 2D box plots show
quantiles across 10 repetitions.

C.4. Impact of lazy initialization

As discussed in the main paper, the initialization of the LazyVI procedure plays a significant role in the accuracy of its
estimates. Figure 9 shows the distribution of the VI error for dropout, LazyVI with a good initialization, and LazyVI with a
random initialization across 10 repetitions. We see that the random initialization results not only in less accurate but also
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much more highly variable estimates.

Figure 9. Distribution of VI − V̂I for the first 3 variables for dropout, LazyVI initialized with the parameters from the full model, and
LazyVI with a random initialization.

C.5. Width of training network

Theorem 4.4 implies that LazyVI will perform well when the training network is sufficiently wide. Figure 10 shows the
empirical coverage of the 95% confidence intervals defined in (24) (across 40 repetitions) for increasing hidden layer widths.
We see that coverage increases as the width of the network increases, but the trade-off is that the computation time for
LazyVI also increases with the network width (although remains much faster than retraining).

Figure 10. Left: empirical coverage of 95% confidence intervals (across 50 repetitions) of LazyVI estimates for increasing widths of
the training network for the important variables. Dotted line shows 95% coverage; Right: average computation time for LazyVI with
increasing network widths.

C.6. Additional details for seasonal forecasting experiment

For our real data seasonal precipitation forecasting experiment, we use simulations from the Community Earth System
Model-Large Ensemble project (CESM-LENS; Kay et al. (2015); de La Beaujardière et al. (2019)). CESM-LENS is a
40-member ensemble of climate simulations, where the ensemble members all have the same physics but different initial
conditions. From this dataset we extracted monthly sea surface temperature (SST) records from 1940-2005 on a 1.25◦×0.9◦

grid. We compute SST anomalies at each grid point relative to the time period 1950-19891 by subtracting the monthly mean
and dividing by the monthly standard deviation, and then we linearly detrend each time series.

To compute the 10 ocean climate indices (OCI) used in our experiment, we find the average summer (July-October) monthly
SST values of these detrended SST anomalies over specified ocean regions. These regions are well established in the
literature; we refer to the supplement from (Chen et al., 2016) to define the boundaries of all OCIs besides NZI, for which we
use (Mamalakis et al., 2018). See 1 for the specific boundaries. As a response, we use the average winter (November-March)
precipitation over part of the southwestern US (see (Stevens et al., 2021)). We are interested in predicting winter precipitation
from the previous summer’s SSTs.

1
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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Ocean OCI Latitude Longitude
Pacific Niño1+2 10◦S - 0◦ 90◦W - 80◦W

Niño3 5◦S - 5◦N 150◦W - 90◦W
Niño3.4 5◦S - 5◦N 170◦W - 120◦W
Niño4 5◦S - 5◦N 160◦E - 150◦W
NZI 40◦S - 25◦S 170◦E - 160◦W

Atlantic TNA 5◦N - 25◦N 55◦W - 15◦W
TSA 20◦S- 0◦ 30◦W - 10◦E

Indian SWIO 32◦S - 25◦S 31◦E - 45◦E
WTIO 10◦S- 10◦N 50◦E - 70◦E
SETIO 10◦S- 0◦ 90◦E - 110◦E

Table 1. Ocean climate indices (OCIs) are defined as the average of the detrended SST anomalies across the regions indicated above.

To build more intuition as to why dropout behaves problematically when trying to predict precipitation, we attempt this
analysis using linear regression and find that the coefficient estimates are highly unstable. Figure 11 shows the estimated
coefficients with their 95% confidence intervals from a multiple linear regression including all variables, along with estimated
coefficients from separate simple linear regressions. Note that the coefficient for Niño 3 is highly negative in the full
regression, which is offsetting the highly positive coefficient on Niño 3.4; when separated, both of these indices receive
much smaller positive coefficients.

Figure 11. OLS coefficients and standard errors for multiple linear regression with all OCIs (black dots) and simple linear regression with
each OCI separately (blue triangles).
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Retrain Lazy
Time 272.75s 50.27s
Std. 10.8s 1.6s

Table 2. Average time to compute the Shapley values in one data

Figure 12. For an example year (1940), fig:saliency shows the original image of SST anomalies, and then the modified images after
dropping out 50% and 75% of the data according to the GRAD importance measure and a baseline random order.

C.7. Shapley Value Calculation Using Lazy Training Method

As we have discussed in the paper, our method may also provide a faster alternative when calculating Shapley values using
large neural networks. We’ll indicate this in the following experiment.

We use the same definition and subset sampling scheme as (Williamson & Feng, 2020). However, instead of retraining the
model for each subset of features, we apply our proposed lazy training method to make the computation more scalable and
much faster.

We are dealing with a Logistic Model with high dimensional sparse features. Specifically, we have 100 features from a
N (0,Σ100×100), where the variables are independent except Corr(X1, X2) = 0.75. The responses are binary, generated
from a logistic model: log P(Y=1)

1−P(Y=1) = Xβ, where β = (5, 4, 3, 2, 1, 0, . . . , 0)⊤ ∈ R100.

We use a two-layer neural network (with 128 hidden nodes) and the subset sampling scheme proposed by (Williamson &
Feng, 2020) when calculating Shapley values. We compare the estimated Shapley values and the computing times when we
use the retraining method (as is used in (Williamson & Feng, 2020)) and the lazy training method we proposed respectively.
We calculate the Shapley values on 20 simulated datasets, each with a sample size 750. We split each dataset into a training
set and test set with sample size 500 and 250 respectively. We train all the models on the training set, then evaluate the
predictiveness loss and calculate the Shapley values on the test set. We set the penalty parameter as 100 in accordance to the
assumption λ = O(

√
n).

In the retraining method we’ll reconstruct a two-layer neural network with 128 hidden nodes for each subset of features; In
the lazy training method however, after training a two-layer neural network with all the features, we use Algorithm 1 to train
the new model on each subset of features (with all features not included in the subset be replaced by their means).

Table 2 gives the average time to calculate the Shapley values for one data set. Lazy training speeds up the calculation by
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more than 5 times. In the meanwhile, we don’t sacrifice too much on the Shapley value estimation performance. As shown
in Figure 13, the Shapley value calculated by lazy training is generally close to the retraining results; for those unimportant
variables (Feature id ≥ 6), Shapley values estimated from retraining method has a larger variance, as the sample size is
relatively small (training size n = 500 while p = 100), due to the benefit of the regularization step we have in the lazyVI
method.
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Figure 13. Shapley Values calculated By Retraining vs LazyVI Method using a two-layer neural network. The data is generated from a
logistic model, where only the top 5 features are involved and all the left features are non-importance (The corresponding Shapley values
are zero). The experiment is repeated 20 times. The colored bars are the averaged estimated Shapley value of each feature using different
methods, and the grey lines indicate the standard deviations.


