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Abstract

Image cartoonization is recently dominated by
generative adversarial networks (GANs) from the
perspective of unsupervised image-to-image trans-
lation, in which an inherent challenge is to pre-
cisely capture and sufficiently transfer characteris-
tic cartoon styles (e.g., clear edges, smooth color
shading, abstract fine structures, etc.). Existing
advanced models try to enhance cartoonization
effect by learning to promote edges adversarially,
introducing style transfer loss, or learning to align
style from multiple representation space. This
paper demonstrates that more distinct and vivid
cartoonization effect could be easily achieved
with only basic adversarial loss. Observing that
cartoon style is more evident in cartoon-texture-
salient local image regions, we build a region-
level adversarial learning branch in parallel with
the normal image-level one, which constrains ad-
versarial learning on cartoon-texture-salient local
patches for better perceiving and transferring car-
toon texture features. To this end, a novel cartoon-
texture-saliency-sampler (CTSS) module is pro-
posed to dynamically sample cartoon-texture-
salient patches from training data. With extensive
experiments, we demonstrate that texture saliency
adaptive attention in adversarial learning, as a
missing ingredient of related methods in image
cartoonization, is of significant importance in fa-
cilitating and enhancing image cartoon stylization,
especially for high-resolution input pictures.

1. Introduction

Image cartoonization aims at rendering natural images into
cartoon styles, which is a challenging computer vision and
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Figure 1. Example evaluation results of our method in transform-
ing real-world scenes into cartoon styles (better to zoom in).

computer graphics problem. Specially designed algorithms
that automatically stylize pictures into cartoons can help
relieve cartoon creation artists from laborious manual work,
and also have practical values in digital entertainment, ad-
vertising, childhood education, image editing, etc.

Cartoons have unique visual features characterized by clear
edges and smooth color shading in non-edge areas. The
problem of reproducing cartoon-like effect on real photos
is widely explored in early time from the perspective of
image abstraction (DeCarlo & Santella, 2002; Winnemoller
et al., 2006; Kyprianidis & Déllner, 2008; Kang et al., 2008).
These methods model cartoon styles with established im-
age processing techniques. Though successful in mimicking
some important cartoon features, they lack data-driven learn-
ing ability to capture cartoon styles in more depth.

With the thriving of deep neural networks, recent image
cartoonization methods resort to learning-based framework,
typically generative adversarial network (GAN) (Goodfel-
low et al., 2014), to automatically learn and transfer high-
level cartoon styles from real cartoon images. It could be
formulated as an unsupervised image-to-image translation
problem where the objective is to learn a content-preserving
image translation mapping X — ) from a source domain X’
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of natural images to a target domain ) of cartoon images. A
general framework is to align style distribution of generated
images to that of target-domain real cartoons through adver-
sarial learning, and meanwhile, constrain perceptual content
consistency between input photos and generated results to
avoid content mismatch. However, it is difficult to produce
results with sufficiently salient cartoon features, for which
some advanced methods make further progresses to enhance
cartoonization effect based on the general framework.

CartoonGAN (Chen et al.,, 2018) proposes an edge-
promoting adversarial loss to highlight typical cartoon fea-
ture of edge clearness. This loss function enforces the dis-
criminator to distinguish real cartoon images from not only
the synthesized images but also the edge-smoothed cartoon
images, such that the generator can be guided to produce
clearer edges to fool the discriminator. However, it requires
a separate preparation stage to collect an edge-smoothed
cartoon image set before training, losing the elegance of
end-to-end learning. Furthermore, the edges and contours
of the generated results are still not very distinct. Ani-
meGAN (Chen et al., 2019) introduces Gram loss (Gatys
et al., 2016), a classic texture-descriptor-based style loss
widely used in style transfer literature, to GAN framework
to enhance learning cartoon texture pattern. Nevertheless,
its effect in strengthening cartoon texture transfer is still less
noticeable. More recently, a white-box image cartoonization
framework (Wang & Yu, 2020) is proposed. It decomposes
images into multiple representations and learns to align
styles in the manifold of each representation. This method
proposes an adaptive coloring algorithm that generates im-
age color segmentation maps to mimic sparse color blocks
of cartoon images, which brings visually appealing cellu-
loid cartoon style. However, the cartoon abstraction and
vividness of the generated results are still less prominent,
especially for high-resolution input images.

The above-mentioned models resort to different methods to
make up for the limitation of the basic adversarial loss in
fully transferring cartoon styles. However, we argue that
the weak stylization problem is not from the capacity of
adversarial loss itself, but due to non-global distribution
of salient cartoon texture features. For example, the clear
edges are usually distributed in local areas rather than the
entire image, and the pixel proportion of clear edges is also
very small. Therefore, the feature of edge clearness could be
easily overwhelmed by more obvious global features such
as color shading smoothness, when trained with basic adver-
sarial loss over the scale of entire image. This enlightens us
to attend to cartoon-texture-salient local regions for better
perceiving and transferring cartoon texture features.

To this end, we propose a compact and efficient adversarial
learning framework with an image-level discriminator ex-
amining global cartoon styles like smooth shading and the

overall tone, as well as a patch-level discriminator focusing
on learning local cartoon texture pattern, i.e., the unique
distribution of high- and low-frequency pixels around clear
edges. To enhance transfer of cartoon texture pattern, we
adaptively constrain patch-level adversarial learning on
cartoon-texture-salient local image regions, for which a
novel cartoon-texture-saliency-sampler (CTSS) module is
proposed to dynamically extract image patches with most
salient cartoon texture pattern from each mini-batch of train-
ing images. By incorporating such texture saliency adaptive
attention to adversarial learning, the typical cartoon texture
features are more sufficiently transferred, yielding more ab-
stract and vivid cartoonization effect. Example results of
our model are presented in Fig. 1. Our method bypasses
separate edge-smoothing data preparation stage, use of addi-
tional style losses, and complicated representation extraction
processes, while producing more prominent cartoon effect,
especially for large input pictures. The effectiveness of
our model is fully demonstrated with extensive experiments
evaluated on different cartoon datasets.

2. Related Work
2.1. Style Transfer

Neural style transfer (NST) was first proposed as an online
optimization-based algorithm that iteratively transfers im-
age styles by minimizing Gram loss (Gatys et al., 2016).
Afterwards, it was transformed into an offline generative
model to cater for real-time applications by training a feed-
forward network (Johnson et al., 2016; Ulyanov et al., 2016).
Later on, efforts had been made to extend fast NST from a
single style to multiple styles (Chen et al., 2017; Dumoulin
et al., 2016), or even arbitrary styles (Huang & Belongie,
2017; Li et al., 2017b). Beside the Gram loss, various style
losses were successively proposed, such as MMD loss (Li
etal., 2017c), CNNMREF loss (Li & Wand, 2016), contextual
loss (Mechrez et al., 2018), and Relaxed EMD loss (Kolkin
et al., 2019). These loss functions suit for transferring low-
level texture features from a single image. By contrast,
cross-domain style transfer methods use adversarial loss
to automatically learn high-level styles from a collection
of stylistically similar images. By means of GANS, style
transfer problem is enriched with more applications, such as
font style transfer (Tian, 2017; Jiang et al., 2017), painting
style transfer (He et al., 2018; Gao et al., 2020), makeup
style transfer (Chang et al., 2018), etc.

2.2. Image-to-Image Translation

Image-to-image translation refers to transformation of im-
ages from a source domain to a target domain, which could
be divided into supervised and unsupervised situations ac-
cording to whether paired training data of two domains are
available. For supervised problem, Pix2Pix (Isola et al.,
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Figure 2. The overall architecture of our model, as well as details of our proposed cartoon-texture-saliency-sampler (CTSS) module which
adaptively extracts local image patches with most salient cartoon texture pattern from each mini-batch of input images.

2017) combines conditional GAN with image-level sparse
L, regularization, which generalizes well to many applica-
tions such as image super-resolution (Ledig et al., 2017),
image denoising (Alsaiari et al., 2019), semantic image
synthesis (Wang et al., 2018), etc. For the latter situation,
CycleGAN (Zhu et al., 2017) and UNIT (Liu et al., 2017)
are typical models that realize unsupervised image transla-
tion based on cycle-consistency constraint and shared-latent-
space assumption, respectively. Afterwards, methods like
StarGAN (Choi et al., 2018) and AttGAN (He et al., 2019)
extend translation from two domains to multiple domains,
by combining conditional GAN with auxiliary domain clas-
sifier. Besides, the problem is also explored in the field of
multimodal translation (Huang et al., 2018; Lee et al., 2018)
and few-shot learning (Liu et al., 2019).

3. Method

Cartoon images have smooth shading and vivid colors. In
addition to these global features that represent overall pixel
distribution, the most salient feature of cartoon images is
their unique texture pattern that represents local pixel distri-
bution. Specifically, the high-frequency pixels concentrate
on edges, while the low-frequency pixels are smoothly dis-
tributed beside edges. This distinct separation of high- and
low-frequency pixels clearly differs from natural images
where the high- and low-frequency elements are much in-
terweaved. However, as Fig. 3 shows, such cartoon texture
pattern manifests obviously only in partial image regions

with clear edges, which means that the latent cartoon tex-
ture pattern is more visually perceptible from the view of
edge-distinct local regions than from the view of entire im-
age. Therefore, we append a patch-level learning branch
that adaptively applies adversarial learning on edge-distinct
local regions to enhance capturing cartoon texture pattern.

3.1. Global and local adversarial learning

Let P denote the domain of real-world photos, C be the
domain of cartoon images, S be the domain of synthesized
results. The overall architecture of our adversarial learning
framework is illustrated in Fig. 2 (a). In training phase, a
mini-batch of natural photos P = {p;}¥ ; € P, and a mini-
batch of cartoon images C' = {¢;}; € C are sampled at
each iteration, where N is the batch size. A generator G
translates P into a mini-batch of synthesized cartoon im-
ages S = G(P) = {s;}}¥, € S, which are differentiated
from real cartoon images C' by an image-level discrimina-
tor Djyng. This forms the image-level adversarial learning
branch for learning global holistic cartoon styles.

To better seize cartoon texture pattern that is more percepti-
ble at edge-distinct local regions, we append a patch-level
adversarial learning branch as a supplement to the image-
level one. In this branch, a cartoon-texture-saliency-sampler
(CTSS) module is proposed to constrain adversarial learning
only on cartoon-texture-distinct local regions. As shown
in Fig. 2 (a), the CTSS module takes cartoon mini-batch
C and the synthesized mini-batch S as input, and outputs
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top-K edge-distinct local patches Cpqtcn = {c;}fil and
Spateh = {s;}fil from C and S respectively. A patch-level
discriminator Dpq¢cp, is built to distinguish Spgtcn from
Cpatch, forming the patch-level adversarial learning that
reinforces transfer of cartoon texture pattern.

3.2. Cartoon-texture-saliency-sampler

Since the unique cartoon texture pattern is more visually
prominent at edge-distinct local regions, our CTSS module
adaptively samples local image patches with most distinct
edges from each input mini-batch of images, the imple-
mentation details are illustrated in Fig. 2 (b). Taking an
input mini-batch of cartoon images C' = {c¢;}, as ex-
ample, CTSS starts with a guided-filter (He et al., 2010)
sub-module F; for edge-preserving image smoothing, it
uses each input image c; itself as guide map, returns the
smoothed image ¢; with many noise elements removed:

5i:fgf(civci)?i: 1,...,N. (1)

Then, a convolutional layer is applied to extract coarse edge
maps E = {e;} ,, where e¢; is the edge map of ¢;. The
convolutional layer has a constant kernel F composed of four
filters { F, F, F5, Fy} as shown in Fig. 2 (b). The designed
kernel F is specially suitable for cartoon edge extraction,
and is essentially an improved Sobel operator. The coarse
edge map is obtained by summing over the absolute value
of the convolution result with each filter of F, followed by
Min-Max normalization to rescale to [0 — 1]:

4
¢i = Normuminmas (), 16 ® Fil),i=1,...N, @)

where ® denotes convolution. Eq. 2 can be efficiently
implemented with a single-layer convolution with kernel F
followed by channel-wise manipulations. Based on coarse
edge maps FE, the refined edge maps E = {¢;}N | are
obtained by applying a high-pass filter h(-) that enhances
high-frequency pixels and suppresses low-frequency ones:

éi :h(ei) :1_1/(1+(ei/d)n)’i: 1""’N’ (3)

where d and n are hyperparameters that determine thresh-
old and sharpness of the high-pass filter A(-) respectively.
Visualization of the final refined edge maps E is shown in
Fig. 4. The refined edge maps are used to adaptively guide
attention to edge-distinct local image regions and extract

corresponding image patches:
{c;, e;}i]\il = ExtractPatches(C @ E,l,5), (4)

where @ denotes channel-wise concat operation, [ and s
are respectively patch size and stride of the sliding-window-
alike patch extraction process. ¢;, and e, are the ith extracted

patch of cartoon images C' and edge maps E respectively,
they are paired and correspond to the same image location.

Cartoon images

- Local regions with unclear cartoon texture pattern - Local regions with clear cartoon texture pattern

Figure 3. The typical cartoon texture pattern manifests clearly only
in partial image regions with distinct edges.

Figure 4. Visualization of the refined edge maps E produced dur-
ing the forward pass of our CTSS module.

M is the total number of the extracted patches from a mini-
batch of training images, i.e., M = N ([ Z=1 |+1) (| = |+
1), where H and W are height and width of training images,
and N is the batch size. The extracted M image patches
are sorted by the edge intensity of their paired edge patches,
where the edge intensity is quantified as the pixel summation
over an edge patch. After sorting, top-K image patches

Cpatcn, With most distinct edges are sampled:
ti=Y ()mmi=1,2,.., M, 5)

Cpatch - {ng,j = 17 '“,Kltal > tag > > taM}v (6)
where m and n index pixel coordinate of each local patches,
{a1,as, ...,ap } is a permutation of {1, 2, ..., M }. The sam-
pled top-K image patches Cq¢cr, contain most evident car-
toon texture pattern, they serve as training data of the patch-
level adversarial learning branch to promote learning car-
toon texture feature. Considering that local patches can not
reflect overall color distribution of images, we finally con-
vert the sampled Cpqcp, to grayscale for purpose of learning
color-invariant local cartoon texture pattern. Since we use
gradient based filtering method to detect edges, some lo-
cal patches with no clear edges but a lot of noise can still
have large accumulated gradients and thus be sampled out
for patch-level training. Consequently, we apply guided
filtering (Eq. 1) for edge-preserving image denoising before
edge extraction (Eq. 2), this guarantees that image patches
are sampled out due to clear edges instead of large noises.
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It is worth mentioning that our method is more suitable
than using pre-trained deep model to detect edges. Firstly,
well-trained deep edge detection models tend to make high-
confidence prediction to any edge pixels, the generated edge
maps are less able to reflect edge intensity difference, and
thus can not locate true edge-salient local regions. Secondly,
our filtering based method uses only single-layer convo-
lution to produce edge maps, which is much faster than
forward propagation through pre-trained deep models.

3.3. Objective functions

The training of our model comprises five loss functions, they
are content loss, global adversarial loss, local adversarial
loss, color reconstruction loss, and total variation loss.

Content loss is used to guarantee content consistency be-
tween input photos and cartoonized results, which is realized
by matching feature maps at the /th layer of the pre-trained
VGG19 (Simonyan & Zisserman, 2014) network:

Lcon - EpINP[HVGGl(pz) - VGGI(G(pl))Hl]a (7)
where the /th layer is “conv4-4” in VGGI19.

Global adversarial loss aims to capture global cartoon
style through image-level adversarial learning branch. We
employ LSGAN (Mao et al., 2017) loss for better stability:

Ladv,global = Lade,glabal + Lt(z;dv,glabah (®)

Lade,global :ECiNC[(Dimf}(Ci) - 1)2]+ 9)
Ep,~[(Dimg(G(p:)))?];

Lade,global = EPzNP[(Dlm(](G(p’L)) - 1)2] (10)

Local adversarial loss aims at learning local cartoon texture
pattern through patch-level adversarial learning branch:

Ladviocal = Lade,local + Lade,local’ (11
1 K )
Lad'u local Ecpatch [E Zizl(DPatCh (C;)) - 1)2]
- R
+Espatch [K Zi:l (DpatCh(S;)) ]7
1 K i 2
Ladv local — Espafr‘h [K Zi:l (DPatCh(Sp) - 1) ]ﬂ (13)

where Cpaicn = {c 1 are extracted top-K edge-distinct
patches from C' = {cl}z 1> Spateh = {sp} <, are top-K
edge-distinct patches from S = {s;}¥, = {G(p;)} ]V

Color reconstruction loss is used to retain color informa-
tion after cartoonization. Following (Chen et al., 2019), we
convert image from RGB to YUV format, and apply L; loss
to Y channel and Huber Loss to U and V channels:

Leor = Ep,np[|[Y(G(pi)) = Y (pi)| L+ (14)
U(G(pi)) = Ulp)lla + V(G (pi)) = V(pi)llul,

where Y (+), U(-), V (-) represent the three channels of an
image in YUV format, and H denotes Huber Loss.

Total variation loss is used to reduce noises and artifacts of
the generated results:

1 H W-1
Lv :ES.N _— s — 8 2
o Berslir gy 2 2 (i =50
(15)
1 H-1 W ,
=W 2 i~ 50

where H and W are height and width of generated images.

The total loss function can be decomposed into a generator
part and a discriminator part:

Lgen :)\QIObalLade,global + )‘ZOCalLade,local+ (16)
)\conLcon + )\cochol + )\tthva
_ D D
Ldis - )\globalLadufglobal + AlocalLadv,locala (17)

where L., is minimized to optimize the generator G, Lg;,
is minimized to jointly optimize the two discriminators
Dimg and Dygich. Lgen and Lg;s are minimized alternately
to form the adversarial training framework.

4. Experiments
4.1. Datasets

Our model can be easily trained with unpaired data. The
source-domain real-scene photos comprise 6656 images for
training, 790 images for quantitative testing, and 300 high-
resolution images for qualitative evaluation. The training
and quantitative testing sets are borrowed from the training
and testing sets of CycleGAN (Zhu et al., 2017) respectively,
where the spatial size of all images are fixed at 256x256
for fair comparison with baseline models (Chen et al., 2018;
2019; Wang & Yu, 2020). We additionally collect 300 high-
resolution pictures with width ranging from 960 to 3000
pixels to qualitatively evaluate models’ cartoonization effect
on practical large input pictures. For target-domain training
data, we prepare three cartoon datasets of different styles.
They are respectively consisted of cartoon frames cropped
from “The Wind Rises”, “Dragon Ball”, and “Crayon Shin-
chan”. Each cartoon dataset has 2000 cartoon images, they
are rescaled to 256 <256 to be in accordance with the size
of source domain training images.

4.2. Parameter settings

The training batch size is N=8, the number of local patches
extracted from each mini-batch is K=32. We set d=0.2, n=2
in Eq. 3, which empirically has good effect in refining edge
maps. For patch extraction, we set patch size (=96, and



Submission and Formatting Instructions for ICML 2022

The Wind Rises

Crayon Shin-chan Dragon Ball

Figure 5. Example image cartoonization results tested over high-resolution real-world-scene input images. Results are evaluated on our
model trained over different cartoon datasets, including “The Wind Rises” (the second row), “Dragon Ball” (the third row), and “Crayon

Shin-chan” (the bottom row). Please zoom in for better resolution.

randomly sample moving stride s in Eq. 4 from a uniform
distribution U (48, 72) at each training iteration, as a kind
of patch-level data augmentation strategy.

4.3. Training and inference details

At training phase, we set the weights of component loss func-
tions to be )\global=>\local=3007 Aeon=1.5, Aeor=15, App=1.
We train our model for 80 epochs. In the first 10 epochs,
we pre-train the generator by minimizing L., (Eq. 7) with
an initial learning rate of 2 x 10~%. In the remaining 70
epochs, we alternately minimize Ly, (Eq. 16) and L
(Eq. 17) to optimize the generator part and the discriminator
part respectively, where the initial learning rate for both two
parts are 2 x 1072, We use Adam optimizer with 3;=0.5,
B2=0.999. At inference time, we dynamically increase im-
age natural saturation of the generated results by 40% to
produce more vivid colors.

4.4. Qualitative and quantitative results

Some qualitative results of our model trained over different
cartoon datasets and evaluated over high-resolution input
pictures are shown in Fig. 5, our method reproduces vivid
cartoon effects on high-resolution real-world-scene photos.
For qualitative method comparison, we divide related meth-
ods into general image stylization or abstraction methods

including neural style transfer (NST) (Gatys et al., 2016),
flow-based image abstraction (FBIA) (Kang et al., 2008),
and CycleGAN (Zhu et al., 2017), as well as advanced im-
age cartoonization methods including CartoonGAN (Chen
et al., 2018), AnimeGAN (Chen et al., 2019), and White-
Box (Wang & Yu, 2020). Results of these models trained
over “The Wind Rises” dataset are shown in Fig. 6 and Fig.
7. NST globally and randomly transfers low-level texture
features, the produced results suffer from unappealing arti-
facts and structure distortions. FBIA abstracts images with
learning-free image processing techniques, the generated
results fail to present the distribution of target cartoon style.
Results of CycleGAN do not manifest local cartoon texture
features such as clear edges.

For all the advanced image cartoonization methods to be
compared with, we keep the same training epochs as our
method. As Fig. 7 demonstrates, the stylization degree
of CartoonGAN and AnimeGAN is relatively weak, the
typical local cartoon texture pattern is not evident in gen-
erated results. Note that both these two methods prepare
an edge-smoothed cartoon dataset to explicitly learn to pro-
mote edges adversarially, the generated edges are still not
as clear as ours. Results of WhiteBox do not exhibit much
cartoon abstraction and vividness for high-resolution input
images. All these advanced methods are not able to fully
capture the inherent cartoon texture features. By contrast,
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Figure 6. Comparison of our approach with general image stylization or abstraction methods tested over high-resolution real-world-scene
input images (better to zoom in). Results are evaluated on “The Wind Rises” dataset.

Inptﬁ N

Figure 7. Comparison of our approach with related advanced image cartoonization methods tested over high-resolution real-world-scene
input images (better to zoom in for details). Results are evaluated on “The Wind Rises” dataset. For all related methods, the image
natural saturation of the generated results is increased by 40% as well for fair comparison with our method.

our results present prominent cartoon texture pattern, and
sufficient abstraction and vividness. Apart from landscape
pictures, results of our method evaluated on “Crayon Shin-
chan” dataset in more scenarios are displayed in Fig. 9.

We quantitatively evaluate model performance by measuring

the FID between the collection of generated images and the
collection of real cartoon images. Results of FID evaluated
on the source-domain test set are reported in Tab. 1. Our
method achieves much lower FID than related GAN-based
methods, indicating that the style distribution of our results
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Figure 8. Qualitative ablation study of the components of our framework, including the image-level learning branch, patch-level learning
branch, and our CTSS module (better to zoom in). Results are evaluated on our model trained over “The Wind Rises” dataset.

Table 1. Comparison with related methods in FID .

Table 3. Ablation study of our model with FID |.

TWR, DB, CSC respectively denote “The Wind Rises”,
“Dragon Ball”, and “Crayon Shin-chan” dataset.

Table 2. Influence of K to FID |.

FID

Dataset
K=16 K=32 \ K=64 \ K=128
TWR 115.86 115.25 116.47 126.78
DB 113.53 112.97 113.37 125.64
CSC 125.45 124.66 124.94 130.33

TWR, DB, and CSC denote “The Wind Rises”, “Dragon Ball”,
and “Crayon Shin-chan” cartoon dataset respectively.

is much closer to that of target-domain real cartoon images.
Besides, we investigate the influence of K (i.e., the total
number of local patches sampled from each mini-batch of
input images) to model performance. Results reported in
Tab. 2 show that both too small and too large value of K
may degrade model performance. This is because sampling
less patches leads to training insufficiency of patch-level
adversarial learning, while oversampling patches results in
many low-quality patches with less salient cartoon textures,
which weakens our model’s ability to capture and highlight
cartoon texture features.

Models FIb Models FIb
TWR DB | CSC TWR DB | CSC
CycleGAN 14645 | 14133 | 142.86 W/O patch-level branch | 14525 | 146.63 | 149.84
CartoonGAN 14396 | 14558 | 147.36 W/O image-level branch | 182.78 | 185.66 | 190.04
AnimeGAN 136.12 | 13494 | 138.83 W/O CTSS (all patches) | 127.09 | 125.80 | 130.90
WhiteBox 13267 | 13745 | 140.79 Ours (full model) 11525 | 11297 | 124.66
Ours 11525 | 11297 | 124.66

Table 4. Ablation study of loss functions for stylization.

Loss functions for stylization FID
TWR | DB | CSC

Ladv_global 145.25| 146.63| 149.84
Lep_adv_global 143.40| 145.64| 147.75
Ladv_gioval + Lgram 139.05| 137.71| 141.66
Lep.adv_gioval + Lgram 137.43| 135.50| 140.18
Lep.adv.global + Limean._std 135.99| 135.24| 137.54
Lep_adv_giobai+Lgram~+Lmean_sta | 135.45| 134.60| 136.08
Ladv_giobal + Ladv_iocal (OUTS) 115.25| 112.97| 124.66

Lep.adv_giobal denotes the edge-promoting adversarial loss pro-
posed in CartoonGAN (Chen et al., 2018).

Lgram and Ly,can_stqa are Gram loss (Gatys et al., 2016) and
mean-variance loss (Huang & Belongie, 2017) respectively.

4.5. Ablation study

Ablation studies of the components of our model are qual-
itatively and quantitatively shown in Fig. 8 and Tab. 3
respectively. Removing patch-level adversarial learning
branch leads to results with weak cartoon styles and large
FID, reflecting that image-level adversarial loss alone is not
sufficient to transfer salient cartoon texture features. When
removing the image-level learning branch, we observe that
the model with only patch-level branch suffers from training
instability. The adversarial learning fails to converge and
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Figure 9. Qualitative cartoonization results evaluated on “Crayon Shin-chan” dataset in more scenarios including foods, indoor scenes,
animals, portraits, and figures. Better to zoom in for higher resolution.

the corresponding results do not exhibit any cartoon styles.
This indicates the fundamental role of image-level branch in
maintaining the balance of adversarial training. Combining
both two branches constitutes our full model that produces
visually appealing cartoon effects with prominent cartoon
texture pattern and substantially lower FID. Lastly, to verify
that the performance gain stems from not only patch-level
adversarial learning but also adaptive texture saliency local
attention brought by our CTSS module, we remove CTSS
module and extract all local patches from each mini-batch of
images for patch-level adversarial learning, the correspond-
ing results are noticeably inferior to our model with CTSS
module both qualitatively and quantitatively. This indicates
that adaptively constrain patch-level adversarial learning on
cartoon-texture-salient local regions is indeed contributive
to enhancing cartoon style rendering.

Besides, we investigate the effectiveness of style related loss
functions in image cartoonization, results are reported in
Tab. 4. Compared with the basic image-level adversarial
loss Laguv_giovar (Eq. 8), the edge-promoting adversarial
1088 Lep_aduv_globar Used in CartoonGAN (Chen et al., 2018)
brings very limited performance gains at the cost of a sepa-
rate edge-smoothing data preparation stage. Following the
idea of AnimeGAN (Chen et al., 2019) to introduce style
transfer losses into GAN framework, we combine the image-
level adversarial 10ss Lqdy_giobal OF Lep_adv_giobat With the
second-order style transfer loss Lg,qm (Gatys et al., 2016)

or the first-order one L,cqn_stq (Huang & Belongie, 2017).
Results show that introduction of style transfer losses is
useful to narrow style distribution gap between generated
results and real cartoons. However, these extra style losses
transfer global and low-level image styles (Li et al., 2017a),
not able to fully capture local cartoon texture pattern. By
contrast, our method improves stylization performance dra-
matically simply by applying the basic adversarial loss at
local views, and thus bypass the need of prior data prepro-
cessing stage and additional style transfer losses.

5. Conclusion

This paper proposes a simple method for image cartooniza-
tion. We supplement the normal image-level adversarial
learning with a patch-level one which is adaptively con-
strained on cartoon-texture-salient local regions via our pro-
posed CTSS module. By incorporating such texture saliency
adaptive attention to adversarial learning, our method can
transfer noticeably more abstract and vivid cartoon style,
with end-to-end architecture and only basic adversarial loss.
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A. User Study

Considering the subjective nature of style transfer problem,
we conduct user study to evaluate our model against related
methods. Based on our collected 300 real-world-scene high-
resolution photos, we generated cartoonized results with
different methods. First, we showed participants a content
image, i.e., a real photo. Second, we showed them two car-
toonization results generated by our method and a random
contrast method. Finally, we asked the participants which
result has better cartoon effect. We separately repeated
the above process for “The Wind Rises”, “Dragon Ball”,
and “Crayon Shin-chan” datasets, respectively. For results
of each dataset, we collected 2400 votes from 40 partici-
pants and present the voting results in Fig.11 , which shows
percentage of preference of our method against related meth-
ods on different datasets. Overall, our method gained the
most user preference votes, indicating the superiority of our
model from subjective perspective.

Besides, we sample 40 high-resolution photos and evaluate
corresponding cartoonized results trained over “The Wind
Rises” dataset using CartoonGAN, AnimeGAN, WhiteBox,
and our method. Then, we allow 20 participants to score
them with 1-10 ratings from three dimensions: (1) style
saliency, (2) abstraction degree, (3) content integrity. Fi-
nally, we calculate the average score across all samples over
each dimension. Results reported in Fig. 10 indicate that our
method has obvious advantages in presenting cartoon ab-
straction and vividness than related advanced methods. On
the other hand, it reflects that despite significant superiority
in style saliency, our method compromises some content
integrity, due to the inherent content-style trade-off in style
transfer related problem. We will focus on improving this
in future work.

=
o

CartoonGAN
AnimeGAN

WhiteBox
Qurs

Score
o L N w - w (=] ~ (=] o

Style saliency

Abstraction degree
Dataset

Content integrity

Figure 10. User preference scores of cartoonization results of dif-

ferent methods with respect to “style saliency”, “abstraction de-
gree”, and “content integrity”.
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(a) User preference percentage contrast between our method and
related methods on “The Wind Rises” dataset.
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(b) User preference percentage contrast between our method
and related methods on “Dragon Ball” dataset.
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(c) User preference percentage contrast between our method and
related methods on “Crayon Shin-chan” dataset.

Figure 11. Percentage of user preference voting of our method
against related methods on different cartoon datasets.

B. Network Details

The generator G follows an autoencoder structure where
we use four residual blocks to bridge a downsampling path
and an upsampling path. Both the image-level discriminator
D;smg and the patch-level discriminator Dpqqcr, adopt the
PatchGAN (Isola et al., 2017) structure. Notations and
network details are listed in Fig. 12.

C. More Qualitative Results

We append more high-resolution cartoonization results of
our model evaluated on different datasets in this section.
For all the produced results, the typical cartoon styles are
sufficiently transferred.



Submission and Formatting Instructions for ICML 2022

Notations

LN: layer normalization

IRelu: leaky Relu with a = 0.2

Conv_n(N)k(K)s(S): Convolutional layer with N filters, KxK kernel size, and stride S

Upsample_n(N): Upsampling module consisting of following layers: nearest neighbor upsampling with

factor 2->Conv_n(N)k(3)s(1)>LN->IRelu

DConv_n(N)k(K)s(S): Depthwise convolutional layer with N filters, KxK kernel size, and stride S

Generator (G)

Image-level discriminator (D, 4)

Layers Shape | Layers | | Shape |
| Input || 2s6x2s6x3 |

Input 256x256x3
| Conv_n(32)k(3)s(1), LN, IRelu ||  256x256x32 |

Conv_n(32)k(7)s(1), LN, IRelu 256x256x32
| Conv_n(64)k(3)s(2), LN, IRelu | | 128x128x64 |
Conv_n(64)k(3)s(2), LN, IRelu 128x128x64 | Conv._n(128)K(3)5(2), LN, IRelu | | axEax128 |
Conv_n(64)k(3)s(1), LN, IRelu 128x128x64 | Conv_n(256)k(3)s(2), LN, IRelu | | 32x32x256 |
Conv_n(128)k(3)s(2), LN, IRelu 64x64x128 | Conv_n(1)k(3)s(1) | | 32x32x1 |
Conv_n(256)k(3)s(1), LN, IRelu 64x64x256 | Patch-level discriminator (Dpq¢ch) |
| Layers | | Shape |

ResBlock 64x64x256
| Input | 9eoea |

ResBlock 64x64x256
| Conv_n(16)k(3)s(1), LN, IRelu || 96x96x16 |
ResBlock 64x64x256 | Conv_n(32)k(3)s(2), LN, IRelu | | 48x48x32 |
ResBlock 64x64x256 | Conv_n(64)k(3)s(2), LN, IRelu | | 24x24x64 |
Conv_n(128)k(3)s(1), LN, IRelu 64x64x128 | Conv_n(128)k(3)s(2), LN, IRelu | | 12x12x128 |
Upsample_n(128) 128x128x128 | Conv_n(1)k(3)s(1) | | 12x12x1 |
Conv_n(128)k(3)s(1), LN, IRelu 128x128x128 | ResBlock |
Layers | | Shape |

Upsample_n(64) 256x256x64 |
Input 64x64x256

Conv_n(64)k(3)s(1), LN, IRelu 256x256x64 | | | |
| Conv_n(128)k(1)s(1), LN, IRelu | | 64x64x128 |

Conv_n(64)k(3)s(1), LN, IRelu 256x256x64
| DConv_n(128)k(3)s(1), LN, IRelu | | 64x64x128 |
Conv_n(32)k(7)s(1), LN, IRelu 256x256x32 | Conv_n(256)k(1)s(1), LN | | 64x64x256 |
Conv_n(3)k(1)s(1), Tanh 256x256x3 | Add input | | 64x64x256 |

Figure 12. Network details of the generator G, the image-level discriminator D;, 4, and the patch-level discriminator Dpqztch .
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More cartoonization results on “The Wind Rises” dataset
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More cartoonization results on “The Wind Rises” dataset
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More cartoonization results on “The Wind Rises” dataset
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More cartoonization results on “The Wind Rises” dataset
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More cartoonization results on “The Wind Rises” dataset
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More cartoonization results on “Dragon Ball” dataset
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More cartoonization results on “Dragon Ball” dataset
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More cartoonization results on “Dragon Ball” dataset
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More cartoonization results on “Crayon Shin-chan” dataset
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More cartoonization results on “Crayon Shin-chan” dataset
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More cartoonization results on “Crayon Shin-chan” dataset
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