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Abstract
This work is concerned with the following funda-
mental question in scientific machine learning:
Can deep-learning-based methods solve noise-
free inverse problems to near-perfect accuracy?
Positive evidence is provided for the first time,
focusing on a prototypical computed tomogra-
phy (CT) setup. We demonstrate that an iterative
end-to-end network scheme enables reconstruc-
tions close to numerical precision, comparable
to classical compressed sensing strategies. Our
results build on our winning submission to the
recent AAPM DL-Sparse-View CT Challenge. Its
goal was to identify the state-of-the-art in solving
the sparse-view CT inverse problem with data-
driven techniques. A specific difficulty of the chal-
lenge setup was that the precise forward model
remained unknown to the participants. There-
fore, a key feature of our approach was to ini-
tially estimate the unknown fanbeam geometry
in a data-driven calibration step. Apart from an
in-depth analysis of our methodology, we also
demonstrate its state-of-the-art performance on
the open-access real-world dataset LoDoPaB CT.

1. Introduction
In recent years, deep learning methods have been success-
fully applied to many problems of the natural sciences (Le-
Cun et al., 2015; Schmidhuber, 2015; Goodfellow et al.,
2016). A prominent example of such scientific machine
learning is the development of efficient solutions strate-
gies for inverse problems (Arridge et al., 2019; Ongie
et al., 2020), such as those encountered in medical imag-
ing. But despite unprecedented empirical performance in
various practical scenarios, a lack of evidence for the relia-
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bility of these methods remains. For instance, Sidky et al.
(2021a) have recently demonstrated that post-processing of
filtered backprojection images with the prominent UNet-
architecture may not yield satisfactory recovery precision
in sparse-view computed tomography (CT). This observa-
tion gave rise to the recent AAPM Grand Challenge “Deep
Learning for Inverse Problems: Sparse-View Computed To-
mography Image Reconstruction”, with the goal “to identify
the state-of-the-art in solving the CT inverse problem with
data-driven techniques” (Sidky et al., 2021b). Here, the
term ‘solving’ is used to describe algorithms that provide
perfect recovery from incomplete, noiseless measurements.

The study of this desirable property was popularized by the
field of compressed sensing (Candès et al., 2006; Donoho,
2006; Foucart & Rauhut, 2013). Indeed, high precision in
the noiseless, undersampled regime can be used to bench-
mark reconstruction methods and is a driving factor for their
acceptance in practice. Therefore, an important open re-
search question is whether deep-learning-based schemes
can achieve such (near-)perfect solutions, comparable to
model-based algorithms like total variation (TV) minimiza-
tion. The present article makes first progress in this direc-
tion, building on our winning submission to the AAPM
challenge. Our main contributions are as follows:

(i) We show that end-to-end neural networks can achieve
near-perfect accuracy on the prescribed CT reconstruction
task. This underscores the reliability of deep-learning-based
solvers for inverse problems, in the sense that they can
match the precision of a widely-accepted benchmark (TV
minimization) in the noiseless limit.

(ii) We give a detailed analysis of our solution strategy,
which has significantly outperformed the runner-up teams.
Although the challenge amounts to a comparison with 24
competing methods, we also explicitly demonstrate the su-
periority over several popular baselines in this work. This
includes the learned primal-dual algorithm (Adler & Öktem,
2018), which is commonly considered as state-of-the-art for
solving inverse problems, cf. Leuschner et al. (2021); Ramzi
et al. (2020). In addition, we show the effectiveness of our
learning pipeline beyond synthetically generated image data:
The proposed neural network scheme produces state-of-the-
art results on the LoDoPaB CT dataset (Leuschner et al.,
2021), currently ranked first in the public leaderboard.
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(iii) We distill several insights of broader interest and con-
ceptual value. Most notably, we found that simple build-
ing blocks (e.g., end-to-end training, alternation between
learned and model-based components, etc.) and a careful
pre-training strategy already allow for remarkable perfor-
mance gains.

(iv) A specific difficulty of the AAPM challenge setup was
an unknown (fanbeam) forward model. Therefore, a crucial
step of our approach consists in the data-driven estimation
of the underlying fanbeam geometry. We accomplish this by
fitting a generic, parameterized fanbeam operator to the pro-
vided sinogram-image pairs in a deep-learning-like fashion
(i.e., by gradient descent with backpropagation/automatic
differentiation). This conception may find further applica-
tion in the context of geometric calibration and forward
operator correction.

Conceptually, our approach stems from the following (de-
batable) observation:

High reconstruction accuracy is only possible if
the forward model is explicitly incorporated into
the solution map, e.g., by an iterative promotion
of data-consistency.

The vital role of the forward operator in data-driven solu-
tions to inverse problems is by no means a new insight. It
is well in line with a central pillar of scientific machine
learning, namely that neural networks can be often enriched
(or constrained) by physical modeling. Indeed, the seminal
works on deep learning techniques for inverse problems are
inspired by unrolling classical algorithms, e.g., see Gregor &
LeCun (2010); Yang et al. (2016); Hammernik et al. (2018);
Aggarwal et al. (2018); Adler & Öktem (2018); Chen et al.
(2018); Schlemper et al. (2019); Hammernik et al. (2021);
Chun et al. (2020); Heaton et al. (2021); Gilton et al. (2021a).
At the present time, most state-of-the-art methods rely on
iterative end-to-end networks and related schemes, e.g.,
see Knoll et al. (2020); Muckley et al. (2020); Leuschner
et al. (2021) for other recent competition benchmarks.

Our contribution to the AAPM challenge is no exception in
that respect. We propose a conceptually simple, yet pow-
erful deep learning pipeline, which turns a post-processing
UNet (Ronneberger et al., 2015) into an iterative reconstruc-
tion scheme. While many of its individual components have
been previously reported in the literature, the overall strategy
is novel. Our design differs from more common unrolled
networks in several aspects, most notably the following
two: (a) we make use of a pre-trained UNet as the com-
putational backbone, and (b) data-consistency is inspired
by an ℓ2-gradient step, but employs the filtered backprojec-
tion (FBP) instead of the regular adjoint. In line with most
previous works, our unrolled network only involves very

few (five) iteration steps. However, we are the first to show
that this is sufficient to match the precision of model-based
solvers, which typically need hundreds or thousands of itera-
tions before convergence (and therefore require significantly
more computation time).

The Bigger Picture

To put our results into a broader context, it is worth consider-
ing an inverse problem in its prototypical, finite-dimensional
form:

y = Fx+ e,

where x ∈ RN denotes the unknown (image) signal, F ∈
Rm×N the forward operator, and y are noisy measurements.
The goal is to reconstruct x from y. The error of any given
reconstruction map R : Rm → RN can be decomposed as∥∥x−R(y)

∥∥
2
≤

∥∥x−R(Fx)
∥∥
2︸ ︷︷ ︸

(a)

+
∥∥R(Fx)−R(y)

∥∥
2︸ ︷︷ ︸

(b)

.

The first term (a) is associated with the accuracy (or pre-
cision) of R and measures how well x can be estimated
in the idealistic situation of noiseless measurements. The
second term (b) captures the robustness of R against pertur-
bations e of the measurements. Adequate control over both
expressions forms the backbone of inverse problem theory
and scientific computing in general.

The present paper is primarily concerned with the accu-
racy term (a), more specifically, the root-mean-square-error
(RMSE). We demonstrate that it can become sufficiently
close to zero (on the image data distribution) when R cor-
responds to a fully data-driven solver. The competitive
setting of the AAPM challenge has provided us with the
right benchmark to conduct such a case study.

Regarding the robustness term (b), we refer to the recent
work by Genzel et al. (2022) for an in-depth case study. It
was shown that even standard end-to-end networks can be
surprisingly robust against adversarial perturbations (i.e.,
worst-case noise), comparable to a provably stable bench-
mark methods. Together with Genzel et al. (2022), the
present work provides further evidence for the reliability of
deep-learning-based solutions to inverse problems.

Organization of This Article

The rest of this article is organized as follows. Section 2
gives a brief overview of the AAPM challenge setup and
the training/test-data. Section 3 is then devoted to a concep-
tual description of our learning pipeline, while more details
on the implementation can be found in Appendix A. Our
results and several accompanying experiments are reported
in Section 4. We conclude with a short discussion in Sec-
tion 5. For an evaluation of our method on the LoDoPaB
CT dataset, see Appendix C.
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Figure 1. AAPM challenge data. Example of a 128-view sino-
gram, FBP reconstruction, and ground-truth phantom image taken
from the AAPM challenge training dataset.

2. AAPM Challenge Setup
The AAPM challenge data is similar to the setting of Sidky
et al. (2021a), i.e., it is based on synthetic 2D grayscale
images of size 512× 512 simulating real-world mid-plane
breast CT device scans. Four different tissues were modeled:
adipose, skin, fibroglandular tissue, and microcalcifications.
To obtain smooth transitions at tissue boundaries, Gaussian
smoothing was applied. A fanbeam geometry with 128
projections over 360 degrees was used to create sinograms
and FBPs, see Fig. 1 for an example. Notably, the exact
fanbeam geometry was not revealed to the participants. No
noise was added to the data, neither to the phantom images
nor the measurements. The provided training set consisted
of 4000 tuples of phantom images, their corresponding 128-
view sinograms, and FBP reconstructions. A test set of 100
pairs of sinograms and FBPs (without publicly available
ground-truth phantoms) was used for the final challenge
evaluation.

Initially, about 50 international teams have participated,
out of which 25 have submitted their method to the final
evaluation. More details about the challenge setup and
results can be found in the official challenge report (Sidky
& Pan, 2021).

3. Methodology
This section gives an overview of our (three-step) method-
ology for the AAPM challenge and motivates our design
choices.1

Step 1: Data-Driven Geometry Identification

In the first step of our reconstruction pipeline, we estimate
the unknown forward operator from the provided training
data. The continuous version of tomographic fanbeam mea-
surements is based on computing line integrals:

p(s, φ) =

∫
L(s,φ)

x0(x, y) d(x, y),

1Our code is available at https://github.com/
jmaces/aapm-ct-challenge.
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Figure 2. Fanbeam geometry. Illustration of the parameters deter-
mining the geometry of the fanbeam CT model.

where x0 is the unknown image and L(s, φ) denotes a line
in fanbeam coordinates, i.e., φ is the fan rotation angle
and s encodes the sensor position; see Fessler (2017) for
more details. In an idealized situation, the fanbeam model is
specified by the following geometric parameters2 (see Fig. 2
for an illustration):

• dsource – distance of the X-ray source to the origin,
• ddetector – distance of the detector array to the origin,
• ndetector – number of detector elements,
• sdetector – spacing of detector elements along the array,
• nangle – number of fan rotation angles,
• φ ∈ [0, 2π]nangle – discrete list of rotation angles.

Here, it is assumed that integrals are only measured along a
finite number of lines, determined by m := ndetector · nangle.
In the sparse-view challenge setup, the resulting forward
operator is severely ill-posed, since only the measurements
of a few fan rotation angles nangle are acquired. Further-
more, the geometric setup is not disclosed to the challenge
participants—it is only known that fanbeam measurements
are used.

We have addressed this lack of information by a data-driven
estimation strategy that fits the above set of parameters to
the given training data. To this end, we first observe that the
previous parametrization is redundant, and without of loss
of generality, we may assume that sdetector = 1 (by rescaling
ddetector appropriately). Further, if the field-of-view angle γ

2We have found that this basic model was enough to accurately
describe the AAPM challenge setup. If needed, it would be pos-
sible to account for other factors such as non-flat detector arrays,
offsets of the axis of rotation from the origin, misalignments of the
detector array, etc.

https://github.com/jmaces/aapm-ct-challenge
https://github.com/jmaces/aapm-ct-challenge
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is known, then the relation

ddetector =
ndetector · sdetector

2 tan γ
− dsource (1)

can be used to eliminate another parameter. Thus, the fan-
beam geometry is effectively determined by the reduced
parameter set (dsource, ndetector, nangle,φ). The training data
provides pairs of discrete images x ∈ R512·512=:N and its
simulated fanbeam measurements y ∈ R128·1024=m, from
which the dimensions nangle = 128 and ndetector = 1024
can be derived. We determine the field of view as γ =
arcsin(256/dsource), so that the maximum inscribed circle
in the discrete image is exactly contained within each fan
of lines, which is a common choice for fanbeam CT. Hence,
(1) leads to

ddetector = 2 · sdetector ·
√

d2source − 2562 − dsource .

The main difficulty of Step 1 lies in the estimation of the
remaining parameters (dsource,φ). To that end, we have
implemented a discrete fanbeam transform from scratch in
PyTorch (together with its corresponding FBP). A distinc-
tive aspect of our implementation is the use of a vectorized
numerical integration that enables the efficient computa-
tion of derivatives with respect to the geometric parameters
by means of automatic differentiation. This feature can
be exploited for a data-driven parameter identification, for
instance, by a gradient descent. More precisely, we use a
ray-driven numerical integration for the forward model and
a pixel-driven and sinogram-reweighting-based FBP (with a
Hamming filter), see Fessler (2017, Sec. 3.9.2). In addition
to the parameters (dsource,φ), we also introduce learnable
scaling factors sfwd and sfbp for the forward and inverse
transform, respectively. They account for ambiguities in
chosing the discretization units of distance compared to the
actual physical units of distance.

As previously indicated, we estimate the free parameters
θfan = (sfwd, dsource,φ) ∈ R130 of the implemented for-
ward operator F [θfan] ∈ Rm×N in a deep-learning-like
fashion: The ability to compute derivatives dF

dθfan
allows

us to make use of the M = 4000 sinogram-image pairs
{(yi,xi)}Mi=1 by solving

min
θfan

1
M

M∑
i=1

∥∥F [θfan](x
i)− yi

∥∥2
2

(2)

with a variant of gradient descent (see Remark 3.1 below
for details). Finally, we determine sfbp by solving

min
sfbp

1
M

M∑
i=1

∥∥xi − FBP[θfan, sfbp](y
i)
∥∥2
2
, (3)

while keeping the already identified parameters fixed. We
will use the short-hand notation F and FBP for the esti-
mated operators F [θfan] and FBP[θfan, sfbp] : Rm → RN ,
respectively.

Remark 3.1. (a) Clearly, the formulation (2) is non-
convex and therefore it is not clear whether gradient descent
enables an accurate estimation of the underlying fanbeam
geometry. Indeed, standard gradient descent was found to
be very sensitive to the initialization of θfan and got stuck in
bad local minima. To overcome this issue, we solve (2) by
a coordinate descent instead, which alternatingly optimizes
over sfwd, dsource, and φ with individual learning rates. This
strategy was found to effectively account for large deviations
of gradient magnitudes of the different parameters. Indeed,
we observed a fast convergence and a reliable identification
of θfan, independently of the initialization.

(b) In principle, the strategy of (2) requires only few train-
ing samples to be successful. However, when verifying
the robustness of the outlined strategy against measurement
noise, we observed that it is beneficial to employ more train-
ing data.

(c) Subsequent to the estimation of an accurate fanbeam
geometry, we still recognized a small systematic error in our
forward model. We suspect that it is caused by subtle differ-
ences in the numerical integration in comparison to the true
forward model of the AAPM challenge. In compensation,
we compute the (pixelwise) mean error over the training set,
as an additive correction of the model bias.

Step 2: Pre-Training a UNet as Computational
Backbone

The centerpiece of our reconstruction scheme is formed by
a standard UNet-architecture UNet[θ] : RN → RN (Ron-
neberger et al., 2015) which is employed as a residual
network to post-process sparse-view FBP images. The
learnable parameters θ are trained from the collection of
M = 4000 sinogram-image pairs {(yi,xi)}Mi=1 provided
by the AAPM challenge. This is achieved by standard em-
pirical risk minimization, i.e., by (approximately) solving

min
θ

1
M

M∑
i=1

∥∥xi−[UNet[θ] ◦ FBP] (yi)
∥∥2
2
+µ·∥θ∥22 , (4)

where we choose µ = 10−3, and FBP : Rm → RN is
obtained from Step 1. This minimization problem is tackled
by 400 epochs of mini-batch stochastic gradient descent
and the Adam optimizer (Kingma & Ba, 2014) with initial
learning rate 0.0002 and batch size 4.
Remark 3.2. The post-processing strategy of Step 2 was
pioneered by Kang et al. (2017); Chen et al. (2017b) and
popularized by Jin et al. (2017); Chen et al. (2017a), among
many others. Due to the multi-scale encoder-decoder struc-
ture with skip-connections, the UNet-architecture is very
efficient in handling image-to-image problems. Therefore,
solving (4) typically works out-of-the-box without requir-
ing sophisticated initialization or optimization strategies
(even in seemingly hopeless situations (Hauptmann & Adler,



Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

y FBP UNet[θ̃k] DCλk,y x̂
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Figure 3. Constructing an iterative scheme. Schematic recon-
struction pipeline of ItNetK [θ] defined in (5).

2020)). Making use of a more powerful or a more memory-
efficient network would be beneficial, e.g., see results for
the Tiramisu network in Section 4. However, we preferred
to keep our workflow as simple as possible and therefore
decided to stick to the standard UNet as the main computa-
tional building block.

Step 3: Constructing an Iterative Scheme

Our main reconstruction method is called ItNet (short for
iterative network). It incorporates the estimated forward
model F from Step 1 (and the associated inversion FBP)
via the following iterative procedure:

ItNetK [θ] : Rm → RN ,

y 7→
[
⃝K

k=1

(
DCλk,y ◦ UNet[θ̃k]

)
◦ FBP

]
(y),

(5)

for the learnable parameters θ = {θ̃k, λk}Kk=1, K ∈ N and
the k-th data-consistency layer

DCλk,y : RN → RN , x 7→ x− λk · FBP(Fx− y). (6)

The ItNet-architecture3 is illustrated in Fig. 3. We train
it by empirical risk minimization analogously to (4) with
µ = 10−4. The UNet-parameters θ̃k are initialized by the
weights obtained in Step 2. More details on our precise
training approach during the challenge submission phase
can be found in Appendix A.

We close this section by pointing out several important
design choices in our ItNet-architecture:

(i) The centerpiece of ItNet is the UNet-architecture. This
stands in contrast to earlier generations of unrolled iter-
ative schemes, which rely on basic convolutional blocks
instead, e.g., see Adler & Öktem (2018); Yang et al. (2016).
We have found that it is advantageous to exploit the effi-
cacy of UNet-like image-to-image networks as enhancement
blocks. This is in line with recent state-of-the-art models,
which also make use of various advanced sub-networks, e.g.,
see Knoll et al. (2020); Muckley et al. (2020); Hammernik
et al. (2021); Ramzi et al. (2020); Sriram et al. (2020).

3We drop the subscript K in ItNetK whenever it is irrelevant.

(ii) The initialization of the UNet-parameters θ̃k with a pre-
trained model from Step 2 has led to significant performance
gains, regarding both training speed and reconstruction ac-
curacy. We refer to Section 4 and especially Fig. 8 for a
more details.

(iii) Our data-consistency layer is inspired by a gradient
step on the loss x 7→ λk

2 ∥Fx− y∥22, which would result in
the update x 7→ x − λk · F T(Fx − y). We depart from
this scheme by replacing the unfiltered backprojection F T

by its filtered counterpart FBP; cf. Ding et al. (2020); Tirer
& Giryes (2021). This modification leads to significantly
improved results for two reasons: (a) it counteracts the
fact that the unfiltered backprojection is smoothing, and
(b) it produces images with pixel values at the right scale.
Therefore, we interpret the ItNet as an industry-like iterative
CT-algorithm (e.g., see Willemink & Noël (2019)), rather
than a neurally-augmented convex optimization scheme.

4. Results and Analysis
This section presents the main findings of our case study. We
begin with several challenge-related experiments, followed
by a more in-depth analysis of our method.

Winning the AAPM Challenge and Beyond

In terms of quantitative similarity measures, we restrict
ourselves to reporting the average RMSE, which was the
main evaluation metric for the AAPM challenge (Sidky
et al., 2021b; Sidky & Pan, 2021). With an ensembling
of ten ItNet5 (more precisely a variant thereof referred to
as ItNet-post, see Appendix A), we were able to achieve
near-exact recovery on the test set, thereby winning the
challenge with a margin of about an order of magnitude
ahead of the runner-up team. The RMSE scores of all par-
ticipating teams were spread across more than two orders of
magnitude in a range between 6.37e-6 (ours) and 7.90e-4.
Remarkably, four out of the five top-performing teams have
estimated the forward fanbeam operator and made use of
the sinogram data. Two of them computed an approximate
TV minimization solution that was further processed by a
trained neural network. The resulting solution maps involve
much higher computational costs than our ItNet-post, due to
a significantly larger number of forward-model evaluations.
Note that reaching the first place amounts to a direct com-
parison with 24 competing methods, see the official AAPM
challenge report (Sidky & Pan, 2021) for more details.

Nevertheless, for further analysis, we have benchmarked
variants of the ItNet with different in-house baselines and
other state-of-the-art methods. More specifically, we con-
sider a post-processing of the FBP by the more powerful
Tiramisu-architecture (Jégou et al., 2017; Bubba et al., 2019;
Genzel et al., 2022) (in comparison to the UNet) as well as
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Table 1. Average RMSE scores for further evaluation. “Challenge FBP” corresponds to the FBP reconstructions included in the
challenge dataset. The method “UNet ◦ FBP” corresponds to a post-processing UNet as obtained from Step 2 of Section 3. For more
details on our winning-method “ItNet-post ens.” (and its pre-steps “ItNet4” and “ItNet-post”), see Appendix A.

Baselines Our Network Variants Comparison Networks

Challenge FBP FBP UNet ◦ FBP ItNet4 ItNet-post ItNet-post ens. Tiramisu LPD

RMSE 5.72e-3 3.40e-3 3.50e-4 1.64e-5 1.05e-5 6.42e-6 2.24e-4 1.24e-4

Figure 4. Reconstruction results. We display individual reconstructions for an image from the validation set. The first row compares the
FBP provided by the AAPM challenge with our FBP (= FBP, see Step 1 of Section 3). The second row compares a post-processing
Tiramisu with the (ensemble) ItNet-post. The ground-truth image is omitted because it is visually indistinguishable from the reconstruction
of ItNet-post.

Figure 5. Consistently accurate? The plot on the left-hand side visualizes the reconstruction errors of the (ensemble) ItNet-post with
respect to the RMSE and the WCRMSE (worst-case RMSE) over a set of 10000 test images. Note that the WCRMSE was used as
secondary challenge metric, computing the highest RMSE value over all 25 × 25 sub-patches of each image. The error distribution
indicates a low variance in the reconstruction performance of our method. On the right-hand side, we show the worst-case 25 × 25
sub-patches of the images corresponding to the red point (worst RMSE) and green point (worst WCRMSE). The black point represents
the average RMSE and WCRMSE.
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the iterative learned primal-dual (LPD) algorithm (Adler &
Öktem, 2018) (modified by replacing the unfiltered backpro-
jection with the FBP). LPD has been recently reported as
state-of-the-art in the literature, e.g., see Ramzi et al. (2020);
Leuschner et al. (2021). Table 1 shows the average RMSE
scores for all methods4 and Fig. 4 visualizes reconstructions
of an image from the validation set.

After the competition period, the challenge organizer has
provided us with 10000 additional test samples to increase
the statistical significance of our evaluation. The resulting
error distribution is visualized in Fig. 5. Although there are
very few outliers, even these reconstructions are visually
indistinguishable from the corresponding ground-truth phan-
toms. This underscores that the ItNet-post solves the CT
inverse problem on the given data distribution satisfactorily.

Data-Consistency

A crucial feature of a proper solver for an inverse problem
is its consistency with the forward model. In our case, this
means that the difference y − F · ItNet(y) should be as
small as possible. We analyze this aspect in Fig. 6.5 We
observe that the data-consistency error is dominated by the
error caused by the estimated forward model F (according
to Step 1 of Section 3). This indicates that the performance
of the ItNet could be further improved if the exact forward
operator would be available. To test this hypothesis, we
have trained an ItNet on sinogram data that was simulated
from the ground-truth phantoms using our own estimated
forward operator. As expected, the resulting ItNetSim is
more accurate (about factor 2), and according to Fig. 6
bottom right, implies a much smaller data-consistency error.
It is also noteworthy that the loss of data-consistency for
the Tiramisu is about a factor 20 larger compared to the
ItNet,6 which highlights a typical downside of simple post-
processing approaches.

Forward Operator Needed? ... Yes! But How Often?

The previous considerations have particularly demonstrated
that incorporating the forward model is key to highly accu-
rate and data-consistent reconstructions. However, invoking
the forward operator often forms the computational bottle-
neck of a given solution method. It is therefore important
to analyze the effective number of forward/adjoint operator
calls required for satisfactory precision. We address this by

4Note that we report the RMSE on a subset of 125 images from
the training set used for validation. Hence, values differ slightly
from the actual results on the official test set. In the final challenge
evaluation, ItNet-post has achieved an RMSE of 6.37e-6.

5Here, we have considered an ensemble of five ItNet4.
6This refers to the ratio RMSE(y,F ·Tiramisu(y))−RMSE(y,Fx)

RMSE(y,F ·ItNet(y))−RMSE(y,Fx)
.

Figure 6. Data consistency. We analyze the accuracy of our esti-
mated forward operator by displaying the difference y−Fx for a
sinogram-image pair (y,x) from the validation set (top left); the
corresponding error is the RMSE averaged over all differences.
The difference y − F · ItNet(y) is visually nearly indistinguish-
able (top right), showing that ItNet inherits the inaccuracies from
the forward model. Indeed, ItNetSim exhibits a much smaller
data-consistency error due to a perfectly matching forward model
(bottom right). In contrast, post-processing via Tiramisu (cf. Ta-
ble 1) reveals a clear lack of data-consistency (bottom left). All
images are shown within the same dynamical range.

training ItNetK for different numbers of iterations.7 In a nut-
shell, Fig. 7 confirms that only a few forward operator calls
are sufficient for near-exact recovery by the ItNet, which is
a notable difference to classical model-based methods like
TV-minimization. A closer look reveals that (a) not sharing
the UNet-weights consistently outperforms weight sharing8

by a small margin independent of the number of iterations,
and (b) there is a sweetspot at about K = 5 after which
the performance gain due to increasing K is negligible and
only the training time increases. For a further discussion of
weight sharing, see Appendix B.

Pre-Training Matters

When constructing the ItNet according to Step 3 of Sec-
tion 3, we have observed that it is crucial to initialize
the UNet-parameters θ̃k by the weights from the post-
processing network in Step 2. This does not only increase

7Due the significant computational effort required to conduct
such an experiment, this was done on subsampled 256 × 256
phantom images and simulated 64-view sinograms.

8This means that the UNet-parameters are shared between all
iterations, i.e., enforcing θ̃1 = · · · = θ̃K at the training stage.
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Figure 7. The deeper the better? Accuracy of ItNetK for different K with (blue) and without (orange) UNet weight sharing. The radii
of the circles are proportional to the training time. The mean RMSE (± std. dev.) on a hold-out evaluation data set is reported over 5
different training/validation splits. The original AAPM challenge data was subsampled to the resolution 256× 256 for this experiment.

Figure 8. The power of pre-training. Loss curves when training
the ItNet with and without a pre-initialization from Step 2 of
Section 3. Note that the above loss curve only corresponds to a
part of our full training pipeline, see Fig. 9 in Appendix A for the
complete picture.

the speed of convergence of training ItNet, but it also sig-
nificantly improves the final accuracy, see Fig. 8 for cor-
responding loss curves. Thus, our results show that the
pre-initialization of the UNet-blocks allows finding better
local minima. While the benefits of pre-trained modules are
well-known for many standard machine learning tasks, to
the best of our knowledge, this has not been reported in the
context of inverse problems yet.

5. Conclusion
We have demonstrated that deep-learning-based solvers can
produce near-perfect reconstructions for a noise-free CT
inverse problem. While our approach provides evidence
of feasibility, several aspects are beyond the scope of this
article, some of which are pointed out in the following.

How accurate can/should we become? The reconstruction
error of ItNet-post reported in Table 1 is not exactly zero, yet
comparable to the precision of TV minimization, cf. Sidky
et al. (2021a). There is no evidence why even more accurate
results should not be achievable, for example, by increas-
ing the internal machine precision of PyTorch (which is
≈1.19e-7 for float32); but this tweak would certainly also
affect model-based algorithms. However, non-perfect re-
covery is not a severe issue from an applied perspective,
since it is typically not required for practical solutions to
inverse problems. We believe that our submission to the
AAPM challenge has obtained satisfactory results in that
respect (i.e., reconstructions visually indistinguishable from
the ground-truth phantoms; see Fig. 5). Having said this,
the term “near-perfect accuracy” should be used with some
care when it comes to real-world scenarios. For instance,
realistic CT systems involve analog-to-digital conversion
processes and measurement noise, which inevitably leads
to reconstruction errors. Therefore, the operating regime of
the present paper is primarily a testing ground for exploring
the potential capabilities of learning-based methods.

Fully data-driven or hybrid method? Although the ItNet-
architecture is inspired by unrolling, it is not clear to us
how well its internal mechanisms match those of classical
iterative algorithms. Indeed, a distinctive feature of our
approach is that only very few (five) iterations can achieve
near-perfect recovery. This stands in stark contrast to model-
based counterparts, which typically require hundreds or
thousands of iterations to converge (resulting in significantly
increased computation times). Therefore, we prefer viewing
the ItNet as fully data-driven pipeline that is model-aided
by data-consistency terms, rather than a hybrid method; see
also Shlezinger et al. (2020). More generally, we suspect
that viewing unrolled networks as neurally-enhanced iter-
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ative schemes only partially explains the success of deep
learning in inverse problems.

Model distortions? Since the purpose of data-driven meth-
ods is to adapt to a specific data distribution, the generaliza-
tion to out-of-distribution features and forward-model distor-
tions cannot be taken for granted. This aspect forms a field
of active research, e.g., see Antun et al. (2020); Darestani
et al. (2021); Gilton et al. (2021b) for initial results, but
clearly goes beyond the scope of this paper.

Generalization to other (inverse) problems? The AAPM
challenge has provided an ideal experimental area to test our
research hypothesis. Although this has enabled an insightful
reliability check, a foundational understanding of learned
reconstruction methods is still in its infancy. In particular,
it remains speculative to what extent our findings would
generalize beyond the sparse-view, mono-energy CT setup.
Therefore, similar case studies for different types of inverse
problems and real-world data are important steps for future
research. Our evaluation on the more realistic LoDoPaB CT
dataset in Appendix C can be seen as a first effort in that
direction.
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A. Exact AAPM Challenge Setup
To ensure reproducability, we give an exact account of how we trained our winning submission to the AAPM challenge
(team-name: robust-and-stable). Since the systematic investigation of the ItNet-architecture was conducted after
the challenge submission phase, it became clear that not all of the substeps outlined below have a notable impact on the
performance (see also Section 4).

The following details are related to Step 3 of Section 3 (“Constructing an Iterative Scheme”). We start by training an
ItNet4 (with weight sharing) for 500 epochs of mini-batch stochastic gradient descent and Adam with an initial learning
rate of 8 · 10−5 and a batch size of 2 (restarting Adam after 250 epochs). Then, we improve the accuracy by the following
post-training strategy: First, the ItNet4 is extended by one more iteration:

ItNet-post[θ] : Rm → RN ,

y 7→
[
⃝5

k=1

(
DCλk,y ◦ UNet[θ̃k]

)
◦ FBP

]
(y),

(7)

where θ̃k is initialized with the optimized weights from ItNet4 for k = 1, . . . , 4, and we set θ̃5 := θ̃4. Next, ItNet-post is
fine-tuned by keeping the weights θ̃1 = θ̃2 = θ̃3 of the first three UNet-blocks fixed and optimizing only over the weights
of the last two iterations (without weight sharing).

Aiming at an additional training speed-up, we use the initialization λ = [1.1, 1.3, 1.4, 0.08] for the data-consistency
parameters of ItNet4, which was found by pre-training. Similarly, ItNet-post is initialized with the optimized values from
ItNet4 for k = 1, 2, 3, together with λ4 = 1.0 and λ5 = 0.1.

To improve the overall performance of our networks, we have additionally applied the following “tricks” for fine tuning,
which are ordered by their importance:

(i) Due to statistical fluctuations, the networks typically exhibit slightly different reconstruction errors, despite using the
same training pipeline. The final reconstructions are therefore computed by an ensemble of ten networks, each trained on a
different split of the training set.

(ii) Due to the training with small batch sizes, we replace batch normalization of the UNet-architecture by group normal-
ization (Wu & He, 2018).

(iii) We equip the UNet-blocks with a few memory channels, i.e., one actually has that UNet[θ] : RN × (RN )cmem →
RN × (RN )cmem ; cf. Putzky & Welling (2017); Adler & Öktem (2018). While the original image-enhancement channel is
not altered, the output of the additional channels is propagated through the ItNet, playing the role of a hidden state (in the
spirit of recurrent neural networks). For our experiments, we use cmem = 5.

(iv) It was beneficial to restart occasionally the training of the networks (see also Fig. 9).

The following modifications did not lead to a gain in performance and were omitted:

(i) Improving FBP in Step 1 of Section 3 by making some of it components learnable (e.g., the filter), cf. Würfl et al.
(2016). Although this is advantageous for the reconstruction quality of FBP itself, it leads to worse results for the ItNet. This
suggests that a combination of model- and data-based methods benefits most from precise and unaltered physical models.

(ii) Adding additional convolutional-blocks in the measurement domain of ItNet.

(iii) Modifying the standard ℓ2-loss by incorporating the RMSE or the ℓ1-norm.

(iv) Utilizing different optimizers such as SGD, RAdam (Liu et al., 2020), or AdamW (Loshchilov & Hutter, 2019).

In Fig. 9, we visualize the RMSE loss curves of our training pipeline, i.e.,

UNet ◦ FBP → ItNet4(+restart) → ItNet-post(+2× restart).
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Figure 9. Loss curves and network training. The first two plots demonstrate that ItNet4 improves the RMSE by approximately an order
of magnitude in comparison to a post-processing by UNet. Furthermore, the gain of our UNet-initialization strategy can be seen in the
second graph. The last two plots illustrate the advantages of restarting and of the post-training strategy, respectively. Note that we display
the RMSE on the training and validation sets instead of the actual ℓ2-losses, which behave similarly.

B. The Effect of Weight Sharing
General aspects of weight sharing for unrolled algorithms have been extensively discussed in the literature, e.g., see
(Aggarwal et al., 2018; Hammernik et al., 2021). Fig. 10 gives some insights in the context of our specific approach.
It clearly indicates that weight sharing also changes the reconstruction dynamic within the neural networks. Earlier
iteration steps of the weight-shared ItNets are more effective, while the non-weight-shared counterparts draw most of their
performance from the later steps. This suggests a trade-off between increasing the model capacity and the difficulty of
optimizing the resulting network, while weight sharing forms a simple remedy; cf. Hammernik et al. (2021). However, we
conjecture that an improved training strategy for the non-weight-shared networks might unlock the potential of the early-step
UNet-blocks. This could lead to an even larger performance gap between the final reconstruction accuracy of ItNets with
and without weight sharing. A systematic study of this aspect is left to future research.

Figure 10. A look inside. Accuracy of ItNet4 and ItNet8 with (blue) and without (orange) UNet weight sharing when using only the first
k iteration steps and discarding the rest. The mean RMSE (± std. dev.) on a hold-out evaluation data set is reported over 5 different
training/validation splits. The original AAPM challenge data was subsampled to the resolution 256× 256 for this experiment.
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C. Performance on Real-World Image Data
In order to assess the effectiveness of our method on real-world images and noisy (but still simulated) measurements, we
have applied it to the low-dose parallel beam (LoDoPaB) CT dataset (Leuschner et al., 2021). This dataset is part of a past
challenge and was successfully used to benchmark various deep-learning-based reconstruction schemes. It consists of 42895
two-dimensional human chest CT slices and their low-intensity measurements, see Leuschner et al. (2021) for details on the
low-dose setup. For our case study, we have applied Step 2 and Step 3 of the methodology in Section 3.9 The resulting
ItNet has reached the first place in the public leaderboard (still open for submissions),10 thereby outperforming various other
methods, such as the learned primal-dual algorithm (Adler & Öktem, 2018) (cf. Table 1). A brief analysis and visualization
of our reconstructions results can be found in Fig. 11. Overall, we conclude that our solution strategy can also achieve
state-of-the-art performance on natural image data.

Figure 11. Results for LoDoPaB CT. The plot on the left-hand side visualizes the reconstruction performance of the ItNet with respect
to the challenge metrics (SSIM and PSNR) where each blue point corresponds to one image in the LoDoPaB CT validation set (3522
images). We also show individual reconstructions for the red point (worst SSIM) and black point (closest to average SSIM and PNSR) on
the right-hand side. Most notable is that the poor SSIM value of the red point is rather due to a low-quality ground-truth image, than a
low-quality reconstruction.

9We have trained an ensemble of five ItNet3 with initial learning rate of 8 · 10−5 and batch size 2. As loss function, a combination of
the MSE and SSIM was used.

10Team-name: RobustAndStable; public leaderboard on https://lodopab.grand-challenge.org (accessed on June 7,
2022).

https://lodopab.grand-challenge.org

