
Faster Privacy Accounting via Evolving Discretization

Badih Ghazi 1 Pritish Kamath 1 Ravi Kumar 1 Pasin Manurangsi 1

Abstract

We introduce a new algorithm for numerical com-
position of privacy random variables, useful for
computing the accurate differential privacy param-
eters for composition of mechanisms. Our algo-
rithm achieves a running time and memory usage
of polylog(k) for the task of self-composing a
mechanism, from a broad class of mechanisms, k
times; this class, e.g., includes the sub-sampled
Gaussian mechanism, that appears in the analy-
sis of differentially private stochastic gradient de-
scent. By comparison, recent work by Gopi et al.
(2021) has obtained a running time of Õ(

√
k)

for the same task. Our approach extends to the
case of composing k different mechanisms in the
same class, improving upon their running time
and memory usage from Õ(k1.5) to Õ(k).

1. Introduction
Differential privacy (DP) (Dwork et al., 2006b;a) has be-
come the preferred notion of privacy in both academia and
the industry. Fueled by the increased awareness and de-
mand for privacy, several systems that use DP mechanisms
to guard users’ privacy have been deployed in the indus-
try (Erlingsson et al., 2014; Shankland, 2014; Greenberg,
2016; Apple Differential Privacy Team, 2017; Ding et al.,
2017; Kenthapadi & Tran, 2018; Rogers et al., 2021), and
the US Census (Abowd, 2018). Besides the large volume
of data, many of these systems offer real-time private data
analytic and inference capabilities, which entail strict com-
putational efficiency requirements on the underlying DP
operations.

We recall the definition of DP (Dwork et al., 2006b;a):

Definition 1.1 (DP). Let ε > 0 and δ ∈ [0, 1]. A ran-
domized algorithm M : Xn → Y is (ε, δ)-DP if, for

*Equal contribution 1Google Research, USA. Correspondence
to: Pritish Kamath <pritish@alum.mit.edu>, Pasin Manurangsi
<pasin@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

all x, x′ ∈ Xn differing on a single index and all outputs
S ⊆ Y , we have Pr[M(x) ∈ S] ≤ eε ·Pr[M(x′) ∈ S]+ δ.

The DP guarantees of a mechanism are captured by the
privacy parameters ε and δ; the smaller these parameters,
the more private the mechanism. Often a mechanism is
simultaneously DP for multiple privacy parameters; this is
captured by studying the privacy loss of a mechanismM—
the curve δM(·) for which the mechanism is (ε, δM(ε))-DP.

A fundamental mathematical property satisfied by DP is
composition, which prescribes the privacy guarantees of
results from executing multiple DP mechanisms. In basic
composition (Dwork et al., 2006a), a mechanism that returns
the results of executing an (ε1, δ1)-DP mechanism and an
(ε2, δ2)-DP mechanism is (ε1 + ε2, δ1 + δ2)-DP. Unfortu-
nately, this bound becomes weak when composing a large
number of mechanisms. The advanced composition (Dwork
et al., 2010) offers stronger bounds: roughly speaking, com-
posing k mechanisms that are each (ε, δ)-DP yields a mech-
anism whose privacy parameters are of the order of

√
kε

and kδ—clearly more desirable than the basic composition.
In fact, obtaining tight composition bounds has been an
active research topic. Kairouz et al. (2015) showed how
to obtain the exact privacy parameters of self-composition
(mechanism composed with itself), while Murtagh & Vad-
han (2016) showed that the corresponding problem for the
more general case is #P-complete.

Privacy Loss Distribution (PLD). Tighter bounds for
privacy parameters that go beyond advanced composition
are possible if the privacy loss of the mechanism is taken
into account. Meiser & Mohammadi (2018); Sommer et al.
(2019) initiated the study of numerical methods for accu-
rately estimating the privacy parameters, using the privacy
loss distribution (PLD) of a mechanism. The PLD is the
probability mass function of the so-called privacy loss ran-
dom variable (PRV) for discrete mechanisms, and its density
function for continuous mechanisms (see Section 2 for for-
mal definitions). PLDs have two nice properties: (i) tight
privacy parameters can be computed from the PLD of a
mechanism and (ii) the PLD of a composed mechanism is
the convolution of the individual PLDs. Property (ii) makes
PLD amenable to FFT-based methods.

Koskela et al. (2020) exploited this property to speed up the
computation of the PLD of the composition. An important
step to retain efficiency using PLDs is approximating the
distribution so that it has finite support; this is especially
needed in the case when the PLD is continuous or has a
large support. PLD implementations have been at the heart
of many DP systems and open-source libraries including
(Lukas Prediger, 2020; Google, 2020; Microsoft, 2021). To
enable scale and support latency considerations, the PLD
composition has to be as efficient as possible. This is the
primary focus of our paper.

Our starting point is the work of Koskela et al. (2020;
2021); Koskela & Honkela (2021), who derived explicit
error bounds for the approximation obtained by the FFT-
based algorithm. The running time of this algorithm for
k-fold self-composition of a mechanismM that is (ε0, 0)-
DP is1 Õ

(
k2ε0
δerr

)
. When ε0 = 1√

k·log(1/δerr)
, this running

time is Õ
(

k1.5

δerr

)
, where δerr is the additive error in δ. Gopi

et al. (2021) improved this bound to obtain an algorithm
with running time of

Õ

(
k0.5

√
log 1

δerr

εerr

)
,

where εerr is the additive error in ε. When composing k
different mechanisms, their running time is

Õ

(
k1.5

√
log 1

δerr

εerr

)
.

Our Contributions. We design and study new algorithms
for k-fold numerical composition of PLDs. Specifically, for
reasonable choice of mechanisms, we

▷ obtain (Section 3) a two-stage algorithm for self-
composing PLDs, with running time

Õ

k0.25
√
log 1

δerr

εerr

 .

▷ provide (Section 4) an experimental evaluation of the
two-stage algorithm, comparing its runtime to that of the
algorithm of Gopi et al. (2021). We find that the speedup
obtained by our algorithm improves with k.

▷ extend (Section 5) the two-stage algorithm to a recursive
multi-stage algorithm with a running time of

Õ

polylog(k)
√
log 1

δerr

εerr

 .

1For any positive T , we denote by Õ(T) any quantity of the
form O(T · polylog(T)).

Both the two-stage and multi-stage algorithms extend to the
case of composing k different mechanisms. In each case,
the running time increases by a multiplicative O(k) factor.
Note that this factor is inevitable since the input “size” is
k—indeed, the algorithm needs to read the k input PLDs.
We defer the details of this extension to Appendix B.

Algorithm Overview. The main technique underlying our
algorithms is the evolution of the discretization and trun-
cation intervals of the approximations of the PRV with the
number of compositions. To describe our approach, we first
present a high-level description of the algorithm of Gopi
et al. (2021). Their algorithm discretizes an O(1)-length
interval into bucket intervals each with mesh size ≈ 1

k0.5 ,
thus leading to a total of O(k0.5) buckets and a running time
of Õ(k0.5) for the FFT convolution algorithm. Both these
aspects of their algorithm are in some sense necessary: a
truncation interval of length≪ O(1) would lose significant
information about the k-fold composition PRV, whereas a
discretization interval of length≫ 1

k0.5 would lose signifi-
cant information about the original PRV; so relaxing either
would lead to large approximation error.

The key insight in our work is that it is possible to avoid
having both these aspects simultaneously. In particular, in
our two-stage algorithm, the first stage performs a k0.5-fold
composition using an interval of length ≈ 1

k0.25 discretized
into bucket intervals with mesh size ≈ 1

k0.5 , followed by an-
other k0.5-fold composition using an interval of length O(1)
discretized into bucket intervals with mesh size ≈ 1

k0.25 .
Thus, in each stage the number of discretization buckets
is Õ(k0.25) leading to a final running time of Õ(k0.25) for
performing two FFT convolutions.

The recursive multi-stage algorithm extends this idea
to O(log k) stages, each performed with an increasing
discretization interval and truncation interval, ensuring
that the number of discretization buckets at each step is
O(polylog(k)).

Experimental Evaluation. We implement our two-stage
algorithm and compare it to baselines from the literature.
We consider the sub-sampled Gaussian mechanism, which
is a fundamental primitive in private machine learning and
constitutes a core primitive of training algorithms that use
differentially private stochastic gradient descent (DP-SGD)
(see, e.g., (Abadi et al., 2016)). For 216 compositions and
a standard deviation of ≈ 226.86 and with subsampling
probability of 0.2, we obtain a speedup of 2.66× compared
to the state-of-the-art. We also consider compositions of the
widely-used Laplace mechanism. For 216 compositions, and
a scale parameter of ≈ 1133.84 for the Laplace distribution,
we achieve a speedup of 2.3×. The parameters were chosen
such that the composed mechanism satisfies (ε = 1.0, δ =
10−6)-DP. See Section 4 for more details.

Related Work. In addition to Moments Accoun-
tant (Abadi et al., 2016) and Rényi DP (Mironov, 2017)
(which were originally used to bound the privacy loss in
DP deep learning), several other tools can also be used to
upper-bound the privacy parameters of composed mech-
anisms, including concentrated DP (Dwork & Rothblum,
2016; Bun & Steinke, 2016), its truncated variant (Bun et al.,
2018), and Gaussian DP (Dong et al., 2019; Bu et al., 2020).
However, none of these methods is tight; furthermore, none
of them allows a high-accuracy estimation of the privacy
parameters. In fact, some of them require that the moments
of the PRV are bounded; the PLD composition approach
does not have such restrictions and hence is applicable to
mechanisms such as DP-SGD-JL (Bu et al., 2021).

In a recent work, Doroshenko et al. (2022) proposed a differ-
ent discretization procedure based on whether we want the
discretized PLD to be “optimistic” or “pessimistic”. They
do not analyze the error bounds explicitly but it can be seen
that their running time is Õ(k), which is slower than both
our algorithm and that of Gopi et al. (2021).

Another recent work (Zhu et al., 2022) developed a rigorous
notion of “worst-case” PLD for mechanisms, under the
name dominating PLDs. Our algorithms can be used for
compositions of dominating PLDs; indeed, our experimental
results for Laplace and (subsampled) Gaussian mechanisms
are already doing this implicitly. Furthermore, Zhu et al.
(2022) propose a different method for computing tight DP
composition bounds. However, their algorithm requires an
analytical expression for the characteristic function of the
PLDs. This may not exist, e.g., we are unaware of such an
analytical expression for subsampled Gaussian mechanisms.

2. Preliminaries
Let Z>0 denote the set of all positive integers, R≥0 the set of
all non-negative real numbers, and let R = R∪{−∞,+∞}.
For any two random variables X and Y , we denote by
dTV(X,Y) their total variation distance.

2.1. Privacy Loss Random Variables

We will use the following privacy definitions and tools that
appeared in previous works on PLDs (Sommer et al., 2019;
Koskela et al., 2020; Gopi et al., 2021).

For any mechanismM, and any ε ∈ R≥0, we denote by
δM(ε) the smallest value δ such thatM is (ε, δ)-DP. The
resulting function δM(·) is said to be the privacy curve
of the mechanismM. A closely related notion is the pri-
vacy curve δ(X||Y) : R≥0 → [0, 1] between two random
variables X,Y , and which is defined, for any ε ∈ R≥0 as

δ(X||Y)(ε) = sup
S⊂Ω

Pr[Y ∈ S]− eε Pr[X ∈ S],

where Ω is the support of X and Y . The privacy loss random
variables associated with a privacy curve δM are random
variables (X,Y) such that δM is the same curve as δ(X||Y),
and that satisfy certain additional properties (which make
them unique). While PRVs have been defined earlier in
Dwork & Rothblum (2016); Bun & Steinke (2016), we use
the definition of Gopi et al. (2021):
Definition 2.1 (PRV). Given a privacy curve δM : R≥0 →
[0, 1], we say that random variables (X,Y) are privacy
loss random variables (PRVs) for δM, if (i) X and Y are
supported on R, (ii) δ(X||Y) = δM, (iii) Y (t) = etX(t)
for every t ∈ R, and (iv) Y (−∞) = X(∞) = 0, where
X(t) and Y (t) denote the PDFs of X and Y , respectively.
Theorem 2.2 (Gopi et al. (2021)). Let δ be a privacy curve
that is identical to δ(P ||Q) for some random variables P
and Q. Then, the PRVs (X,Y) for δ are given by

X = log
(

Q(w)
P (w)

)
where ω ∼ P,

and
Y = log

(
Q(w)
P (w)

)
where ω ∼ Q.

Moreover, we define δY (ε) := EY [(1− eε−Y)+] for every
ε ∈ R and define εY (δ) as the smallest ε such that δY (ε) ≤
δ.

Note that δY (ε) is well defined even for Y that is not a
privacy loss random variable.

If δ1 is a privacy curve identical to δ(X1||Y1) and δ2 is a
privacy curve identical to δ(X2||Y2), then the composition
δ1⊗δ2 is defined as the privacy curve δ((X1, X2)||(Y1, Y2)),
where X1 is independent of X2, and Y1 is independent of
Y2. A crucial property is that composition of privacy curves
corresponds to addition of PRVs:
Theorem 2.3 (Dwork & Rothblum (2016)). Let δ1 and δ2
be privacy curves with PRVs (X1, Y1) and (X2, Y2) respec-
tively. Then, the PRVs for the privacy curve δ1 ⊗ δ2 are
given by (X1 +X2, Y1 + Y2).

We interchangeably use the same letter to denote both a ran-
dom variable and its corresponding probability distribution.
For any two distributions Y1, Y2, we use Y1 ⊕ Y2 to denote
its convolution (same as the random variable Y1 + Y2). We
use Y ⊕k to denote the k-fold convolution of Y with itself.

Finally, we use the following tail bounds for PRVs.
Lemma 2.4 (Gopi et al. (2021)). For all PRV Y , ε ≥ 0 and
α > 0, it holds that

Pr[|Y | ≥ ε+ α] ≤ δY (ε) · (1+e−ε−α)
1−e−α

≤ 4
αδY (ε) if α < 1.

2.2. Coupling Approximation

To describe and analyze our algorithm, we use the coupling
approximation tool used by Gopi et al. (2021). They showed

that, in order to provide an approximation guarantee on the
privacy loss curve, it suffices to approximate a PRV accord-
ing to the following coupling notion of approximation:

Definition 2.5 (Coupling Approximation). For two random
variables Y1, Y2, we write |Y1 − Y2| ≤η h if there exists a
coupling between them such that Pr[|Y1 − Y2| > h] ≤ η.

We use the following properties of coupling approximation
shown by Gopi et al. (2021). We provide the proofs in
Appendix A for completeness.

Lemma 2.6 (Properties of Coupling Approximation). Let
X,Y, Z be random variables.

1. If |X − Y | ≤δerr εerr, then for all ε ∈ R≥0,

δY (ε+ εerr)− δerr ≤ δX(ε) ≤ δY (ε− εerr) + δerr.

2. If |X − Y | ≤η1
h1 and |Y − Z| ≤η2

h2, then |X −
Z| ≤η1+η2

h1 + h2 (“triangle inequality”).
3. If dTV(X,Y) ≤ η, then |X−Y | ≤η 0; furthermore, for

all k ∈ Z>0, it holds that |X⊕k − Y ⊕k| ≤kη 0.
4. If |X−Y −µ| ≤0 h (for any µ) and E[X] = E[Y], then

for all η > 0 and k ∈ Z>0,∣∣X⊕k − Y ⊕k
∣∣ ≤η h

√
2k log 2

η .

2.3. Discretization Procedure

We adapt the discretization procedure from (Gopi et al.,
2021). The only difference is that we assume the support
of the input distribution is already in the specified range as
opposed to being truncated as part of the algorithm. A com-
plete description of the procedure is given in Algorithm 1.

Algorithm 1 DiscretizeRV (adapted from Gopi et al., 2021)

Input: CDFY (·) of a RV Y , mesh size h, truncation
parameter L ∈ h · (12 + Z>0).
Constraint: Support of Y is contained in (−L,L].
Output: PDF of an approximation Ỹ supported on µ+
(hZ ∩ [−L,L]) for some µ ∈ [−h

2 ,
h
2].

n← L−h
2

h
for i = −n to n do
qi ← CDFY (ih+ h/2)− CDFY (ih− h/2)

end for
q ← q/(

∑n
i=−n qi) ▷ Normalize q

µ← E[Y]−
∑n

i=−n ih · qi
Ỹ ←

{
ih+ µ w.p. qi for − n ≤ i ≤ n

return Ỹ

The procedure can be shown to satisfy the following key
property.

Proposition 2.7. For any random variable Y supported
in (−L,L], the output Ỹ of DiscretizeRV with mesh size

Algorithm 2 TwoStageSelfComposePRV

Input: PRV Y , number of compositions k = k1 · k2 + r
(for r < k1), mesh sizes h1 ≤ h2, truncation parameters
L1 ≤ L2, where each Li ∈ hi · (12 + Z>0).
Output: PDF of an approximation Y2 for Y ⊕k. Y2 will
be supported on µ + (h2Z ∩ [−L2, L2]) for some µ ∈[
0, h2

2

]
.

Y0 ← Y ||Y |≤L1
▷ Y conditioned on |Y | ≤ L1

Ỹ0 ← DiscretizeRV(Y0, h1, L1)

Y1 ← Ỹ
⊕L1

k1

0 ▷ k1-fold FFT convolution

Ỹ1 ← DiscretizeRV(Y1, h2, L2)

Y2 ← Ỹ
⊕L2

k2

1 ▷ k2-fold FFT convolution

Yr ← Ỹ
⊕L1

r
0 ▷ r-fold FFT convolution

Ỹr ← DiscretizeRV(Yr, h2, L2)

return Y2 ⊕L2 Ỹr ▷ FFT convolution

h and truncation parameter L satisfies E[Y] = E[Ỹ] and
|Y − Ỹ − µ| ≤0

h
2 , for some µ with |µ| ≤ h

2 .

3. Two-Stage Composition Algorithm
Our two-stage algorithm for the case of k-fold self-
composition is given in Algorithm 2. We assume k =
k1 ·k2+r where k1, k2 ∈ Z>0, r < k1, and k1 ≈ k2 ≈

√
k,

which for instance can be achieved by taking k1 = ⌊
√
k⌋,

k2 = ⌊k/k1⌋, and r = k − k1 · k2.

The algorithm implements the circular convolution ⊕L us-
ing Fast Fourier Transform (FFT). For any L and x ∈ R,
we define x (mod 2L) = x− 2Ln where n ∈ Z such that
x− 2Ln ∈ (−L,L]. Given x, y ∈ R the circular addition
is defined as

x⊕L y := x+ y (mod 2L).

Similarly, for random variables X,Y , we define X ⊕L Y to
be their convolution modulo 2L and Y ⊕Lk to be the k-fold
convolution of Y modulo 2L.

Observe that DiscretizeRV with mesh size h and trunca-
tion parameter L runs in time O(L/h), assuming an O(1)-
time access to CDFY (·). The FFT convolution step runs
in time O

(
Li

hi
log Li

hi

)
; thus the overall running time of

TwoStageSelfComposePRV is

O
(

L1

h1
log
(

L1

h1

)
+ L2

h2
log
(

L2

h2

))
.

The approximation guarantees provided by our two-stage
algorithm are captured in the following theorem. For con-
venience, we assume that k is a perfect square (we set
k1 = k2 =

√
k). The complete proof is in Section 3.1.

Theorem 3.1. For any PRV Y , the approximation Y2 re-
turned by TwoStageSelfComposePRV satisfies

|Y ⊕k − Y2| ≤δerr εerr,

when invoked with k1 = k2 = k0.5 (assumed to be an
integer) and parameters given below (using η := δerr

(8
√
k+16)

)

h1 := εerr

k0.5
√

2 log 1
η

, h2 := εerr

k0.25
√

2 log 1
η

L1 ≥ max

{
εY
(
εerrδerr
16k1.25

)
,

εY ⊕
√

k

(
εerrδerr
64k0.75

)}+ εerr
k0.25

L2 ≥ max
{
εY ⊕k

(
εerrδerr

16

)
+ 2εerr, L1

}
.

In terms of a concrete running time bound, Theorem 3.1
implies:
Corollary 3.2. For any DP algorithmM, the privacy curve
δM◦k(ε) of the k-fold (adaptive) composition of M can

be approximated in time Õ
(

εup·k0.25·
√

log(k/δerr)

εerr

)
, where

εerr is the additive error in ε, δerr is the additive error in δ,
and εup is an upper bound on

max


εY ⊕k(εerrδerr16),

4
√
k · εY ⊕

√
k

(
εerrδerr
64k0.75

)
,

4
√
k · εY

(
εerrδerr
16k1.25

)
+ εerr.

In many practical regimes of interest, εup/εerr is a constant.
For ease of exposition in the following, we assume that εerr
is a small constant, e.g. 0.1 and suppress the dependence
on εerr. Suppose the original mechanism M underlying
Y satisfies (ε = 1√

k·log(1/δerr)
, δ = ok

(
1

k1.25

)
)-DP. Then

by advanced composition (Dwork et al., 2010), we have

that M◦t satisfies (ε
√

2t log 1
δ′ + 2tε(eε − 1), tδ + δ′)-

DP. If tδ + δ′ ≲ tδerr
k1.25 , then we have that εY ⊕t

(
tδerr
k1.25

)
≲√

t
k ln k

tδerr
. Instantiating this with t = 1,

√
k, and k gives

us that εup is at most a constant.

Note that, to set the value of L1 and L2, we do not need
the exact value of εY ⊕k (or εY ⊕

√
k or εY). We only need

an upper bound on εY ⊕k , which can often be obtained by
using the RDP accountant or some other method.

For the case when k is not a perfect square, using a similar
analysis, it is easy to see that the approximation error would
be no worse than the error in k2(k1 + 1) self-compositions.
The running time increases by a constant because of the
additional step of r-fold convolution to get Yr and the fi-
nal convolution step to get Y2 ⊕L2

Ỹr; however this does
not affect the asymptotic time complexity of the algorithm.
Moreover, as seen in Section 4, even with this additional
cost, TwoStageSelfComposePRV is still faster than the al-
gorithm in Gopi et al. (2021).

3.1. Analysis

In this section we establish Theorem 3.1. The proof pro-
ceeds are follows. We establish coupling approximations
between consecutive random variables in the following se-
quence:

Y ⊕k1k2 , Y ⊕k1k2
0 , Ỹ ⊕k1k2

0 , Y ⊕k2
1 , Ỹ ⊕k2

1 , Y2 ,

and then apply Lemma 2.6(2).

To establish each coupling approximation, we use Lem-
mas 2.6(3) and 2.6(4).

Coupling
(
Y ⊕k1k2 , Y ⊕k1k2

0

)
. Since dTV(Y, Y0) =

Pr[|Y | > L1] =: δ0, we have from Lemma 2.6(3) that

|Y ⊕k1k2 − Y ⊕k1k2
0 | ≤k1k2δ0 0 . (1)

Coupling
(
Y ⊕k1k2

0 , Ỹ ⊕k1k2

0

)
and

(
Y ⊕k2

1 , Ỹ ⊕k2

1

)
.

We have from Proposition 2.7 that E[Y0] = E[Ỹ0] and that
|Y0− Ỹ0−µ| ≤0

h1

2 . Thus, by applying Lemma 2.6(4), we
have that (for any η; to be chosen later)∣∣∣Y ⊕k1

0 − Ỹ ⊕k1
0

∣∣∣ ≤η h1

√
k1

2 log 2
η , (2)∣∣∣Y ⊕k1k2

0 − Ỹ ⊕k1k2
0

∣∣∣ ≤η h1

√
k1k2

2 log 2
η . (3)

Similarly, we have that∣∣∣Y ⊕k2
1 − Ỹ ⊕k2

1

∣∣∣ ≤η h2

√
k2

2 log 2
η . (4)

Coupling
(
Ỹ ⊕k1k2

0 , Y ⊕k2

1

)
and

(
Ỹ ⊕k2

1 , Y2

)
. Since

dTV(Ỹ
⊕k1
0 , Ỹ

⊕L1
k1

0) ≤ Pr
[∣∣∣Ỹ ⊕k1

0

∣∣∣ > L1

]
=: δ1, and

Y1 = Y
⊕L1

k1

0 , it holds via Lemma 2.6(3) that∣∣∣Ỹ ⊕k1k2
0 − Y ⊕k2

1

∣∣∣ ≤k2δ1 0 . (5)

Similarly, for δ2 := Pr
[∣∣∣Ỹ ⊕k2

1

∣∣∣ > L2

]
, we have that∣∣∣Ỹ ⊕k2

1 − Y2

∣∣∣ ≤δ2 0 . (6)

Towards combining the bounds. Combining Equa-
tions (1) and (3) to (6) using Lemma 2.6(2), we have that∣∣Y ⊕k1k2 − Y2

∣∣ ≤δerr εerr,

where δerr = 2η + k1k2δ0 + k2δ1 + δ2 , (7)

and εerr =
(
h1

√
k1k2 + h2

√
k2
)√

1
2 log

2
η . (8)

We set h1 := εerr√
2k1k2 log 2

η

and h2 := εerr√
2k2 log 2

η

. The key

step remaining is to bound δ0, δ1, and δ2 in terms of hi’s,
Li’s, and ηi’s.

To do so, we use Lemma 2.4 for αi’s to be chosen later.

Bounding δ0. We have δ0 := Pr [|Y | > L1] and hence

δ0 ≤ 4
α0

δY (L1 − α0).

Bounding δ1. For h̃1 := h1

√
k1

2 log 2
η = εerr

2
√
k2

, we have

δ1 := Pr
[∣∣∣Ỹ ⊕k1

0

∣∣∣ > L1

]
≤ Pr

[∣∣∣Ỹ ⊕k1
0 − Y ⊕k1

0

∣∣∣ > h̃1

]
+ Pr

[∣∣∣Y ⊕k1
0

∣∣∣ > L1 − h̃1

]
≤ η + Pr

[∣∣Y ⊕k1
∣∣ > L1 − h̃1

]
=⇒ δ1 ≤ η + 4

α1
δY ⊕k1

(
L1 − εerr

2
√
k2
− α1

)
,

where the second inequality uses Equation (2) and the third
inequality uses the fact that the tails of Y ⊕k1 are only heav-
ier than the tails of Y ⊕k1

0 since Y0 is a truncation of Y .

Bounding δ2. First, we combine Equations (3) to (5) to
get (recall εerr in Equation (8))∣∣∣Y ⊕k1k2

0 − Ỹ ⊕k2
1

∣∣∣ ≤2η+k2δ1 εerr.

Using this, we get

δ2 := Pr
[∣∣∣Ỹ ⊕k2

1

∣∣∣ > L2

]
≤ Pr

[∣∣∣Ỹ ⊕k2
1 − Y ⊕k1k2

0

∣∣∣ > εerr

]
+ Pr

[∣∣∣Y ⊕k1k2
0

∣∣∣ > L2 − εerr

]
≤ 2η + k2δ1 + Pr

[∣∣Y ⊕k1k2
∣∣ > L2 − εerr

]
≤ 2η + k2δ1 +

4
α2

δY ⊕k1k2 (L2 − εerr − α2)

=⇒ δ2 ≤ (k2 + 2)η + k2 · 4
α1

δY ⊕k1 (L1 − εerr
2
√
k2
− α1)

+ 4
α2

δY ⊕k1k2 (L2 − εerr − α2) ,

where we use in the third step that tails of Y ⊕k1k2 are only
heavier than tails of Y ⊕k1k2

0 since Y0 is a truncation of Y .

Putting it all together. Plugging in these bounds for δ0,
δ1, and δ2 in Equation (7), we get that∣∣Y ⊕k1k2 − Y2

∣∣ ≤δerr εerr,

where δerr ≤ (2k2 + 4)η + k1k2 · 4
α0

δY (L1 − α0)

+ 2k2 · 4
α1

δY ⊕k1 (L1 − εerr
2
√
k2
− α1)

+ 4
α2

δY ⊕k1k2 (L2 − εerr − α2) , (9)

and εerr =
(
h1

√
k1k2 + h2

√
k2
)√

2 log 2
η .

Thus, we can set parameters L1, L2, and η as follows such
that each of the four terms in Equation (9) is at most δerr/4

to satisfy the above:

η = δerr
8k2+16 ,

L1 ≥ max

 εY

(
α0δerr
16k1k2

)
+ α0,

εY ⊕k1

(
α1δerr
32k2

)
+ εerr

2
√
k2

+ α1

 ,

L2 ≥ max
{
εY ⊕k1k2

(
α2δerr
16

)
+ εerr + α2, L1

}
.

Setting k1 = k2 =
√
k (assumed to be integers) and α0 =

εerr√
k2

, α1 = εerr
2
√
k2

and α2 = εerr, completes the proof of
Theorem 3.1.

Runtime analysis. As argued earlier, the total run-
ning time of TwoStageSelfComposePRV is given as
O
(

L1

h1
log L1

h1
+ L2

h2
log L2

h2

)
. Substituting in the bounds for

L1, L2, h1, and h2, we get a final running time of

Õ

(
εup · k0.25 ·

√
log(k/δerr)

εerr

)
.

where εup is as in Corollary 3.2.

3.2. Heterogeneous Compositions

Algorithm 2 can be easily generalized to handle hetero-
geneous composition of k different mechanisms, with a
running time blow up of k over the homogeneous case. We
defer the details to Appendix B.

4. Experimental Evaluation of
TwoStageSelfComposePRV

We empirically evaluate TwoStageSelfComposePRV on
the tasks of self-composing two kinds of mechanism acting
on dataset of real values x1, . . . , xn as

▷ Laplace Mechanism : returns
∑

i xi plus a noise drawn
from L(0, b) given by the PDF P (x) = e−|x|/b/2b.

▷ Poisson Subsampled Gaussian Mechanism with proba-
bility γ: Subsamples a random subset S of indices by
including each index independently with probability γ.
Returns

∑
i∈S xi plus a noise drawn from the Gaussian

distribution N (0, σ2).

Both these mechanisms are highly used in practice. For
each mechanism, we compare against the implementation
by Gopi et al. (2021)2 (referred to as GLW) on three fronts:
(i) the running time of the algorithm, (ii) the number of
discretized buckets used, and (iii) the final estimates on
δY ⊕k(ε) which includes comparing lower bound δY2

(ε +
εerr) − δerr, estimates δY2

(ε) and upper bounds δY2
(ε −

2
github.com/microsoft/prv accountant

(a) Running times (average over 20
runs); shaded region indicates 20th–
80th percentiles

(b) Number of discretization buckets (c) Delta estimates

Figure 1. Compositions of the Laplace mechanism.

(a) Running times (average over 20
runs); shaded region indicates 20th–
80th percentiles

(b) Number of discretization buckets (c) Delta estimates

Figure 2. Compositions of Poisson subsampled (with probability γ = 0.2) Gaussian mechanism.

εerr) + δerr. We use εerr = 0.1 and δerr = 10−10 in all the
experiments.

We run each algorithm for a varying number k of self-
compositions of a basic mechanism. The noise parameter
of basic mechanism is chosen such that the final δ(ε) value
after k-fold composition is equal to 10−6 for each value of
k.3 The exact choice of noise parameters used are shown in
Figure 3.

The comparison for the Laplace mechanism is shown in
Figure 1 and for the subsampled Gaussian mechanism is
shown in Figure 2. In terms of accuracy we find that for
the same choice of εerr and δerr, the estimates returned
by TwoStageSelfComposePRV are nearly identical to the
estimates returned by GLW for the subsampled Gaussian
mechanism. On the other hand, the estimates for Laplace
mechanism returned by both algorithms are similar and con-
sistent with each other, but strictly speaking, incomparable
with each other.

3these values were computed using the Google DP accountant
github.com/google/differential-privacy/tree/main/python.

5. Multi-Stage Recursive Composition
We extend the approach in TwoStageSelfComposePRV to
give a multi-stage algorithm (Algorithm 3), presented only
when k is a power of 2 for ease of notation. Similar to the
running time analysis of TwoStageSelfComposePRV, the
running time of RecursiveSelfComposePRV is given as

O

(
t∑

i=1

Li

hi
log

(
Li

hi

))
,

assuming an O(1)-time access to CDFY (·).
Theorem 5.1. For all PRV Y and k = 2t, the approxima-
tion Yt returned by RecursiveSelfComposePRV satisfies

|Y ⊕k − Yt| ≤δerr εerr,

using a choice of parameters satisfying for all i ≤ t that

hi = Ω

(
εerr

t1.5
√

2t−i log 1
δerr

)
,

Li ≥ εY ⊕2i

(
εerrδerr
2O(t)

)
+ hi ·

(
3 + 2i

√
1
2 log

2
η

)
,

Lt ≥ · · · ≥ L1.

(a) For Laplace mechanism (Figure 1). (b) For Poisson subsampled Gaussian mechanism (Figure 2).

Figure 3. Noise parameters used for experiments.

Algorithm 3 RecursiveSelfComposePRV

Input: PRV Y , number of compositions k = 2t, mesh
sizes h1 ≤ · · · ≤ ht, truncation parameters L1 ≤ · · · ≤
Lt, where each Li ∈ hi · (12 + Z>0) for all i.
Output: PDF of an approximation Yt for Y ⊕k. Yt will be
supported on µ+(htZ∩ [−Lt, Lt]) for some µ ∈

[
0, ht

2

]
.

Y0 ← Y ||Y |≤L1
▷ Y conditioned on |Y | ≤ L1

for i = 0 to t− 1 do
Ỹi ← DiscretizeRV(Yi, hi+1, Li+1)

Yi+1 ← Ỹi ⊕Li+1
Ỹi ▷ FFT convolution

end for
return Yt

Proof Outline. We establish coupling approximations be-
tween consecutive random variables in the sequence:

Y ⊕2t , Y ⊕2t

0 , Ỹ ⊕2t

0 , Y ⊕2t−1

1 , . . . , Y ⊕2
t−1, Ỹ

⊕2
t−1, Yt ,

using a similar approach as in the proof of Theorem 3.1.

Running time analysis. The overall running time is at
most O

(∑
i
Li

hi
log Li

hi

)
, which can be upper bounded by

Õ

εup · t2.5
√

log 1
δerr

εerr

 ,

where εup := maxi

(√
2t−i · εY ⊕2i

(
εerrδerr
2O(t)

))
.

In many practical regimes of interest, εup/εerr is at most
polylog(t) = polyloglog(k). For ease of exposition in
the following, we assume that εerr is a small constant,
e.g. 0.1 and suppress the dependence on εerr. Suppose
the original mechanism M underlying Y satisfies (ε =

1√
k·log(1/δerr)

, δ = ok(1)
kO(1))-DP. Then by advanced compo-

sition (Dwork et al., 2010), we have that M◦2i satisfies

(ε
√
2i+1 log 1

δ′ +2i+1ε(eε−1), 2iδ+δ′)-DP. If 2iδ+δ′ ≲

δerr
2O(t) , then we have that εY ⊕2i

(
δerr
2O(t)

)
≲
√

1
2t−i ln

2O(t)

δerr
.

Instantiating this with i = 1, . . . , t gives us that εup is at
most polylog(k).

6. Conclusions and Discussion
In this work, we presented an algorithm with a running
time and memory usage of polylog(k) for the task of self-
composing a broad class of DP mechanisms k times. We
also extended our algorithm to the case of composing k dif-
ferent mechanisms in the same class, resulting in a running
time and memory usage Õ(k); both of these improve the
state-of-the-art by roughly a factor of

√
k. We also demon-

strated the practical benefits of our framework compared to
the state-of-the-art by evaluating on the sub-sampled Gaus-
sian mechanism and the Laplace mechanism, both of which
are widely used in the literature and in practice.

For future work, it would be interesting to tighten the log
factors in our bounds. A related future direction is to make
the RecursiveSelfComposePRV algorithm more practical,
since the current recursive analysis is quite loose. Note that
RecursiveSelfComposePRV could also be performed with
an arity larger than 2; e.g., with an arity of 100, one would
perform 1003 compositions as a three-stage composition.
For any constant arity, our algorithm gives an asymptotic
runtime of O(polylogk) as k →∞, however, for practical
considerations, one may also consider adapting the arity
with k to tighten the log factors. We avoided doing so for
simplicity, since our focus in obtaining an O(polylog(k))
running time was primarily theoretical.

Acknowledgments
We would like to thank the anonymous reviewers for their
thoughtful comments that have improved the quality of the
paper.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In CCS, pp. 308–318, 2016.

Abowd, J. M. The US Census Bureau adopts differential
privacy. In KDD, pp. 2867–2867, 2018.

Apple Differential Privacy Team. Learning with privacy at
scale. Apple Machine Learning Journal, 2017.

Bu, Z., Dong, J., Long, Q., and Su, W. J. Deep learning
with Gaussian differential privacy. Harvard Data Science
Review, 2020(23), 2020.

Bu, Z., Gopi, S., Kulkarni, J., Lee, Y. T., Shen, J. H., and
Tantipongpipat, U. Fast and memory efficient differen-
tially private-SGD via JL projections. In NeurIPS, 2021.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In TCC,
pp. 635–658, 2016.

Bun, M., Dwork, C., Rothblum, G. N., and Steinke, T. Com-
posable and versatile privacy via truncated CDP. In STOC,
pp. 74–86, 2018.

Ding, B., Kulkarni, J., and Yekhanin, S. Collecting telemetry
data privately. In NeurIPS, pp. 3571–3580, 2017.

Dong, J., Roth, A., and Su, W. J. Gaussian differential
privacy. arXiv:1905.02383, 2019.

Doroshenko, V., Ghazi, B., Kamath, P., Kumar, R., and
Manurangsi, P. Connect the dots: Tighter discrete ap-
proximations of privacy loss distributions. In PETS (to
appear), 2022.

Dwork, C. and Rothblum, G. N. Concentrated differential
privacy. arXiv:1603.01887, 2016.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In EUROCRYPT, pp. 486–503, 2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D.
Calibrating noise to sensitivity in private data analysis. In
TCC, pp. 265–284, 2006b.

Dwork, C., Rothblum, G. N., and Vadhan, S. Boosting and
differential privacy. In FOCS, pp. 51–60, 2010.

Erlingsson, Ú., Pihur, V., and Korolova, A. RAPPOR:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In CCS, pp. 1054–1067, 2014.

Google. DP Accounting Library. https:
//github.com/google/differential-privacy/
tree/main/python/dp accounting, 2020.

Gopi, S., Lee, Y. T., and Wutschitz, L. Numerical composi-
tion of differential privacy. In NeurIPS, 2021.

Greenberg, A. Apple’s “differential privacy” is about col-
lecting your data – but not your data. Wired, June, 13,
2016.

Kairouz, P., Oh, S., and Viswanath, P. The composition
theorem for differential privacy. In ICML, pp. 1376–1385,
2015.

Kenthapadi, K. and Tran, T. T. L. Pripearl: A framework for
privacy-preserving analytics and reporting at LinkedIn.
In CIKM, pp. 2183–2191, 2018.

Koskela, A. and Honkela, A. Computing differential privacy
guarantees for heterogeneous compositions using FFT.
arXiv:2102.12412, 2021.

Koskela, A., Jälkö, J., and Honkela, A. Computing tight
differential privacy guarantees using FFT. In AISTATS,
pp. 2560–2569, 2020.

Koskela, A., Jälkö, J., Prediger, L., and Honkela, A. Tight
differential privacy for discrete-valued mechanisms and
for the subsampled Gaussian mechanism using FFT. In
AISTATS, pp. 3358–3366, 2021.

Lukas Prediger, A. K. Code for computing tight guar-
antees for differential privacy. https://github.com/
DPBayes/PLD-Accountant, 2020.

Meiser, S. and Mohammadi, E. Tight on budget? Tight
bounds for r-fold approximate differential privacy. In
CCS, pp. 247–264, 2018.

Microsoft. A fast algorithm to optimally compose privacy
guarantees of differentially private (DP) mechanisms to
arbitrary accuracy. https://github.com/microsoft/
prv accountant, 2021.

Mironov, I. Rényi differential privacy. In CSF, pp. 263–275,
2017.

Murtagh, J. and Vadhan, S. The complexity of computing
the optimal composition of differential privacy. In TCC,
pp. 157–175, 2016.

Rogers, R., Subramaniam, S., Peng, S., Durfee, D., Lee, S.,
Kancha, S. K., Sahay, S., and Ahammad, P. LinkedIn’s
audience engagements API: A privacy preserving data
analytics system at scale. Journal of Privacy and Confi-
dentiality, 11(3), 2021.

Shankland, S. How Google tricks itself to protect Chrome
user privacy. CNET, October, 2014.

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/DPBayes/PLD-Accountant
https://github.com/DPBayes/PLD-Accountant
https://github.com/microsoft/prv_accountant
https://github.com/microsoft/prv_accountant

Sommer, D. M., Meiser, S., and Mohammadi, E. Privacy
loss classes: The central limit theorem in differential
privacy. PoPETS, 2019(2):245–269, 2019.

Zhu, Y., Dong, J., and Wang, Y. Optimal accounting of dif-
ferential privacy via characteristic function. In AISTATS,
pp. 4782–4817, 2022.

A. Proofs of Coupling Approximation Properties
For sake of completeness, we include proofs of the lemmas we use from Gopi et al. (2021).

Proof of Lemma 2.6(2). There exists couplings (X,Y) and (Y, Z) such that Pr[|X − Y | ≥ h1] ≤ η1 and Pr[|Y − Z| ≥
h2] ≤ η2. From these two couplings, we can construct a coupling between (X,Z): sample X , sample Y from Y |X (given
by coupling (X,Y)) and finally sample Z from Z|Y (given by coupling (Y,Z)). Therefore for this coupling, we have:

Pr[|X − Z| ≥ h1 + h2] ≤ Pr[|(X − Y) + (Y − Z) ≥ h1 + h2]

≤ Pr[|X − Y |+ |Y − Z| ≥ h1 + h2]

≤ Pr[|X − Y | ≥ h1] + Pr[|Y − Z| ≥ h2]

≤ η1 + η2 .

Proof of Lemma 2.6(3). The first part follows from the fact that there exists a coupling between X and Y such that Pr[X ̸=
Y] = dTV(X,Y). The second part follows from the first part and the fact that dTV(X

⊕k, Y ⊕k) ≤ k · dTV(X,Y).

Proof of Lemma 2.6(4). Let X = Y − Ỹ where (Y, Ỹ) are coupled such that |Y − Ỹ − µ| ≤ h with probability 1. Then
E[X] = 0 and X ∈ [µ− h, µ+ h] w.p. 1 and hence by Hoeffding’s inequality,

Pr
[
|X⊕k| ≥ t

]
≤ 2 exp

(
− 2t2

k(2h)2

)
= η , for t = h

√
2k log

2

η
.

B. Two-Stage Heterogeneous Composition
We can handle composition of k different PRVs Y 1, . . . , Y k with a slight modification to TwoStageSelfComposePRV as
given in Algorithm 4. The approximation analysis remains similar as before. The main difference is that L1 and L2 are to
be chosen as

L1 ≥ O

(
max

{
max

i

{
εY i

(
εerrδerr
16k1k1.52

)}
, max

t

{
εY tk1+1:(t+1)k1

(
εerrδerr
64k1.52

)}}
+

εerr√
k2

)
,

L2 ≥ O

(
max

{
εY 1:k

(
εerrδerr
16

)
+ εerr, L1

})
,

where we denote Y i:j = Y i ⊕ · · · ⊕ Y j . In the case of k1 = k2 =
√
k (assumed to be an integer) and r = 0, this leads to a

final running time of

Õ

(
εup · k1.25 ·

√
log(k/δerr)

εerr

)
,

where εup can be bounded as

max

{
εY 1:k

(
εerrδerr
16

)
,

4
√
k ·max

t
εY t

√
k+1:(t+1)

√
k

(
εerrδerr
64k0.75

)
,

4
√
k ·max

i
εY i

(
εerrδerr
16k1.25

)}
+ εerr.

C. Analysis of RecursiveSelfComposePRV

We establish coupling approximations between consecutive random variables in the sequence:

Y ⊕2t , Y ⊕2t

0 , Ỹ ⊕2t

0 , Y ⊕2t−1

1 , Ỹ ⊕2t−1

1 , Y ⊕2t−2

2 , . . . , Y ⊕2
t−1, Ỹ

⊕2
t−1, Yt ,

Coupling Y ⊕2t

and Y ⊕2t

0 . Since dTV(Y, Y0) = Pr[|Y | > L1] =: δ0, we have from Lemma 2.6(3) that

|Y ⊕2t − Y ⊕2t

0 | ≤2tδ0 0 . (10)

Algorithm 4 TwoStageComposePRV for heterogeneous compositionss

Input: PRVs Y 1, . . . , Y k, number of compositions k = k1 · k2 + r, r < k1, mesh sizes h1 ≤ h2, truncation parameters
L1 ≤ L2, where each Li ∈ hi · (12 + Z>0).
Output: PDF of an approximation Ŷ2 for Y 1 ⊕ . . . ⊕ Y k. Ŷ2 will be supported on µ + (h2Z ∩ [−L2, L2]) for some
µ ∈

[
−h2

2 , h2

2

]
.

for i = 1 to k1k2 do
Y i
0 ← Y i||Y i|≤L1

▷ Y i conditioned on |Y i| ≤ L1

Ỹ i
0 ← DiscretizeRV(Y i

0 , h1, L1)
end for
for i = k1k2 + 1 to k do
Y i
0 ← Y i||Y i|≤L2

▷ Y i conditioned on |Y i| ≤ L2

Ỹ i
0 ← DiscretizeRV(Y i

0 , h2, L2)
end for

for t = 0 to k2 − 1 do
Y t
1 ← Ỹ tk1+1

0 ⊕L1 · · · ⊕L1 Ỹ
(t+1)k1

0 ▷ k1-fold FFT convolution

Ỹ t
1 ← DiscretizeRV(Y t

1 , h2, L2)
end for

Y2 ← Ỹ 1
1 ⊕L2 · · · ⊕L2 Ỹ

k2
1 ▷ k2-fold FFT convolution

return Y2 ⊕L2
Ỹ k1·k2+1
0 ⊕L2

· · · ⊕L2
Ỹ k
0

Coupling Y ⊕2t−i

i and Ỹ ⊕2t−i

i . We have from Proposition 2.7 that E[Yi] = E[Ỹi] and that |Yi − Ỹi − µi| ≤0
hi+1

2 for
some µi satisfying |µi| ≤ hi+1

2 . Thus, applying Lemma 2.6(4), we have (for η to be chosen later) that

∣∣∣Y ⊕2t−i

i − Ỹ ⊕2t−i

i

∣∣∣ ≤η hi+1

√
2t−i−1 log

2

η
=: h̃i+1. (11)

Coupling Ỹ ⊕2t−i

i and Y ⊕2t−i−1

i+1 . Since dTV(Ỹi ⊕ Ỹi, Ỹi ⊕Li+1
Ỹi) ≤ Pr[|Ỹi ⊕ Ỹi| > Li+1] =: δi+1, it holds via

Lemma 2.6(3) that

|Ỹ ⊕2t−i

i − Y ⊕2t−i−1

i+1 | ≤2t−i−1δi+1
0 . (12)

Putting things together. Thus, combining Equations (11) and (12) for i ∈ {0, . . . , t− 1}, using Lemma 2.6(3), we have
that ∣∣∣Y ⊕2t

0 − Yt

∣∣∣ ≤δ∗ ε∗, (13)

where δ∗ := δ∗t := tη +
∑t

j=1 2
t−jδj , (14)

and ε∗ := ε∗t :=
∑t

j=1 hj

√
2t−j log 2

η .

More generally, the same analysis shows that for any 1 ≤ i ≤ t,∣∣∣Y ⊕2i

0 − Yi

∣∣∣ ≤δ∗i
ε∗i ,

where δ∗i := iη +
∑i

j=1 2
i−jδj , (15)

and ε∗i :=
∑i

j=1 hj

√
2i−j log 2

η .

To simplify our analysis going forward, we fix the choice of hi’s that we will use, namely, hi =
ε∗

t
√

2t−i log 2
η

(for η that will

be chosen later). This implies that

ε∗i =

i∑
j=1

hj

√
2i−j log

2

η
= i · ε∗

t
√
2t−i

= hi+1 · i
√

1

2
log

2

η
,

where the last step uses that i ≤ t.

In order to get our final bound, we need to bound δi’s in terms of η, the mesh sizes hi’s, and truncation parameters Li’s. For
ease of notation, we let δ∗0 = 0. We have for 0 ≤ i < t that

δi+1 = Pr
[∣∣∣Ỹi ⊕ Ỹi

∣∣∣ > Li+1

]
≤ Pr [|Yi ⊕ Yi| > Li+1 − 2hi+1] (since,

∣∣∣Yi − Ỹi

∣∣∣ ≤ hi+1 w.p. 1)

≤ 2Pr
[∣∣∣Yi − Y ⊕2i

0

∣∣∣ > ε∗i

]
+ Pr

[∣∣∣Y ⊕2i+1

0

∣∣∣ > Li+1 − 2hi+1 − 2ε∗i

]
≤ 2δ∗i + Pr

[∣∣∣Y ⊕2i+1
∣∣∣ > Li+1 − 2hi+1 − 2ε∗i

]
δi+1 ≤ 2δ∗i +

4

αi+1
δY ⊕2i+1 (L̃i+1), (16)

where in the penultimate step we use that the tails of Y ⊕2i

0 are no larger than tails of Y ⊕2i since Y0 is a truncation of Y , and

in the last step we use Lemma 2.4 with L̃i+1 := Li+1 − 2hi+1(1 + i
√

1
2 log

2
η)− αi+1 (eventually we set αi+1 = hi+1).

We show using an inductive argument that for Ci = 8i,

δi ≤ 2Ci ·
(
η +

∑i
j=1

4
αj

δY ⊕2j

(
L̃j

))
, (17)

and δ∗i ≤ Ci+1 ·
(
η +

∑i
j=1

4
αj

δY ⊕2j

(
L̃j

))
. (18)

The base case holds since δ1 ≤ 4
α1

δY ⊕2(L̃1); note C1 > 1. From (15), we have

δ∗i ≤ iη +
∑i

j=1 2
i−jδj

≤ iη +
∑i

j=1 2
i−j
(
2Cj ·

(
η +

∑j
ℓ=1

4
αℓ
δ
Y ⊕2ℓ

(
L̃ℓ

)))
≤ iη +

(∑i
j=1 2

i−j · 2Cj

)
·
(
η +

∑i
j=1

4
αj

δY ⊕2j

(
L̃j

))
≤ iη + (4Ci) ·

(
η +

∑i
j=1

4
αj

δY ⊕2j

(
L̃j

))
≤ Ci+1 ·

(
η +

∑i
j=1

4
αj

δY ⊕2j

(
L̃j

))
.

This completes the inductive step (18). Finally, (16) immediately implies the inductive step (17).

Putting this together in (14), and setting αi = hi, we get

δ∗t ≤
1

ε∗
· 2O(t)

(
η +

t∑
i=1

δY ⊕i(L̃i)

)
.

Finally, combining (13) with (10) using Lemma 2.6(2), we get∣∣∣Y ⊕2t − Yt

∣∣∣ ≤δerr εerr

where δerr := 1
ε∗ ·

(
2O(t)

(
η +

∑t
i=1 δY ⊕2i (L̃i)

)
+ 2O(t)δY (L̃1)

)
,

and εerr := ε∗.

Thus, we get the desired approximation result for the following choice of parameters

η = δerr
2O(t) ,

hi = εerr

t
√

2t−i log 2
η

= Ω

(
εerr

t1.5
√

2t−i log 1
δerr

)
,

Li ≥ max
{
εY ⊕2i

(
εerrδerr
2O(t)

)
+ hi ·

(
3 + 2i

√
1
2 log

2
η

)
, Li−1

}
.

Thus, the overall running time is at most

Õ

(∑
i

Li

hi

)
= Õ

εup · t2.5
√

log 1
δerr

εerr

 ,

where εup := maxi

(√
2t−i · εY ⊕2i

(
εerrδerr
2O(t)

))
.

Extensions of RecursiveSelfComposePRV. Similar to Appendix B, it is possible to extend RecursiveSelfComposePRV
to handle the case where the number of compositions k is not a power of 2, with a similar asymptotic runtime. It can then be
extended to handle heterogeneous compositions of k different mechanisms.

