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Abstract
We present a differentially private algorithm for
releasing the sequence of k elements with the
highest counts from a data domain of d elements.
The algorithm is a “joint” instance of the exponen-
tial mechanism, and its output space consists of all
O(dk) length-k sequences. Our main contribution
is a method to sample this exponential mechanism
in timeO(dk log(k)+d log(d)) and spaceO(dk).
Experiments show that this approach outperforms
existing pure differential privacy methods and im-
proves upon even approximate differential privacy
methods for moderate k.

1. Introduction
Top-k is the problem of identifying the ordered sequence
of k items with the highest counts from a data domain of d
items. This basic problem arises in machine learning tasks
such as recommender systems, basket market analysis, and
language learning. To solve these problems while guaran-
teeing privacy to the individuals contributing data, several
works have studied top-k under the additional constraint of
differential privacy (DP) (Dwork et al., 2006). Differential
privacy guarantees that publishing the k identified elements
reveals only a controlled amount of information about the
users who contributed data to the item counts.

The best known DP algorithm for top-k is the “peeling”
mechanism (Bhaskar et al., 2010; Durfee & Rogers, 2019),
which applies a DP subroutine for selecting the highest
count item from a set, removes it, and repeats k times. One
possible such subroutine is the exponential mechanism, a
general DP algorithm for choosing high-utility (here, high-
count) elements from a data universe given some utility
function (see Section 2). Another similar subroutine is the
permute-and-flip mechanism (McKenna & Sheldon, 2020).
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This leads to the baseline peeling mechanisms in our exper-
iments, each using the best known composition methods:
the approximate DP baseline uses the exponential mecha-
nism analyzed via concentrated differential privacy (CDP)
composition (Dwork & Rothblum, 2016; Bun & Steinke,
2016), and the pure DP basline uses the permute-and-flip
mechanism with basic composition. The approximate DP
variant takes timeO(d+k log(k)) and the pure variant takes
time O(dk). Both require space O(d).

1.1. Our Contributions

We construct an instance of the exponential mechanism that
chooses directly from sequences of k items. Unlike the
peeling mechanism, this approach does not use composition.
Past work has used this style of “joint” exponential mecha-
nism to privately and efficiently estimate: 1-way marginals
under `∞ error (Steinke & Ullman, 2015), password fre-
quency lists (Blocki et al., 2016), and quantiles (Gillenwater
et al., 2021). However, it is not obvious how to extend any
of these to top-k selection.

Naive implementation of a joint exponential mechanism,
whose output space is all sequences of k items, requires
enumerating all O(dk) such sequences. This is impractical
even for modest values of d and k. As with previous work
on joint exponential mechanisms, our main contribution is
an equivalent efficient sampling method.

Theorem 1.1 (Informal version of Theorem 3.9). There is a
joint exponential mechanism for ε-DP top-k that takes time
O(dk log(k) + d log(d)) and space O(dk).

While it is straightforward to prove a utility guarantee for
this mechanism (Theorem 3.3), our main argument for this
joint approach is empirical, as asymptotic guarantees often
obscure markedly different performance in practice. Exper-
iments show that the joint exponential mechanism offers
the strongest performance among pure differential privacy
mechanisms and even outperforms approximate differential
privacy mechanisms when k is not large (Section 4).

1.2. Related Work

Private top-k was first studied in the context of frequent
itemset mining, where each user contributes a set of items,
and the goal is to find common subsets (Bhaskar et al.,
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2010; Li et al., 2012; Zeng et al., 2012; Lee & Clifton,
2014). Bhaskar et al. (2010) introduced the first version of
the peeling mechanism. Our main points of comparison will
be variants of the peeling mechanism developed by Durfee
& Rogers (2019) and McKenna & Sheldon (2020).

Past work has also studied several other algorithms for DP
top-k. Laplace noise has been used for pure and approxi-
mate DP (Ding et al., 2019; Qiao et al., 2021). Additionally,
for pure DP, the Gamma mechanism for releasing private
counts (Theorem 4.1, (Steinke & Ullman, 2015)) can be
applied. Our experiments found that peeling mechanisms
dominate these approaches, so we omit them, but implemen-
tations of all three appear in the supplementary material.
Finally, we note that Durfee & Rogers (2019) study the
problem of private top-k when the number of items d is pro-
hibitively large and O(d) runtime is impractical. We instead
focus on the setting where O(d) runtime is acceptable.

A few lower bounds are relevant to private top-k. One
naive approach is to simply privately estimate all d item
counts and return the top k from those noisy estimates.
However, each count has expected error Ω(d/ε) for pure
DP (Theorem 1.1, (Hardt & Talwar, 2010)). Similarly, Bun
et al. (2014) (Corollary 3.4) construct a distribution over
databases such that, over the randomness of the database
and the mechanism, each count has expected error Ω(

√
d/ε)

for approximate DP. Top-k approaches aim to replace this
dependence on d with a dependence on k. Bafna & Ullman
(2017) and Steinke & Ullman (2017) prove lower bounds
for what we call k-relative error, the maximum amount by
which the true kth count exceeds any of the estimated top-k
counts (see Section 2 for details). Respectively, they prove
Ω(k log(d)) and Ω(

√
k log(d)) sample complexity lower

bounds for “small” and “large” k-relative error. In both
cases, the peeling mechanism provides a tight upper bound.
We upper bound signed maximum error (Theorem 3.3),
but our paper more generally departs from these works by
focusing on empirical performance.

2. Preliminaries
Notation. [m] = {1, . . . ,m}. Given a vector v in dimen-
sion d and indices i < j, vi:j denotes coordinates i, . . . , j of
v; given a sequence S, vS denotes coordinates vi for i ∈ S.

We start by formally describing the top-k problem.

Definition 2.1. Let X be a data domain of d items. In
an instance of the top-k problem, there are n users and
each user i ∈ [n] has an associated vector xi ∈ {0, 1}d.
For dataset D = {xi}ni=1, let cj =

∑n
i=1 xi,j denote the

count of item j ∈ [d], and let (c1, . . . , cd) denote the counts
in nonincreasing order. Given sequence of indices S, let
cS denote the corresponding sequence of counts. Given
sequence loss function `, the goal is to output a sequence S

of k items TOP-K(D) = arg minS=(s1,...,sk)
`(cS).

Note that each user contributes at most one to each item
count but may contribute to arbitrarily many items. This cap-
tures many natural settings. For example, a user is unlikely
to review the same movie more than once, but they are likely
to review multiple movies. In general, we describe dataset
D by the vector of counts for its domain, D = (c1, . . . , cd).

Our experiments will use `∞, `1, and, in keeping with past
work on private top-k (Bafna & Ullman, 2017; Durfee &
Rogers, 2019), what we call k-relative error.
Definition 2.2. Using the notation from Definition 2.1, we
consider sequence error functions

1. `∞(cS) = ‖c1:k − cS‖∞,

2. `1(cS) = ‖c1:k − cS‖1, and

3. k-relative error `k-rel(cS) = maxi∈[k](ck − csi).

The specific choice of error may be tailored to the data
analyst’s goals: `∞ error suits an analyst who wishes to
minimize the worst error of any of the top k counts; `1
error is appropriate for an analyst who views a sequence
of slightly inaccurate counts as equivalent to one highly
inaccurate count; and k-relative error may be best when
the analyst prioritizes a “sound” sequence where no count
is much lower than the true kth count. Note that, while
k-relative error has been featured in past theoretical results
on private top-k selection, it is the most lenient error metric.
For example, given d items with counts 100, 1, . . . , 1 and
k = 2, any sequence of items obtains optimal k-relative
error, and in general `k-rel(cS) ≤ min(`∞(cS), `1(cS)).

Next, we cover privacy prerequisites. Differential privacy
guarantees that adding or removing a single input data point
can only change an algorithm’s output distribution by a
carefully controlled amount.
Definition 2.3 (Dwork et al. (2006)). Datasets D,D′ ∈ X ∗
are neighbors (denoted D ∼ D′) if D′ can be obtained
from D by adding or removing a data point x. Mechanism
M : X ∗ → Y is (ε, δ)-differentially private (DP) if, for any
two neighboring datasets D ∼ D′ in X ∗, and any S ⊆ Y ,
it holds that P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + δ. If
δ = 0, it is ε-DP.

One especially flexible differentially private algorithm is the
exponential mechanism. Given some utility function over
outputs, the exponential mechanism samples high-utility
outputs with higher probability than low-utility outputs.
Definition 2.4 (McSherry & Talwar (2007); Dwork & Roth
(2014)). Given utility function u : X ∗ × O → R with `1
sensitivity ∆(u) = maxD∼D′,o∈O |u(D, o)−u(D′, o)|, the
exponential mechanism M has output distribution

P [M(D) = o] ∝ exp

(
εu(D, o)

2∆(u)

)
,
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where ∝ elides the normalization factor.

Note that this distribution places relatively more mass on
outputs with higher scores when the sensitivity ∆(u) is
small and the privacy parameter ε is large.

Lemma 2.5 (McSherry & Talwar (2007)). The exponential
mechanism is ε-DP.

A tighter analysis is possible for certain utility functions.

Definition 2.6. A utility function u is monotonic (in the
dataset) if, for every dataset D and output o, for any neigh-
boring datasets D′ that results from adding some data point
to D, u(D, o) ≤ u(D′, o).

When the utility function is monotonic, the factor of 2 in
the exponential mechanism’s output distribution can be re-
moved. This is because the factor of 2 is only necessary
when scores for different outputs move in opposite direc-
tions between neighboring datasets.

Lemma 2.7 (McSherry & Talwar (2007)). Given monotonic
utility function u, the exponential mechanism is ε

2 -DP.

One cost of the exponential mechanism’s generality is that
its definition provides no guidance for efficiently executing
the sampling step. As subsequent sections demonstrate, this
is sometimes the main technical hurdle to applying it.

3. A Joint Exponential Mechanism for Top-k
Our application of the exponential mechanism employs
a utility function u∗ measuring the largest difference in
counts between the true counts and candidate counts. Let
(c1, . . . , cd) be the item counts in nonincreasing order. For
candidate sequence of items S = (s1, . . . , sk), we define

u∗(D,S) =


−maxi∈[k](ci − csi) if s1, . . . , sk

are distinct.
−∞ otherwise

u∗ thus assigns the highest possible score, 0, to the true
sequence of top k counts, and increasingly negative scores
to sequences with smaller counts. Sequences with repeated
items have score −∞ and are never output.

Discussion of u∗. A natural alternative to u∗ would re-
place −maxi∈[k](ci − csi) with −maxi∈[k] |ci − csi | =
−‖ci − csi‖∞. Call this alternative u′. In addition to being
expressible as a simple norm, u′ also corresponds exactly
to the number of user additions or removals sufficient to
make S the true top-k sequence1. However, u∗ has two key

1The idea of a utility function based on dataset distances has
appeared in the DP literature under several names (Johnson &
Shmatikov, 2013; Asi & Duchi, 2020; Medina & Gillenwater,
2020) but has not been applied to top-k selection.

advantages over u′. First, u∗ admits an efficient sampling
mechanism. Second, u′ favors sequences that omit high-
count items entirely over sequences that include them in the
wrong order. For example, suppose we have a dataset D
consisting of d = 10 items with counts 100, 90, . . . , 10. If
we want the top k = 5 items, we will consider sequences
such as S1 = (1, 3, 4, 5, 2) and S2 = (1, 3, 4, 5, 6). These
have identical value according to u∗: u∗(D,S1) = −10 =
u∗(D,S2). But according to u′, S1 scores much worse than
S2: u′(D,S1) = −30 < −10 = u′(D,S2). This conflicts
with the ultimate goal of identifying the highest-count items;
S1 contains item 2 (count 90), while S2 replaces it with item
6 (count 50)2. We now show that u∗ also has low sensitivity.

Lemma 3.1. ∆(u∗) = 1.

Proof. First, any sequence with utility −∞ has that utility
on every dataset. Turning to sequences of distinct elements
(s1, . . . , sk), adding a user does not decrease any count, and
increases a count by at most one. Furthermore, while the top
k items may change, none of the top-k counts decrease, and
each increases by at most one. It follows that each ci − csi
either stays the same, decreases by one, or increases by one.
A similar analysis holds when a user is removed.

We call the instance of the exponential mechanism with
utility u∗ JOINT. Its privacy is immediate from Lemma 2.5.

Theorem 3.2. JOINT is ε-DP.

A utility guarantee for JOINT is also immediate from the
generic utility guarantee for the exponential mechanism.
The (short) proof appears in Appendix A.

Theorem 3.3. Let c1, . . . , ck denote the true top-k counts
for dataset D, and let c̃1, . . . , c̃k denote those output by
JOINT. With probability at least 99/100,

max
i∈[k]

(ci − c̃i) ≤
2[k ln(d) + 5]

ε
.

Naive sampling of JOINT requires computing O(dk) output
probabilities. The next subsection describes a sampling
algorithm that only takes time O(dk log(k) + d log(d)).

3.1. Efficiently Sampling JOINT

The key observation is that, while there are O(dk) possible
output sequences, a given instance u∗(D, ·) has only dk
possible values. This is because each score takes the form
−(ci − cj) for some i ∈ [k] and j ∈ [d]. Our algorithm will
therefore proceed as follows:

2The standard `∞ loss metric shares this flaw; `(cS) =
maxi∈[k](ci − csi) may therefore be a reasonable loss metric
for future top-k work. Nonetheless, past work uses `∞ error, and
we did not observe large differences between the two empirically,
so we use `∞ in our experiments as well.
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1. For each of the O(dk) utilities Uij = −(ci − cj),
count the number m(Uij) of sequences S with score
u∗(S) = Uij .

2. Sample a utility Uij from the distribution defined by

P [Uij ] ∝ m(Uij) exp

(
εUij

2

)
. (1)

3. From the space of all sequences that have the selected
utility Uij , sample a sequence uniformly at random.

This outline makes one oversimplification: instead of count-
ing the number of sequences for each of O(dk) (possibly
non-distinct) integral utility values, the actual sampling algo-
rithm will instead work with exactly dk distinct non-integral
utility values. Nonetheless, the output distribution will be
exactly that of the exponential mechanism described at the
beginning of the section.

3.1.1. COUNTING THE NUMBER OF SEQUENCES

Define k × d matrix Ũ by Ũij = −(ci − cj) − zij where
zij is a small term in (0, 1/2] that ensures distinctness,

zij =
d(k − i) + j

2dk
.

Several useful properties of Ũ are stated in Lemma 3.4.

Lemma 3.4. Given Ũ defined above, 1) each row of Ũ is
decreasing, 2) each column of Ũ is increasing, and 3) the
elements of Ũ are distinct.

Proof. Fix some row i. By definition, c1 ≥ c2 ≥ · · · ≥ cd,
so −(ci − c1) ≥ · · · ≥ −(ci − cd). The zij terms also
increase with j, so each row of Ũ is decreasing. By similar
logic, each column of Ũ is increasing.

Finally, note that since i ∈ [k] and j ∈ [d], the z terms are

dk

2dk
,
dk − 1

2dk
, . . . ,

2

2dk
,

1

2dk

and thus are dk distinct values in (0, 1/2]. Since any two
count differences −(ci1 − cj1) and −(ci2 − cj2) are either
identical or at least 1 apart, claim 3) follows.

We now count “sequences through Ũ”. Each sequence
(s1, . . . , sk) consists of k values from [d], one from each
row of Ũ , and its score is mini∈[k] Ũisi , or −∞ if the k
values are not distinct. For each i ∈ [k] and j ∈ [d], define
m̃(Ũij) to be the number of sequences through Ũ with dis-
tinct elements and score exactly Ũij . m̃ and Ũ are useful
because of the following connection to m(Uij), the quanti-
ties necessary to sample from the distribution in Equation 1:

Lemma 3.5. For any i ∈ [k] and j ∈ [d], letAij = {Ũi′j′ |
dŨi′j′e = Uij}. Then m(Uij) =

∑
Ũi′j′∈Aij

m̃(Ũi′j′).

Proof. Each z ∈ (0, 1/2], soAij is exactly the collection of
Ũi′j′ = −(ci′ − cj′)− zi′j′ where ci′ − cj′ = ci − cj .

The problem thus reduces to computing the m̃ values. For
each row r ∈ [k] and utility Ũij ∈ Ũ , define

tr(Ũij) = max({j′ ∈ [d] | Ũrj′ ≥ Ũij}).

Useful simple properties of these tr values appear below.
Lemma 3.6. Fix some Ũij ∈ Ũ . Then 1) tr(Ũij) is non-
decreasing in r, 2) if sequence S = (s1, . . . , sk) has score
Ũij , then for all r ∈ [k], sr ≤ tr(Ũij) and 3) there exists a
sequence S = (s1, . . . , sk) of distinct elements with score
Ũij if and only if tr(Ũij) ≥ r for all r.

Proof. The first two properties follow directly from
Lemma 3.4. For property 3) let S = (s1, . . . , sk) sat-
isfy the conditions of the lemma and assume tr(Ũij) < r
for some r. By properties 1) and 2), for all r′ ≤ r,
sr′ ≤ tr′(Ũij) ≤ tr(Ũij) < r. But that implies S
contains r distinct numbers less than r, which is a con-
tradiction. In the other direction, suppose tr(Ũij) ≥ r
for all r. Define S = (s1, . . . , sk) where sr = r for
r < i and si = j. Since ti(Ũij) ≥ i, j ≥ i. There-
fore [ti+1(Ũij)]− {s1, . . . , si} contains at least one option
for si+1, [ti+2(Ũij)]− {s1, . . . , si+1} contains at least one
option for si+2, and so on. The resulting S has distinct
elements and score Ũij .

The following lemma connects the tr and m̃ values.
Lemma 3.7. Given entry Ũij of Ũ , define nr =

max(tr(Ũij)− (r − 1), 0). Then m̃(Ũij) =
∏
r 6=i nr.

Proof. By Lemma 3.6 we know the statement is true
for Ũij such that m̃(Ũij) = 0. If

∏
r 6=i nr > 0 then

any sequence with score Ũij consists of distinct elements
S = (s1, . . . , sk) such that si = j and for all r 6= i,
sr ∈ [tr(Ũij)] (otherwise S has score less than Ũij). The
number of such sequences is

∏
r 6=i[tr(Ũij)− (r − 1)].

A naive solution thus computes all dk2 of the tr values, then
uses them to compute the m̃ values. We can avoid this by
observing that, if we sort the values of Ũ , then adjacent
values in the sorted order have almost identical tr.
Lemma 3.8. Let Ũ(1), . . . , Ũ(dk) denote the entries of Ũ
sorted in decreasing order. For each Ũ(a), let r(a) de-
note its row index in Ũ . Then: 1) for each a ∈ [dk − 1],
tr(a+1)(Ũ(a+1)) = tr(a+1)(Ũ(a)) + 1, and 2) for r′ 6=
r(a+ 1), tr′(Ũ(a+1)) = tr′(Ũ(a)).
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Proof. For 1), assume tr(a+1)(Ũ(a+1)) > tr(a+1)(Ũ(a)) +

1. Then we can define j such that tr(a+1)(Ũ(a)) < j <

tr(a+1)(Ũ(a+1)), which implies that Ũ(a) > Ũr(a+1),j >

Ũ(a+1). This contradicts Ũ(a) and Ũ(a+1) being adjacent
in sorted order. For 2), assume there exists r′ 6= r(a + 1)
such that tr′(Ũ(a+1)) > tr′(Ũ(a)). (If we instead assumed
tr′(Ũ(a+1)) < tr′(Ũ(a)), this would contradict the sorting
order of Ũ and the definition of tr.) This implies that Ũ(a) >

Ũr′,tr′ (Ũ(a+1))
> Ũ(a+1), which again contradicts Ũ(a) and

Ũ(a+1) being adjacent in sorted order.

According to the above lemma, we can compute all of the
m̃ as follows. First, sort the entries of Ũ , recording the row
and column indices of each Ũ(a) as r(a) and c(a). Then,
create a vector storing the t values for Ũ(1). These can be
combined into m̃(Ũ(1)) using Lemma 3.7. If m̃(Ũ(1)) is
non-zero, then we can get m̃(Ũ(2)) simply by rescaling;
according to Lemma 3.8, adding one to entry tr(2) gives the
new vector of t’s, so only one term in the formula for m̃
changes in going from U(1) to U(2). We can thus compute
each m̃(Ũ(a)) in constant time, and compute all m̃ values
in time O(dk log(k) + d log(d)).

3.1.2. SAMPLING A UTILITY

Given the m̃ values above, we sample from a slightly differ-
ent distribution than the one defined in Equation 1. The new
distribution is, for Ũij ∈ Ũ ,

P
[
Ũij

]
∝ m̃(Ũij) exp

(
εdŨije

2

)
. (2)

When the m̃ are large, sampling can be done in a numeri-
cally stable manner using logarithmic quantities (see, e.g.,
Appendix A.6 of Medina & Gillenwater (2020)).

3.1.3. SAMPLING A SEQUENCE

After sampling Ũij from Equation 2, we sample a sequence
of item indices uniformly at random from the collection of
sequences with score Ũij . The sample fixes si = j. To
sample the remaining k − 1 items, we sample s1 uniformly
at random from [t1(Ũij)] \ {j}, s2 from [t2(Ũij)] \ {s1, j},
and so on. Lemma 3.6 guarantees that this process never
attempts to sample from an empty set.

3.1.4. OVERALL ALGORITHM

JOINT’s overall guarantees and pseudocode appear below.
Theorem 3.9. JOINT samples a sequence from the expo-
nential mechanism with utility u∗ in time O(dk log(k) +
d log(d)) and space O(dk).

Proof. We sketch here, deferring details to Appendix B.

Algorithm 1 Efficiently sampling JOINT

1: Input: Vector of item counts c1, . . . , cd, number of
items to estimate k, privacy parameter ε

2: Sort and relabel items so c1 ≥ c2 ≥ · · · ≥ cd
3: Construct matrix Ũ by Ũij = −(ci − cj)− d(k−i)+j

2dk

4: Sort Ũ in decreasing order to get Ũ(1), . . . , Ũ(dk), stor-
ing the (row, column) of each Ũ(a) as (r(a), c(a))

5: Initialize n1, . . . , nk ← 0
6: Initialize set of non-zero ni, N ← ∅
7: Initialize b← 0
8: for a = 1, . . . , dk do
9: nr(a) ← c(a)− (r(a)− 1)

10: N ← N ∪ {r(a)}
11: if |N | = k then break
12: Set m̃(Ũ(a))← 0, and set b← a
13: Set p←

∏
r∈[k] nr

14: Compute m̃(Ũ(b+1))← p/nr(a)
15: for a = b+ 2, . . . , dk do
16: Set p← p/nr(a)
17: Compute m̃(Ũ(a))← p
18: Update nr(a) ← nr(a) + 1
19: Update p← p · nr(a)
20: Sample a utility Ũij using Equation 2
21: Initialize size-k output vector s with si ← j
22: for index i′ = 1, 2, . . . , i− 1, i+ 1, . . . , k do
23: Compute ti′(Ũij) by iterating through row i′ of Ũ
24: Sample si′ uniformly from [ti′(Ũij)] \

{j, s1, s2, . . . , si′−1}
25: Output: Vector of item indices s

Privacy: By Lemma 3.5, to get m it suffices to compute
m̃3, and by Lemma 3.7 it suffices to compute the t values. A
score sampled from Equation 2 may be non-integral; taking
its ceiling produces a utility Uij = −(ci − cj), with the
desired distribution from Equation 1.

Runtime and space: Referring to Algorithm 1, line 2 takes
time O(d log(d)) and space O(d). Line 3 takes time and
space O(dk). Line 4 takes time O(dk log(k)) and space
O(dk); since each row of U is already decreasing, we can
use k-way merging (Knuth, 1997) instead of naive sorting.
All remaining lines require O(dk) time and space.

JOINT has the same guarantees (Theorem 3.2, Theorem 3.3)
as the exponential mechanism described at the beginning of
this section, since its output distribution is identical.

3Note that even if items i1 and i2 have identical counts, they
may have differing sequence counts, m̃(Ũi1j) 6= m̃(Ũi2j). The
sampling in the loop on Line 22 implicitly makes up for this
difference. See the full privacy proof in Appendix B.
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4. Experiments
Our experiments compare the peeling and joint mechanisms
across several real-world datasets using the error metrics
from Definition 2.2. All datasets and experiment code are
public (Google, 2022). As described in Section 1.2, we
only present the best pure and approximate DP baselines.
Other methods are available in the experiment code. For
completeness, example error plots featuring all methods
appear in Appendix C.3.

4.1. Comparison Methods

4.1.1. PURE DP PEELING MECHANISM

We start with the pure DP variant, denoted PNF-PEEL. It
uses k ε

k -DP applications of the permute-and-flip mecha-
nism, which dominates the exponential mechanism under ba-
sic composition (Theorem 2 (McKenna & Sheldon, 2020)).
We use the equivalent exponential noise formulation (Ding
et al., 2021), where the exponential distribution EXPO (λ)
is defined over x ∈ R by

P [x;λ] = 1x≥0 · λ · exp (−λx) . (3)

Its pseudocode appears in Algorithm 2. We omit the factor
of 2 in the exponential distribution scale because the count
utility function is monotonic (see Definition 2.6 and Remark
1 of McKenna & Sheldon (2020)).

Algorithm 2 PNF-PEEL, pure DP peeling mechanism
1: Input: Vector of item counts c1, . . . , cd, number of

items to estimate k, privacy parameter ε
2: Initialize set of available items A← [d]
3: Initialize empty size-k output vector s
4: for j ∈ [k] do
5: for i ∈ A do
6: Draw exponential noise η ∼ EXPO (ε/k)
7: Compute noisy count c̃i ← ci + η
8: Set i∗ ← arg maxi∈A c̃i
9: Record chosen index, s[j]← i∗

10: Remove chosen index, A← A \ {i∗}
11: Output: Vector of item indices s

Lemma 4.1. PNF-PEEL is ε-DP.

4.1.2. APPROXIMATE DP PEELING MECHANISM

The approximate DP variant instead uses k ε′-DP applica-
tions of the exponential mechanism. We do this because the
exponential mechanism admits a CDP analysis that takes
advantage of its bounded-range property for stronger compo-
sition; a similar analysis for permute-and-flip is not known.

We use the Gumbel-noise variant of the peeling mecha-
nism (Durfee & Rogers, 2019). This adds Gumbel noise
to each raw count and outputs the sequence of item indices

with the k highest noisy counts. The Gumbel distribution
GUMBEL (β) is defined over x ∈ R by

P [x;β] =
1

β
· exp

(
−x
β
− e−x/β

)
(4)

and the resulting pseudocode appears in Algorithm 3.

Algorithm 3 CDP-PEEL, approx DP peeling mechanism
1: Input: Vector of item counts c1, . . . , cd, number of

items to estimate k, privacy parameter ε′

2: for i ∈ [d] do
3: Draw Gumbel noise η ∼ GUMBEL (k/ε′)
4: Compute noisy count c̃i ← ci + η
5: Output: Ordered sequence of the k item indices with

the highest noisy counts

By Lemma 4.2 in Durfee & Rogers (2019), CDP-PEEL has
the same output distribution as repeatedly applying the expo-
nential mechanism and is ε′-DP. A tighter analysis is possi-
ble using CDP. While an ε-DP algorithm is always ε2

2 -CDP,
an ε-DP invocation of the exponential mechanism satisfies
a stronger ε

2

8 -CDP guarantee (Lemmas 3.2 and 3.4 (Cesar
& Rogers, 2021)). Combining this with a generic conver-
sion from CDP to approximate DP (Proposition 1.3 (Bun &
Steinke, 2016)) yields the following privacy guarantee:
Lemma 4.2. CDP-PEEL is (ε, δ)-DP for any δ > 0 and

ε =
kε′2

8
+ 2ε′

√
k log(1/δ)

8
.

All of our approximate DP guarantees for CDP-PEEL use
Lemma 4.2.

4.2. Datasets

We use six datasets: Books (Soumik, 2019) (11,000+
Goodreads books with review counts), Foods (McAuley,
2014) (166,000+ Amazon foods with review counts),
Games (Tamber, 2016) (5,000+ Steam games with pur-
chase counts), Movies (Harper & Konstan, 2015) (62,000+
Movies with rating counts), News (Fernandes et al.,
2015) (40,000+ Mashable articles with share counts), and
Tweets (Bin Tareaf, 2017) (52,000+ Tweets with like counts).
For each dataset, it is reasonable to assume that one per-
son contributes ≤ 1 to each count, but may also contribute
to many counts. Histograms of item counts appear in Ap-
pendix C.1. A more relevant quantity here is the gaps be-
tween counts of the top k items (Figure 1, leftmost column).
As we’ll see, JOINT performs best on datasets where gaps
are relatively large (Books, Movies, News, and Tweets).

4.3. Results

The experiments evaluate error across the three mechanisms,
six datasets, and three error metrics. For each mechanism,
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Figure 1. Note that all plots have a logarithmic y-axis and quantities are padded by 1 to avoid discontinuities on the logarithmic y-axis.
Left column: Count differences ck − ck+1 for each dataset. Center column: `∞ error. Right column: `1 error.
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the center line plots the median error from 50 trials (padded
by 1 to avoid discontinuities on the logarithmic y-axis), and
the shaded region spans the 25th to 75th percentiles. We
use k = 5, 15, . . . , 195 with 1-DP instances of JOINT and
PNF-PEEL and (1, 10−6)-DP instances of CDP-PEEL. Due
to the weakness of the k-relative error metric, and for the
sake of space in the figure, we relegate its discussion to
Appendix C.2.

4.3.1. `∞ ERROR

JOINT’s performance is strongest for `∞ error (Figure 1,
center column). This effect is particularly pronounced on
the Books, Movies, News, and Tweets datasets. This is
because these datasets have large gaps between the top k
counts (Figure 1, leftmost column), which results in large
gaps between the scores that JOINT assigns to optimal and
suboptimal sequences. These large gaps enable JOINT to
obtain much stronger performance than the baseline pure DP
algorithm, PNF-PEEL, and to beat even the approximate DP
CDP-PEEL for a wide range of k. In contrast, small gaps
reduce this effect on Foods and Games. On these datasets,
JOINT slightly improves on PNF-PEEL overall, and only
improves on CDP-PEEL for roughly k ≤ 30.

Figure 2. `∞ index error plots. Note the logarithmic y-axis.

The `∞ metric also features plateaus in JOINT’s error on
Foods and Games. This is because JOINT’s error is gap-
dependent while PNF-PEEL and CDP-PEEL’s errors are
more k-dependent: as k grows, JOINT’s maximum error
may change as it ranks more items, but the item index where
that error occurs changes monotonically. The reason is that
JOINT’s error ultimately depends on the count gaps under
consideration. In contrast, the item index where PNF-PEEL
and CDP-PEEL incur maximum error may increase and
then decrease. This is because PNF-PEEL and (to a lesser
extent) CDP-PEEL must divide their privacy budget by k,
and thus are increasingly likely to err (and incur the larger
penalties for) top items as k becomes large. Figure 2 plots
the maximum error item index and illustrates this effect.

4.3.2. `1 ERROR

A similar trend holds for `1 error (Figure 1, rightmost col-
umn). JOINT again largely obtains the best performance
for the Books, Movies, News, and Tweets datasets, with

relatively worse error on Foods and Games. `1 error is a
slightly more awkward fit for JOINT because JOINT’s utility
function relies on maximum count differences; JOINT thus
applies the same score to sequences where a single item
count has error c and sequences where every item count
has error c. This means that JOINT selects sequences that
have relatively low maximum (and `∞) error but may have
high `1 error. Nonetheless, we again see that JOINT always
obtains the strongest performance for small k; it matches
PNF-PEEL for small datasets and outperforms it for large
ones; and it often outperforms CDP-PEEL, particularly for
large datasets and moderate k.

4.3.3. TIME COMPARISON

We conclude with a time comparison using the largest
dataset (Foods, d ≈ 166, 000) and 5 trials for each k. PNF-
PEEL uses k instances of the permute-and-flip mechanism
for an overall runtime of O(dk). CDP-PEEL’s runtime is
dominated by finding the top-k values from a set of d un-
ordered values, which can be done in time O(d+ k log(k)).
As seen in Figure 3, and as expected from their asymptotic
runtimes, JOINT is slower than PNF-PEEL, and PNF-PEEL
is slower than CDP-PEEL. Nonetheless, JOINT still primar-
ily runs in seconds or, for k = 200, slightly over 1 minute.

Figure 3. Execution time on a logarithmic y-axis.

5. Conclusion
We defined a joint exponential mechanism for the prob-
lem of differentially private top-k selection and derived
an algorithm for efficiently sampling from its distribution.
We provided code and experiments demonstrating that our
approach almost always improves on existing pure DP meth-
ods and often improves on existing approximate DP meth-
ods when k is not large. We focused on the standard setting
where an individual user can contribute to all item counts.
However, if users are restricted to contributing to a single
item, then algorithms that modify item counts via Laplace
noise (Ding et al., 2019; Qiao et al., 2021) are superior to
JOINT and peeling mechanisms. The best approach for the
case where users can contribute to some number of items
larger than 1 but less than d is potentially a topic for future
work.
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A. Proof of JOINT Utility Guarantee (Theorem 3.3)
Proof of Theorem 3.3. The following is a basic utility guarantee for the exponential mechanism.

Lemma A.1 (McSherry & Talwar (2007); Dwork & Roth (2014)). Let A(u,D) be the utility value produced by an instance
of the exponential mechanism with score function u, output space R, dataset D, and optimal utility value OPTu(D). Then

P
[
A(u,D) ≤ OPTu(D)− 2∆(u)

ε
[ln(|R|) + t]

]
≤ e−t.

Taking t = 5, and using the fact that |R| ≤ dk for JOINT’s utility function u∗, completes the result.

B. Full Privacy, Runtime, and Storage Space Proof For JOINT (Theorem 3.9)
Proof of Theorem 3.9. Recall that JOINT refers to the algorithm that uses the efficient sampling mechanism. Here, we first
prove that JOINT samples a sequence from the exponential mechanism with utility u∗.

Let EM refer to the naive original construction of the exponential mechanism with utility u∗. It suffices to show that JOINT
and EM have identical output distributions. Fix some sequence S = (s1, . . . , sk) of indices from [d].

If s1, . . . , sk are not distinct, then JOINT never outputs S. This agrees with the original definition of the exponential
mechanism with utility function u∗, which assigns score −∞ to any sequence of item indices with repetitions. Thus, for any
S with non-distinct elements, PJOINT [output S] = PEM [output S] = 0.

If instead s1, . . . , sk are distinct, by Lemma 3.7, m̃(S) > 0. Let Ũi∗j∗ = mini∈[k]−(ci − csi)− zisi be its score in Ũ , so
i∗ = arg mini∈[k]−(ci − csi)− zisi . Let UZ = {−(ci − cj)}i∈[k],j∈[d] denote the set of possible values for −(ci − cj);
note that this a set of integers and does not have repeated elements. Then

PJOINT [output S] = PJOINT

[
sample score Ũi∗j∗

]
· PJOINT

[
sample sequence S | sample score Ũi∗j∗

]
=
m̃(Ũi∗j∗) exp

(
εdŨi∗j∗e

2

)
∑
u∈Ũ m̃(u) exp

(
εdue
2

) · ∏
r 6=i∗

1

tr(Ũi∗j∗)− (r − 1)

=
exp

(
εdŨi∗j∗e

2

)
∑
u∈Ũ m̃(u) exp

(
εdue
2

)
by Lemma 3.7. Then we continue the chain of equalities as

exp
(
εdŨi∗j∗e

2

)
∑
u∈Ũ m̃(u) exp

(
εdue
2

) =
exp

(
εdŨi∗j∗e

2

)
∑
Aij

∑
u∈Aij

m̃(u) exp
(
εdue
2

)
=

exp
(
εdŨi∗j∗e

2

)
∑
u∈UZ

m(u) exp
(
εu
2

)
=
m(dŨi∗j∗e) exp

(
εdŨi∗j∗e

2

)
∑
u∈UZ

m(u) exp
(
εu
2

) · 1

m(dŨi∗j∗e)

= PEM

[
sample score dŨi∗j∗e

]
· PEM

[
sample sequence S | sample score dŨi∗j∗e

]
= PEM [output S]

where the second equality uses Lemma 3.5.

Having established the privacy of JOINT, we now turn to proving that its runtime and storage space costs are O(dk log(k) +
d log(d)) and O(dk), respectively.
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Referring to Algorithm 1, line 2 takes time O(d log(d)) and space O(d). Line 3 takes time and space O(dk). Line 4 takes
time O(dk log(k)) and space O(dk); since each row of U is already decreasing, we can use k-way merging (Knuth, 1997)
instead of naive sorting.

The loop on Line 8 handles the m̃ that are zero. Its variable setup on Lines 5-7 takes time and space O(k). Lines internal to
the loop each take O(1) time and space. So, overall, this block of code requires time and space O(dk).

The loop on Line 15 handles the non-zero m̃. Its variable setup on Lines 13-14 takes time O(k) and space O(1). Lines
internal to the loop each take O(1) time and space. So, overall, this block of code requires time and space O(dk).

Sampling a utility (Line 20) requires time and space O(dk). The remaining loop (Line 22) iterates for O(k) steps, and each
step requires O(d) time and space.

Overall, this yields runtime and storage space costs of O(dk log(k) + d log(d)) and O(dk), respectively.

C. Other Experiment Plots
C.1. Item Count Histograms

Figure 4 contains item count histograms for each of the datasets.

Figure 4. Item count histograms. The x-axis is binned by item count, and the y-axis is the number of items in each bin.

C.2. k-Relative Errors

Figure 5 plots k-relative error for each of the mechanisms and datasets. The trends for k-relative error are broadly
unchanged from `∞ and `1 error: JOINT consistently matches or outperforms its pure DP counterpart PNF-PEEL, mostly
outperforms CDP-PEEL on large-scale datasets, and is mostly outperformed by CDP-PEEL on small-scale datasets unless k
is small. However, k-relative error is the least sensitive error (see discussion after Definition 2.2), so for several datasets the
performance gaps between methods are small or zero.

C.3. Gamma and Laplace Mechanisms

Figure 6 plots error on the Movies dataset for the core three methods (JOINT, PNF-PEEL, and CDP-PEEL) as well as
Gamma (Theorem 4.1, (Steinke & Ullman, 2015)) and Laplace (Ding et al., 2019) mechanisms, which are respectively
dominated by PNF-PEEL and CDP-PEEL. Exact details of these mechanisms can be found in the code provided in the
supplement. Note that the Laplace mechanism of Qiao et al. (2021) is identical to that of Ding et al. (2019) at the tested
value of ε = 1. For ε < 0.1, Qiao et al. (2021) also provides an approximate-DP version of the algorithm, which may be
more competitive in that setting.
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Figure 5. k-relative error plots. Note the logarithmic y-axis.

Figure 6. Plots for all error metrics on the Movies dataset, with Gamma and Laplace mechanisms included as additional baselines. Note
the logarithmic y-axis.


