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Abstract
We propose Neuro-Symbolic Hierarchical Rule
Induction (HRI), an efficient interpretable neuro-
symbolic model, to solve Inductive Logic Pro-
gramming (ILP) problems. In this model, which
is built from a pre-defined set of meta-rules orga-
nized in a hierarchical structure, first-order rules
are invented by learning embeddings to match
facts and body predicates of a meta-rule. To in-
stantiate HRI, we specifically design an expres-
sive set of generic meta-rules, and demonstrate
they generate a consequent fragment of Horn
clauses. As a differentiable model, HRI can be
trained both via supervised learning and reinforce-
ment learning. To converge to interpretable rules,
we inject a controlled noise to avoid local op-
tima and employ an interpretability-regularization
term. We empirically validate our model on var-
ious tasks (ILP, visual genome, reinforcement
learning) against relevant state-of-the-art meth-
ods, including traditional ILP methods and neuro-
symbolic models.

1. Introduction
Research on neuro-symbolic approaches (Santoro et al.,
2017; Manhaeve et al., 2018; Dai et al., 2019; d’Avila
Garcez & Lamb, 2020; Amizadeh et al., 2020) has become
very active recently and has been fueled by the successes of
deep learning (Krizhevsky et al., 2017) and the recognition
of its limitations (Marcus, 2018). At a high level, these
approaches aim at combining the strengths of deep learning
(e.g., high expressivity, differentiable learning) and sym-
bolic methods (e.g., interpretability, generalizability) while
addressing their respective limitations (e.g., brittleness for
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deep learning, scalability for symbolic methods).

In this paper, we focus on inductive logic programming
(ILP) tasks (Cropper & Dumančić, 2021). The goal in ILP
is to find a first-order logic (FOL) formula that explains
positive and negative examples given some background
knowledge also expressed in FOL. In contrast to traditional
ILP methods, which are based on combinatorial search over
the space of logic programs, neuro-symbolic methods (see
Section 2) often work on a continuous relaxation of this
discrete space.

For tackling ILP problems, we propose a new neuro-
symbolic hierarchical model, denoted HRI, which is built
upon a set of meta-rules. For a more compact, yet expressive,
representation, we introduce the notion of proto-rule, which
encompasses multiple meta-rules. The valuations of predi-
cates are computed via a soft unification between proto-rules
and predicates using learnable embeddings. Like most ILP
methods, our model can provide an interpretable solution
and, being independent of the number of objects, manifests
some combinatorial generalization skills1. In contrast to
other approaches, HRI is also independent of the number
of predicates: this number may vary during training and
testing 2. Our model can also allow recursive definitions, if
needed. Since it is based on embeddings, it is able to gener-
alize and is particularly suitable for multi-task ILP problems.
Moreover, any semantic or visual priors on concepts can be
leveraged, through the embeddings initialization.

The design of proto-rules, crucially restricting the hypoth-
esis space, embodies a well-known trade-off between effi-
ciency and expressivity. Relying on minimal sets of meta-
rules for rule induction models has been shown to improve
both learning time and predictive accuracies (Cropper &
Muggleton, 2014; Fonseca et al., 2004). For our model
to be both adaptive and efficient, we initially designed an
expressive and minimal setR0 of proto-rules. While most
neuro-symbolic approaches do not formally discuss the ex-
pressivity of their models, we provide a theoretical analysis

1Trained on smaller instances, it can generalize to larger ones.
2In the case some input predicates only appear in the held-out

dataset used for the final evaluation, our model can still predict
thanks to the pre-trained embeddings, as mentioned in the Visual
Genome Experiment in Appendix C.
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to characterize the expressivity of R0. Moreover, in con-
trast to traditional ILP work based on combinatorial search
(Cropper & Tourret, 2020), we found that a certain redun-
dancy in the proto-rules may experimentally help learning
in neuro-symbolic approaches. Therefore, as a replacement
ofR0, we propose an extended setR∗ of proto-rules.

We validate our model using proto-rules in R∗ on classic
ILP tasks. Despite using the same set of proto-rules, our
model is competitive with other approaches that may re-
quire specifying different meta-rules for different tasks to
work, which, unsatisfactorily, requires an a priori knowl-
edge of the solution. In order to exploit the embeddings
of our model and demonstrate its scalability, we distinctly
evaluate our approach on a large domain, GQA (Hudson &
Manning, 2019b) extracted from Visual Genome (Krishna
et al., 2017)). Our model outperforms other methods such
as NLIL (Yang & Song, 2020) on those tasks. We also
empirically validate all our design choices.

Contributions Our contributions can be summarized as
follows: (1) Hierarchical model for embedding-based rule
induction (see Section 4), (2) Expressive set of generic
proto-rules and theoretical analysis (see Section 4.2), (3)
interpretability-oriented training method (see Section 5), (4)
Empirical validation on various domains (see Section 6).

2. Related Work
Classic ILP methods Classic symbolic ILP methods
(Quinlan, 1990; Muggleton, 1995; Law et al., 2018; Cropper
& Morel, 2021). aim to learn logic rules from examples by
a direct search in the space of logic programs. To scale to
large knowledge graphs, recent work (Galárraga et al., 2013;
Omran et al., 2018) learns predicate and entity embeddings
to guide and prune the search. These methods typically rely
on carefully hand-designed and task-specific templates in or-
der to narrow down the hypothesis space. Their drawbacks
include scalability and potential struggle with noisy data.

Differentiable ILP methods By framing an ILP task as a
classification problem, these approaches based on a continu-
ous relaxation of the logical reasoning process can learn via
gradient descent. The learnable weights may be assigned
to rules (Evans & Grefenstette, 2018)—although combina-
torially less attractive—or to the membership of predicates
in a clause (Payani & Fekri, 2019; Zimmer et al., 2021).
However, these models are still hard to scale and have a con-
strained implementation, e.g., task-specific template-based
variable assignments or limited number of predicates and
objects. In another direction, Dong et al. (2019) learn rules
as shallow multi-layer perceptrons (MLP), losing thus in in-
terpretability. In contrast to these neuro-symbolic methods,
our model HRI ascribes embeddings to predicates, and the

membership weights derive from a similarity score, which
may be beneficial in rich and multi-task learning domains.

Multi-hop reasoning methods In multi-hop reasoning
methods for knowledge graph (KG) (Guu et al., 2015; Yang
et al., 2017; Yang & Song, 2020; Ren et al., 2021), predicate
invention is understood as finding a relational path (Yang
et al., 2017) or a combination of paths (Yang & Song, 2020)
in the KG; a path amounts to a chain-like first-order rule.
However, although computationally efficient, their restricted
expressiveness limits their performance and applicability.

Embedding-based models In the context of KG comple-
tion or rule mining notably, many previous studies learn
embeddings of both binary predicates and entities. Entities
are typically attached to low-dimensional vectors, while re-
lations are understood as bilinear or linear operators applied
on entities possibly involving some non-linear operators
(Bordes et al., 2013; Lin et al., 2015; Socher et al., 2013;
Nickel et al., 2011; Guu et al., 2015). These methods are
either limited in their reasoning power or suffer from similar
problems as multi-hop reasoning.

Our work is closely related to that of Campero et al. (2018)
whose representation model is inspired by Neural Theorem
Provers (Rocktäschel & Riedel, 2017), attaching vector em-
beddings to predicates and rules. Their major drawback,
like most classic or differentiable ILP methods, is the need
for a carefully hand-designed template set for each ILP task.
In contrast, we extend their model to a hierarchical structure
with an expressive set of meta-rules, which can be used for
various tasks. We further demonstrate our approach in the
multi-task setting.

3. Background
We first define first-order logic and inductive logic program-
ming (ILP). Then, we recall some approaches for predicate
invention, an essential aspect of ILP.

Notations Sets are denoted in calligraphic font (e.g., C).
Constants (resp. variables) are denoted in lowercase (resp.
uppercase). Predicates have the first letter of their names
capitalized (e.g., P or Even), their corresponding atoms
are denoted sans serif (e.g., P), while predicate variables are
denoted in roman font (e.g., P). Integer hyperparameters
are denoted n with a subscript (e.g., nL).

3.1. Inductive Logic Programming

First-order logic (FOL) is a formal language that can be
defined with a set of constants C, a set of predicates P , a set
of functions, and a set of variables. Constants correspond
to the objects of discourse, n-ary predicates can be seen as
mappings from Cn to the Boolean set B = {True, False},
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n-ary functions are mappings from Cn to the set of constants
C, and variables correspond to unspecified constants. As
customary in most ILP work, we focus on a function-free
fragment3 of FOL.

An atom is a predicate applied to a tuple of arguments, ei-
ther constants or variables; it is called a ground atom if all
its arguments are constants. Well-formed FOL formulas
are defined recursively as combinations of atoms with logic
connectives (e.g., negation, conjunction, disjunction, impli-
cation) and existential or universal quantifiers (e.g., ∃,∀).
Clauses are a special class of formulas that can be written
as a disjunction of literals, which are atoms or their nega-
tions. Horn clauses are clauses with at most one positive
literal, while definite Horn clauses contain exactly one. In
the context of ILP, definite clauses play an important role
since they can be re-written as rules:

H← B1 ∧ B2 ∧ · · · ∧ Bk (1)

where H is called the head atom and Bi’s the body atoms.
The variables appearing in the head atom are instantiated
with a universal quantifier, while the other variables in the
body atoms are existentially quantified4.

Inductive Logic Programming (ILP) aims at finding a set
of rules such that all the positive examples and none of the
negative ones of a target predicate are entailed by both these
rules and some background knowledge expressed in FOL.
The background knowledge may contain ground atoms,
called facts, but also some given rules.

Forward chaining can be used to chain rules together to de-
duce a target predicate valuation from some facts. Consider
the Even-Succ task as an example. Given background
facts {Zero(0), Succ(0, 1), Succ(1, 2)} and rules:

Even(X)← Zero(X)

Even(X)← Even(Y ) ∧Aux(Y,X)

Aux(X,Y )← Succ(X,Z) ∧ Succ(Z, Y ),

(2)

we can easily deduce the facts {Aux(0, 2), Even(2)} by
unifying the body atoms of the rules with the facts; repeating
this process, we can, iteratively, infer all even numbers.

The predicates appearing in the background facts are called
input predicates. Any other predicates, apart from the target
predicate, are called auxiliary predicates. A predicate can
be extensional, as defined by a set of ground atoms, or
intensional, defined by a set of clauses .

3A fragment of a logical language is a subset of this language
obtained by imposing syntactical restrictions on it.

4This rule can be read as: if, for a certain grounding, all the
body atoms are true, then the head atom is also true.

3.2. Predicate Invention and Meta-Rules

One important part of solving an ILP problem is predicate
invention, which consists in creating auxiliary predicates,
intensionally defined, which would ultimately help define
the target predicate. Without language bias, the set of pos-
sible rules to consider grows exponentially in the number
of body atoms and in the maximum allowed arity of the
predicates. In previous work, this bias is often enforced
using meta-rules, also called rule templates, which restrict
the hypothesis space by imposing syntactic constraints. The
hypothesis space is generated by the successive applica-
tions of the meta-rules on the predicate symbols from the
background knowledge.

A meta-rule corresponds to a second-order clause with pred-
icate variables. For instance, the chain meta-rule is:

H(X,Y )← B1(X,Z) ∧ B2(Z, Y ), (3)

where H, B1, and B2 correspond to predicate variables.

LRI Model We recall the differentiable approach to pred-
icate invention proposed by Campero et al. (2018). Their
model, Logical Rule Induction (LRI), learns an embedding
for each predicate and each meta-rule atom; then, predicates
and atoms of meta-rules are matched via a soft unification
technique. For any predicate P , let θP ∈ Rd denotes its
d-dimensional5 embedding. The embeddings attached to a
meta-rule like (3) with one head (H) and two body (B1,B2)
predicate variables are (θH,θB1

,θB2
) ∈ Rd×Rd×Rd. The

soft unification is based on cosine to measure the degree of
similarity of embeddings of predicates and meta-rule atoms.
For example, αPH = cos(θP ,θH) ∈ [0, 1] is the unification
score between predicate P and head predicate variable H: a
higher unification score indicates a higher belief that P is
the correct predicate for H. Similarly, unification scores are
computed for any pair of predicate and meta-rule atom.

In this model, a ground atom P = P (s, o) is represented
as (θP , s, o, vP), where θP is the embedding of predicate
P , s and o are respectively the subject and object constants,
and vP ∈ [0, 1] is a valuation measuring the belief that P
is true. In ILP tasks, the valuations are initialized to 1 for
background facts and are otherwise set to 0, reflecting a
closed-world assumption.

For better clarity, let use meta-rule (3) as a running example
to present how one inference step is performed. For an
intensional predicate P , the valuation of a corresponding
ground atom P = P (x, y) with respect to a meta-rule R
of the form (3) and two ground atoms, P1 = P1(x, z) and
P2 = P2(z, y), is computed as follows:

v(P,R,P1,P2)=(αPH · αP1B1
· αP2B2

) · (vP1
· vP2

) . (4)

5In Campero et al. (2018), d equals the number of predicates.
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The term in the first brackets measures how well the predi-
cate tuple (P, P1, P2) matches the meta-rule, while the term
in the second brackets corresponds to a fuzzy AND. Note
that (4), defined as a product of many terms in [0, 1], leads
to an underestimation issue. The valuation of atom P with
respect to meta-rule R is then computed as6:

v(P,R) = max
P1,P2

v(P,R,P1,P2). (5)

Since P is matched with several meta-rules’s heads, the new
valuation of P after one forward-chaining inference step is:

v(P) = max

(
vold(P),max

R
v(P,R)

)
, (6)

where vold(P) is the previous valuation of P. The max over
meta-rules allows an intensional predicate to be defined as a
disjunction. After nI steps of forward chaining, the model
uses binary cross-entropy as loss function to measure the
difference between inferred values and target values.

4. Hierarchical Rule Induction
Let us introduce our model HRI and our generic meta-rules
set, alongside some theoretical results about its expressivity.

4.1. Proposed Model

Building on LRI (Campero et al., 2018), our model includes
several innovations, backed both by theoretical and experi-
mental results: proto-rules, incremental prior, hierarchical
prior, and improved model inference. The priors reflect the
hierarchical and progressive structure arguably present in
the formation of human conceptual knowledge.

HRI is illustrated in Figure 1, using the recursive task Even.
The boxes, appearing in different layers, denote auxiliary
predicates, which embody an asymmetrical disjunction of
a conjunction of two atoms with a third body predicate.
An arrow represents the soft unification between one body
predicate and the heads of lower-level predicates, following
(13); same-level predicates are also considered when the
recursivity allowed, as in this example. In this figure, the
fully-exposed arrows are highlighting one solution found
by our model (mentioned in Appendix B.1), which can be
written as:

Even(X)← aux31(X)

aux31(X)← (Zero(X) ∧ aux21(Y,X)) ∨ Zero(X)

aux21(X,Y )← (aux21(X,Z) ∧ aux21(Z, Y )) ∨ aux11(X,Y )

aux11(X,Y )← (Succ(X,Z) ∧ Succ(Z, Y )) ∨ False,
(7)

6The max over ground atoms is taken both over possible exis-
tential variable (e.g., Z above), and over predicates P1, P2 ∈ P .

Figure 1. Hierarchical Model

Proto-rules We first define the notion of proto-rules,
which implicitly correspond to sets of meta-rules. A proto-
rule is an adaptive7 meta-rule (see Appendix A for a formal
definition). For instance, (3) extended as a proto-rule be-
comes:

H(X,Y )← B1(X,Z) ∧ B2(Z, Y ), (8)
where the Bi’s correspond to predicate variables, of arity 2
or 1, with an optional second argument. For instance, (8)
can be instantiated as the following rule:

P (X,Y )← P1(X) ∧ P2(Z, Y ) (9)
where P , P2 are binary predicates, and P1 is a unary pred-
icate implicitly viewed as the binary predicate P1, where
∀z, P1(x, z) := P1(x).

We propose a minimal and expressive set of proto-rules in
Section 4.2. However, HRI can be instantiated with any set
R of proto-rules. The choice ofR defines the language bias
used in the model.

Incremental Prior To reinforce the incremental aspect
of predicate invention, in contrast to LRI, each auxiliary
predicate is directly associated with a unique proto-rule
defining it. This has two advantages. First, it partially

7 It amounts to an embedding of lower-arity predicates into the
space of higher-arity predicates.
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addresses the underestimation issue of (4) since it amounts
to setting αPH = 1. Second, it partly reduces computational
costs since the soft unification for a rule can be computed
only by matching the body atoms8. In order to preserve
expressivity9, we can re-introduce disjunctions in the model
by considering proto-rules with disjunctions in their bodies
(see Section 4.2);10 e.g., (8) could be extended to:

H(X,Y )←
(
B1(X,Z) ∧ B2(Z, Y )

)
∨ B3(X,Y ). (10)

Hierarchical Prior A hierarchical architecture is en-
forced by organizing auxiliary predicates in successive lay-
ers, from layer 1 to the max layer nL, as illustrated in Fig-
ure 1. Layer 0 contains all input (extensional) predicates.
For each layer l = 1, . . . , nL, each proto-rule11 inR gener-
ates one auxiliary predicate. Lastly, the target predicate is
matched with the auxiliary predicates in layer nL only.

With this hierarchical architecture, an auxiliary predicate P
at layer ` can be only defined from a set P↓` of predicates
at a layer lower or equal to `. This set can be defined in
several ways depending on whether recursivity is allowed.
We consider three cases: no recursivity, iso-recursivity, and
full recursivity. For the no recursivity (resp. full recursivity)
case, P↓` is defined as the set P<` (resp. P≤`) of predicates
at layer strictly lower than (resp. lower or equal to) `. For
iso-recursivity, P↓` is defined as P<` ∪ {P}.

Enforcing this hierarchical prior has two benefits. First, it
imposes a stronger language bias, which facilitates learning.
Second, it also reduces computational costs since the soft
unification does not need to consider all predicates.

Improved Model Inference We improve LRI’s inference
technique with a soft unification computation that reduces
the underestimation issue in (4), which is due to the product
of many values in [0, 1]. For clarity’s sake, we illustrate
the inference with proto-rule (10); although the equations
can be straightforwardly adapted to any proto-rule. One
inference step in our model is formulated as follows12:

vand = POOLP1,P2
(αP1B1

· αP2B2
· AND[vP1

, vP2
])

vor = OR [vand, POOLP3
(αP3B3

· vP3
)]

v = MERGE (vold, vor) ,

(11)

where v (resp. vold) denotes the new (resp. old) valuation
of a grounded auxiliary predicate P. For an auxiliary predi-

8The max over meta-rules in (6) is not needed anymore.
9Since identifying intensional predicates to proto-rules prevent

them to have disjunctive definitions.
10Although such disjunction increases the computational cost

again, it can be partly parallelised in the inference.
11Alternatively, several auxiliary predicates may be generated

per proto-rules per layer. For simplicity, we only generate one and
control the model expressivity with only one hyperparameter nL.

12It generalizes (4)-(6), under the incremental prior.

cate at layer `, the POOL operation encompass a max over
the groundings compatible to P followed by a pooling per-
formed over both predicates P1, P2, P3 ∈ P↓` . Indeed, in
presence of an existential quantifier as in proto-rule (10),
a max is applied to eliminate the corresponding existential
variable before the actual pooling over predicates.

The valuation vt of the target predicate (with variable de-
noted Pt) is computed as a MERGE of its previous valuation
vtold and a POOL over atoms at layer nL:

vt = MERGE
(
vtold, POOLP1 (αP1Pt · vP1)

)
. (12)

The underestimation issue is alleviated in two ways. First,
the POOL operation is implemented as a sum, AND as min,
OR as max, and MERGE as max. Second, the unification
scores αPiBi’s based on cosine are renormalized with a
softmax transformation:

αPiBi
=

exp(cos(θPi ,θBi)/τ)∑
Pj

exp(cos(θPj
,θBi

)/τ)
, (13)

where Pj ∈ P↓` and hyperparameter τ , called temperature,
controls the renormalization. Score αP1Pt can be computed
in a similar way with embedding θPt . These choices have
been further experimentally validated (see Appendix D).

Equation (11) implies that the computational complexity
of one inference step at layer ` is O(|P`| × |P↓` |3 × |C|2)

where P` is the set of predicates at layer ` and P↓` is the set
of predicates available for defining an auxiliary predicate at
layer `; parallelising the OR operation leads to a quadratic
dependence in |P↓` |. Its spatial complexity isO(|P| × |C|2).
The inference step described above is iterated nI times, up-
dating the valuations of auxiliary and target predicates. Note
that when recursive definitions of predicates are allowed,
it could be conceivable to iterate this inference step until
convergence. A nice property of this inference procedure is
that it is parallelizable, which our implementation on GPU
takes advantage of.

4.2. Generic Set of Proto-Rules

Although HRI can be instantiated with any proto-rules, we
design a small set of expressive proto-rules to instantiate it.
We introduce first the following set of proto-rulesR0:

A : H(X) ←B1(X,Y )∧B2(Y,X)

B : H(X,Y )←B1(X,Z) ∧B2(Z, Y )

C : H(X,Y )←B1(X,Y )∧B2(Y,X)


where the Bi’s correspond to predicate variables where the
second argument is optional (see Section 4.1).

To support our design, we analyzed the expressivity ofR0,
by investigating which fragment of first-order logic can be
generated by R0 from a set of predicates P . Because of
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space constraints, we only present here our main result,
where we assume that P contains the zero-ary predicate
True and the equality symbol:

Theorem 4.1. The hypothesis space generated byR0 from
P is exactly the set of function-free definite Horn clause
fragment F{1,2}P,≤2 composed of clauses with at most two body
atoms involving unary and binary predicates in P .

We refer the reader to Appendix A for all formal definitions,
proofs and further theoretical results. This results implies
that our model withR0 can potentially solve perfectly any
ILP task whose target predicate is expressible inF{1,2}P,≤2 with
a large enough max layer nL.

However, to potentially reduce the max layer nL and facili-
tate the definition of recursive predicates, we extendR0 to
the setR∨0 by including a disjunction with a third atom in
all the proto-rules:
A∗ : H(X) ←

(
B1(X,Y ) ∧ B2(Y,X)

)
∨B3(X,T )

B∗ : H(X,Y )←
(
B1(X,Z) ∧ B2(Z, Y )

)
∨B3(X,Y )

C∗ : H(X,Y )←
(
B1(X,Y ) ∧ B2(Y,X)

)
∨B3(X,Y )


Moreover, as we have observed a certain redundancy to be
beneficial to the learning, we incorporate the permutation
rule I in our experiments:

R∗ = R∨0 ∪ {I : H(X,Y )← F (Y,X)}
This small set of protorules R∗, which has the same ex-
pressivity as R0 characterized in Theorem 4.1, is used to
instantiate our model in all our experiments.

5. Proposed Training Method
Supervised Training We train our model with a fixed
number nT of training iterations. For each iteration, the
model is trained using one training instance. During
each iteration, we add a geometrically-decaying Gaussian-
distributed noise to the embeddings for both predicates and
rules to avoid local optima, similarly to LRI (Campero et al.,
2018). Then the improved inference procedure described in
(11) is performed with these noisy embeddings for a number
nI of steps to get the valuations for all predicates. After
these nI inference steps, the binary cross entropy (BCE)
loss of the ground-truth target predicate valuation and the
learned target predicate valuation is calculated:∑
x,y

−Gt
x,y log

(
v(Pt

x,y)
)
−(1−Gt

x,y) log
(
1−v(Pt

x,y)
)
, (14)

where the sum is over all pairs of constants x, y in one
training instance, Gt

x,y ∈ {0, 1} is the ground-truth value of
atom Pt

x,y = P t(x, y). To encourage the unification scores
to be closer to 0 or 1, an extra regularization term is added

to the BCE loss to update the embeddings:

+λ
∑
P,P

αPP

(
1− αPP

)
. (15)

where hyperparameter λ controls the regularization weight
and the sum is over all predicates P that can be matched
with a predicate variable P appearing in some meta-rules.

In addition, to further help with convergence to an inter-
pretable solution and avoid local optima, we replace dur-
ing training the softmax transformation in (13), by a vari-
ant of Gumbel-softmax: we replace each cos(θPj

,θBi
) by

cos(θPj
,θBi

) + Gj where Gj = −g1 log (− log (g2Uj))
where g1 ∈ (0,+∞) is the Gumbel scale, g2 ∈ (0,+∞) is
a novel hyperparameter, and Uj ∼ U([0, 1]). With g2 = 1,
this leads to the usual Gumbel-softmax (Jang et al., 2017;
Maddison et al., 2017). Introducing g2 allows a better con-
trol of the noise range during training (see Appendix D
for further discussion). In our experiments, g2 is linearly-
decreased during training, while g1 is held fixed. In contrast
to the low-level parameter-noise applied directly to the em-
beddings, Gj may be understood as a higher-level noise
enacting on the similarity coefficients themselves.

Convergence to an Interpretable Model The passage
from our soft model to a symbolic model may be realized by
taking the limit of the softmax temperature in the unification
score to zero, or equivalently, switching to an argmax in the
unification score; i.e., for each proto-rule, the final learned
rules can be interpreted by assigning head and body atoms
to the predicates that obtain the highest unification score.

For instance, at a layer `, the extracted symbolic rule (9)
could be extracted from proto-rule (8) if P is the auxiliary
predicate associated to that proto-rule at layer ` and{

P1 = arg maxP∈P↓
`
αPB1

P2 = arg maxP∈P↓
`
αPB2

(16)

Then we can interpret the solution by successively unfolding
the logical formula extracted for each involved predicate,
starting from the target predicate.

6. Experimental Results
For the empirical validation of HRI13, we carried out several
series of experiments to answer the following questions: (1)
how does HRI fare against other neuro-symbolic models?
(2) when can HRI be superior to traditional ILP methods?
(3) can HRI scale to tackle large domain? (4) how signifi-
cant are the different choices in HRI ? For (1), we use both
ILP and RL tasks. Since traditional ILP methods cannot be

13The source code of HRI and the scripts to re-
produce the experimental results can be found at
<https://github.com/claireaoi/hierarchical-rule-induction>.

https://github.com/claireaoi/hierarchical-rule-induction
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applied to RL, we use ILP tasks for (2). For (3), we consider
a large domain from Visual Genome (Krishna et al., 2017).
For our ablation study (Table 11), we use again ILP tasks.

For space constraints, we only present a selection of the
experimental results in the main paper. The remaining re-
sults, alongside with additional experiments (e.g., choice of
operators, Gumbel Noise, limitations of LRI, sensitivity to
hyperparameters) are discussed in Appendices B.2, B.4, C,
D, and E. All of our results are averaged over several runs
with different random seeds. In each run, a model is trained
over a fixed number of iterations. Hyperparameter details
are given in Appendix E.

For simplicity and consistency, we instantiate our model
with R∗, with full recursivity in all the ILP tasks. For the
RL and Visual Genome tasks, we use no recursivity. In
the latter domain, it is not expected to be helpful. Note
the performances of HRI can be improved and/or learning
can be accelerated if we customizeR∗ to a task or restrict
its recursivity. However, we intended to emphasize the
genericity of our approach.

6.1. Comparison with Neuro-Symbolic Models

ILP Experiments We first evaluate our model on the ILP
tasks from Evans & Grefenstette (2018), which are detailed
in Appendix B.1, where we also provide the interpretable
solutions found by our model.

We compare our model with ∂ILP (Evans & Grefenstette,
2018) and LRI (Campero et al., 2018) using their reported
results. A selection of the results on these ILP tasks are
presented in Table 1 (see Appendix B.2 for full results).
A run is counted as successful if the mean square error
between inferred and given target valuations is less than
1e-4 for new evaluation datasets. Column train corresponds
to the performance measured during training, while Column
soft evaluation (resp. symbolic evaluation) corresponds to
the evaluation performance (no noise) using (12) (resp. the
interpretable solution, as explained in the end of Section 5).

In contrast to both ∂ILP or LRI, which use a specific set of
meta-rules tailored for each task, we use the same generic
and more expressive template set R∗ to tackle all tasks.
Despite that, HRI can often match or outperform them.
Naturally, on a few tasks, our generic approach based on
R∗ impedes learning, however our performance could be
improved by enforcing more tailored meta-rules.

We also compare HRI to more generic neuro-symbolic mod-
els that do not require specific metarule templates: NLM
(Dong et al., 2019) and DLM (Zimmer et al., 2021), which
can scale better than methods like ∂ILP. For those two mod-
els, we run their respective open-source implementations
that are also GPU-based, which provide a fair empirical
comparison with HRI. To compare their performances and

training times for a varying number of training constants, we
evaluate them on two ILP tasks used by NLM: Adjacent
to Red and Grandparent. Those two ILP tasks are
similar to those used by Evans & Grefenstette (2018), but
are defined with different background predicates. The re-
sults reported in Table 2 show that our model is one to two
orders of magnitude faster and that it can scale much better
in terms of training constants, while achieving at least as
good performances.

RL Experiments We also tested our model in an RL set-
ting on blocks manipulation tasks: Stack, Unstack, and
On (Jiang & Luo, 2019). In those tasks, an agent has 50
steps to build a stack (Stack), place all the blocks di-
rectly on the floor (Unstack), or move a specific block
on another (On). We compare HRI with NLRL (Jiang &
Luo, 2019) (which extends ∂ILP to RL), NLM (Dong et al.,
2019), and DLM (Zimmer et al., 2021).

From all the valuations of the target predicate Move(X,Y),
we compute a softmax policy used during the exploration.
During training, the supervised BCE loss (14) is replaced by
a standard PPO loss (Schulman et al., 2017) on the softmax
policy. To estimate the advantage function, we relied on the
same critic architecture defined by Zimmer et al. (2021).

At the end of the training, the symbolic policy is extracted
and evaluated on 5 test scenarios not seen during training.
As shown in Table 4, our model outperforms NLRL and
competes with NLM or DLM, both in terms of performance
and training time.

6.2. Comparison with Traditional ILP Methods

To answer the second question, we selected two state-of-
the-art classic ILP methods: ILASP3 (Law et al., 2018)
and Popper (Cropper & Morel, 2021). Both are meta-level
approaches, like most recent classic ILP approaches. While
ILASP3 can handle noise, Popper can scale better.

In both the traditional ILP literature and the neuro-symbolic
work, experimental comparisons of the two approaches are
rare, with a few exceptions (Law et al., 2018). Our experi-
ments in this section can be seen as a contribution to fill this
gap and shed more light on which situations one approach
may be preferred to another. We selected a sample of four
diverse ILP tasks (e.g., easy vs harder tasks, need of recur-
sion, etc.): Connectedness, Grandparent, Member,
and Undirected Edge.

Our experimental evaluation indicates that ILASP3 and Pop-
per are superior both in terms of performance and com-
putational/space costs only when the dataset is small and
noise-free, especially when a good language bias is avail-
able. However, when the dataset becomes larger, as shown
in Figure 4 of Appendix B.4, HRI scales better because it
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Table 1. Percentage of successful runs among 10 runs. |I| is the smallest number of intensional predicates needed. Recursive means
whether or not the solution needs to learn recursive rules.

Task |I| Recursive ∂ILP LRI Ours

train soft evaluation symbolic evaluation

Undirected Edge 1 No 100 100 100 100 100
Member 1 Yes 100 100 100 100 100
Connectedness 1 Yes 100 100 100 100 100
Grandparent 2 No 96.5 100 100 100 100
Adjacent to Red 2 No 50.5 100 100 100 100
Two Children 2 No 95 0 100 100 100
Graph Coloring 2 Yes 94.5 0 100 100 100
Even-Succ2 2 Yes 48.5 100 40 40 40
Buzz 2 Yes 35 70 100 40 40

Table 2. Comparisons with NLM/DLM in terms of percentage of
successful runs and average training times over 10 runs.

Task #Training % successful runs Training time (secs)

constants NLM DLM Ours NLM DLM Ours

Adjacent to Red 7 100 90 100 163 920 62
10 90 90 100 334 6629 71

Grandparent 9 90 100 100 402 2047 79
20 100 100 100 1441 3331 89

Table 3. R@1 and R@5 for 150 objects
classification on VG.

Model Visual Genome

R@1 R@5

MLP+RCNN 0.53 0.81
Freq 0.40 0.44
NLIL 0.51 0.52

Ours 0.53 0.60

Table 4. Comparisons with NLRL/NLM/DLM in terms of rewards
on the testing scenarios.

Task Rewards

NLRL NLM DLM Ours

Unstack 0.914 0.920 0.920 0.920
Stack 0.877 0.920 0.920 0.920

On 0.885 0.896 0.896 0.896

can be trained on mini-batches, which is not possible for
traditional ILP methods.

Noisy data Finally, we compared HRI with ILASP3
(Law et al., 2018) 14 and ∂ILP (Evans & Grefenstette, 2018)
in a noisy data setting by ranging the ratio of mislabeled
target training examples from 0% to 90%. We actually
also evaluated ILASP4 (Law et al., 2020), which improves
ILASP3 with a more efficient algorithm, using the experi-
mental set-up described in (Law et al., 2018), however the
results were worse than those of ILASP3. We discuss those
experiments and results in Appendix B.4.

Our experiments suggest that HRI handles noise better than
ILASP3 (and also ∂ILP) when the noise level is below about

14The experimental results of ILASP3 and ∂ILP come from
their own paper (Law et al., 2018; Evans & Grefenstette, 2018).

Table 5. Performance of different embedding initializations for
the single Visual Genome task. Displaying both the soft and the
symbolic evaluations (once the symbolic rule has been extracted).

Init. Accuracy Precision R@1

soft symb. soft symb. soft symb.

Random 0.63 0.49 0.57 0.5 0.23 0.38
NLIL 0.75 0.6 0.87 0.75 0.46 0.58
GPT2 0.65 0.45 0.72 0.66 0.27 0.5

40% (e.g., probability of incorrect positive/negative exam-
ples), as shown in Figure 2. This demonstrates the robust-
ness of HRI since in practice noise levels would rarely be
above 40%, otherwise a dataset would be hardly exploitable.
Furthermore, note that ILASP3 adopts a very specific hy-
pothesis bias and ∂ILP uses task-specific templates to obtain
their results, while HRI is based on a much more general
hypothesis space.

6.3. Visual Genome

Our model can be applied beyond classical ILP domains,
and even benefit from richer environments and semantic
structure. Furthermore, initial predicates embeddings can
be bootstrapped by visual or semantic priors. We illustrate
it by applying HRI to the larger dataset of Visual Genome
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Figure 2. Mean Squared Error (MSE) w.r.t. different noise ratios.

(Krishna et al., 2017), or more precisely a pre-processed
(less noisy) version known as GQA (Hudson & Manning,
2019a). Similarly to Yang & Song (2020), we filtered out
the predicates with less than 1500 occurrences, which lead
to a KG with 213 predicates; then, we solved a multi-task
ILP problem, which consists in learning the explanations for
the top 150 objects in the dataset. More details on the multi-
task setting, results, baseline, and metrics are provided in
Appendix C. We also empirically confirm there that HRI
can benefit from more informative pre-trained embeddings
in a single-task setting (cf. Table 5). Based on those results,
we used pretrained embeddings from the NLP model, GPT2
(Radford et al., 2019), in our other experiments on GQA.

In the multitask setting, we trained 150 target models
together with shared background predicate embeddings,
where each model corresponds to one object classification.
The training consists of Nr rounds. In each round, we
trained each model sequentially, by sampling for each target
np instances containing positive examples, and nr with or
without positive examples.

We compared our model with NLIL (Yang & Song, 2020)
and two other supervised baselines (classifiers) mentioned
in their paper: Freq, which predicts object class by checking
the related relation that contains the target with the high-
est frequency; and MLP-RCNN, an MLP classifier trained
with RCNN features extracted from object images in Visual
Genome dataset. The latter is a strong baseline because it

uses visual information for its predictions while the other
methods only use relational information. Like NLIL, we
use R@1 and R@5 to evaluate the trained models. Table 3
summarizes the results. We see that both our method and
MLP+RCNN achieve best performance for R@1. For R@5,
we outperform Freq and NLIL.

We ran a first set of experiments to validate that embed-
dings priors may be leveraged and compared three initializa-
tion methods: random initialization, pretrained embeddings
from NLIL (Yang & Song, 2020), and pretrained embed-
dings from NLP model GPT2 (Radford et al., 2019). We
trained our model on a single ILP task, which consists in
predicting predicate Car. For this task, we further filtered
the GQA dataset to keep 185 instances containing cars. Ta-
ble 5 presents the accuracy, precision, and recall, obtained
over 10 runs. Pretrained embeddings outperform the ran-
domly initialized ones in all metrics. Embeddings from
NLIL, trained specifically on this dataset, expectedly yield
the best results. Yet, to be fair, for the other experiments,
we rely on the NLP embeddings.

7. Conclusion
We presented a new neuro-symbolic interpretable model per-
forming hierarchical rule induction through soft unification
with learned embeddings; it is initialized by a theoretically
supported small-yet-expressive set of proto-rules, which is
sufficient to tackle many classical ILP benchmark tasks, as
it encompasses a consequent function-free definite Horn
clause fragment. Our model has demonstrated its efficiency
and performance in ILP, RL, and richer domains against
state-of-the-art baselines, where it is typically one to two
orders of magnitude faster to train.

As discussed in Appendix F, future extensions of HRI could
tackle further RL domains and continual learning scenarios
benefiting from an interpretable logic-oriented policy, while
extending our proto-rules set to broaden its expressivity.

Ethical Considerations Deploying our model trained
with data from annotated images (e.g., Visual Genome), or
embeddings produced by NLP models (e.g., GPT2) would
raise ethical issues, because such data contain some biases
as it has been well documented (Papakyriakopoulos et al.,
2020; Tommasi et al., 2017).
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Appendix
A. Expressivity Analysis

Many methods within inductive logic programming (ILP) define meta-rules, i.e., second-order Horn clauses which delineates
the structure of learnable programs. The choice of these meta-rules, referred to as a language bias and restricting the
hypothesis space, results in a well-known trade-off between efficiency and expressivity. In this section, we bring some
theoretical justification for our designed set of second-order Horn Clause, by characterizing its expressivity. Relying on
minimal sets of metarules for rule induction models has been shown to improve both learning time and predictive accuracies
(Cropper & Muggleton, 2014; Fonseca et al., 2004). For a model to be both adaptive and efficient, it seems pertinent to
aim for a minimal set of meta-rules generating a sufficiently expressive subset of Horn clauses. The desired expressivity is
ineluctably contingent to the tackled domain(s); a commonly-considered fragment is Datalog D which has been proven
expressive enough for many problems. Datalog is a syntactic subset of Prolog which, by losing the Turing-completeness of
Prolog/Horn, provides the undeniable advantage that its computations always terminate. Below, we focus our attention to
similar fragments, in concordance with previous literature (Galárraga et al., 2013; Cropper & Tourret, 2020).

To make the document self-contained, before stating our results, let us introduce both concepts and notations related to First
and Second Order Logic. Recall P denote the set of all considered predicates.

Horn Logic We focus on Horn clause logic, since it is a widely adopted15 Turing-complete16 subset of FOL.

A Horn clause is a clause with at most one positive literal. Horn clauses may be of the following types (where P, Q, T, and
U are atoms):

• goal clauses which have no positive literal; they are expressed as ¬P ∨ ¬Q ∨ ... ∨ ¬T or equivalently False ←
P ∧ Q ∧ ... ∧ T,

• definite clauses which have exactly one positive literal; they are expressed as ¬P ∨ ¬Q ∨ ... ∨ ¬T ∨ U or equivalently
as a Horn rule U← P ∧ Q ∧ ... ∧ T,

• facts which can be expressed as U← True17 where U is grounded.

Meta-rules We follow the terminology from the Meta Interpretative Learning literature (Cropper & Tourret, 2020):

Definition 7.1. A meta-rule is a second-order Horn clause of the form: A0 ← A1 ∧ ... ∧Am where each Ai is a literal of
the form P (T1, ..., Tni) where P is a predicate symbol or a second-order variable that can be substituted by a predicate
symbol, and each Ti is either a constant symbol or a first-order variable that can be substituted by a constant symbol.

Here are some examples of intuitive meta-rules, which will be of later use:

(σ) P(A,B) ← Q(B,A) permute
(ι) P(A,B) ← Q(A) expand
(∃) P(A) ← ∃B,Q(A,B) existential contraction
(∀) P(A) ← ∀B,Q(A,B) universal contraction
(∇) P(A) ← Q(A,A) diagonal extract
(∆) P(A,A) ← Q(A) diagonal fill

(17)

15Pure Prolog programs are composed by definite clauses and any query in Prolog is a goal clause.
16Horn clause logic and universal Turing machines are equivalent in terms of computational power.
17Facts can be seen as a sub-case of definite clause assuming True ∈ P .
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(a) Meta-rule A (b) Meta-rule B (c) Meta-rule C

Figure 3. Three types of meta-rules: boxes represent variables, green arrows represent relations for head atoms and blue arrows represent
relations for body atoms

A common meta-rule set, which has been used and tested in the literature (Cropper & Tourret, 2020), is the following:

RMIL =



(Indent1) P(A) ← Q(A)
(DIndent1) P(A) ← Q(A) ∧ R(A)
(Indent2) P(A,B) ← Q(A,B)
(DIndent2) P(A,B) ← Q(A,B) ∧ R(A,B)
(Precon) P(A,B) ← Q(A) ∧ R(A,B)
(Postcon) P(A,B) ← Q(A,B) ∧ R(B)
(Curry) P(A,B) ← Q(A,B,R)
(Chain) P(A,B) ← Q(A,C) ∧ R(C,B)


(18)

where the letters P,Q,R correspond to existentially-quantified second-order variables and the letters A,B,C to universally-
quantified first-order variables.

Proto-rules Our model relies on an extended notion of meta-rules, which we refer to as proto-rules. These templates
have the specificity that they do not fix the arity of their body predicates; only the arity of the head predicate is determined.
Formally, they can be defined as follows. For any n ∈ N, let Pn (resp. P≤n) be the predicates in P that have arity equal to
(resp. lower or equal to) n.

Define the projection operator νn which canonically embeds predicates of arity i ≤ n in the space of predicates of arity n:

νn : P≤n −→ Pn s.t. νn(P )(X1, · · · , Xn) = P (X1, · · · , Xi) for P ∈ Pi. (19)

Note that the restriction of νn on the space of predicates of arity n is identity: νn |Pn= idPn . Moreover, this projection
naturally extends to second-order variables. To ease the notations, we denote below the projection νni with an overline (e.g.,
for a predicate P , νni(P ) = P ), since there is no risk of confusion because ni is specified by its arguments (T1, . . . , Tni

).

Definition 7.2. A proto-rule is an extension of a second-order Horn clause of the form: A0 ← A1 ∧ . . . ∧Am, where A0

(resp. each Ai, i > 0 is a literal of the form P (T1, ..., Tni
) (resp. νni

(
P
)
(T1, ..., Tni

) in which P , which is a predicate
symbol or a second-order variable that can be substituted by a predicate symbol, is of arity lower or equal to ni, and each Ti
is either a constant symbol or a first-order variable that can be substituted by a constant symbol.

Seeing second-order rules as functions over predicate spaces to first-order logic rules, we can provide another characterization
of proto-rules: a meta-rule can be understood as a mapping Pn1 × . . . × Pnm → H for some indices ni, i.e., taking m
predicates of specific arities and returning a first-order Horn clause; in contrast, a proto-rule is a mapping P≤n1 × . . .×
P≤nm → H, for some indices ni.

The first set of protorules we propose is the following (see Figure 3):

R0 :=


A : P (A) ← Q(A,B) ∧R(B,A)
B : P (A,B) ← Q(A,C) ∧R(C,B)
C : P (A,B) ← Q(A,B) ∧R(B,A)

 (20)

Horn Fragments A Horn theory T is a set of Horn clauses.
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Let us denote the set of second order Horn clause, the set of definite Horn clauses, and the set of function-free definite Horn
clauses respectively byH, S, and F . Within Horn clause logic, several restrictions have been proposed in the literature
to narrow the hypothesis space, under the name of fragment. A fragment is a syntactically restricted subset of a theory.
Following previous work (such as (Cropper & Tourret, 2020)), we introduce below a list of classic fragments of F , in
decreasing order:

• connected fragment, C: connected definite function-free clauses, i.e., clauses in F whose literals can not be partitioned
into two sets such that the variables attached to one set are disjoint from the variables attached to literals in the other set;
e.g., P (A,B)← Q(A,C) ∧R(A,B) is connected while the following clause is not P (A,B)← Q(A,C) ∧R(B).

• Datalog18 fragment, D: sub-fragment of C, composed of clauses such that every variable present in the head of the
Horn rule also appears in its body. 19

• two-connected fragment, K: sub-fragment of D composed of clauses such that the variables appearing in the body
must appear at least twice.

• exactly-two-connected fragment, E : sub-fragment of K such that the variables appearing in the body must appear
exactly twice.

• duplicate-free fragment, U : sub-fragment of K excluding clauses in which a literal contains multiple occurrences of the
same variable, e.g., excluding P (A,A)← Q(A).

These fragments are related as follows:

H ⊃ S ⊃ F ⊃ C ⊃ D ⊃ K ⊃ E
⊃ U (21)

ForM a set of meta-rules, we denoteM≤a≤m the fragment ofM where each literal has arity at most a and each meta-rule

has at most m body literals. We extend the notation in order to allow both a and m to be a set of integers; e.g.,M{1,2}{3} is
the fragment ofM where each literal corresponds to an unary or binary predicate and the body of each meta-rule contains
exactly three literals.

Binary Resolution As it would be of future use, let us introduce some notions around resolution. To gain intuition about
the notion of resolvent20, let us look at an example before stating more formal definitions. Consider the following Horn
clauses:

C1 : P (X,Y ) ∨ ¬Q(X) ∨ ¬R(X,Y ) or, equivalently, P (X,Y )← Q(X) ∧R(X,Y )
C2 : R(X, a) ∨ ¬T (X, a) ∨ ¬S(a) or, equivalently, R(X, a)← S(a) ∧ T (X, a)

The atoms R(X,Y ) and R(X, a) are unifiable, under the substitution σ : {a/Y }; under this substitution, we obtain the
following clauses:

{P (X, a) ∨ ¬Q(X) ∨ ¬R(X, a), R(X, a) ∨ ¬T (X, a) ∨ ¬S(a)}

Since either R(X, a) is True, or ¬R(X, a) is True, assuming C1 and C2 are True, we can deduce the following clause is
True:

(P (X, a) ∨ ¬Q(X)) ∨ (¬T (X, a) ∨ ¬S(a)) or, equivalently, P (X, a)← Q(X) ∧ T (X, a) ∧ S(a)

This resulting clause, is a binary resolvent of C1 and C2.

Now, let us state more formal definitions. We denote σ = {t1/X1, · · · , tn/Xn}, a substitution and Eσ the expression
obtained from an expression E by simultaneously replacing all occurrences of the variables Xi by the terms ti.

18Some wider Datalog fragment have been proposed, notably allowing negation in the body, under certain stratification constraints;
here we consider only its intersection with function-free definite Horn clauses.

19Since below each clause is assume to be a definite Horn clause, it can be equivalently represented as a Horn rule, with one head and
several non-negated literals in the body; we below alternately switch between these representations.

20Another way to gain intuition, is to think about propositional logic; there, a resolvent of two parent clauses containing complementary
literals, such as P and ¬P , is simply obtained by taking the disjunction of these clauses after removing these complementary literals. In
the case of FOL or HOL, such resolvent may involve substitutions.
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Definition 7.3. • A substitution σ is called a unifier of a given set of expressions {E1, · · · , Em} , m ≥ 2 if E1σ =
· · · = Emσ.

• A unifier θ of a unifiable set of expressions E = {E1, · · · , Em} , m ≥ 2, is said to be a most general unifier if for
each unifier σ of E there exists a substitution λ such that σ = θλ.

Definition 7.4. Consider two parent clauses C1 and C2 containing the literals l1 and l2 respectively. If l1 and ¬l2 have a
most general unifier σ, then the clause (C1σ \ l2σ) ∨ (C2σ \ l2σ) is called a binary resolvent of C1 and C2.

Derivation Reduction Diverse reductions methods have been proposed in the literature, such as subsumption (Robinson,
1965), entailment (Muggleton, 1995), and derivation (Cropper & Tourret, 2018). As previously pointed out (e.g., (Cropper
& Tourret, 2020)), common entailment methods may be too strong and remove useful clauses enabling to make predicates
more specific. The relevant notion to ensure the reduction would not affect the span of our hypothesis space is the one of
derivation-reduction (D-reduction) (Cropper & Tourret, 2018), as defined in Definition 7.6.

Let us first define for the following operator for a Horn theory T :{
R0(T ) = T
Rn(T ) = {C | C is the binary resolvent of C1 and C2 with C1 ∈ Rn−1(T ), C2 ∈ T }

Definition 7.5. The Horn closure of a Horn theory T is: R∗(T ) = ∪nRn(T ).

Definition 7.6. (i) A Horn clause C is derivationally redundant in the Horn theory T if T ` C, i.e., C ∈ R∗(T ); it is
said to be k-derivable from T if C ∈ Rk(T ).

(ii) A Horn theory T is derivationally reduced (D-reduced) if and only if it does not contain any derivationally redundant
clauses.

A clausal theory may have several D-reductions. For instance, we can easily see that C1 : P (A,B) ← Q(B,A)
C2 : P (A,B) ← Q(A,C), R(C,B)
C3 : P (A,B) ← Q(A,C), R(B,C)

 may be D-reduced to either {C1, C2} or {C1, C3}

Hypothesis Space Recall that P (resp. P0) denotes the set of predicates (resp. of initial predicates); and B the background
knowledge, may encompass both initial predicates and pre-given rules. As we are interested in characterizing the
expressivity of our model, let us define the relevant notion of hypothesis space21, which could apply to any rule-induction
model attached to at meta-rule or proto-rule set:

Definition 7.7. Given a predicate set P , and a meta-rule or proto-rule setM, let us define:

(i) the setMP as the set of all Horn clauses generated by all the possible substitutions of predicates variables inM by
predicates symbols from P .

(ii) the hypothesis spaceM[P] generated byM from P as the Horn closure ofMP .

Equality Assumption The Equality relation is typically assumed part of FOL, so it is reasonable to assume it belongs to
the background knowledge in our results below. In our approach, it amounts to integrating the predicate Equal to the set of
initial predicates P0; Equal, which corresponds to the identity, is intensionally defined on any domain D by:

Equal :

 D× D → B = {True, False}

(X,Y ) 7→
{

True if X = Y
False if X 6= Y

(22)

21In this paper, we adopted the denomination of hypothesis space, which is unconventional in logic, because it refers to the space
accessible to our learning algorithm. Similarly, by incorporating initial rules, we could also define the Horn theory generated by a set of
meta-rules or proto-rules given a certain background knowledge B and a set of predicates P .
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Main Result Here is our main result, concerning the investigation of the expressivity of the minimal setR0:
Theorem 7.8. (i) Assuming True ∈ P0, the hypothesis space generated byR0 from P encompasses the set of duplicate-

free and function-free definite Horn clause composed of clauses with at most two body atoms involving unary and
binary predicates in P:

True ∈ P0 =⇒ R0[P] ⊃ U{1,2}≤2 [P]

(ii) Assuming True, Equal ∈ P0, the hypothesis space generated by R0 from P corresponds to the set of function-free
definite Horn clause composed of clauses with at most two body atoms involving unary and binary predicates in P; i.e.,
in terms of the second order logic fragment:

True, Equal ∈ P0 =⇒ R0[P] = F{1,2}≤2 [P]

We refer to the end of this section for the proof of this theorem.

Theorem 7.8 allows us to conclude that R0 is more expressive than the set commonly found in the literature RMIL,
assuming we are working with predicates of arity at most 2:
Corollary 7.9. Assuming the initial predicates P0 contains only predicates of arity at most 2, the hypothesis space generated
byR0 given P encompasses the one generated byRMIL as defined in (18).

∀P ∈ P0, arity(P ) ≤ 2 =⇒ R0[P] ⊃ RMIL[P]

Proof. Under our assumption, the meta-rule (Curry) in (18) may be disregarded. The remaining meta-rules present in
RMIL have already been examined in Theorem 7.8. R0 has therefore at least the same expressivity thanRMIL. In order to
be able to concludeR0 is strictly more expressive, we can mention the rules P (A)← P (A,B) or P (A,B)← P (B,A),
which are reached byR0 notRMIL.

Disjunction In our model, to ensure an incremental learning of the target rule, we impose the restriction that each auxiliary
predicate corresponds to one rule. Since such constraint risk to remove the possibility of disjunction, we redefine new
proto-rules versions integrating disjunctions:

R∨0 =


A : P (A) ←

(
Q(A,B) ∧R(B,A)

)
∨ S(A,B)

B : P (A,B) ←
(
Q(A,C) ∧R(C,B)

)
∨ S(A,B)

C : P (A,B) ←
(
Q(A,B) ∧R(B,A)

)
∨ S(A,B)

 (23)

Adopting the minimal setR∨0 , in our incremental setting does not affect the expressivity of the hypothesis space compared
to when relying on the setR0 in a non incremental setting. Let us remind an incremental setting imposes a predicate symbol
to be the head of exactly one rule.
Lemma 7.10. The minimal proto-rule setR∨0 in an incremental setting holds the same expressivity asR0.

Proof. It is straightforward to see thatR∨0 is a minimal set.
The hypothesis space generated by R0 obviously encompasses the hypothesis space generated by R∨0 in an incremental
setting. Reciprocally, let us assume n rules instantiated from R0 are attached to one predicate symbol P . They can be
expressed as:

P (X,Y ) ← f1(X,Y )
P (X,Y ) ← f2(X,Y )
· · · · · · · · ·

P (X,Y ) ← fn(X,Y )

Recursively, we can define Pi auxiliary predicates in the hypothesis space ofR∨0 .

P1(X,Y ) ← f1(X,Y )
P2(X,Y ) ← P1(X,Y ) ∨ f2(X,Y )
· · · · · · · · ·

Pn(X,Y ) ← Pn−1(X,Y ) ∨ fn(X,Y )

Since Pn is then equivalent to P , we can conclude.
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Redundancy Since we have observed a certain redundancy to be beneficial to the learning, we incorporate the permutation
rule I in our experiments, and rely on the following set:

R∗ = R∨0 ∪ {I : H(X,Y )← F (Y,X)}

This small—yet non minimal—set of protorulesR∗, has the same expressivity asR0 (characterized in Theorem 7.8)
Lemma 7.11. The proto-rule setR∗ holds the same expressivity thanR0.

Proof. It stems from the fact, observed in the proof of Theorem 7.8 that the rule (σ), equivalent to (I) can be D-reduced
fromR0.

Recursivity The development of Recursive Theory arose first around the Hilberts Program and Gödels proof of the
Incompleteness Theorems (1931) and is tightly linked to questions of computability. While implementing recursive-friendly
model, we should keep in mind considerations of computability and decidability. Enabling full recursivity within the
templates is likely to substantially affect both the learning and the convergence, by letting room to numerous inconsistencies.

With this in mind, let us consider different stratifications in the rule space, and in our model. First, we introduce a hierarchical
filtration of the rule space: initial predicates are set of layer 0, and auxiliary predicates in layer ` are defined from predicates
from layers at most `. Within such stratified space, different restrictions may be considered:

• recursive-free hierarchical hypothesis space:, where rules of layer ` are defined from rules of strictly lower layer. The
proto-rules fromR∨0 are therefore restricted to the following form:

P (·)← [Q(·) ∧R(·)] ∨O(·),

with P ∈ P`, Q,R,O ∈ P<`.

• iso-recursive hierarchical hypothesis space, where the only recursive rules allowed fromR∨0 have the form:

P (·)← [Q(·) ∧R(·)] ∨O(·), with P ∈ P`, Q,R ∈ P<` ∪ {P}, O ∈ P<`

Such space fits most recursive ILP tasks (e.g., Fizz, Buzz, Even, LessThan).

• recursive hierarchical hypothesis space, where the recursive rules allowed fromR∨0 have the form:

P (·)← [Q(·) ∧R(·)] ∨O(·) with P ∈ P`, Q,R ∈ P≤`, O ∈ P≤`.

Such space is required for the recursivity present in EvenOdd or Length. Such hierarchical notion is also present in the
Logic Programming literature under the name of stratified programs.

Proof of Theorem 7.8 Before we present the proof, let us introduce two additional notations:

• R i�R′ refers to the resolvent of R with R′, where the ith body member of R is resolved with the head of R′. To
illustrate it, consider the following meta-rules:

R : P (A)← Q(A) ∧R(A,B)
R′ : P (A)← Q(A) ∧R(B,A)
R′′ : P (A,B)← Q(B,A)

The resolvent R′ 2�R′′ corresponds to resolve the second body atom of R′ with R′′, which therefore leads to R.

• We define the operation ρ as the composition of a projection ν, a permutation (σ), and an existential contraction over
the second variable (∃), which amounts to:

ρ(R)(X) := ∃ ◦ σ(R(X,Y )) = ∃Y R(Y ) (24)

Here, we identified the permutation clause (σ) (as defined in (17)) with the operation it defines on predicates σ;
similarly for the existential clause (∃) with the contraction operation ∃.
Likewise, we can define the corresponding non-connected meta-rule attached to the operation ρ by:

(ρ) : P (X)← ∃Y R(Y ) (25)
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Proof. The inclusion R0[P] ⊂ F{1,2}≤2 [P] is trivial since all the rules instantiated from R0 are definite Horn clause with
two body predicates, and duplicate-free; similarly, if adding the duplicate-free constraint to F (and denoting it by FD), we
can trivially state: R0[P] ⊂ FD,{1,2}

≤2 [P].

It remains to prove the other inclusion; e.g., for (ii), it amounts toR0[P] ⊃ F{1,2}≤2 [P], which boils down toR0[P] ⊃ F{1,2}P,≤2
sinceR0[P] is closed under resolution. We will proceed by successively extending the sub-fragmentsM we are considering
while provingR0[P] ⊃MP . For instance, under the assumption True, Equal ∈ P0, we demonstrate that the hypothesis
space generated byR0 encompasses the one generated by the increasingly larger fragments: (a) U (b) K; (c) D; (d) C; (e)
F . For (i), under the simpler assumption True ∈ P0, we can follow almost identical steps, although the duplicate-free
constraint can not be lifted, and therefore step (b) is skipped. Since the proof of (i) is more or less included in the proof of
(ii), we will below focus only on proving (ii).

For each fragmentM, to demonstrate such inclusion, we can simply show that every rule within the fragmentMP belongs
to the hypothesis space generated byR0; more specifically, we will mostly work at the level of second order logic; there, we
will show that any meta-rule inM can be reduced from meta-rules inR0, or generated byR0.

However, to avoid listing all the meta-rules generating these fragments, and restrict our enumeration, we leverage several
observations: first, since we assume the predicate set includes True, we can restrict our attention to clauses with exactly
two body literals; secondly, the permutation meta-rule (σ) (introduced in 17) can be derived from the proto-rule C upon
matching the first body in C with True; therefore, we can examine rules only upon permutation (σ) applied to their body or
head predicates.

1. First, let us demonstrate the following inclusion:

Claim1 : True ∈ P0 =⇒ R0[P] ⊃ U{1,2}P,≤2 (26)

By the previous observations, we can narrow down to examine a subset of the meta-rules generating U{1,2}≤2 , as listed
and justified below. Our claim is that all these clauses are derivationally redundant from the Horn theory generated by
R0; for each of them, we therefore explicit the clauses used to reduce them22.

Meta-Rules Reduction Comment
(i) P (A)← Q(A) ∧R(A) A 2�σ A(Q, σ(R))
(ii) P (A)← Q(A) ∧R(A,B) A 2�σ A(Q, σ(R))
(iii) P (A)← Q(A,B) ∧R(B) A
(iv) P (A)← Q(A,B) ∧R(B,A) A
(v) P (A)← Q(A,B) ∧R(B,C) A
(vi) P (A,B)← Q(A) ∧R(A,B) A 2�σ C(Q, σ(R))
(vii) P (A,B)← Q(A,C) ∧R(C,B) B
(viii) P (A,B)← Q(A,B) ∧R(B,A) C
(ix) P (A,B)← Q(A,B) ∧R(B,C) A 2�∃ A(Q,∃(R))

Beside the notation of the resolvent �H explained previously, we provided a more intuitive form for the resolution
(under ’Comment’), in terms of composition between maps, where we identify a proto-rule (or meta-rule) with a map
of the following form:

P• × · · · × P• → P•

Let us justify why these clauses are the only clauses in U{1,2}≤2 worth to examine in two steps:

• Let us consider clauses whose head predicate arity is 1. First, by the Datalog assumption, we can indeed restrict
our attention to body clauses where A is appearing at least once. By symmetry, we can assume A appears in the
first body. By the connected assumption, either A appears in the second body too, and/or an existential variable
(say B) appears both in the first or second body. Upon permutation, it leads us to clauses (i)− (v).
• Let us consider clauses whose head predicate arity is 2. First, by the Datalog assumption, we can indeed restrict

our attention to body clauses where A and B have to appear at least once. The only body clause of arity (1, 1)
satisfying this condition is not connected (Q(A) ∧ R(B)); upon permutation of A and B, and of the body

22Note that we are allowed to use clauses ∃ and σ in the reduction as we already explained why we can derive them fromR0 in the
beginning of the proof of Theorem 7.8.
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predicates Q and R, and upon inversion (σ) of the body predicates, the only body clause of arity (1, 2) is of the
form Q(A) ∧R(A,B) (denoted (vi) below, which reduces to C upon permutation); for arity (2, 2), upon similar
permutations, we can list three types of body clause, listed below as (vii), (viii), (ix). While (vii), (viii) are
directly pointing to B,C, (ix), can be obtained by reducing the second body of C through (∃) (as defined in 17).
This justifies the remaining clauses, (vi)− (ix).

We can therefore conclude by Claim1.

2. Let us extend (26) by enabling duplicates in the clause:

Claim2 : True, Equal ∈ P0 =⇒ R0[P] ⊃ K{1,2}P,≤2 (27)

To extend the result from U{1,2}≤2 to K{1,2}≤2 , it is sufficient to show the meta-rules (∇), (∆) from (17) can be derived
fromR0, under the extra-assumption that Equal is included as background knowledge. This stems from the fact that
these meta-rules can be written as follows:

Meta-rule Equivalent Form
(∇) P (A,A)← Q(A) P (A,B)← Q(A) ∧ Equal(A,B)
(∆) P (A)← Q(A,A) P (A)← Q(A,B) ∧ Equal(A,B)

Since the equivalent forms above are duplicate-free and two-connected, by (26), (∇), (∆) can be derived from R0,
which implies Claim2.

3. Removing the assumption of two-connectedness from (27), we claim the following inclusion holds:

Claim3 : True, Equal ∈ P0 =⇒ R0[P] ⊃ D{1,2}P,≤2 (28)

The additional meta-rules we have to reduce can be narrowed down to:

P (A)← Q(A,A) ∧R(A,C) ; P (A,B)← Q(A,A) ∧R(A,B) ; P (A,A)← Q(A,A) ∧R(A,B)

By using the reduction for duplicated forms P (A,A), Q(A,A) stated previously in (b), these meta-rules may be
derived fromR0, and Claim3 follows.

4. In the next step, we extend (28) to the connected Horn fragment;

Claim4 : True, Equal ∈ P0 =⇒ R0[P] ⊃ C{1,2}P,≤2 (29)

To get rid of the Datalog constraint that each head variable appears in the body, we are brought to examine the following
meta-rules:

P (A,B)← Q(A,C)

This meta-rule may be seen as a subcase of B once we have matched its second body with True. It ensues thatR0 is
able to generate the fragment C{1,2}2 , as stated in Claim4.

5. Lastly, we can get rid of the assumption of ”connected”.

Claim5 : True, Equal ∈ P0 =⇒ R0[P] ⊃ F{1,2}P,≤2 (30)

Upon symmetries and permutations, we are brought to examine the following non-connected meta-rules:

Meta-rule Reduction Comment
(i) P (A)← Q(A) ∧R(B) A
(ii) P (A)← Q(A,B) ∧R(C) A 1�∃ A(∃(Q), R)
(iii) P (A)← Q(A,B) ∧R(C,D) (A 1�∃) 2�∃ A(∃(Q) ∧ ∃(R))
(iv) P (A,B)← Q(A,B) ∧R(C) C 2�ρ C(Q, ρ(R))
(v) P (A,B)← Q(A) ∧R(B,C) B 2�σ B(Q, σ(R))
(vi) P (A,B)← Q(A,B) ∧R(C,D) C 2�(ρ ◦ ∃) C(Q, ρ ◦ ∃(R)))
(vii) P (A,B)← Q(A,C) ∧R(B,D) (C 1�∃) 2�σ C(∃(Q) ∧ σ(R)))

Note that the clause/operation ρ, defined in (24,25), enables to express the clause R(C) (resp. R(C,D)) appearing in
the body of (iv) (resp. (vi)) as (ρ)(R)(B). Since, by definition of (ρ), it can be derived fromR0, we can thereupon
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conclude that all the above meta-rules are reducible toR0, which concludes the proof.

We have therefore proven the following inclusions:

True, Equal ∈ P0 =⇒ R0[P] = F{1,2}P,≤2 ⊃ C
{1,2}
P,≤2 ⊃ D

{1,2}
P,≤2 ⊃ K

P{1,2}
2 ⊃ U{1,2}P,≤2

B. ILP Experiment Results

B.1. EXTRACTED INTERPRETABLE SOLUTIONS

We give a detailed description of the ILP tasks in our experiments, including the target, background knowledge, posi-
tive/negative examples, and the learned solution by our method for each task. Note that the solution for Fizz is missing
since our current approach does not solve it with the generic proto-rules inR∗.

Predecessor The goal of this task is to learn the predecessor(X,Y ) relation from examples. The background knowledge
is the set of facts defining predicate zero and the successor relation succ

B = {True, False, zero(0), succ(0, 1), succ(1, 2), . . . }.

The set of positive examples is

P = {target(1, 0), target(2, 1), target(3, 2), . . . }

and the set of negative examples is

N = {target(X,Y )|(X,Y ) ∈ {0, 1, . . . }2} − P.

Among these examples, target is the name of the target predicate to be learned. For example, in this task, target = predecessor.
We use fixed training data for this task given the range of integers. One solution found by our method is:

target(X,Y )← succ(X,Y ).

Undirected Edge A graph is represented by a set of edge(X,Y) atoms which define the existence of an edge from node
X to Y . The goal of this task is to learn the undirected-edge(X,Y ) relation from examples. This relation defines the
existence of an edge between nodes X and Y regardless of the direction of the edge. An example set of background
knowledge is

B = {True, False, edge(a, b), edge(b, c)}.

The corresponding set of positive examples is

P = {target(a, b), target(b, a), target(b, c), target(c, b)}

and the set of negative examples is
P = {target(a, c), target(c, a)}.

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X,Y )← (aux1(X,Y ) ∧ edge(Y,X)) ∨ edge(X,Y ),

aux1(X,Y )← edge(X,Y ),

where aux1 is an invented auxiliary predicate.

Less Than The goal of this task is to learn the less-than(X,Y ) relation which is true if X is less than Y . Here the
background knowledge is the same as that in Predecessor task. The set of positive examples is

P = {target(X,Y )|X < Y }

and the set of negative examples is
N = {target(X,Y )|X ≥ Y }.
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We use fixed training data for this task given the range of integers. One solution found by our method is:

target(X,Y )← (target(X,Z) ∧ target(Z, Y )) ∨ succ(X,Y ).

Member The goal of this task is to learn the member(X,Y ) relation which is true if X is an element in list Y . Elements
in a list are encoded with two relations cons and values, where cons(X,Y ) if Y is a node after X with null node 0 being
the termination of lists and value(X,Y ) if Y is the value of node X .

Take the list [3, 2, 1] as an example. The corresponding set of positive examples is

P = {target(3, [3, 2, 1]), target(2, [3, 2, 1]), target(1, [3, 2, 1]),

target(2, [2, 1]), target(1, [2, 1], target(3, [3, 2]),

target(2, [3, 2]), target(3, [3, 1]), target(1, [3, 1]),

T rue, False}

and the set of negative examples is

P = {target(3, [2, 1]), target(1, [3, 2]), target(2, [3, 1])}.

We use randomly generated training data for this task given the length of the list. One solution found by our method is:

target(X,Y )← (target(X,Z) ∧ aux1(Z, Y )) ∨ value(X,Y ),

aux1(X,Y )← (cons(Y,X) ∧ True) ∨ False.

Connectedness The goal of this task is to learn the connected(X,Y ) relation which is true if there is a sequence of
edges connecting nodes X and Y . An example set of background knowledge is

B = {True, False, edge(a, b), edge(b, c), edge(c, d)}.

The corresponding set of positive examples is

P = {target(a, b), target(b, c), target(c, d), target(a, c), target(a, d), target(b, d)}

and the set of negative examples is

P = {target(b, a), target(c, b), target(d, c), target(d, a), target(d, b), target(c, a)}.

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X,Y )← (target(X,Z) ∧ target(Z, Y )) ∨ edge(X,Y ).

Son The goal of this task is to learn the son-of(X,Y ) relation which is true if X is the son of Y . The background
knowledge consists of various facts about a family tree containing the relations father-of, bother-of and sister-of . An
example set of background knowledge is

B = {True, False, father(a, b), father(a, c), father(a, d), bother(b, c), bother(d, c), sister(c, b)}.

The corresponding set of positive examples is

P = {target(b, a), target(d, a)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the family tree. One solution found by
our method is:

target(X,Y )← (aux1(X,Y ) ∧ father(Y,X)) ∨ False
aux1(X)← (father(X,Z) ∧ True) ∨ brother(X,T )

where aux1 is an invented auxiliary predicate.

Grandparent The goal of this task is to learn the grandparent(X,Y ) relation which is true if X is the grandparent of Y .
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The background knowledge consists of various facts about a family tree containing the relations father-of and mother-of .
An example set of background knowledge is

B = {father(c, b), father(b, a),mother(d, b),mother(e, a), T rue, False}.

The corresponding set of positive examples is

P = {target(c, a), target(d, a)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the family tree. One solution found by
our method is:

target(X,Y )← (aux1(X,Z) ∧ aux1(Z, Y )) ∨ False,
aux1(X,Y )← (mother(X,Y ) ∧ True) ∨ father(X,Y ),

where aux1 is an invented auxiliary predicate.

Adjacent to Red In this task, nodes of the graph are colored either green or red. The goal of this task is to learn the
is-adjacent-to-a-red-node(X) relation which is true if node X is adjacent to a red node. Other than the relation edge, the
background knowledge also consists of facts of relations colour and red, where colour(X,C) if node X has colour C and
red(C) if colour of C is red.

An example set of background knowledge is

B = {True, False, edge(a, b), edge(b, a), edge(d, e), edge(d, f), colour(a, p), red(p), colour(d, q), red(q)}.

The corresponding set of positive examples is

P = {target(b), target(e), target(f)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X)← (edge(X,Z) ∧ aux1(Z,X)) ∨ False,
aux1(X)← (colour(X,Z) ∧ red(Z,X)) ∨ False,

where aux1 is an invented auxiliary predicate.

Two Children The goal of this task is to learn the has-at-least-two-children(X) relation which is true if node X has
at least two child nodes. Other than the relation edge, the background knowledge also consists of facts of not-equals relation
neq, where neq(X,Y ) if node X does not equal to node Y .

An example set of background knowledge is

B = {True, False, edge(a, b), edge(a, c), edge(c, d), neq(a, b), neq(a, c), neq(a, d), neq(b, c), neq(b, d), neq(c, d)}.

The corresponding set of positive example(s) is

P = {target(a)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X)← (aux1(X,Z) ∧ edge(Z,X)) ∨ False,
aux1(X,Y )← (edge(X,Z),∧neq(Z, Y )) ∨ False,

where aux1 is an invented auxiliary predicate.

Relatedness The goal of this task is to learn the related(X,Y ) relation, which is true if two nodes X and Y have any
family relations. The background knowledge is parent(X,Y ) if X is Y ’s parent.
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An example set of background knowledge is

B = {True, False, parent(a, b), parent(a, c), parent(c, e), parent(c, f), parent(d, c), parent(g, h)}.

The corresponding set of positive examples is

P = {target(a, b), target(a, c), target(a, d), target(a, e), target(a, f),

target(b, a), target(b, c), target(b, d), target(b, e), target(b, f),

target(c, a), target(c, b), target(c, d), target(c, e), target(c, f),

target(d, a), target(d, b), target(d, c), target(d, e), target(d, f),

target(e, a), target(e, b), target(e, c), target(e, d), target(e, f),

target(f, a), target(f, b), target(f, c), target(f, d), target(f, e)

target(g, h), target(h, g)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the family tree. One solution found by
our method is:

target(X,Y )← (target(X,Z) ∧ aux1(Z, Y )) ∨ parent(X,Y ),

aux1(X,Y )← (target(X,Y ) ∧ target(Y,X)) ∨ parent(X,Y ),

where aux1 is an invented auxiliary predicate.

Cyclic The goal of this task is to learn the is-cyclic(X) relation which is true if there is a path, i.e., a sequence of edge
connections, from node X back to itself. An example set of background knowledge is

B = {True, False, edge(a, b), edge(b, a), edge(d, c), edge(d, b)}.

The corresponding set of positive examples is

P = {target(a), target(b)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X)← (aux1(X,Z) ∧ aux1(Z,X)) ∨ False,
aux1(X,Y )← (aux1(X,Z) ∧ edge(Z, Y )) ∨ edge(X,Y ).

where aux1 is an invented auxiliary predicate.

Graph Coloring The goal of this task is to learn the adj-to-same(X,Y ) relation which is true if nodes X and Y are
of the same colour and there is an edge connection between them. The background knowledge consists of facts about a
coloured graph containing the relations edge and colour, which are similar to those in the task Adjacent to Red. An
example set of background knowledge is

B = {True, False, edge(a, b), edge(b, a), edge(b, c), edge(a, d), colour(a, p), colour(b, p), colour(c, q), colour(d, q)}.

The corresponding set of positive examples is

P = {target(a, b), target(b, a)}

and the set of negative examples N is a subset of all ground atoms involving the target predicates that are not in P .

We use randomly generated training data for this task given the number of nodes in the graph. One solution found by our
method is:

target(X,Y )← (edge(X,Z) ∧ aux1(Z,X)) ∨ False,
aux1(X,Y )← (colour(X,Z) ∧ colour(Z, Y )) ∨ False,

where aux1 is an invented auxiliary predicate.
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Length The goal of this task is to learn the length(X,Y ) relation which is true if the length of list X is Y . Similar to the
task Member, elements in a list are encoded with two relations cons and succ, where cons(X,Y ) if Y is a node after X
with null node 0 being the termination of lists and succ(X,Y ) if Y is the next value of integer X . Moreover, this task adds
zero(X) as another background predicate, which is true if X is 0.

Take the list [3, 2, 1] as an example, suppose node 0 is the end of a list. The background knowledge is

B = {True, False, zero(0), succ(0, 1), succ(1, 2), succ(2, 3)}.

The corresponding set of positive examples is

P = {target([3, 2, 1], 3), target([2, 1], 2), target([1], 1)}

We use randomly generated training data for this task given the number of nodes in a list.

Even-Odd The goal of this task is to learn the even(X) relation which is true if value X is an even number. The
background knowledge includes two predicates, one is zero(X), which is true if X is 0, another one is succ(X,Y ), which
is true if Y is the next value of X . An example set of background knowledge is

B = {True, False, zero(0), succ(0, 1), succ(1, 2), . . . }.

The corresponding set of positive examples is

P = {target(0), target(2), target(4), . . . }

and the set of negative examples is

N = {target(1), target(3), target(5), . . . }.

Once the number of constants is given, the dataset is deterministic. One solution found by our method is:

target(X)← (zero(X) ∧ aux1(Z,X)) ∨ zero(X),

aux1(X,Y )← (aux1(X,Z) ∧ aux1(Z, Y )) ∨ aux2(X,Y ),

aux2(X,Y )← (succ(X,Z) ∧ succ(Z, Y )) ∨ False,

where aux1 and aux2 are invented auxiliary predicates.

Even-Succ2 Even-succ has the same backgrounds and target predicates as Even-Odd. In Campero et al. (2018), they
provide two different templates set tailored to Even-Succ respectively to Even-Odd. However, in our approach, this difference
is not relevant anymore: since we provide a uniform template set, these two tasks become identical.

Buzz The goal of this task is to learn the buzz(X) relation which is true if value X is divisible by 5. The background
knowledge consists of 4 predicates: zero(X) is true if X is 0, succ(X,Y ) is true if Y is the next value of X , pred1(X,Y )
is true if Y = X + 3, pred2(X,Y ) is true if Y = X + 2. An example set of background knowledge is

B = {True, False, zero(0), succ(0, 1), succ(1, 2), . . . , pred1(0, 3), pred2(2, 4), . . . , pred2(0, 2), pred2(1, 3), . . . }.

The corresponding set of positive examples is

P = {target(0), target(5), . . . }

and the set of negative examples is

N = {target(1), target(2), target(3), target(4), target(6), target(7), . . . }.

Once the number of constants is given, the dataset is deterministic. One solution found by our method is:

target(X)← (aux1(X,Z) ∧ pred2(Z,X)) ∨ zero(X),

aux1(X,Y )← (aux2(X,Z) ∧ pred1(Z, Y )) ∨ False,
aux2(X,Y )← (True ∧ aux3(Y )) ∨ zero(X),

aux3(X)← (aux1(X,Z) ∧ pred2(Z,X)) ∨ zero(X),

where aux1, aux2 and aux3 are invented auxiliary predicates.

Fizz The goal of this task is to learn the fizz(X) relation which is true if value X is divisible by 3. The background
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knowledge is the same with Even−Odd task. The corresponding set of positive examples is

P = {target(0), target(5), . . . }

and the set of negative examples is

N = {target(1), target(2), target(3), target(4), target(6), target(7), . . . }.

Once the number of constants is given, the dataset is deterministic.

B.2. FULL ILP EXPERIMENTAL RESULTS

In Table 6, we provide the results for all the ILP tasks.

Table 6. Percentage of successful runs among 10 runs. |I| is the smallest number of intensional predicates needed. Recursive means
whether or not the solution needs to learn recursive rules.

Task |I| Recursive ∂ILP LRI Ours

train soft evaluation symbolic evaluation

Predecessor 1 No 100 100 100 100 100
Undirected Edge 1 No 100 100 100 100 100

Less than 1 Yes 100 100 100 100 100
Member 1 Yes 100 100 100 100 100

Connectedness 1 Yes 100 100 100 100 100
Son 2 No 100 100 100 100 100

Grandparent 2 No 96.5 100 100 100 100
Adjacent to Red 2 No 50.5 100 100 100 100

Two Children 2 No 95 0 100 100 100
Relatedness 2 Yes 100 100 100 100 100

Cyclic 2 Yes 100 100 100 100 100
Graph Coloring 2 Yes 94.5 0 100 100 100

Length 2 Yes 92.5 100 20 0 0
Even-Odd 2 Yes 100 100 40 40 40

Even-Succ2 2 Yes 48.5 100 40 40 40
Buzz 2 Yes 35 70 100 40 40
Fizz 3 Yes 10 10 0 0 0

About task Length: The deceiving performance in this table for task Length can be easily explained: in theory our model
corresponds to rule-induction with function-free definite Horn clause; yet, de facto, in the recursive-case, both the number of
layers and the number of instantiated auxiliary predicate by proto-rule per layer define the actual expressivity of the model.
The number of instantiated auxiliary predicates by proto-rule per layer is by default set to 1 in all our experiments, as we
intended to share the same hyperparameter set on all tasks; however, to have a chance to solve the task Length, we should
increase this number to 2, to widen the hypothesis space.

About task Even-Odd: As mentioned above, task Even-Odd corresponds, for our method, to the same task as task
Even-Succ2, as the target predicate is identical. This is not the case for other ILP approaches like ∂ILP or LRI, as they
hand-engineer different template sets for each of these two tasks, corresponding to the desired auxiliary predicate.

B.3. LIMITATIONS OF LRI (CAMPERO ET AL., 2018)

Using LRI, if gathering all the templates needed for all ILP tasks (in Table 6) in a template setRLRI , we obtain 18 templates.
Table 7 demonstrates how the evaluation success rate decreases if LRI is trained with RLRI . While LRI can obtain good
results as indicated in Table 6 if provided with meta-rules customized for each task, the performance quickly degrades for
hard tasks when provided with a set of more generic meta-rules. This phenomenon is more accentuated for more complex
tasks. For easy tasks, like Predecessor, the performance did not change.
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Table 7. LRI’s performance with an increased number of rule templates. Measured in percentage of successful runs over 10 runs using
soft evaluation.

Tasks LRI with specific templates LRI with RLRI

Predecessor 100 100
Undirected Edge 100 80

Less than 100 100
Member 100 30

Connectedness 100 100
Son 100 80

Grandparent 100 90
Adjacent to Red 100 0

Two Children 0 0
Relatedness 100 100

Cyclic 100 0
Graph Coloring 0 0

Length 100 50
Even-Odd 100 20

Even-Succ2 100 10
Buzz 70 0
Fizz 10 0

B.4. COMPARISON WITH TRADITIONAL ILP METHODS

Large dataset We test if traditional ILP methods can handle large datasets with a large number of objects. As far as
we know, traditional ILP methods can not process input knowledge by mini-batches: users must provide all background
knowledge and examples to the solver before it starts running. Moreover, they do not utilize GPUs to speed up solving.
In contrast, HRI can sample a small subgraph from the large dataset in each training iteration, and can make use of GPU
to accelerate training easily. Thus, it can scale better to large datasets. To verify this, we compare HRI with Popper and
ILASP3. To have a fair comparison, we try to give the two baseline methods a similar hypothesis space as HRI, including
the hierarchical bias and meta-rule templates.

However, once we give a similar hypothesis space as HRI, ILASP3 can not find a correct solution within 30 minutes even
for a graph with 10 objects in the Grandparent task, therefore we did not test it further in larger dataset with such a
general bias.

As shown in Figure 4, Popper costs much more time than HRI for the Grandparent task, which needs predicate invention.
Although Popper performs better for the Undirected Edge task, note that this is a very simple task, which does not
require predicate invention, and Popper can verify the solution straightforwardly once the corresponding meta-rules are
given. Besides, for Member and Connectedness, in the case that the number of objects is 10,000, Popper can not find
correct solutions within 30 minutes while HRI can be successful within 5 minutes.

Noisy Data Finally, as mentioned in the main paper, we compared HRI with ILASP3 (Law et al., 2018) 23 and ∂ILP
(Evans & Grefenstette, 2018) in a noisy data setting by ranging the ratio of mislabeled target training examples from 0% to
90%, as shown in Figure 2.

We also ran additional comparison with ILASP4 (Law et al., 2020), which is a successor of ILASP3 computationally
less expensive, since it only considers necessary (and not sufficient) constraints. Since we did not find any reference for
hyperparameters and biases chosen for ILASP4, we used similar ones than for the ones the authors indicate for ILASP3
(Law et al., 2018). We used a time limit of 300s and added 2 to their ’maxbl’ parameter, to increase the hypothesis space,
although similar results were obtained with identical maxbl. Based on these parameters, the preliminary results as displayed
in Figure Figure 5 (averaged on 5 runs) suggest that ILASP4 is quite sensitive to noise. This should be further investigated,
with different parameters and language bias since we may missed the best settings parameters.

23Experimental results of ILASP3 and ∂ILP come from their own paper (Law et al., 2018; Evans & Grefenstette, 2018).
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Figure 4. Time(s) to find the correct solution with respect to the number of objects in dataset
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Figure 5. Mean Squared Error (MSE) w.r.t. different noise ratios.

C. Visual Genome Experiments

For these experiments, we use a dataset called GQA (Hudson & Manning, 2019b) which is a preprocessed version of the
Visual Genome dataset (Krishna et al., 2017), since the original is commonly considered to be too noisy (Zellers et al., 2018).
In GQA, the original scene graphs have been converted into a collection of KGs, leading to 1.9M facts, 1.4M constants, and
2100 predicates. Following (Yang & Song, 2020), we filter this dataset to remove the predicates that appear less than 1500
times and to focus on the top 150 objects.

In the multi-task setting, we train 150 models to provide a logic explanation to the top 150 objects. For the evaluation
metrics, we use recall @1 (R@1) and recall @5 (R@5), which are computed on a held-out set. R@k measures the fraction
of ground-truth atoms that appear among the top k most confident predictions in an image. In our model, even though all
the models are instantiated with the same max layer nL, the trained model may have different layers. Indeed, since each
auxiliary predicate at layer ` may be formed with predicates from any layer 0 to ` in P↓` ), the trained model may contain 1
to nL layers (without counting the target predicate). Given the soft unification computation in (11), a trained model with a
larger number of layers has a tendency to output smaller values. Therefore, to make the output of all the models comparable,
we use a simple L2 normalization before comparing the outputs of those trained models in order to compute the evaluation
metrics.

After training HRI, we compare the semantic space underlying these embeddings. More precisely, we use cosine similarity
to measure distances between all pairs of background embeddings, sort, and select the top 10 closest pairs. As Table 8
suggests, the fine-tuned embeddings pairs have akin similarities; this initialization choice may therefore help with the
performance to some extent.
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Table 8. Top 10 closest embeddings from GPT2 and our trained multi-task model.

Top 10 pairs of similar embeddings

GPT2 (bag, backpack), (arrow, apple), (airplane, air), (backpack, airplane), (apple, airplane),
(animal, airplane), (arrow, animal), (at, above), (apple, animal), (bag, airplane)

Fine-tuned (bag, backpack), (bag, airplane), (arrow, apple), (airplane, air), (arm, air),
(backpack, airplane), (air, above), (apple, air), (arrow, animal), (arm, airplane)

Table 9 shows some extracted learned rules for the multitask model.

Table 9. Examples of extracted rules from multi-task model

Target Rules

wrist wrist(X)← (watch(Y ) ∧ on(Y,X)) ∨ False
person person(X)← (on(X,Y ) ∧ bench(Y )) ∨ wearing(X,T )

vase vase(X)← (aux(X,Y ) ∧ flowers(Y )) ∨ False
aux(X,Y )← (True ∧ on(Y,X)) ∨ with(X,Y )

logo logo(X)← (aux0(X) ∧ True) ∨ aux1(X)

aux1(X)← (on(X,Y ) ∧ laptop(Y )) ∨ False
aux0(X)← (on(X,Y ) ∧ kite(Y )) ∨ False

D. Design Choices

Operation Choices In our implementation, the default choice is sum for POOL, min for AND, max for OR. In Table 10,
we experimentally compare different choices for these operations. The first column shows the results with our default choices,
while other columns show the results by using max for POOL, product for AND, and probabilistic sum (probsum)24 for
OR.

Table 10. Percentage of successful runs among 10 runs using soft evaluation, obtained by models trained with different implementations
for POOL, MERGE, AND, OR.

Task default POOL-max AND-product OR-probsum

Adjacent To Red 100 20 100 100
Member 100 40 100 90
Cyclic 100 50 90 100

Two Children 100 70 80 80

Ablation Study Table 11 shows some ablation study about hierarchical and incremental bias on a few ILP tasks, and with
or without the adoption of proto-rules. In the case of no-protorules, we use the set of all templates used in LRI Campero
et al. (2018); the first line correspond to LRI model with a unified set of templates. As displayed in the table, there is a clear
improvement of the performance upon adoption of these different biases.

Extended Gumbel Noise We adopt an extended version of Gumbel noise defined as follows:

G = −g1 log (− log (g2U)) ,

24probsum(v1, v2) = v1 + v2 − v1 ∗ v2
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Table 11. Percentage of successful runs among 10 runs. Ablation study of incremental and hierarchical biases.

protorules incremental hierarchical Adjacent To Red Member Cyclic Two Children

7 7 7 0 30 0 0
3 3 7 60 10 70 80
3 3 3 100 100 100 100

Table 12. Percentage of successful runs among 20 runs for some ILP tasks, with different settings about the extended Gumbel noise.

g1 g2 decay mode Adjacent to Red Member Cyclic Two Children

1

0.3 linear 100 100 100 100
0.5 100 95 100 95
0.3 exponential 100 85 95 80
0.5 60 95 95 40

0.3

1
linear 95 85 85 65

0.5 65 75 35 25
0.3 exponential 30 80 50 0
0.5 0 0 0 0

0 \ \ 60 20 75 30

where U is sampled according to a uniform distribution U([0, 1]), and with a Gumbel scale g1 ∈ (0,+∞) and a Gumbel
factor g2 ∈ (0,+∞).

As illustrated in Table 12, using a linearly-decaying Gumbel factor and fixed Gumbel scale (instead of a decaying Gumbel
scale and fixed Gumbel factor as commonly adopted) was experimentally beneficial for the tasks we considered. The last
row in Table 12 shows the significance of adding a Gumbel noise for hard tasks like Member or Two Children.

In our model, this noise term is added to the cosine-similarity scores in (13), before applying a softmax, in order to lead to
the unification scores. More precisely:

αPiBi =
exp

((
cos(θPi

,θBi
) +G(i,i)

)
/τ
)∑

Pj
exp

((
cos(θPj

,θBi
) +G(j,i)

)
/τ
) , (31)

Let us examine the behavior of this decay to justify our approach. On the one hand, making g2 tends towards 0 would make
the Gumbel term G tends towards −∞, which seems unreasonable. However, if we keep g2 above a moderately small value
(as for instance 10−4 after 3000 iterations steps in our experiments, with a linear decay), reducing g2 amounts to reduce the
range and variance of the applied noise. In our context, note that because of the softmax, only this range matters for the
unification scores to be affected. Let us point out that, at the extreme, adding a constant noise term to each of the similarity
scores (as in the evaluation task), would not affect the unification scores (equivalent to having G being 0).

For instance, with g2 going from 0.3 to 0.3 ∗ (1 − 3999
4000 ), the range of the Gumbel noise G is roughly going from (for

U between 0.0001 to 1) [−2.543,−0.186] to [−3.045,−2.251]. In that sense, our choice would encourage the similarity
scores to be different enough, and with g2 small enough (> 0), would not affect the unification scores, similarly as a noise
going to 0.

E. Hyperparameters

We list relevant generic and task-specific hyperparameters used for our training method in Tables 13 and 14, respectively.
In Table 14, the hyperparameters train-num-constants and eval-num-constants represent the number of constants during
training and evaluation, respectively. We keep the values of the two hyperparameters for each task the same as those used
in Campero et al. (2018). Note that our model does not require the actual knowledge of the depth of the solution; the
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max-depth parameter simply could be an upper bound. Although, this parameter could be reduced for simpler tasks, we set
max-depth= 4 for all tasks to make our training method more generic.

Table 13. Generic hyperparameters for all tasks.

Hyperparameter recursivity fuzzy-and fuzzy-or similarity lr lr-rules

Value full min max cosine 0.01 0.03

Hyperparameter temperature Gumbel-Scale Gumbel-Factor Gumbel-factor-decay-mode

Value 0.1 1.0 0.3 linear

Table 14. Specialized hyperparameters for each ILP task.

Task max-depth train-steps eval-steps train-num-constants eval-num-constants

Predecessor 4 2 4 10 14
Undirected Edge 4 2 2 4 6

Less than 4 12 12 10 12
Member 4 12 12 5 7

Connectedness 4 4 4 5 5
Son 4 4 4 9 10

Grandparent 4 4 4 9 11
Adjacent to Red 4 4 4 7 9

Two Children 4 4 5 5 7
Relatedness 4 10 12 8 10

Cyclic 4 4 4 6 7
Graph Coloring 4 4 4 8 10

Even-Odd 4 6 8 11 15
Even-Succ2 4 6 8 11 15

Buzz 4 8 10 11 16

In multi-task GQA, we used the same generic hyperparameters as given in Table 13 except that we disallow recursivity and
decreased the learning rate (lr) to 0.001 for background embeddings and rule learning rate (lr-rules) to 0.01 for intensional
embeddings. Other specific hyperparametes are given in Table 15.

Table 15. Multi-task GQA hyperparameters.

Hyperparameter Value

Max depth 3
Train-steps 4

Embedding-dim 30
Train-iterations nT 3000

Train-num-positive-instances np 5
Train-num-random-instances nr 5

In reinforcement learning, we used the same generic hyperparameters as given in Table 13 except that we did not use
recursivity and decreased the learning rate to 0.005. Additional hyperparameters are given in Table 16.
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Table 16. Reinforcement learning hyperparameters.

Hyperparameter Value

Max depth 6
Train-steps 6

Train-num-constants 5
Temperature of softmax policy 0.01

GAE λ 0.9
γ 0.99

Trajectory per update 5
PPO ε-clipping 0.2

GRU hidden neurons (critic) 64

Sensitivity to Hyperparameters To evaluate the sensitivity of our model to hyperparameters, we tested other hyperpa-
rameter choices on some ILP tasks. We refer to Table 14 for the results obtained with default hyperparameters, presented in
Table 13. As Table 17 suggests, both smaller inference steps, or smaller depth will affect performance; this performance
decreases naturally, since it narrows down the hypothesis space, which may not contain anymore the solution needed for the
task. However, we can appreciate the fact that larger inference step or depth usually will not affect much the performance
(until a limit). We can also notice that cosine performs better than other similarity functions; naturally, restricting or
excluding the recursivity would perform well compared with full recursivity, unless the task requires it.

Table 17. Percentage of successful runs among 10 runs using soft evaluation, obtained by models trained with different hyperparameter
choices. Here, st and se are default inference steps used in training and evaluation, shown in Table 14.

Task default Inference-steps (train-steps, eval-steps)

(st − 2, se − 2) (st − 1, se − 1) (st + 1, se + 1) (st + 2, se + 2)

Adjacent to Red 100 90 100 100 100
Member 100 100 100 100 100
Cyclic 100 90 90 90 100

Two Children 100 80 100 100 100

Task Similarity Recursivity Max-depth

L1 L2 scalar-product none iso-recursive 1 2 3 5

Adjacent to Red 10 80 40 100 100 0 90 100 100
Member 60 100 80 0 100 50 100 100 100
Cyclic 60 80 50 90 100 10 60 80 90

Two Children 0 60 10 90 100 0 70 70 100

F. Limitations and Potentials of HRI

Expressivity Limitations As made explicit in Theorem 7.8, our model corresponds to rule-induction with function-free
definite Horn clauses. Of course, the number of layers affects the actual expressivity of each model; in the non-recursive
case, this parameter is sufficient to reach all the function-free recursive-free definite Horn clauses. In the recursive case, the
number of instantiated rules from the proto-rule set (by default set to 1) also affects the expressivity; this may be seen in task
Length in ILP, where two rules should be initiated per proto-rule to sufficiently widen the hypothesis space.

The expressivity of our model could be extended in different ways, more or less computationally-expensive, and therefore
more or less judicious. The points below would be object of further investigations and experiments; for this reason, we only
share in this paper some succinct comments on different tracks to gain expressivity:

+ Enabling negations.
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+ Enabling functions.

+ Enabling zero-ary predicates: We could easily extend our result to include 0-ary predicates.

Claim : By adding the zero-ary predicateZ toR0, the hypothesis space reaches the fragmentF≤2P,≤2 (32)

where Z : P()← Q(A,B).

+ Enabling more body atoms:25

Claim : Enabling 3 or 4 body atoms would result in the same hypothesis space. (33)

This can be proven by reducing clauses with 3 (resp. 4) body atoms to 2 (resp. 3) body atoms. Instead of a formal proof,
let us give a visual illustration of these reductions26, in Figure 6 (resp. Figure 7). Red arrows denote head predicates;
full grey arrows depict two arrows that can be reduced into the dotted grey arrow to lower the number of body atoms by
introducing an auxiliary predicate.

Figure 6. Reduction of meta-rules with 3 body atoms

Figure 7. Reduction of meta-rules with 4 body atoms

In contrast, as illustrated in Figure 8 some rules with 5 body clauses are not reducible to 2 body clauses, such as:

P (A,B)← Q(A,C), R(A,D), S(B,C), T (B,D), U(C,D). (34)

As mentioned in Cropper & Tourret (2020), F{1,2}≤5 is therefore not D-reducible to F{1,2}≤2 . However, allowing a higher
number of clauses (such as 5) may drastically increase the computational cost.

+ Enabling higher-arity.
For instance, considering arity-3 predicates, while keeping two-body clauses, could enable to reach C{1,2}≤5 :

Claim : F{1,2,3}≤2 [P] ⊃ F{1,2}≤5 (35)

Further comparative experiments could be led in the future, to test different minimal or small meta-rules or proto-rules set,
and investigate some judicious balance of minimalism/redundancy and expressivity/efficiency in diverse tasks.

25For instance the language bias present in Galárraga et al. (2013) is narrowing the space to connected, two-connected and duplicate-free
Horn clauses U . On the one hand, U is a smaller fragment than F which our model is reaching. However, they consider clauses with N
body atoms (N hypothetically small in their experiments), which could enable greater expressivity.

26We considered clauses upon permutation and symmetries, as usual; we omitted clauses having two body atoms with the same
variables, as they can be trivially reduced.
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Figure 8. Irreducible Meta-Rule with 5 body atoms

Potentials In contrast to most previous classic ILP or differentiable ILP works, we hypothesize that HRI could be
particularly suited for continual learning in semantically-richer domains, such as in RL scenarios where an interpretable
logic-oriented higher-level policy seems pertinent (e.g., autonomous driving). Here are some arguments to support this
belief:

+ In contrast to some previous works, HRI is independent of the number of predicates, which may vary between training
and testing.

+ As our experiments in Visual Genome suggest, HRI can be bootstrapped by semantic or visual priors, to initialize the
predicates.

+ In semantically-rich domains, the complexity of HRI would be more advantageous than other ILP works. Semantically
rich domains are characterized by a high number of initial predicates, while enabling a much lower embedding
dimension d (as these predicates are highly interdependent), d <<| P0 |; such inequality implies a lower complexity
for HRI than common methods which have to learn one coefficient per predicate.

+ The embedding-based approach enables to reason by analogy, and possibly quickly generalize to new predicates. For
instance, if the model has learned the rule OverTake()← ¬(P (X) ∧OnNextLane(X)), and the embedding θP is
learned to be close to θCar, the rule would generalize to include Truck, assuming θCar ∼ θTruck, despite having never
seen the new predicate Truck during training.


