It’s Raw! Audio Generation with State-Space Models

Karan Goel! Albert Gu' Chris Donahue' Christopher Ré'

Abstract

Developing architectures suitable for modeling
raw audio is a challenging problem due to the
high sampling rates of audio waveforms. Stan-
dard sequence modeling approaches like RNNs
and CNNs have previously been tailored to fit
the demands of audio, but the resultant architec-
tures make undesirable computational tradeoffs
and struggle to model waveforms effectively. We
propose SASHIMI, a new multi-scale architecture
for waveform modeling built around the recently
introduced S4 model for long sequence model-
ing. We identify that S4 can be unstable dur-
ing autoregressive generation, and provide a sim-
ple improvement to its parameterization by draw-
ing connections to Hurwitz matrices. SASHIMI
yields state-of-the-art performance for uncondi-
tional waveform generation in the autoregressive
setting. Additionally, SASHIMI improves non-
autoregressive generation performance when used
as the backbone architecture for a diffusion model.
Compared to prior architectures in the autoregres-
sive generation setting, SASHIMI generates piano
and speech waveforms which humans find more
musical and coherent respectively, e.g. 2x better
mean opinion scores than WaveNet on an uncon-
ditional speech generation task." On a music gen-
eration task, SASHIMI outperforms WaveNet on
density estimation and speed at both training and
inference even when using 3 x fewer parameters.

1. Introduction

Generative modeling of raw audio waveforms is a chal-
lenging frontier for machine learning due to their high-
dimensionality—waveforms contain tens of thousands of

"Department of Computer Science, Stanford University. Corre-
spondence to: Karan Goel <kgoel @cs.stanford.edu>, Albert Gu
<albertgu@stanford.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

'Examples: https://hazyresearch.stanford.
edu/sashimi-examples

timesteps per second and exhibit long-range behavior at mul-
tiple timescales. A key problem is developing architectures
for modeling waveforms with the following properties:

1. Globally coherent generation, which requires modeling
unbounded contexts with long-range dependencies.

2. Computational efficiency through parallel training, and
fast autoregressive and non-autoregressive inference.

3. Sample efficiency through a model with inductive biases
well suited to high-rate waveform data.

Among the many training methods for waveform generation,
autoregressive (AR) modeling is a fundamentally important
approach. AR models learn the distribution of future vari-
ables conditioned on past observations, and are central to
recent advances in machine learning for language and im-
age generation (Brown et al., 2020; Ramesh et al., 2021;
Bommasani et al., 2021). With AR models, computing
the exact likelihood is tractable, which makes them simple
to train, and lends them to applications such as lossless
compression (Kleijn et al., 2018) and posterior sampling (Ja-
yaram & Thickstun, 2021). When generating, they can
condition on arbitrary amounts of past context to sample
sequences of unbounded length—potentially even longer
than contexts observed during training. Moreover, archi-
tectural developments in AR waveform modeling can have
a cascading effect on audio generation more broadly. For
example, WaveNet—the earliest such architecture (van den
Oord et al., 2016)—remains a central component of state-
of-the-art approaches for text-to-speech (TTS) (Li et al.,
2019), unconditional generation (Lakhotia et al., 2021), and
non-autoregressive (non-AR) generation (Kong et al., 2021).

Despite notable progress in AR modeling of (relatively)
short sequences found in domains such as natural lan-
guage (e.g. 1K tokens), it is still an open challenge
to develop architectures that are effective for the much
longer sequence lengths of audio waveforms (e.g. 1M sam-
ples). Past attempts have tailored standard sequence mod-
eling approaches like CNNs (van den Oord et al., 2016),
RNNSs (Mehri et al., 2017), and Transformers (Child et al.,
2019) to fit the demands of AR waveform modeling, but
these approaches have limitations. For example, RNNs
lack computational efficiency because they cannot be paral-
lelized during training, while CNNs cannot achieve global

https://hazyresearch.stanford.edu/sashimi-examples
https://hazyresearch.stanford.edu/sashimi-examples

It’s Raw! Audio Generation with State-Space Models

Input

T
T embontind it

H : hidden dimension
L : length of sequence

Output Down Pool

Down Pool

VoY,

Up Pool

S4 Blocks [

Down Pool

(4H,L/16)

LayerNorm

Up Pool

Linear +
Reshape

S4 Block

SaShiMi

Up Pool

Figure 1. SASHIMI consists of a simple repeated block combined with a multiscale architecture. (Left) The basic S4 block is composed of
an S4 layer combined with standard pointwise linear functions, non-linearities, and residual connections. (Center) Dark blue rectangles
illustrate the shape of inputs. The input is progressively transformed to shorter and wider sequences through pooling layers, then
transformed back with stacks of S4 blocks. Longer range residual connections are included to help propagate signal through the network.
(Right) Pooling layers are position-wise linear transformations with shifts to ensure causality.

coherence because they are fundamentally constrained by
the size of their receptive field.

We introduce SASHIMI, a new architecture for modeling
waveforms that yields state-of-the-art performance on un-
conditional audio generation benchmarks in both the AR and
non-AR settings. SASHIMI is designed around recently de-
veloped deep state space models (SSM), specifically S4 (Gu
et al., 2022). SSMs have a number of key features that make
them ideal for modeling raw audio data. Concretely, S4:

1. Incorporates a principled approach to modeling long
range dependencies with strong results on long sequence
modeling, including raw audio classification.

2. Can be computed either as a CNN for efficient parallel
training, or an RNN for fast autoregressive generation.

3. Is implicitly a continuous-time model, making it well-
suited to signals like waveforms.

To realize these benefits of SSMs inside SASHIMI, we make
3 technical contributions. First, we observe that while stable
to train, S4’s recurrent representation cannot be used for
autoregressive generation due to numerical instability. We
identify the source of the instability using classical state
space theory, which states that SSMs are stable when the
state matrix is Hurwitz, which is not enforced by the S4
parameterization. We provide a simple improvement to the
S4 parameterization that theoretically ensures stability.

Second, SASHIMI incorporates pooling layers between
blocks of residual S4 layers to capture hierarchical informa-

tion across multiple resolutions. This is a common technique
in neural network architectures such as standard CNNs
and multi-scale RNNs, and provides empirical improve-
ments in both performance and computational efficiency
over isotropic stacked S4 layers.

Third, while S4 is a causal (unidirectional) model suitable
for AR modeling, we provide a simple bidirectional relax-
ation to flexibly incorporate it in non-AR architectures. This
enables it to better take advantage of the available global
context in non-AR settings.

For AR modeling in audio domains with unbounded se-
quence lengths (e.g. music), SASHIMI can train on much
longer contexts than existing methods including WaveNet
(sequences of length 128K vs 4K), while simultaneously
having better test likelihood, faster training and inference,
and fewer parameters. SASHIMI outperforms existing AR
methods in modeling the data (> 0.15 bits better nega-
tive log-likelihoods), with substantial improvements (4-0.4
points) in the musicality of long generated samples (16s) as
measured by mean opinion scores. In unconditional speech
generation, SASHIMI achieves superior global coherence
compared to previous AR models on the difficult SC09
dataset both quantitatively (80% higher inception score) and
qualitatively (2x higher audio quality and digit intelligibil-
ity opinion scores by human evaluators).

Finally, we validate that SASHIMI is a versatile backbone
for non-AR architectures. Replacing the WaveNet back-
bone with SASHIMI in the state-of-the-art diffusion model
DiffWave improves its quality, sample efficiency, and ro-

It’s Raw! Audio Generation with State-Space Models

bustness to hyperparameters with no additional tuning.

Our Contributions. The central contribution of this paper
is showing that deep neural networks using SSMs are a
strong alternative to conventional architectures for modeling
audio waveforms, with favorable tradeoffs in training speed,
generation speed, sample efficiency, and audio quality.

* We technically improve the parameterization of S4, en-
suring its stability when switching into recurrent mode at
generation time.

e We introduce SASHIMI, an SSM-based architecture with
high efficiency and performance for unconditional AR
modeling of music and speech waveforms.

* We show that SASHIMI is easily incorporated into other
deep generative models to improve their performance.

2. Related Work

This work focuses primarily on the task of generating
raw audio waveforms without conditioning information.
Most past work on waveform generation involves condi-
tioning on localized intermediate representations like spec-
trograms (Shen et al., 2018; Kumar et al., 2019; Prenger
et al., 2019), linguistic features (van den Oord et al., 2016;
Kalchbrenner et al., 2018; Binkkowski et al., 2020), or dis-
crete audio codes (van den Oord et al., 2017; Dieleman et al.,
2018b; Dhariwal et al., 2020; Lakhotia et al., 2021). Such
intermediaries provide copious information about the under-
lying content of a waveform, enabling generative models to
produce globally-coherent waveforms while only modeling
local structure.

In contrast, modeling waveforms in an unconditional fash-
ion requires learning both local and global structure with a
single model, and is thus more challenging. Past work in
this setting can be categorized into AR approaches (van den
Oord et al., 2016; Mehri et al., 2017; Child et al., 2019),
where audio samples are generated one at a time given previ-
ous audio samples, and non-AR approaches (Donahue et al.,
2019; Kong et al., 2021), where entire waveforms are gen-
erated in a single pass. While non-AR approaches tend to
generate waveforms more efficiently, AR approaches have
two key advantages. First, unlike non-AR approaches, they
can generate waveforms of unbounded length. Second, they
can tractably compute exact likelihoods, allowing them to
be used for compression (Kleijn et al., 2018) and posterior
sampling (Jayaram & Thickstun, 2021).

In addition to these two advantages, new architectures for
AR modeling of audio have the potential to bring about a
cascade of improvements in audio generation more broadly.
For example, while the WaveNet architecture was originally
developed for AR modeling (in both conditional and uncon-
ditional settings), it has since become a fundamental piece

of infrastructure in numerous audio generation systems. For
instance, WaveNet is commonly used to vocode intermedi-
aries such as spectrograms (Shen et al., 2018) or discrete
audio codes (van den Oord et al., 2017) into waveforms,
often in the context of text-to-speech (TTS) systems. Ad-
ditionally, it serves as the backbone for several families of
non-AR generative models of audio in both the conditional
and unconditional settings:

(i) Distillation: Parallel WaveNet (van den Oord et al.,
2018) and ClariNet (Ping et al., 2019) distill paral-
lelizable flow models from a teacher WaveNet model.

(i) Likelihood-based flow models: WaveFlow (Ping
et al., 2020), WaveGlow (Prenger et al., 2019), and
FloWaveNet (Kim et al., 2019) all use WaveNet as a
core component of reversible flow architectures.

(iii) Autoencoders: WaveNet Autoencoder (Engel et al.,
2017) and WaveVAE (Peng et al., 2020), which use
WaveNets in their encoders.

(iv) Generative adversarial networks (GAN): Parallel
WaveGAN (Yamamoto et al., 2020) and GAN-
TTS (Binkowski et al., 2020), which use WaveNets
in their discriminators.

(v) Diffusion probabilistic models: WaveGrad (Chen
et al., 2021) and DiffWave (Kong et al., 2021) learn
a reversible noise diffusion process on top of dilated
convolutional architectures.

In particular, we point out that DiffWave represents the
state-of-the-art for unconditional waveform generation, and
incorporates WaveNet as a black box.

Despite its prevalence, WaveNet is unable to model long-
term structure beyond the length of its receptive field (up
to 3s), and in practice, may even fail to leverage available
information beyond a few tens of milliseconds (Shen et al.,
2018). Hence, we develop an alternative to WaveNet which
can leverage unbounded context. We focus primarily on
evaluating our proposed architecture SASHIMI in the funda-
mental AR setting, and additionally demonstrate that, like
WaveNet, SASHIMI can also transfer to non-AR settings.

3. Background

We provide relevant background on autoregressive wave-
form modeling in Section 3.1, state-space models in Sec-
tion 3.2 and the recent S4 model in Section 3.3, before
introducing SASHIMI in Section 4.

3.1. Autoregressive Modeling of Audio

Given a distribution over waveforms © = (xg,...,Z7_1),
autoregressive generative models model the joint distribu-

It’s Raw! Audio Generation with State-Space Models

tion as the factorized product of conditional probabilities
T—1
p(x) = H p(zt|zo, ..., e—1).
t=0

Autoregressive models have two basic modes:

Training: Given a sequence of samples xy, . .
imize the likelihood

., T7T_1, Max-

T-1 T-1

p(wo, - wr1) = > plailwe, ..., wi1) = > UYi, i)

i=0 i=0
where / is the cross-entropy loss function.

Inference (Generation): Given z,...,x;_1 as context,
sample from the distribution represented by y;_1 = p(z; |
Zo, - .., T¢—1) to produce the next sample x;.

We remark that by the training mode, autoregressive mod-
els are equivalent to causal sequence-to-sequence maps
To,..-sTT—1 — Yo,-.--,Y7—1, Where xj are input sam-
ples to model and y; represents the model’s guess of
P(Tk4+1 | o,...,x). For example, when modeling a
sequence of categorical inputs over k classes, typically
x, € R? are embeddings of the classes and y;, € RF
represents a categorical distribution over the classes.

The most popular models for autoregressive audio modeling
are based on CNNs and RNNs, which have different trade-
offs during training and inference. A CNN layer computes
a convolution with a parameterized kernel

K = (ko,...

akwfl) y:K*x (1)

where w is the width of the kernel. The receptive field or
context size of a CNN is the sum of the widths of its kernels
over all its layers. In other words, modeling a context of size
T requires learning a number of parameters proportional
to 7. This is problematic in domains such as audio which
require very large contexts.

A variant of CNNs particularly popular for modeling au-
dio is the dilated convolution (DCNN) popularized by
WaveNet (van den Oord et al., 2016), where each kernel K
is non-zero only at its endpoints. By choosing kernel widths
carefully, such as in increasing powers of 2, a DCNN can
model larger contexts than vanilla CNNs.

RNNs such as SampleRNN (Mehri et al., 2017) maintain
a hidden state h; that is sequentially computed from the
previous state and current input, and models the output as a
function of the hidden state

he = f(hi—1,2¢) ye = g(ht) 2

The function f is also known as an RNN cell, such as the
popular LSTM (Hochreiter & Schmidhuber, 1997).

CNNs and RNNs have efficiency tradeoffs as autoregressive
models. CNNs are parallelizable: given an input sequence
Zg,...,T7—1, they can compute all y; at once, making
them efficient during training. However, they become awk-
ward at inference time when only the output at a single
timestep y; is needed. Autoregressive stepping requires
specialized caching implementations that have higher com-
plexity requirements than RNNs.

On the other hand, RNNs are stateful: The entire context
Zo,...,x; 18 summarized into the hidden state h;. This
makes them efficient at inference, requiring only constant
time and space to generate the next hidden state and output.
However, this inherent sequentiality leads to slow training
and optimization difficulties (the vanishing gradient prob-
lem (Hochreiter et al., 2001; Pascanu et al., 2013)).

3.2. State Space Models

A recent class of deep neural networks was developed that
have properties of both CNNs and RNNs. The state space
model (SSM) is defined in continuous time by the equations

B (t) = Ah(t) + Bx(t)

: 3)

y(t) = Ch(t) + Dz(t)
To operate on discrete-time sequences sampled with a step
size of A, SSMs can be computed with the recurrence

hk = th—l +§$k Yk = Chk + Dl'k (4)
A=T—-A/)2-A) T +A/2-A))

where A is the discretized state matrix and B has a similar
formula. The intuition behind discretization is to convert the
(continuous-time) differential equation (3) to a discrete-time
recurrence by simulating the equation. For example, a naive
method would be Euler integration

h(kA) &~ h((k — 1)A) + AR ((k — 1)A)
= (I + AAL((k —1)A) + (AB)z((k — 1)A)

which simplifies to the the equation (4) with A = I + AA.
Equation (5) represents a more numerically accurate dis-
cretization, of which there are many well-studied variants.

An important property of SSMs is that the recurrence Eq. (4)
is equivalent to a convolution by a particular kernel K

K =(CB,CAB,CA’B,...) y=Kxz. (6
This can be derived simply by unrolling equation (4); more
details are in prior work (Gu et al., 2021; 2022).

Thus, SSMs can be viewed as particular instantiations of
CNNs and RNNSs that inherit their efficiency at both training
and inference and overcome their limitations. As an RNN,
(4) is a special case of (2) where f and g are linear, giving it

It’s Raw! Audio Generation with State-Space Models

much simpler structure that avoids the optimization issues
found in RNNs. As a CNN, (6) is a special case of (1) with
an unbounded convolution kernel, overcoming the context
size limitations of vanilla CNNss.

3.3. 54

S4 is a particular instantiation of SSM that parameterizes A
as a diagonal plus low-rank (DPLR) matrix, A = A 4 pq*
(Gu et al., 2022). This parameterization has two key prop-
erties. First, this is a structured representation that allows
faster computation—S4 uses a special algorithm to compute
the convolution kernel K (6) very quickly. Second, this
parameterization includes certain special matrices called
HiPPO matrices (Gu et al., 2020), which theoretically and
empirically allow the SSM to capture long-range dependen-
cies better. In particular, HiIPPO specifies a special equation
K (t) = Ah(t) + Bz(t) with closed formulas for A and B.
This particular A matrix can be written in DPLR form, and
S4 initializes its A and B matrices to these.

‘We note that building SASHIMI around S4 is similar in spirit
to the use of linear oscillations for waveform generation in
prior work, e.g. in the Neural Source Filter (Wang et al.,
2019) or differentiable digital signal processing (DDSP)
models (Engel et al., 2020). SSMs like S4, and consequently
SASHIMI can be viewed as a generalization of models that
rely on harmonic oscillation, and are able to directly learn
the appropriate basis functions for raw waveforms.

4. Model

SASHIMI consists of two main components. First, S4 layers
are the core component of our neural network architecture,
to capture long context while being fast at both training
and inference. We provide a simple improvement to S4
that addresses instability at generation time (Section 4.1).
Second, SASHIMI connects stacks of S4 layers together in
a simple multi-scale architecture (Section 4.2).

4.1. Stabilizing S4 for Recurrence

We use S4’s representation and algorithm as a black box,
with one technical improvement: we use the parameteriza-
tion A — pp* instead of A + pg*. This amounts to essentially
tying the parameters p and ¢ (and reversing a sign).

To justify our parameterization, we first note that it still
satisfies the main properties of S4’s representation (Sec-
tion 3.3). First, this is a special case of a DPLR matrix, and
can still use S4’s algorithm for fast computation. Moreover,
we show that the HiPPO matrices still satisfy this more re-
stricted structure; in other words, we can still use the same
initialization which is important to S4’s performance.

Proposition 4.1. All three HiPPO matrices from (Gu et al.,
2020) are unitarily equivalent to a matrix of the form A =
A — pp* for diagonal A and p € RN*" forr =1 orr = 2.

Furthermore, all entries of A have real part 0 (for HiPPO-
LegT and HiPPO-LagT) or —% (for HiPPO-LegS).

Next, we discuss how this parameterization makes S4 stable.
The high-level idea is that stability of SSMs involves the
spectrum of the state matrix A, which is more easily con-
trolled because —pp* is a negative semidefinite matrix (i.e.,
we know the signs of its spectrum).

Definition 4.2. A Hurwitz matrix A is one where every
eigenvalue has negative real part.

Hurwitz matrices are also called stable matrices, because
they imply that the SSM (3) is asymptotically stable. In the
context of discrete time SSMs, we can easily see why A
needs to be a Hurwitz matrix from first principles with the
following simple observations.

First, unrolling the RNN mode (equation (4)) involves pow-
ering up A repeatedly, which is stable if and only if all
eigenvalues of A lie inside or on the unit disk. Second, the
transformation (5) maps the complex left half plane (i.e.
negative real part) to the complex unit disk. Therefore com-
puting the RNN mode of an SSM (e.g. in order to generate
autoregressively) requires A to be a Hurwitz matrix.

However, controlling the spectrum of a general DPLR ma-
trix is difficult; empirically, we found that S4 matrices gener-
ally became non-Hurwitz after training. We remark that this
stability issue only arises when using S4 during autoregres-
sive generation, because S4’s convolutional mode during
training does not involve powering up A and thus does not
require a Hurwitz matrix. Our reparameterization makes
controlling the spectrum of A easier. Note that the goal of
this reparameterization is only to ensure stability, and we do
not expect it to impact model performance, which we verify
in Section 5.2.

Proposition 4.3. A matrix A = A — pp* is Hurwitz if all
entries of A have negative real part.

Proof. We first observe that if A + A* is negative semidefi-
nite (NSD), then A is Hurwitz. This follows because 0 >
v (A+ A%y = (v*Av) + (v*Av)* = 2Re(v* Av) = 2\
for any (unit length) eigenpair (A, v) of A.

Next, note that the condition implies that A + A* is NSD (it
is a real diagonal matrix with non-positive entries). Since
the matrix —pp* is also NSD, then so is A + A*. O

Proposition 4.3 implies that with our tied reparameterization
of S4, controlling the spectrum of the learned A matrix be-
comes simply controlling the the diagonal portion A. This is
a far easier problem than controlling a general DPLR matrix,
and can be enforced by regularization or reparameteration
(e.g. run its entries through an exp function). In practice,
we found that not restricting A and letting it learn freely led
to stable trained solutions.

It’s Raw! Audio Generation with State-Space Models

Table 1. Summary of music and speech datasets used for unconditional AR generation experiments.

CATEGORY DATASET

TOTAL DURATION CHUNK LENGTH SAMPLING RATE QUANTIZATION SPLITS (TRAIN-VAL-TEST)

Music BEETHOVEN 10 HOURS 8s
Music YOUTUBEMIX 4 HOURS 8s
SPEECH SC09 5.3 HOURS 1s

16KHzZ 8-BIT LINEAR MEHRI ET AL. (2017)
16KkHZ 8-BIT MU-LAW 88% — 6% — 6%
16KkHZ 8-BIT MU-LAW WARDEN (2018)

4.2. SASHIMI Architecture
Figure 1 illustrates the complete SASHIMI architecture.

S4 Block. SASHIMI is built around repeated deep neural
network blocks containing our modified S4 layers, following
the same original S4 model. Compared to Gu et al. (2022),
we add additional pointwise linear layers after the S4 layer
in the style of the feed-forward network in Transformers
or the inverted bottleneck layer in CNNs (Liu et al., 2022).
Model details are in Appendix A.

Multi-scale Architecture. SASHIMI uses a simple archi-
tecture for autoregressive generation that consolidates in-
formation from the raw input signal at multiple resolutions.
The SASHIMI architecture consists of multiple tiers, with
each tier composed of a stack of residual S4 blocks. The top
tier processes the raw audio waveform at its original sam-
pling rate, while lower tiers process downsampled versions
of the input signal. The output of lower tiers is upsampled
and combined with the input to the tier above it in order to
provide a stronger conditioning signal. This architecture
is inspired by related neural network architectures for AR
modeling that incorporate multi-scale characteristics such
as SampleRNN and PixelCNN++ (Salimans et al., 2017).

The pooling is accomplished by simple reshaping and lin-
ear operations. Concretely, an input sequence zz € R >

with context length 7" and hidden dimension size H is trans-
formed through these shapes:

linear

(Down-pool)(T, H) =™ (T/p,p- H) ™% (T/p,q - H)

linear

(Up-pool)(T, H) % (T, p- H/q) 5 (T p, H/q).

Here, p is the pooling factor and q is an expansion factor
that increases the hidden dimension while pooling. In our
experiments, we always fix p = 4, ¢ = 2 and use a total of
just two pooling layers (three tiers).

We additionally note that in AR settings, the up-pooling
layers must be shifted by a time step to ensure causality.

Bidirectional S4. Like RNNs, SSMs are causal with an in-
nate time dimension (equation (3)). For non-autoregressive
tasks, we consider a simple variant of S4 that is bidirectional.
We simply pass the input sequence through an S4 layer, and
also reverse it and pass it through an independent second S4
layer. These outputs are concatenated and passed through a
positionwise linear layer as in the standard S4 block.

y = Linear(Concat(S4(z), rev(S4(rev(z)))))

Table 2. Results on AR modeling of Beethoven, a benchmark task
from Mehri et al. (2017)—SASHIMI outperforms all baselines
while training faster.

MODEL CONTEXT NLL @200K STEPS @10 HOURS
SAMPLERNN* 1024 1.076 - -
WAVENET* 4092 1.464 — —
SAMPLERNNT 1024 1.125 1.125 1.125
WAVENET' 4092 1.032 1.088 1.352
SASHIMI 128000 0.946 1.007 1.095

*REPORTED IN MEHRI ET AL. (2017) TOUR REPLICATION

Table 3. Effect of context length on the performance of SASHIMI
on Beethoven, controlling for computation and sample efficiency.
SASHIMLI is able to leverage information from longer contexts.

CONTEXT SIZE BATCH SIZE NLL
200K STEPS 10 HOURS
1 SECOND 8 1.364 1.433
2 SECONDS 4 1.229 1.298
4 SECONDS 2 1.120 1.234
8 SECONDS 1 1.007 1.095

We show that bidirectional S4 outperforms causal S4 when
autoregression is not required (Section 5.3).

5. Experiments

We evaluate SASHIMI on several benchmark audio gen-
eration and unconditional speech generation tasks in both
AR and non-AR settings, validating that SASHIMI gener-
ates more globally coherent waveforms than baselines while
having higher computational and sample efficiency.

Baselines. We compare SASHIMI to the leading AR models
for unconditional waveform generation, SampleRNN and
WaveNet. In Section 5.3, we show that SASHIMI can also
improve non-AR models.

Datasets. We evaluate SASHIMI on datasets spanning mu-
sic and speech generation (Table 1).

* Beethoven. A benchmark music dataset (Mehri et al.,
2017), consisting of Beethoven’s piano sonatas.

* YouTubeMix. Another piano music dataset (DeepSound,
2017) with higher-quality recordings than Beethoven.

It’s Raw! Audio Generation with State-Space Models

Table 4. Negative log-likelihoods and mean opinion scores on
YouTubeMix. As suggested by Dieleman et al. (2018b), we encour-
age readers to form their own opinions by referring to the sound
examples in our supplementary material.

MODEL TEST NLL MOS (FIDELITY) MOS (MUSICALITY)
SAMPLERNN 1.723 2.98 +0.08 1.82 £ 0.08
WAVENET 1.449 2.91+0.08 2.71+0.08
SASHIMI 1.294 2.84 £0.09 3.11 +0.09
DATASET - 3.76 £0.08 4.59 +0.07

* SC09. A benchmark speech dataset (Donahue et al.,
2019), consisting of 1-second recordings of the digits
“zero” through “nine” spoken by many different speakers.

All datasets are quantized using 8-bit quantization, either
linear or p-law, depending on prior work. Each dataset is
divided into non-overlapping chunks; the SampleRNN base-
line is trained using TBPTT, while WaveNet and SASHIMI
are trained on entire chunks. All models are trained to pre-
dict the negative log-likelihood (NLL) of individual audio
samples; results are reported in base 2, also known as bits
per byte (BPB) because of the one-byte-per-sample quanti-
zation. All datasets were sampled at a rate of 16kHz. Table 1
summarizes characteristics of the datasets and processing.

5.1. Unbounded Music Generation

Because music audio is not constrained in length, AR mod-
els are a natural approach for music generation, since they
can generate samples longer than the context windows they
were trained on. We validate that SASHIMI can leverage
longer contexts to perform music waveform generation more
effectively than baseline AR methods.

We follow the setting of Mehri et al. (2017) for the
Beethoven dataset. Table 2 reports results found in prior
work, as well as our reproductions. In fact, our WaveNet
baseline is much stronger than the one implemented in prior
work. SASHIMI substantially improves the test NLL by
0.09 BPB compared to the best baseline. Table 3 ablates
the context length used in training, showing that SASHIMI
significantly benefits from seeing longer contexts, and is
able to effectively leverage extremely long contexts (over
100k steps) when predicting next samples.

Next, we evaluate all baselines on YouTubeMix. Ta-
ble 4 shows that SASHIMI substantially outperforms Sam-
pleRNN and WaveNet on NLL. Following Dieleman et al.
(2018b) (protocol in Appendix C.4), we measured mean
opinion scores (MOS) for audio fidelity and musicality for
16s samples generated by each method (longer than the
training context). All methods have similar fidelity, but
SASHIMI substantially improves musicality by around 0.40
points, validating that it can generate long samples more
coherently than other methods.

Figure 2. (Sample Efficiency) Plot of validation NLL (in bits) vs.
wall clock time (hours) on the SC09 dataset.

2.6

a —— SampleRNN

= 24 WaveNet

=z —— Sashimi

c

221 XS

©

k)

S 2.0

> T T T T T T T
0 4 8 12 16 20 24

Wall Clock Time (hours)

Figure 2 shows that SASHIMI trains stably and more ef-
ficiently than baselines in wall clock time. Appendix B,
Figure 5 also analyzes the peak throughput of different AR
models as a function of batch size.

Table 5. Architectural ablations and efficiency tradeoffs on

YouTubeMix. (Top) AR models and baselines at different sizes.

(Bottom) Ablating the pooling layers of SASHIMI.
MODEL NLL TIME/EPOCH THROUGHPUT

SAMPLERNN-2 TIER 1.762 800s 112K SAMPLES/S 51.85M
SAMPLERNN-—3 TIER 1.723 850s 116K SAMPLES/S 35.03M

PARAMS

WAVENET—512 1.467 1000s 185K SAMPLES/S 2.67TM
WAVENET—1024 1.449 1435s 182K SAMPLES/S 4.24M
SASHIMI—2 LAYERS 1.446 205S 596K SAMPLES/s 1.29M
SASHIMI—4 LAYERS 1.341 340s 316K SAMPLES/s 2.21M
SASHIMI—6 LAYERS 1.315 6758 218K SAMPLES/s 3.13M
SASHIMI—8 LAYERS 1.294 8758 129K SAMPLES/S 4.05M

ISOTROPIC S4—4 LAYERS 1.429 1900s
ISOTROPIC S4—8 LAYERS 1.524 3700s

144K SAMPLES/S 2.83M
72K SAMPLES/S 5.53M

5.2. Model ablations: Slicing the SASHIM1

We validate our technical improvements and ablate
SASHIMTI’s architecture.

Stabilizing S4. We consider how different parameteri-
zations of S4’s representation affect downstream perfor-
mance (Section 4.1). Recall that S4 uses a special matrix
A = A + pg* specified by HiPPO, which theoretically cap-
tures long-range dependencies (Section 3.3). We ablate vari-
ous parameterizations of a small SASHIMI model (2 layers,
500 epochs on YouTubeMix). Learning A yields consistent
improvements, but becomes unstable at generation. Our
reparameterization allows A to be learned while preserving
stability, agreeing with the analysis in Section 4.1. A visual
illustration of the spectral radii of the learned A in the new
parameterization is provided in Figure 3.

LEARNED FROZEN NLL STABLE GENERATION

- A+ pg* 1.445
A+pgt - 1.420 X
A—ppt - 1419 v

Multi-scale architecture. We investigate the effect of

It’s Raw! Audio Generation with State-Space Models

Table 6. (SC09) Automated metrics and human opinion scores. (Top) SASHIMI is the first AR model that can unconditionally generate
high quality samples on this challenging dataset of fixed-length speech clips with highly variable characteristics. (Middle) As a flexible
architecture for general waveform modeling, SASHIMI sets a true state-of-the-art when combined with a recent diffusion probabilistic

model.
MODEL PARAMS NLL FID| ISt MIST AM | fggﬁiéﬁ MOS
QUALITY INTELLIGIBILITY DIVERSITY

SAMPLERNN 350M 2042 896 171 3.02 176 0.321 118+ 0.04 1.37 +0.02 2,26+ 0.10
WAVENET ~ 4.2M 1.925 5.08 227 580 147 0.408 159+ 0.06 1.72 +0.03 2.70 + 0.11
SASHIMI 41M 1.891 1.99 4.12 24.57 0.90 0.832 3.294+0.07 3.534+0.04 3.26 +0.09
WAVEGAN 19.1M - 2.03 490 36.10 080 0.840 2.08+0.07 3.27+0.04 3.25 + 0.09
DIFFWAVE ~ 24.1M - 192 526 5121 0.68 0917 4.03+0.06 4.15+0.03 3.45 + 0.09

W/ SASHIMI 23.0M - 1.42 5.94 69.17 0.59 0.953 4.2040.06 4.3340.03 3.28+0.11
TRAIN - - 0.00 856 2925 0.16
oot]] 0y sas amme 019 0921 4044006 4.27+0.03 3.59 + 0.09

Figure 3. (S4 Stability) Comparison of spectral radii for all A
matrices in a SaShiMi model trained with different S4 parame-
terizations. The instability in the standard S4 parameterization is
solved by our Hurwitz parameterization.

Standard

1.01 + Hurwitz
(%] @
=
el
© 1.00
©
o
()
[eR
v 0.99 A

0.98 - — T T T .

0 200 400 600 800
A index

SASHIMT’s architecture (Section 4.2) against isotropic S4
layers on YouTubeMix. Controlling for parameter counts,
adding pooling in SASHIMI leads to substantial improve-
ments in computation and modeling (Table 5, Bottom).

Efficiency tradeoffs. We ablate different sizes of the
SASHIMI model on YouTubeMix to show its performance
tradeoffs along different axes.

Table 5 (Top) shows that a single SASHIMI model simul-
taneously outperforms all baselines on quality (NLL) and
computation at both training and inference, with a model
more than 3x smaller. We note that for WaveNet, we use
a fast, cached implementation for generation (Paine et al.,
2016). Moreover, SASHIMI improves monotonically with
depth, suggesting that quality can be further improved at the
cost of additional computation.

5.3. Unconditional Speech Generation

The SCO09 spoken digits dataset is a challenging uncon-
ditional speech generation benchmark, as it contains sev-
eral axes of variation (words, speakers, microphones, align-
ments). Unlike the music setting (Section 5.1), SC09 con-
tains audio of bounded length (1-second utterances). To
date, AR waveform models trained on this benchmark have
yet to generate spoken digits which are consistently intel-
ligible to humans.? In contrast, non-AR approaches are
capable of achieving global coherence on this dataset, as
first demonstrated by WaveGAN (Donahue et al., 2019).

Although our primary focus thus far has been the challeng-
ing testbed of AR waveform modeling, SASHIMI can also
be used as a flexible neural network architecture for au-
dio generation more broadly. We demonstrate this poten-
tial by integrating SASHIMI into DiffWave (Kong et al.,
2021), a diffusion-based method for non-AR waveform
generation which represents the current state-of-the-art for
SCO09. DiffWave uses the original WaveNet architecture
as its backbone—here, we simply replace WaveNet with a
SASHIMI model containing a similar number of parameters.

We compare SASHIMI to strong baselines on SC09 in both
the AR and non-AR (via DiffWave) settings by measuring
several standard quantitative and qualitative metrics such as
Frechét Inception Distance (FID) and Inception Score (IS)
(Appendix C.3). We also conduct a qualitative evaluation
where we ask several annotators to label the generated digits
and then compute their inter-annotator agreement. Addition-
ally, as in Donahue et al. (2019), we ask annotators for their
subjective opinions on overall audio quality, intelligibility,
and speaker diversity, and report MOS for each axis. Results
for all models appear in Table 6.

2While AR waveform models can produce intelligible speech
in the context of TTS systems, this capability requires conditioning
on rich intermediaries like spectrograms or linguistic features.

It’s Raw! Audio Generation with State-Space Models

Autoregressive. SASHIMI substantially outperforms other
AR waveform models on all metrics, and achieves 2x higher
MOS for both quality and intelligibility. Moreover, an-
notators agree on labels for samples from SASHIMI far
more often than they do for samples from other AR mod-
els, suggesting that SASHIMI generates waveforms that are
more globally coherent on average than prior work. Finally,
SASHIMI achieves higher MOS on all axes compared to
WaveGAN while using more than 4 x fewer parameters.

Non-autoregressive. Integrating SASHIMI into DiffWave
substantially improves performance on all metrics compared
to its WaveNet-based counterpart, and achieves a new over-
all state-of-the-art performance on all quantitative and qual-
itative metrics on SC09. We note that this result involved
zero tuning of the model or training parameters (e.g. diffu-
sion steps or optimizer hyperparameters) (Appendix C.2).
This suggests that SASHIMI could be useful not only for AR
waveform modeling but also as a new drop-in architecture
for many audio generation systems which currently depend
on WaveNet (see Section 2).

We additionally conduct several ablation studies on our
hybrid DiffWave and SASHIMI model, and compare perfor-
mance earlier in training and with smaller models (Table 7).
When paired with DiffWave, SASHIMI is much more sam-
ple efficient than WaveNet, matching the performance of
the best WaveNet-based model with half as many training
steps. Kong et al. (2021) also observed that DiffWave was
extremely sensitive with a WaveNet backbone, performing
poorly with smaller models and becoming unstable with
larger ones. We show that, when using WaveNet, a small
DiffWave model fails to model the dataset, however it works
much more effectively when using SASHIMI. Finally, we
ablate our non-causal relaxation, showing that this bidirec-
tional version of SASHIMI performs much better than its
unidirectional counterpart (as expected).

6. Discussion

Our results indicate that SASHIMI is a promising new archi-
tecture for modeling raw audio waveforms. When trained
on music and speech datasets, SASHIMI generates wave-
forms that humans judge to be more musical and intelligible
respectively compared to waveforms from previous archi-
tectures, indicating that audio generated by SASHIMI has
a higher degree of global coherence. By leveraging the
dual convolutional and recurrent forms of S4, SASHIMI
is more computationally efficient than past architectures
during both training and inference. Additionally, SASHIMI
is consistently more sample efficient to train—it achieves
better quantitative performance with fewer training steps.
Finally, when used as a drop-in replacement for WaveNet,
SASHIMI improved the performance of an existing state-
of-the-art model for unconditional generation, indicating a
potential for SASHIMI to create a ripple effect of improving

audio generation more broadly.

Acknowledgments

We gratefully acknowledge the support of NIH under No.
US4EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity),
and 1937301 (RTML); ARL under No. W911NF-21-
2-0251 (Interactive Human-Al Teaming); ONR under
No. N000141712266 (Unifying Weak Supervision); ONR
N00014-20-1-2480: Understanding and Applying Non-
Euclidean Geometry in Machine Learning; N000142012275
(NEPTUNE); NXP, Xilinx, LETI-CEA, Intel, IBM, Mi-
crosoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Ac-
centure, Ericsson, Qualcomm, Analog Devices, Google
Cloud, Salesforce, Total, the HAI-Google & AWS Cloud
Credits for Research program, the Stanford Data Science Ini-
tiative (SDSI), and members of the Stanford DAWN project:
Facebook, Google, and VMWare. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of NIH, ONR,
or the U.S. Government.

References

Binkowski, M., Donahue, J., Dieleman, S., Clark, A., Elsen,
E., Casagrande, N., Cobo, L. C., and Simonyan, K. High
fidelity speech synthesis with adversarial networks. In

International Conference on Learning Representations,
2020.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. In International Conference on Learning
Representations, 2021.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In

It’s Raw! Audio Generation with State-Space Models

International conference on machine learning, pp. 933—
941. PMLR, 2017.

DeepSound. Samplernn. https://github.com/
deepsound-project/samplernn—-pytorch,
2017.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341, 2020.

Dieleman, S., van den Oord, A., and Simonyan, K. The
challenge of realistic music generation: modelling raw
audio at scale. ArXiv, abs/1806.10474, 2018a.

Dieleman, S., van den Oord, A., and Simonyan, K. The
challenge of realistic music generation: modelling raw
audio at scale. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp- 8000-8010, 2018b.

Donahue, C., McAuley, J., and Puckette, M. Adversarial
audio synthesis. In International Conference on Learning
Representations, 2019.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi,
M., Eck, D., and Simonyan, K. Neural audio synthesis
of musical notes with wavenet autoencoders. In Interna-
tional Conference on Machine Learning, pp. 1068—1077.
PMLR, 2017.

Engel, J., Hantrakul, L., Gu, C., and Roberts, A. Ddsp:
Differentiable digital signal processing. arXiv preprint
arXiv:2001.04643, 2020.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
Advances in Neural Information Processing Systems, 33,

2020.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with the structured learnable lin-
ear state space layer. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2022.

Gurumurthy, S., Kiran Sarvadevabhatla, R., and
Venkatesh Babu, R. Deligan: Generative adver-
sarial networks for diverse and limited data. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 166—-174, 2017.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.,
et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies, 2001.

Jayaram, V. and Thickstun, J. Parallel and flexible sam-
pling from autoregressive models via langevin dynamics.
In The International Conference on Machine Learning
(ICML), 2021.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,
Casagrande, N., Lockhart, E., Stimberg, F., van den Oord,
A., Dieleman, S., and Kavukcuoglu, K. Efficient neural
audio synthesis. In International Conference on Machine
Learning, pp. 2410-2419. PMLR, 2018.

Kim, S., Lee, S.-G., Song, J., Kim, J., and Yoon, S.
Flowavenet: A generative flow for raw audio. In Interna-
tional Conference on Machine Learning, pp. 3370-3378.
PMLR, 2019.

Kleijn, W. B., Lim, F. S., Luebs, A., Skoglund, J., Stimberg,
F., Wang, Q., and Walters, T. C. Wavenet based low rate
speech coding. In 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pp.
676-680. IEEE, 2018.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.

In International Conference on Learning Representations,
2021.

Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh,
W. Z., Sotelo, J., de Brébisson, A., Bengio, Y., and
Courville, A. C. Melgan: Generative adversarial net-
works for conditional waveform synthesis. Advances in
Neural Information Processing Systems, 32, 2019.

Lakhotia, K., Kharitonov, E., Hsu, W.-N., Adi, Y., Polyak,
A., Bolte, B., Nguyen, T.-A., Copet, J., Baevski, A., Mo-
hamed, A., et al. Generative spoken language modeling
from raw audio. arXiv preprint arXiv:2102.01192, 2021.

Li, N, Liu, S., Liu, Y., Zhao, S., and Liu, M. Neural speech
synthesis with transformer network. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp- 6706-6713, 2019.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. arXiv preprint
arXiv:2201.03545,2022.

https://github.com/deepsound-project/samplernn-pytorch
https://github.com/deepsound-project/samplernn-pytorch

It’s Raw! Audio Generation with State-Space Models

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S.,
Sotelo, J., Courville, A., and Bengio, Y. Samplernn: An
unconditional end-to-end neural audio generation model.
In International Conference on Learning Representations,

2017.

Neekhara, P., Donahue, C., Puckette, M., Dubnov, S., and
McAuley, J. Expediting tts synthesis with adversarial
vocoding. In INTERSPEECH, 2019.

Paine, T. L., Khorrami, P., Chang, S., Zhang, Y., Ra-
machandran, P., Hasegawa-Johnson, M. A., and Huang,
T. S. Fast wavenet generation algorithm. arXiv preprint
arXiv:1611.09482, 2016.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310-1318, 2013.

Peng, K., Ping, W., Song, Z., and Zhao, K. Non-
autoregressive neural text-to-speech. In International

conference on machine learning, pp. 7586-7598. PMLR,
2020.

Ping, W., Peng, K., and Chen, J. Clarinet: Parallel wave
generation in end-to-end text-to-speech. In International
Conference on Learning Representations, 2019.

Ping, W., Peng, K., Zhao, K., and Song, Z. Waveflow: A
compact flow-based model for raw audio. In Interna-

tional Conference on Machine Learning, pp. 7706-7716.
PMLR, 2020.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A
flow-based generative network for speech synthesis. In
ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
3617-3621. IEEE, 2019.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. arXiv preprint arXiv:2102.12092,
2021.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for

training gans. Advances in neural information processing
systems, 29:2234-2242,2016.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelenn++: Improving the pixelcnn with discretized lo-
gistic mixture likelihood and other modifications. In

International Conference on Learning Representations,
2017.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N.,
Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Skerrv-Ryan, R.,
et al. Natural tts synthesis by conditioning wavenet on

mel spectrogram predictions. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4779-4783. IEEE, 2018.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and
Kavukcuoglu, K. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K.
Neural discrete representation learning. arXiv preprint
arXiv:1711.00937,2017.

van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K.,
Vinyals, O., Kavukcuoglu, K., Driessche, G., Lockhart,
E., Cobo, L., Stimberg, F., et al. Parallel wavenet: Fast
high-fidelity speech synthesis. In International confer-
ence on machine learning, pp. 3918-3926. PMLR, 2018.

Wang, X., Takaki, S., and Yamagishi, J. Neural source-filter-
based waveform model for statistical parametric speech
synthesis. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5916-5920. IEEE, 2019.

Warden, P. Speech commands: A dataset for limited-
vocabulary speech recognition. ArXiv, abs/1804.03209,
2018.

Xie, S., Girshick, R., Dollér, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492-1500, 2017.

Yamamoto, R., Song, E., and Kim, J.-M. Parallel wavegan:
A fast waveform generation model based on generative
adversarial networks with multi-resolution spectrogram.
In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
6199-6203. IEEE, 2020.

Zhou, Z., Cai, H., Rong, S., Song, Y., Ren, K., Zhang, W.,
Wang, J., and Yu, Y. Activation maximization generative
adversarial nets. In International Conference on Learning
Representations, 2018.

It’s Raw! Audio Generation with State-Space Models

A. Model Details
A.1. S4 Stability

We prove Proposition 4.1. We build off the S4 representation of HiPPO matrices, using their decomposition as a normal plus
low-rank matrix which implies that they are unitarily similar to a diagonal plus low-rank matrix. Then we show that the
low-rank portion of this decomposition is in fact negative semidefinite, while the diagonal portion has non-positive real part.

Proof of Proposition 4.1. We consider the diagonal plus low-rank decompositions shown in Gu et al. (2022) of the three
original HiPPO matrices Gu et al. (2020), and show that the low-rank portions are in fact negative semidefinite.

HiPPO-LagT. The family of generalized HiPPO-LagT matrices are defined by

0 n<k
Apg = _%_B n==k
-1 n>k

for0 < g < % with the main HiPPO-LagT matrix having 8 = 0.

It can be decomposed as

1 1 1 1
24 -+ 1 _1 1111
21ﬁ§+5 % 2—%—%- 11111
1 1
1 1 1 L4 : 3+ 4 11 11

The first term is skew-symmetric, which is unitarily similar to a (complex) diagonal matrix with pure imaginary eigenvalues
(i.e., real part 0). The second matrix can be factored as pp* for p = 271/2 [1 e 1} . Thus the whole matrix A is
unitarily similar to a matrix A — pp* where the eigenvalues of A have real part between —% and 0.

HiPPO-LegS. The HiPPO-LegS matrix is defined as

(2n+ Y22k +1)Y2 ifn >k
A =—<n+1 ifn==%k.
0 ifn <k

It can be decomposed as Adding 3 (2n + 1)!/2(2k + 1)1/2 to the whole matrix gives
1
——I—-S—pp*
9 pp
1en+DYV2(2k+1)V2 ifn >k
Snk =10 ifn==~k
—1@n+1)Y22k+1)Y? ifn<k
1
Pn = (n + 5)1/2
Note that S is skew-symmetric. Therefore A is unitarily similar to a matrix A — pp* where the eigenvalues of A have real
part —1.
HiPPO-LegT.
Up to the diagonal scaling, the LegT matrix is

1 -1 1 -1 0 -1 0 -1 1010
1 1 -1 1 1 0 -1 0 01 0 1
A__|1 1 1 -1 __lo 1 0o -1 {1 01 0
1 1 1 1 1 0 1 0 0101

It’s Raw! Audio Generation with State-Space Models

The first term is skew-symmetric and the second term can be written as pp* for

1010 ---"

P=1p 1 0 1

A.2. Model Architecture
S4 Block Details The first portion of the S4 block is the same as the one used in Gu et al. (2022).

y=x
y = LayerNorm(y)
y = S4(y)
y=9(y)
y=Wy+5b
y=c+y

Here ¢ is a non-linear activation function, chosen to be GELU (Hendrycks & Gimpel, 2016) in our implementation. Note
that all operations aside from the S4 layer are position-wise (with respect to the time or sequence dimension).

These operations are followed by more position-wise operations, which are standard in other deep neural networks such as
Transformers (where it is called the feed-forward network) and CNNs (where it is called the inverted bottleneck layer).

y==x
y = LayerNorm(y)
y=Wiy+b
y=o(y)
y=Way+bs
y=r+y

Here W, € R%*¢d and Wy € R¢¥*4, where e is an expansion factor. We fix e = 2 in all our experiments.

B. Additional Results

We provide details of ablations, including architecture ablations and efficiency benchmarking.

B.0.1. YOUTUBEMIX
We conduct architectural ablations and efficiency benchmarking for all baselines on the YouTubeMix dataset.

Architectures. SampleRNN-2 and SampleRNN-3 correspond to the 2- and 3-tier models described in Appendix C.2
respectively. WaveNet-512 and WaveNet-1024 refer to models with 512 and 1024 skip channels respectively with all other
details fixed as described in Appendix C.2. SASHIMI-{2,4, 6, 8} consist of the indicated number of S4 blocks in each tier
of the architecture, with all other details being the same.

Isotropic S4. We also include an isotropic S4 model to ablate the effect of pooling in SASHIMI. Isotropic S4 can be viewed
as SASHIMI without any pooling (i.e. no additional tiers aside from the top tier). We note that due to larger memory usage
for these models, we use a sequence length of 4s for the 4 layer isotropic model, and a sequence length of 2s for the 8 layer
isotropic model (both with batch size 1), highlighting an additional disadvantage in memory efficiency.

Throughput Benchmarking. To measure peak throughput, we track the time taken by models to generate 1000 samples at
batch sizes that vary from 1 to 8192 in powers of 2. The throughput is the total number of samples generated by a model in
1 second. Figure 4 shows the results of this study in more detail for each method.

Diffusion model ablations. Table 7 reports results for the ablations described in Section 5.3. Experimental details are
provided in Appendix C.2.

It’s Raw! Audio Generation with State-Space Models

—e— Sashimi-8 Sashimi-4 SampleRNN-2 WaveNet-512 Isotropic-4
—e— Sashimi-6 Sashimi-2 —e— SampleRNN-3 —e— WaveNet-1024 Isotropic-8
218 — — —

-+

>

251 L e

(o)}

3

E 210 — .

'_
2 i ' i I i i i i m i i i

20 24 28 212 20 24 28 212 20 24 28 212 20 24 28 212
Batch Size Batch Size Batch Size Batch Size

Figure 4. Log-log plot of throughput vs. batch size. Throughput scales near linearly for SASHIMI. By contrast, SampleRNN throughput
peaks at smaller batch sizes, while WaveNet shows sublinear scaling with throughput degradation at some batch sizes. Isotropic variants
have far lower throughput than SASHIMI.

Throughput

211
28 —e— SampleRNN ~ —e— Sashimi-8
WaveNet —e— Sashimi-2
e
Batch Size

Figure 5. Log-log plot of throughput vs. batch size. SASHIMI-2 improves peak throughput over WaveNet and SampleRNN by 3x and
5X respectively.

C. Experiment Details

We include experimental details, including dataset preparation, hyperparameters for all methods, details of ablations as well
as descriptions of automated and human evaluation metrics below.

C.1. Datasets

A summary of dataset information can be found in Table 1. Across all datasets, audio waveforms are preprocessed to 16kHz
using torchaudio.

Beethoven. The dataset consists of recordings of Beethoven’s 32 piano sonatas. We use the version of the dataset shared
by Mehri et al. (2017), which can be found here. Since we compare to numbers reported by Mehri et al. (2017), we use
linear quantization for all (and only) Beethoven experiments. We attempt to match the splits used by the original paper by
reference to the code provided here.

YouTubeMix. A 4 hour dataset of piano music taken from https://www.youtube.com/watch?v=EhO_MrRfftU.
We split the audio track into . wav files of 1 minute each, and use the first 88% files for training, next 6% files for validation
and final 6% files for testing.

SC09. The Speech Commands dataset (Warden, 2018) contains many spoken words by thousands of speakers under various
recording conditions including some very noisy environments. Following prior work (Donahue et al., 2019; Kong et al.,
2021) we use the subset that contains spoken digits “zero” through “nine”. This SC09 dataset contains 31,158 training
utterances (8.7 hours in total) by 2,032 speakers, where each audio has length 1 second sampled at 16kHz. the generative
models need to model them without any conditional information.

The datasets we used can be found on Huggingface datasets: Beethoven, YouTubeMix, SC09.

https://drive.google.com/drive/folders/0B7riq_C8aslvbWJuMGhJRFBmSHM?resourcekey=0-fM79ZaHDzE4IPUMzDUK6uA
https://github.com/soroushmehr/sampleRNN_ICLR2017
https://www.youtube.com/watch?v=EhO_MrRfftU
https://huggingface.co/datasets/krandiash/beethoven
https://huggingface.co/datasets/krandiash/youtubemix
https://huggingface.co/datasets/krandiash/sc09

It’s Raw! Audio Generation with State-Space Models

Table 7. (SC09 diffusion models.) Beyond AR, SASHIMI can be flexibly combined with other generative modeling approaches,
improving on the state-of-the-art Diff Wave model by simply replacing the architecture. (ZTop) A parameter-matched SASHIMI architecture
with no tuning outperforms the best DiffWave model. (Middle) SASHIMI is consistently better than WaveNet at all stages of training;
a model trained on half the samples matches the best DiffWave model. (Bottom) The WaveNet backbone is extremely sensitive to
architecture parameters such as size and dilation schedule; a small model fails to learn. We also ablate the bidirectional S4 layer, which
outperforms the unidirectional one.

HUMAN (k) MOS
NDB | AGREEMENT

ARCHITECTURE PARAMS TRAINING STEPS FID | IS1 MIST AM|
QUALITY INTELLIGIBILITY DIVERSITY

SASHIMI 23.0M 800K 142 594 69.17 0.59 0.88 0.953 4.20£0.06 4.33£0.03 3.28£0.11
WAVENET 24.1M 1000k 1.92 526 51.21 0.68 0.88 0.917 4.03£0.06 4.15+£0.03 3.45 £ 0.09
SASHIMI 23.0M 500K 2.08 5.68 51.10 0.66 0.76 0.923 3.99+£0.06 4.13+£0.03 3.38£0.10
WAVENET 24.1M 500K 2.25 4.68 34.55 0.80 0.90 0.848 3.53£0.07 3.69 £0.03 3.30 £0.08
SASHIMI (UNL.) 7.1M 500K 2.70 3.62 17.96 1.03 0.90 0.829 3.08 £0.07 3.29£0.04 3.26 £0.08
SASHIMI 7.5M 500K 1.70 5.00 40.27 0.72 0.90 0.934 3.83£0.07 4.00+£0.03 3.34 £0.09
WAVENET 6.8M 500K 453 280 9.02 130 0.94 0.446 1.85+0.08 1.90 £0.03 3.03£0.10

C.2. Models and Training Details

For all datasets, SASHIMI, SampleRNN and WaveNet receive 8-bit quantized inputs. During training, we use no additional
data augmentation of any kind. We summarize the hyperparameters used and any sweeps performed for each method below.

C.2.1. DETAILS FOR AUTOREGRESSIVE MODELS

All methods in the AR setting were trained on single V100 GPU machines.

SASHIMI. We adapt the S4 implementation provided by Gu et al. (2022) to incorporate parameter tying for pq*. For
simplicity, we do not train the low-rank term pp*, timescale d¢ and the B matrix throughout our experiments, and let A be
trained freely. We find that this is actually stable, but leads to a small degradation in performance compared to the original S4
parameterization. Rerunning all experiments with our updated Hurwitz parameterization—which constrains the real part of
the entries of A using an exp function—-would be expensive, but would improve performance. For all datasets, we use feature
expansion of 2x when pooling, and use a feedforward dimension of 2x the model dimension in all inverted bottlenecks in
the model. We use a model dimension of 64. For S4 parameters, we only train A and C' with the recommended learning
rate of 0.001, and freeze all other parameters for simplicity (including pp*, B, dt). We train with 4x — 4 pooling for all
datasets, with 8 S4 blocks per tier.

On Beethoven, we learn separate A matrices for each SSM in the S4 block, while we use parameter tying for A within an S4
block on the other datasets. On SC09, we found that swapping in a gated linear unit (GLU) (Dauphin et al., 2017) in the S4
block improved NLL as well as sample quality.

We train SASHIMI on Beethoven for 1M steps, YouTubeMix for 600K steps, SC09 for 1.1M steps.

SampleRNN. We adapt an open-source PyTorch implementation of the SampleRNN backbone, and train it using truncated
backpropagation through time (TBPTT) with a chunk size of 1024. We train 2 variants of SampleRNN: a 3-tier model
with frame sizes 8, 2, 2 with 1 RNN per layer to match the 3-tier RNN from Mehri et al. (2017) and a 2-tier model with
frame sizes 16, 4 with 2 RNNs per layer that we found had stronger performance in our replication (than the 2-tier model
from Mehri et al. (2017)). For the recurrent layer, we use a standard GRU model with orthogonal weight initialization
following Mehri et al. (2017), with hidden dimension 1024 and feedforward dimension 256 between tiers. We also use
weight normalization as recommended by Mehri et al. (2017).

We train SampleRNN on Beethoven for 150K steps, YouTubeMix for 200K steps, SC09 for 300K steps. We found that
SampleRNN could be quite unstable, improving steadily and then suddenly diverging. It also appeared to be better suited to
training with linear rather than mu-law quantization.

WaveNet. We adapt an open-source PyTorch implementation of the WaveNet backbone, trained using standard backprop-
agation. We set the number of residual channels to 64, dilation channels to 64, end channels to 512. We use 4 blocks of
dilation with 10 layers each, with a kernel size of 2. Across all datasets, we sweep the number of skip channels among
{512,1024}. For optimization, we use the AdamW optimizer, with a learning rate of 0.001 and a plateau learning rate

https://github.com/deepsound-project/samplernn-pytorch
https://github.com/vincentherrmann/pytorch-wavenet

It’s Raw! Audio Generation with State-Space Models

scheduler that has a patience of 5 on the validation NLL. During training, we use a batch size of 1 and pad each batch on the
left with zeros equal to the size of the receptive field of the WaveNet model (4093 in our case).

We train WaveNet on Beethoven for 400K steps, YouTubeMix for 200K steps, SC09 for 500K steps.

C.2.2. DETAILS FOR DIFFUSION MODELS

All diffusion models were trained on 8-GPU A100 machines.

DiffWave. We adapt an open-source PyTorch implementation of the Diff Wave model. The DiffWave baseline in Table 6 is
the unconditional SC09 model reported in Kong et al. (2021), which uses a 36 layer WaveNet backbone with dilation cycle
[1,2,4,8,16,32, 64,128, 256, 512, 1024, 2048] and hidden dimension 256, a linear diffusion schedule 3; € [1 x 10%,0.02]
with T' = 200 steps, and the Adam optimizer with learning rate 2 x 10~%. The small DiffWave model reported in Table 7
has 30 layers with dilation cycle [1, 2,4, 8, 16, 32, 64, 128, 256, 512] and hidden dimension 128.

DiffWave with SASHIMI. Our large SASHIMI model has hidden dimension 128 and 6 S4 blocks per tier with the
standard two pooling layers with pooling factor 4 and expansion factor 2 (Section 4.2). We additionally have S4 layers in the
down-blocks in addition to the up-blocks of Figure 1. Our small SASHIMI model (Table 7) reduces the hidden dimension to
64. These architectures were chosen to roughly parameter match the DiffWave model. While DiffWave experimented with
other architectures such as deep and thin WaveNets or different dilation cycles (Kong et al., 2021), we only ran a single
SASHIMI model of each size. All optimization and diffusion hyperparameters were kept the same, with the exception that
we manually decayed the learning rate of the large SASHIMI model at 500K steps as it had saturated and the model had
already caught up to the best DiffWave model (Table 7).

C.3. Automated Evaluations

NLL. We report negative log-likelihood (NLL) scores for all AR models in bits, on the test set of the respective datasets. To
evaluate NLL, we follow the same protocol as we would for training, splitting the data into non-overlapping chunks (with
the same length as training), running each chunk through a model and then using the predictions made on each step of that
chunk to calculate the average NLL for the chunk.

Evaluation of generated samples. Following Kong et al. (2021), we use 4 standard evaluation metrics for generative
models evaluated using an auxiliary ResNeXT classifier (Xie et al., 2017) which achieved 98.3% accuracy on the test set.
Note that Kong et al. (2021) reported an additional metric NDB (number of statistically-distinct bins), which we found to be
slow to compute and generally uninformative, despite SASHIMI performing best.

 Fréchet Inception Distance (FID) (Heusel et al., 2017) uses the classifier to compare moments of generated and real
samples in feature space.

* Inception Score (IS) (Salimans et al., 2016) measures both quality and diversity of generated samples, and favoring
samples that the classifier is confident on.

¢ Modified Inception Score (mIS) (Gurumurthy et al., 2017) provides a measure of both intra-class in addition to
inter-class diversity.

* AM Score (Zhou et al., 2018) uses the marginal label distribution of training data compared to IS.

We also report the Cohen’s inter-annotator agreement ~ score, which is computed with the classifier as one rater and a
crowdworker’s digit prediction as the other rater (treating the set of crowdworkers as a single rater).

C.3.1. EVALUATION PROCEDURE FOR AUTOREGRESSIVE MODELS

Because autoregressive models have tractable likelihood scores that are easily evaluated, we use them to perform a form
of rejection sampling when evaluating their automated metrics. Each model generated 5120 samples and ranked them by
likelihood scores. The lowest-scoring 0.40 and highest-scoring 0.05 fraction of samples were thrown out. The remaining
samples were used to calculate the automated metrics.

The two thresholds for the low- and high- cutoffs were found by validation on a separate set of 5120 generated samples.

https://github.com/philsyn/DiffWave-unconditional

It’s Raw! Audio Generation with State-Space Models

Figure 6. (YouTubeMix MOS Interface) Crowdsourcing interface for collecting mean opinion scores (MOS) on YouTubeMix. Crowd-
workers are given a collection of audio files, one from each method and the dataset. They are asked to rate each file on audio fidelity and
musicality.

Rate the audio fidelity and musicality of piano music.

Please use headphones in a quiet environment if possible.

Some files may be loud, so we recommend keeping volumes at a moderate level.

You will be presented a batch of recordings and asked to rate each of them on audio fidelity and musicality.

Some are computer generated, while others are performed by a human.

Fidelity: How clear is the audio? Does it sound like it's coming from a walkie-talkie (bad fidelity) or a studio-quality sound system (excellent fidelity)?

Musicality: To what extent does the recording sound like real piano music? Does it change in unusual ways (bad musicality) or is it musically consistent (excellent musicality)?

Feel free to listen to each recording as many times as you like and update your scores as you compare the methods.

Fidelity Musicality
1: Bad 2: Poor 3: Fair 4: Good 5: Excellent 1: Not at all 2: Slightly | 3: Moderately 4: Very 5: Extremely
Very noisy Mostly noisy Somewhat Mostly clear Clear audio Not musical at Somewhat Moderately Very musical Extremely
audio audio clear audio audio all musical musical musical
TN TN VR N\ 7N\ TN N TN R\ TN
P 0:00/0:16 = L DI () () () () () () () () () ()
__/ AN __/ S AN N \ 4 __/
TN Ve TN N 7N i ™ / i /7 N\
> 000/0:16 — O i () (h () () ())) (()
Ay o/ N/ N N/ __/ _/ __/ _/ _/
N N N TN Ve TN N TN TN N\
P> 0:00/0:16 = L DI () () () () (() \))
_/ N _/ N _/ N _/ — _/
7N\ 7N\ 7N\ 7N\ 7N\ N VR 7N i TN
> 0:00/0:16 — LDR] () () () () () /) () () / \ ()
_/ NS N _/ N _/ N4 _/ _/ N
7N\ TN\ 7N\ 7N\ 7N TN 7N\ N\ N 7N\
P> 0:00/0:16 =— O i () () () () () () () () () (\
_ _/ N/ _/ _/ . _/ N NG __/
Submit |

C.3.2. EVALUATION PROCEDURE FOR NON-AUTOREGRESSIVE MODELS

Automated metrics were calculated on 2048 random samples generated from each model.

C4. Evaluation of Mean Opinion Scores

For evaluating mean opinion scores (MOS), we repurpose scripts for creating jobs for Amazon Mechanical Turk from
Neekhara et al. (2019).

C.4.1. MEAN OPINION SCORES FOR YOUTUBEMIX

We collect MOS scores on audio fidelity and musicality, following Dieleman et al. (2018a). The instructions and interface
used are shown in Figure 6.

The protocol we follow to collect MOS scores for YouTubeMix is outlined below. For this study, we compare unconditional
AR models, SASHIMI to SampleRNN and WaveNet.

» For each method, we generated unconditional 1024 samples, where each sample had length 16s (1.024M steps). For
sampling, we directly sample from the distribution output by the model at each time step, without using any other
modifications.

* As noted by Mehri et al. (2017), autoregressive models can sometimes generate samples that are “noise-like”. To fairly
compare all methods, we sequentially inspect the samples and reject any that are noise-like. We also remove samples
that mostly consist of silences (defined as more than half the clip being silence). We carry out this process until we
have 30 samples per method.

* Next, we randomly sample 25 clips from the dataset. Since this evaluation is quite subjective, we include some gold
standard samples. We add 4 clips that consist mostly of noise (and should have musicality and quality MOS <= 2).

It’s Raw! Audio Generation with State-Space Models

Figure 7. (SC09 MOS Interface) Crowdsourcing interface for collecting mean opinion scores (MOS) on SC09. Crowdworkers are given
a collection of 10 audio files from the same method, and are asked to classify the spoken digits and rate them on intelligibility. At the
bottom, they provide a single score on the audio quality and speaker diversity they perceive for the batch.

Rate and annotate audio files containing spoken digits.

ions below carefully before starting the task

ey impossible to classify (not at all intelligible) or very easy to understand (extremely intelligible)?

Quality: How clear is the audi g from a walkie-talkie (bad quality) or a studio-quality sound system (excellent quality)?

Diversity: How diverse are the speakers in the recording: o they mostly sound similar (not at al diverse) or are there many speakers represented (extremely diverse)?

Digit Classification Digit Intelligibility

0 1 2 3 4 5 6 7 8 9 1: Not at all 2:Slightly | 3: Moderately 4: Very

Zero One ™wo Three Four Five Six Seven Eight Nine Notatall Slightly
intelligible intelligible

Very
intelligible

P 000/000 =——— @) i

> 000/001 =——— 0 i

boAMNIAN —

P 0:00/001 =———) i

P 0:00/001 =—) i

Audio Quality Speaker Diversity

1: Bad 2: Poor 3: Fair 4: Good 5: Excellent 1: Not at all 2:Slightly | 3: Moderately 4: Very 5: Extremely

Verynoisy | Mostly noisy | Somewhat Mostly clear | Clear audio
audio clear audio audio

Submit

We include 1 clip that has variable quality but musicality MOS <= 2. Any workers who disagree with this assessment
have their responses omitted from the final evaluation.

* We construct 30 batches, where each batch consists of 1 sample per method (plus a single sample for the dataset),
presented in random order to a crowdworker. We use Amazon Mechanical Turk for collecting responses, paying $0.50
per batch and collecting 20 responses per batch. We use Master qualifications for workers, and restrict to workers with
a HIT approval rating above 98%. We note that it is likely enough to collect 10 responses per batch.

C.4.2. MEAN OPINION SCORES FOR SC09

Next, we outline the protocol used for collecting MOS scores on SC09. We collect MOS scores on digit intelligibility,
audio quality and speaker diversity, as well as asking crowdworkers to classify digits following Donahue et al. (2019). The
instructions and interface used are shown in Figure 7.

* For each method, we generate 2048 samples of 1s each. For autoregressive models (SASHIMI, SampleRNN, WaveNet),
we directly sample from the distribution output by the model at each time step, without any modification. For WaveGAN,
we obtained 50000 randomly generated samples from the authors, and subsampled 2048 samples randomly from this
set. For the diffusion models, we run 200 steps of denoising following Kong et al. (2021).

* We use the ResNeXT model (Appendix C.3) to classify the generated samples into digit categories. Within each digit
category, we choose the top-50 samples, as ranked by classifier confidence. We note that this mimics the protocol
followed by Donahue et al. (2019), which we established through correspondence with the authors.

* Next, we construct batches consisting of 10 random samples (randomized over all digits) drawn from a single method
(or the dataset). Each method (and the dataset) thus has 50 total batches. We use Amazon Mechanical Turk for
collecting responses, paying $0.20 per batch and collecting 10 responses per batch. We use Master qualification for
workers, and restrict to workers with a HIT approval rating above 98%.

Note that we elicit digit classes and digit intelligibility scores for each audio file, while audio quality and speaker diversity
are elicited once per batch.

