
Partial Label Learning via Label Influence Function

Xiuwen Gong 1 Dong Yuan 1 Wei Bao 1

Abstract
To deal with ambiguities in partial label learn-
ing (PLL), state-of-the-art strategies implement
disambiguations by identifying the ground-truth
label directly from the candidate label set. How-
ever, these approaches usually take the label that
incurs a minimal loss as the ground-truth label
or use the weight to represent which label has a
high likelihood to be the ground-truth label. Lit-
tle work has been done to investigate from the
perspective of how a candidate label changing a
predictive model. In this paper, inspired by influ-
ence function, we develop a novel PLL framework
called Partial Label Learning via Label Influence
Function (PLL-IF). Moreover, we implement the
framework with two specific representative mod-
els, an SVM model and a neural network model,
which are called PLL-IF+SVM and PLL-IF+NN
method respectively. Extensive experiments con-
ducted on various datasets demonstrate the su-
periorities of the proposed methods in terms of
prediction accuracy, which in turn validates the
effectiveness of the proposed PLL-IF framework.

1. Introduction
In partial label learning (PLL) (Cour et al., 2011; Chen et al.,
2014; Yu & Zhang, 2017), each instance is associated with a
set of candidate labels, only one of which is the ground-truth
label, while the others are false positive labels. This brings
about ambiguities when training models for classification.
In recent years, many real-world applications have arisen
due to the growing demand for identifying the ground-truth
label from partially labeled data. For example, in automatic
face naming (Liu et al., 2016; Su et al., 2018), the learning
system is required to recognize the name of each face from
a candidate label set. In the image from a TV series (Fig.1
(a)) which contains ten people, each face is treated as an
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(a) Automatic face naming (b) Automatic image annotation

Figure 1: (a) Co-occurrence picture of the main characters
in a TV series (i.e., Lost). Each face corresponds to one
name in the candidate label set extracted from the script:
Sun, Hurley, Locke, Jack, Sayid, Kate, Claire, Sawyer,
Charlie, and Boone. (b) A web image is annotated by
annotators online with different tags, such as, cat, tiger and
leopard, but only one is the ground-truth label.

instance while names extracted from scripts constitute the
candidate label set. Moreover, in automatic image anno-
tation (Song et al., 2020; Chen et al., 2020), a web image
(Fig.1 (b)) might be annotated online by different annotators
with different labels, such as cat, tiger and leopard, forming
the candidate label set, from which the ground-truth label is
desired to be identified.

Partial label learning (PLL) aims to train a classifier from
partially labelled data in order to automatically predict the
ground-truth label for an unseen instance. The main chal-
lenge is that of how to deal with the ambiguities caused by
false positive labels in candidate label set. The state-of-the-
art strategy (Feng & An, 2019; Lyu et al., 2018; Xu et al.,
2019) is to take the ground-truth label as a latent variable
and then identify it directly from the candidate label set. The
solution is usually obtained by employing an alternating al-
gorithm to update the model papramter and the ground-truth
label variable through an iterative refining procedure. On
the one hand, when ground-truth label variable is fixed, the
PLL problem turns out to be a well-studied multiclass op-
timization problem, and can be solved by any off-the-shelf
multiclass implementations. On the other hand, when the
model parameter is fixed, how to update the ground-truth
label variable has become an intractable issue. As the binary
ground-truth variable is discrete, the optimization is often
NP-hard. Existing approaches usually take the label that
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incurs a minimal loss as the ground-truth label or use the
weight to represent which label has a high likelihood to be
the ground-truth label. Little work has been done to investi-
gate from the viewpoint of how a candidate label changing
a predictive model, which could be applied as an indicator
for identifying the ground-truth label.

Motivated by influence function (Hampel, 1974) that char-
acterizes how a model’s predictive loss changes when a
small fraction of data points being perturbed, this paper
first attempts to apply the similar idea to deal with PLL.
However, due to the labeling ambiguity in the candidate
label set, influence function cannot be applied to solve the
PLL problem directly. In this paper, we adapt influence
function to partial label learning and then propose a novel
framework called Partial Label Learning via Label Influence
Function (PLL-IF). Generally, the PLL-IF framework can
be divided into two phases: 1) When the ground-labels are
fixed, updating the model parameter; 2) When model param-
eter is fixed, updating the ground-truth label variables. In
this work, we mainly focus on the second phase as the first
phase could be easily solved by any off-the-shelf multiclass
implementations given a specific loss function.

The main contributions of this work can be summarized as
follows:

• We provide a new insight into partial label learning
(PLL) from the perspective of influence function, and
develop a novel framewok called Partial Label Learn-
ing via Label Influence Function (PLL-IF), which is
generally formalized with an ERM-based optimizer.

• We define a quantity called Label Impact to quan-
tify how a candidate label changes a predictive model,
which can be further employed as an indicator to iden-
tify the most influential candidate label with highest
impact on a model optimizer.

• We then introduce Label Influence Function (LIF) to
efficiently approximate the label impact, which avoids
retraining the model after each label is removed or
perturbed, and largely reduces the heavy computation
of the label impact.

• We further propose a novel ground-truth label identifi-
cation method called Ground-truth Label Identification
via Label Influence Function (GLI-LIF), which is the
core part of the PLL-IF framework.

• We implement the PLL-IF framework through a repre-
sentative non-neural network model (i.e., SVM model)
and a basic neural network model, which we call PLL-
IF+SVM method and PLL-IF+NN method respectively.
Accordingly, we design two efficient optimization al-
gorithms for the proposed two methods.

• We conduct extensive experiments on six synthetic
datasets and six real-world datasets to validate the ef-
fectiveness of the proposed PLL-IF+SVM and PLL-
IF+NN methods. The results demonstrate that the pro-
posed methods outperform the state-of-the-art methods
in terms of prediction accuracy, which in turn validates
the effectiveness of the proposed PLL-IF framework.

2. Related Work
Partial label learning (PLL), also known as ambiguous-label
learning (Chen et al., 2018), (Hüllermeier & Beringer, 2006),
(Zeng et al., 2013) or superset-labellearning (Gong et al.,
2018), (Liu & Dietterich, 2014), (Liu & Dietterich, 2012), is
a weakly supervised learning problem (Zhou, 2017), which
differs from semi-supervised learning (Belkin et al., 2006),
(Berthelot et al., 2019). In PLL, each instance has a collec-
tion of candidate labels, with only one ground-truth label
and the rest being false positive labels, resulting in ambi-
guity while training classification models. Existing disam-
biguation methods for partial label learning can be broadly
divided into two categories (Zhang & Yu, 2015), (Lyu et al.,
2021), (Lyu et al., 2020), (Zhou et al., 2017): disambigua-
tion by candidate label averaging methods, or disambigua-
tion by ground-truth label identifying methods. For the
averaging-based methods (Cour et al., 2011; Hüllermeier &
Beringer, 2006; Zhang & Yu, 2015; Gong et al., 2021a), all
candidate labels of each instance are treated equally as the
ground-truth label, and the prediction is made by averaging
the modeling outputs. However, this kind of methods can
be easily misled by false-positive labels in the candidate
label set, and thus fail to generalize well in testing. For
the identification-based methods (Jin & Ghahramani, 2002;
Liu & Dietterich, 2012; Nguyen & Caruana, 2008; Yu &
Zhang, 2017; Chai et al., 2020), the ground-truth label is
regarded as a latent variable and identified through an itera-
tive refining procedure. Moreover, SOTA research proposed
some labeling confidence-based approaches. For exam-
ple, Zhang et al. (2016) and Wang et al. (2019) proposed
feature-aware disambiguation methods to generate different
labeling confidences over candidate label set by utilizing
the static and adaptive graph structure of feature space. Yan
& Guo (2020) proposed a batch-based partial label learn-
ing algorithm named PL-BLC, which dynamically corrects
the label confidence matrix of each training batch through
taking the prior averaging label confidence and the outputs
of current prediction network. Xu et al. (2019) developed
the PL-LE approach that learns from partial label examples
via label enhancement, after which the generalized label
distributions are recovered by leveraging the topological
information of the feature space. Feng & An (2019) devel-
oped a self-training-based approach named SURE, which
jointly trains models and performs pseudo-labeling by in-
troducing the maximum infinity norm regularization on the
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modeling outputs in order to automatically differentiate the
ground-truth label with high confidence. Gong et al. (2021b)
proposed Discriminative Metric Learning for PartialLabel
Learning (DML-PLL), which aims to learn a Mahanalo-
bisdistance metric discriminatively while identifying the
groundtruthlabel iteratively for PLL. Recently, some neu-
ral network related methods are developed for PLL. For
example, Yao et al. (2020) proposed Deep Discriminative
CNN (D2CNN ) with temporal ensembling, which em-
ploys the deep convolutional neural networks to improve
the representation ability and entropy-based regularizer to
enhance the discrimination ability. Lv et al. (2020) proposed
a progressive identification method named PRODEN for ap-
proximately minimizing the proposed risk estimator, which
updates the model and the identification of true labels in
a seamless manner. Feng et al. (2020) proposed the first
generation model of candidate label sets, and develop two
novel PLL methods (i.e., RC and CC) that are guaranteed to
be provably consistent.

Although the above-mentioned works have promoted the
development of PLL, little research has been done from
the perspective of that how a candidate label changes a
predictive model. Inspired by influence function (Ham-
pel, 1974) in robust statistics that can characterize how a
model changes when a small fraction of data points being
perturbed, which has been applied to machine learning in
recent years. Koh & Liang (2017) applied the influence
function to understand the prediction of a black-box model.
Debruyne et al. (2008), Liu et al. (2014) and Christmann &
Steinwart (2004) used the influence function for model se-
lections and cross validations. Recently, Basu et al. (2021)
investigated the influence function in deep learning with
non-convex loss functions. In the next section, we adapt the
influence function to solve the PLL problem.

3. The Proposed Approach
Let S = {(xi, Yi)}ni=1 denote the partial label dataset
drawn i.i.d. n times from some unkown distribution P .
For each training point, we have an instance xi ∈ Rd
with d features and a corresponding candidate label set
Yi ⊆ Y = {1, · · · , q}. Let yi denote the ground-truth la-
bel of xi, which is known residing in the corresponding
candidate label set Yi, i.e., yi ∈ Yi, but cannot be directly
accessible in the training phase. Moreover, we use f(xi;w)
to denote the prediction model, where w is the model pa-
rameter. Let `(yi, f(xi;w)) be the loss function, and we
fold the regularization term in ` for simplicity.

3.1. Problem Setup

In this subsection, we employ an ERM-based optimizer
to formalize the PLL framework, which is named Partial
Label Learning via Label Influence Function (PLL-IF). The

formulation of PLL-IF can be expressed as follows:

min
w,yi

1

n

n∑
i=1

`(yi, f(xi;w))

where yi ∈ Yi, i ∈ {1, · · · , n}
(1)

In the above PLL-IF framework, partial label learning aims
to learn the model parameter w, and then makes prediction
for an unseen instance. However, the ground-truth label
in PLL is ambiguous, which leads to the difficulty in the
training process. To deal with the ambiguities in PLL, one
popular and effective strategy is to take the ground-truth
label as a latent variable and then identify the ground-truth
label directly from the candidate label set, which can be
called the identification-based methods. The implementa-
tion of this kind of methods is usually fulfilled by employing
an alternating algorithm to optimize the model parameter
w and the ground-truth labels y alternatively in an iterative
way. Specifically, when y is fixed, the objective function
for optimizing the model parameter w turns out to be the
following formulation:

min
w

1

n

n∑
i=1

`(yi, f(xi;w)) (2)

Eq. (2) turns out to be a well-studied multiclass optimization
problem, and can be solved by any off-the-shelf multiclass
solvers (Dhar et al., 2019), (Liu et al., 2017), (Hiranan-
dani et al., 2019). For example, when the loss function is
specified as the hinge loss, any implementation for solving
multiclass SVM can be utilized to compute the model pa-
rameter w. On the other hand, when the model parameter w
is fixed, how to identify the ground-truth label y has become
an intractable issue. The objective function to optimize the
ground-truth label variable turns out to be as follows:

min
yi

1

n

n∑
i=1

`(yi, f(xi;w))

where yi ∈ Yi, i ∈ {1, · · · , n}
(3)

However, the optimization is often NP-hard as the ground-
truth variable is discrete. We attempt to solve this problem
by the following subsections.

3.2. Label Impact

In order to quantify the impact of a label on a predictive
model, we define Label Impact through the change of the
predictive model optimizer. Specifically, we define the im-
pact of the j-th label (the currently identified label) and the
l-th label (any of the other candidate labels) on the current
predictive model respectively as follows:
Definition 3.1 (j-th Label Impact). Let z = (x,y) be a
training point, where x ∈ Rd denotes the d-dimension in-
stance; y ∈ {0, 1}q denotes the corresponding q-dimension
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label vector. Let Y denote the candidate label set of the
instance x. Assume that the j-th label is the currently iden-
tified label of the training point z, while l denotes any of the
other candidate labels, where j, l ∈ Y and l 6= j, and yj = 1
and yl = 0. Let ŵ denote the current predictive model
minimizer, where ŵ = arg minw

1
n

∑n
i=1 `(yi, f(xi;w));

ŵ−z denotes the new optimizer trained on the samples af-
ter removing z (equals to removing the j-th label). Then,
for the currently identified label j, we have the j-th Label
Impact defined as ∆ŵj = ŵ−z − ŵ.

Definition 3.2 (l-th Label Impact). Let zδ = (x,yδ) denote
a new training point by perturbing the traning point z’s label
vector y, where yδ = y+δ, and δ is a q-dimensional vector
with j-th element being -1, l-th element being 1, while other
elements being 0. Let ŵ denote the current predictive model
minimizer; let ŵ−z,+zδ represent the new parameter trained
on the samples with zδ in place of z. Then, for any of
the other candidate labels l ∈ Y \j, we have the l-th Label
Impact defined as ∆ŵl = ŵ−z,+zδ − ŵ.

To obtain the optimizer ŵ−z and ŵ−z,+zδ defined in the
label impacts, an intuitive method is to retrain the model
after each label of a training point is removed or perturbed.
However, this can be prohibitively expensive in computation.
In the following subsection, we will address this problem by
introducing Label Influence Function (LIF), which provides
an efficient way to approximate the label impact.

3.3. Label Influence Function

As ŵ−z is the minimizer trained on the samples after re-
moving z, which can also be taken as the empirical loss
upweighted by some small amount ε, we then can reformu-
late ŵ−z as follows:

ŵε,−z , arg min
w

1

n

n∑
i=1

`(yi, f(xi;w))+ε`(y, f(x,w))

(4)

We then have ∆ŵj = ŵε,−z − ŵ. Similarly, we can refor-
mulate the minizer ŵ−z,+zδ after moving a small mass ε
from z onto zδ as follows:

ŵε,−z,+zδ , arg min
w

1

n

n∑
i=1

`(yi, f(xi;w))− ε`(y, f(x,w))

+ ε`(yδ, f(x,w))

(5)

As a result, we have ∆ŵl = ŵε,−z,+zδ − ŵ.

In order to approximate ∆ŵj , we can derive that

∆ŵj ≈ ε ·
d(ŵε,−z − ŵ)

dε

∣∣∣
ε=0

= ε · dŵε,−z

dε

∣∣∣
ε=0

(6)

Similarly, we can approximate ∆ŵl by

∆ŵl ≈ ε ·
d(ŵε,−z,+zδ − ŵ)

dε

∣∣∣
ε=0

= ε · dŵε,−z,+zδ

dε

∣∣∣
ε=0

(7)

The details of these derivations can be refered to the Ap-
pendix A. We formally define the Label Influence Function
(LIF) as follows:
Definition 3.3 (Label Influence Function). For any data
point z upweighted on the empirical loss of a predictive
model optimizer ŵ by a small amount ε, the label influence
function can be defined as

I(z) ,
dŵε,−z

dε

∣∣∣
ε=0

= −H−1ŵ ∇w`(y, f(x; ŵ)) (8)

where Hŵ = 1
n

∑n
i=1∇2

w`(yi, f(xi; ŵ)) is the Hessian
matrix and is positive definite by assumption.

We then can efficiently approximate the label impact after
removing z (equals to removing the j-th label) without re-
training the model by computing the following formulation
as follows:

∆ŵj = εI(z) (9)

Here, ε = − 1
n , this is because the impact of removing z

is equivalent to upweighting the empirical loss by − 1
n in

Eq. (4) . The detailed derivation of Eq. (9) can be found in
the Appendix A.

By further derivation and Dedifinition 3.3, we can get the
following formulation:

dŵε,−z,+zδ

dε

∣∣∣
ε=0

= −H−1ŵ

(
∇w`(yδ, f(x; ŵ))−∇w`(y, f(x; ŵ))

)
= I(zδ)− I(z)

(10)

Finally, we can approximate the l-th label impact after re-
moving data point z and adding the updated data point zδ on
the emprical loss of the current predictive model optimizer
ŵ via label influenc function as follows:

∆ŵl = ε(I(zδ)− I(z)) (11)

Here, ε = 1
n , as the impact of removing z and adding the

updated point zδ is equal to upweighting the empirical loss
by 1

n in Eq. (5). The detailed derivation of Eq. (11) can be
found in the Appendix B.

To this end, we can calculate the j-th label impact (i.e.,
the currently identified ground-truth label impact) on the
current predictive model optimizer ŵ via the label influence
function by Eq. (9) efficiently, and also approximate the l-th
label impact (i.e., any of the other candidate labels impact)
by Eq. (11).
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Table 1: Statistics of synthetic PLL datasets.

Datasets #Instances #Features #Classes
Glass 214 9 7
Ecoli 336 7 8
Dermatology 366 33 6
Vehicle 846 18 4
Segmentation 2310 19 7
Satellite 6435 36 7

Algorithm 1 CG Algorithm
Goal: Find the optimal solution to Eq. (13) and (14).
Input: Dataset in last iteration {(xi,yi)}ni=1; data point
z = (x,y), zδ = (x,yδ); current model parameter ŵ, ε.
Output: The optimal solution
θ∗.

1: Initialize θ0 = 0, r0 = −vzδ , p0 = r0;
2: for t = 0, 1, 2, . . . do
3: If ‖rt‖ ≤ ε, then θ∗ = θt, terminate;
4: αt = (rt)

T rt
(pt)THŴ pt

;
5: θt+1 = θt + αtpt;
6: rt+1 = rt − αtHŴ pt;

7: βt =
rTt+1rt+1

rTt rt
;

8: pt = rt+1 + βtpt;
9: end for

10: Return the optimal solution θ∗ = θt.

3.4. Ground-truth Label Identification via Label
Influence Function

In this subsection, we propose a novel ground-truth label
identification method called Ground-truth Label Identifica-
tion via Label Influence Function (GLI-LIF), which is the
core part of the PLL-IF framework.

Combining the label impact and label influence function,
we can identify the label with highest impact on the current
predictive model optimizer as the ground-truth label for
any instance. Finally, we get the objective function for the
proposed GLI-LIF as follows:

y = arg max
j∈Y,l∈Y \j

{
‖∆ŵj‖1 , ‖∆ŵl‖1

}
(12)

where Y is the candidate label set of instance x; y is the
ground-truth label. ‖·‖1 denotes the `1-norm.

3.5. Optimization and Implementation Algorithms

There are some computation challenges in calculating the
label influence function in Eq. (9) and (11) due to the form-
ing and inverting of Hessian matrix H−1ŵ . Therefore, we
need to optimize the computation of influence function
I(z) = −H−1ŵ vz , where vz = ∇w`(y, f(x; ŵ)). We can
use Hessian-vector products technique to implicitly approx-
imate H−1ŵ vz rather than directly computing H−1ŵ . Follow-

Algorithm 2 PLL-IF+SVM Algorithm
Goal: Minimize the optimization problem in Eq. (2).
Input: PLL training data S, σ.
Output: The optimal solution w of
Eq. (2).

1: Initialize ground-truth label yi randomly chosen from
Yi for each instance xi; initialize the objective function
value F(0);

2: for t = 1, 2, . . . do
3: Update the model parameter w by the LIBLINEAR

SVM solver;
4: Calculate the objective function value in Eq. (2), de-

noted as F(t);
5: if |F

(t)−F(t−1)

F(t−1) | ≤ σ then
6: terminate;
7: end if
8: for i = 1, . . . , n do
9: zi = {xi, yi};

10: j = yi;
11: Calculate θ∗zi in Eq. (13) by Algorithm 1;
12: Calculate ∆ŵj according to Eq. (9);
13: for l ∈ Yi\j do
14: zδ = {xi, l};
15: Calculate θ∗zδ in Eq. (14) by Algorithm 1;
16: Calculate ∆ŵl according to Eq. (11);
17: end for
18: Update the ground-truth label yi via Eq. (12);
19: end for
20: Construct new training dataset S(t) = {(xi, yi)}ni=1;
21: end for

ing (Pearlmutter, 1994), we define H−1ŵ vz
def
= θ∗z , which

is transformed into a quadratic optimization problem as
follows:

θ∗z = arg min
θ∈Rd

θTHŵθ − vTz θ (13)

Similarly, we define H−1ŵ vzδ
def
= θ∗zδ , thus we have

θ∗zδ = arg min
θ∈Rd

θTHŵθ − vTzδθ (14)

We then apply Conjugate Gradient (CG) to get the optimal
solution for Eq. (13) and (14). The pseudo-code of CG
method is presented in Algorithm 1.

In order to show that the proposed PLL-IF framework is
compatible with a wide family of learning models, we im-
plement PLL-IF by fitting two representative models into
the proposed framework: One is the hinge loss-based SVM
model; the other is the cross-entropy loss-based neural net-
work model.
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Table 2: Statistics of real-world PLL datasets.

Datasets #Instances #Features #Classes #Candidate Labels (avg.) Domain
Lost 1122 108 16 2.23 automatic face naming from videos
MSRCv2 1758 48 23 3.16 object classification
Mirflickr 2780 1536 14 2.76 web image classification
BirdSong 4998 38 13 2.18 bird song classification
Soccer Player 17472 279 171 2.09 automatic face naming from images
Yahoo! News 22991 163 219 1.91 automatic face naming from images

Algorithm 3 PLL-IF+NN Algorithm
Goal: Minimize the optimization problem in Eq. (2).
Input: PLL training data S; the number of epochs T .
Output: The optimal solution w of
Eq. (2).

1: Let A be the Adam optimizer algorithm; Initialize
ground-truth label y randomly chosen from Y for each
instance;

2: for t = 1 to T do
3: Shuffle training set into B mini-batches;
4: for k = 1, . . . , B do
5: Compute the objective function in Eq. (2), denoted

as F(t);
6: Set gradient −∇wF(t);
7: Update the model parameter w by A;
8: end for
9: for i = 1, . . . , n do

10: zi = {xi, yi}, j = yi;
11: Calculate θ∗zi in Eq. (13) by Algorithm 1;
12: Calculate ∆ŵj according to Eq. (9);
13: for l ∈ Yi\j do
14: zδ = {xi, yi + δ} = {xi, l}
15: Calculate θ∗zδ in Eq. (14) by Algorithm 1;
16: Calculate ∆ŵl according to Eq. (11);
17: end for
18: Update the ground-truth label yi via Eq. (12);
19: end for
20: Construct new training dataset S(t) = {(xi, yi)}ni=1;
21: end for

For the hinge loss-based SVM, we name the implementation
of this method as PLL-IF+SVM. Specifically, we optimize
the model parameter in the same way as that of M3PL (Yu
& Zhang, 2017), and use the default setting in LIBLINEAR
(Fan et al., 2008) with L2-regularized square hinge loss
to train the classifier. However, we do not follow M3PL
to optimize the ground-truth label variables. Instead, we
adopt the proposed influence function-based method PLL-
IF in Eq. (12) to optimize the ground-truth label variable
y. Complete procedures to implement the proposed PLL-
IF+SVM method can be found in Algorithm 2.

For the cross-entropy loss-based neural network, we name
the implementation of this method as PLL-IF+NN. The

implementation is based on PyTorch (Paszke et al., 2019).
Specifically, we employ a 3-layer neural network for the
proposed PLL-IF+NN, and use the Leaky ReLu activation
function in the two middle layers with 512 and 256 hidden
units respectively and employ softmax function in the output
layer. The optimizer is Adam (Kingma & Ba, 2015) with
the initial learning rate to be 0.0001. The mini-batch size
is set to 32 and we train the model 500 epochs with cross-
entropy loss and update ground-truth label variable every
epoch. Complete procedures to implement the proposed
PLL-IF+NN method can be found in Algorithm 3.

4. Experiments
In this section, we conduct experiments to evaluate the clas-
sification performance of the proposed PLL-IF and several
state-of-the-art partial label learning methods in terms of
classification accuracy.

4.1. Datasets and Baselines

We conducted controlled experiments on synthetic PLL
datasets configured from six UCI datasets1, which are sum-
marized in Table 1. Given the general controlling strategy
over multi-class datasets (Cour et al., 2011), (Chen et al.,
2014), (Liu et al., 2019), synthetic partial-label datasets can
be generated from controlled UCI datasets by configuring
two controlling parameters p and r, where p controls the pro-
portion of instances that have candidate labels (i.e.|Yi| > 1),
and r controls the number of false positive labels in the
candidate label set (i.e., r = |Yi| − 1). In practice, we
consider configurations where p increases from 0.1 to 0.9
with step-size 0.2 and r = 1, 2, 3 for each UCI dataset. For
each partial label instance, the candidate label set contains
the ground-truth label along with r additional labels ran-
domly chosen from all the classes. Hence, we have 162
(27 configurations × 6 datasets) generated synthetic PLL
datasets.

We also conducted experiments on six real-world PLL
datasets, which are summarized in Table 2. These datasets
are collected from various domains, such as automatic
face naming from videos including Lost (Cour et al.,

1http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Table 3: Win/tie/loss counts of pairwise t-test (at 5% significance level) between PLL-IF+NN and each baseline.

Config.
Method PLL-IF+NN vs -

PL-SVM CLPL M3PL SURE PRODEN PL-BLC
varying p, r = 1 54\0\0 54\0\0 54\0\0 53\1\0 53\1\0 47\7\0
varying p, r = 2 54\0\0 54\0\0 54\0\0 54\0\0 47\4\3 42\6\6
varying p, r = 3 54\0\0 54\0\0 54\0\0 54\0\0 50\3\1 46\3\5

Total 162\0\0 162\0\0 162\0\0 161\1\0 150\8\4 135\16\11

Table 4: Win/tie/loss counts of pairwise t-test (at 5% significance level) between PLL-IF+SVM and each baseline.

Config.
Method PLL-IF+SVM vs -

PL-SVM CLPL M3PL SURE PRODEN PL-BLC
varying p, r = 1 54\0\0 51\3\0 45\5\4 40\4\10 24\4\26 9\3\42
varying p, r = 2 54\0\0 54\0\0 51\3\0 46\5\3 12\3\39 8\1\45
varying p, r = 3 54\0\0 52\2\0 49\4\1 38\4\12 8\3\43 16\5\33

Total 162\0\0 157\5\0 145\12\5 124\13\25 44\10\108 33\9\120

2011), object classification including MSRCv2 (Liu & Diet-
terich, 2012), web image classification including Mirflickr
(Huiskes & Lew, 2008), bird song classification including
BirdSong (Briggs et al., 2012), automatic face naming from
images including Soccer Player (Zeng et al., 2013), and Ya-
hoo! News (Guillaumin et al., 2010). The average number
of candidate labels for each real-world partial label dataset
are also recorded in Table 2.

We compare the proposed PLL-IF method with the follow-
ing six state-of-the-art PLL approaches: PL-SVM (Nguyen
& Caruana, 2008), CLPL (Cour et al., 2011), M3PL (Yu
& Zhang, 2017), SURE (Feng & An, 2019), PRODEN (Lv
et al., 2020), PL-BLC (Yan & Guo, 2020), where the last
two are deep learning methods.

For each baseline, we follow the suggested configurations
including the parameters and optimizers according to their
respective literatures. For maximum margin based methods,
such as, PL-SVM, M3PL methods, we only consider the
linear versions for brevity. For the evaluation metric, we
perform five-fold cross-validation on each dataset and report
the mean accuracy with standard deviation of each method.

4.2. Performance Evaluation

1) Prediction Performance on Synthetic Datasets

Figs. 2 to 7 in Appendix C illustrate the performance
comparisons of the proposed method ( PLL-IF+NN / PLL-
IF+SVM ) with six state-of-the-art PLL baselines in terms of
mean accuracy with varying proportion of partially labeled
examples p on different datasets (i.e., Ecoli, Segmentation,
Satellite, Glass, Dermatology, Vehicle). From trends in the
figures, we make the following observations:

• The proposed PLL-IF+NN method consistently outper-
forms all baselines on all datasets with the increasing

proportion of partially labeled examples (p), which is
not easy considering that the comparison methods have
their own strengths across different datasets.

• Additionally, the proposed PLL-IF+SVM is superior to
most of the baselines, such as PL-SVM, CLPL, M3PL,
SURE in most cases, while is comparable to PRODEN
and PL-BLC on Glass, Ecoli, Dermatology, Satellite
datasets when there are two false-positive labels (r=2);
and we can obtain similar results on Segmentation
(r=1), Vehicle (r=3) datasets.

We statistically compare the proposed PLL-IF+NN and PLL-
IF+SVM with all baselines and conduct pairwise t-test at 5%
significance level on five-fold cross-validation results over
all the 162 synthetic PLL datasets obtained from different
configuration settings. The win/tie/loss counts between
PLL-IF and each each baseline are reported in Table 3 and 4
respectively. From the statistical test results, we can observe
that:

• The proposed PLL-IF+NN significantly outperforms
all baselines on all controlled parameter configurations.
Concretely, PLL-IF+NN almost has no loss or tie com-
pared with PL-SVM, CLPL, M3PL, SURE; while has
few losses or ties compared with PRODEN and PL-
BLC, but wins a lot more in total counts.

• The proposed PLL-IF+SVM outperforms PL-SVM,
CLPL, M3PL, SURE on all configurations in the total
number of wins. However, it underperforms PRODEN
and PL-BLC with only one third counts of wins.

Overall, the proposed PLL-IF+NN approach is superior
to all baselines on all controlled UCI datasets, while the
proposed PLL-IF+SVM method is superior to most of the
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Table 5: Mean accuracy ± standard deviation via five-fold cross validation on six real-world datasets for all methods. The
best results are in bold. •/◦ indicates that our method ( PLL-IF+NN / PLL-IF+SVM ) is significantly superior / inferior than
the baseline (pairwise t-test at %5 significance level).

Method Lost MSRCv2 Mirflickr BirdSong Soccer Player Yahoo!News
PLL-IF+NN 0.809 ± .041 0.538 ± .027 0.569 ± .030 0.753 ± .003 0.560 ± .004 0.683 ± .007
PLL-IF+SVM 0.782 ± .012 0.513 ± .022 0.561 ± .003 0.723 ± .017 0.554 ± .010 0.646 ± .026
PL-SVM 0.691 ± .012• 0.481 ± .037• 0.441 ± .061• 0.661 ± .067• 0.462 ± .006• 0.615 ± .015•
CLPL 0.732 ± .032• 0.433 ± .020• 0.549 ± .017 0.635 ± .019• 0.367 ± .004• 0.471 ± .049•
M3PL 0.747 ± .031• 0.499 ± .026• 0.480 ± .016• 0.694 ± .065• 0.440 ± .005• 0.623 ± .062•
SURE 0.767 ± .026 0.508 ± .021 0.562 ± .015 0.702 ± .025• 0.531 ± .014 0.632 ± .015•
PRODEN 0.765 ± .014 0.452 ± .017• 0.524 ± .011 0.721 ± .004 0.559 ± .005 0.674 ± .005
PL-BLC 0.806 ± .032 0.536 ± .037 0.558 ± .038 0.746 ± .017 0.540 ± .008 0.679 ± .005

baselines. These results clearly demonstrate the effective-
ness of the proposed PLL-IF framework for partial label
learning.

2) Prediction Performance on Real-world Datasets

We apply the proposed PLL-IF as well as six state-of-the-
art PLL baselines on each real-world dataset to evaluate
their effectiveness in terms of mean accuracy and standard
deviation. In addition, we conduct the statistical pairwise
t-test at the default 5% significance level to validate the
superiority of the proposed method ( PLL-IF+NN / PLL-
IF+SVM ) compared with the baselines. •/◦ represents
whether our method is significantly better/worse than the
compared methods. The results are shown in Table 5. From
the results, it is impressive to observe that:

• The proposed PLL-IF+NN consistently achieves the
best results among all methods, inlcuding all baselines
and the proposed PLL-IF+SVM on all the six real-
world datasets, and outperforms non-nerual newtork-
based methods like PL-SVM, CLPL, M3PL, SURE
with remarkable improvements.

• The proposed PLL-IF+SVM is comparable or a little
bit inferior to the latest neural network-based meth-
ods PRODEN and PL-BLC on most of the real-world
datasets. However, as a non-nerual newtork-based
method, PLL-IF+SVM performs much better than
other non-nerual newtork-based methods, such as PL-
SVM, CLPL, M3PL, SURE in most cases.

• Interestingly, we can see that the superiority of the neu-
ral network-based PLL-IF method (i.e., PLL-IF+NN)
is much more obvious compared with both nerual
newtork-based and non-nerual newtork-based meth-
ods, including the proposed PLL-IF+SVM across all
datasets.

• Even though the proposed PLL-IF framework is loss-
independent and classifier-independent, it seems more
workable for neural network-based methods, despite of

the superiorities of working with non-neural network-
based methods.

• From the above observations, we hold that the pro-
posed PLL-IF framework is effective for partial label
learning, which in turn validates the effectiveness of
employing the influence function as a strategy to up-
date the ground-truth label variables.

These results on real-world datasets demonstrate the effec-
tiveness of the proposed PLL-IF framework.

5. Conclusion
This work provides a novel insight into PLL from the per-
spective of influence function. Generally, we first formalize
a general PLL framework called Partial Label Learning
via Label Influence Function (PLL-IF) with an ERM-based
optimizer. To identify the most influential candidate label
with highest impact on a model optimizer, we define the
Label Impact to quantify how a candidate label changes a
predictive model. To avoid retraining the model repeatedly
after each label is removed or perturbed in computing the
label impact, we further introduce Label Influence Function
(LIF) to efficiently approximate the label impact. Based on
these, we develop a novel ground-truth label identification
method called Ground-truth Label Identification via Label
Influence Function (GLI-LIF), which is the core part of the
PLL-IF framework. To illustrate the usage of the proposed
framework, we implement the PLL-IF framwork through a
representative non-neural network SVM model and a basic
neural network model, which we call PLL-IF+SVM method
and PLL-IF+NN method respectively. Accordingly, we de-
sign two efficient optimization algorithms for the proposed
two methods. Lastly, we conduct extensive experiments on
six synthetic datasets and six real-world datasets to demon-
strate the effectiveness of the proposed methods, and the
results show the superiorities of PLL-IF+SVM and PLL-
IF+NN methods compared with the state-of-the-art methods
in terms of prediction accuracy, which in turn validates the
effectiveness of the proposed PLL-IF framework.
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A. Derivation of Eq. (9)

Let h(w) = 1
n

∑n
i=1 `(yi, f(xi;w)), ĥ(w) = h(w) + ε`(y, f(x,w)), we then have

ŵε,−z = arg min
w

ĥ(w) (15)

Since ŵε,−z is a minimizer of Eq. (15), we can get the first order optimality condition as follows: 0 = ∇h(ŵε,−z) +
ε∇w`(y, f(x; ŵε,−z)).

Since ŵε,−z → ŵ as ε → 0, we perform a Taylor expansion of the right-hand side as follows: 0 ≈
[∇h(ŵ) + ε∇w`(y, f(x; ŵ)] +

[
∇2h(ŵ) + ε∇2

w`(y, f(x; ŵ)
]

∆ŵj .

Solving for ∆ŵj , we can get

∆ŵj ≈−
[
∇2h(ŵ) + ε∇2

w`(y, f(x; ŵ)
]−1

[∇h(ŵ) + ε∇w`(y, f(x; ŵ)]
(16)

Since ŵ minimizes h(ŵ), we have∇h(ŵ) = 0. Removing o(ε) terms, we can get

∆ŵj

≈ −∇−2h(ŵ)∇w`(y, f(x; ŵ)ε

= −H−1ŵ ∇w`(y, f(x; ŵ))ε

(17)

where Hŵ = ∇2h(ŵ) = 1
n

∑n
i=1∇2

w`(yi, f(xi; ŵ)) is the Hessian matrix of h(ŵ) and is positive definite by assumption.
Subsequently, we can get

d∆ŵj

dε
= −H−1ŵ ∇w`(y, f(x; ŵ)) (18)

We then define the label influence function of upweighting z on the predictive model optimizer ŵ as

I(z) =
d∆ŵj

dε
=
dŵε,−z

dε
= −H−1ŵ ∇w`(y, f(x; ŵ))

According to Eq. (17) and the definition of label influence function, we can get ∆ŵj = εI(z).

B. Derivation of Eq. (11)

Let g(w) = 1
n

∑n
i=1 `(yi, f(xi;w)), ĝ(w) = g(w)− ε`(y, f(x,w)) + ε`(yδ, f(x,w)), we then have

ŵε,−z,+zδ = arg min
w

ĝ(w) (19)

Since ŵε,−z,+zδ is a minimizer of Eq. (19), we can get the first order optimality condition as follows: 0 = ∇g(ŵε,−z,+zδ)−
ε∇w`(y, f(x; ŵε,−z,+zδ)) + ε∇w`(yδ, f(x; ŵε,−z,+zδ)).

Since ŵε,−z,+zδ → ŵ as ε → 0, we perform a Taylor expansion of the right-hand side as follows: 0 ≈
[∇g(ŵ)− ε∇w`(y, f(x; ŵ) + ε∇w`(yδ, f(x; ŵ)] +

[
∇2g(ŵ)− ε∇2

w`(y, f(x; ŵ) + ε∇2
w`(yδ, f(x; ŵ)

]
∆ŵl.

Solving for ∆ŵl, we can get

∆ŵl

≈ −
[
∇2g(ŵ)− ε∇2

w`(y, f(x; ŵ) + ε∇2
w`(yδ, f(x; ŵ)

]−1
[∇g(ŵ)− ε∇w`(y, f(x; ŵ) + ε∇w`(yδ, f(x; ŵ)]

(20)

Since ŵ minimizes g(ŵ), we have∇g(ŵ) = 0. Removing o(ε) terms, we can get

∆ŵl

≈ −∇−2g(ŵ) [∇w`(yδ, f(x; ŵ)−∇w`(y, f(x; ŵ)] ε

= −H−1ŵ

(
∇w`(yδ, f(x; ŵ))−∇w`(y, f(x; ŵ))

)
ε

(21)
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where Hŵ = ∇2g(ŵ) = 1
n

∑n
i=1∇2

w`(yi, f(xi; ŵ)) is the Hessian matrix of g(ŵ) and is positive definite by assumption.

Similar to the definition of label influence function in the derivation of Eq. (9), we can get the influence of upweighting
zδ and z on the predictive model optimizer ŵ as I(zδ) = −H−1ŵ ∇w`(yδ, f(x; ŵ)) and I(z) = −H−1ŵ ∇w`(y, f(x; ŵ))
respectively. And we then can approximate the l-th label impact (any of the other candidate labels) by ∆ŵl = ε(I(zδ)−
I(z)).

C. Figs. 2 to 7
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Figure 2: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Glass dataset.
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Figure 3: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Ecoli dataset.
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Figure 4: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Dermatology dataset.
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Figure 5: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Vehicle dataset.
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Figure 6: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Segmentation dataset.
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Figure 7: Performance evaluation of the proposed PLL-IF and baselines with respect to the increasing proportion (p) of
partially labelled examples in terms of mean accuracy (%) on Satellite dataset.


