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Abstract
We introduce an approach to counterfactual infer-
ence based on merging information from multiple
datasets. We consider a causal reformulation of
the statistical marginal problem: given a collec-
tion of marginal structural causal models (SCMs)
over distinct but overlapping sets of variables, de-
termine the set of joint SCMs that are counter-
factually consistent with the marginal ones. We
formalise this approach for categorical SCMs us-
ing the response function formulation and show
that it reduces the space of allowed marginal and
joint SCMs. Our work thus highlights a new mode
of falsifiability through additional variables, in
contrast to the statistical one via additional data.

1. Introduction
Counterfactual statements are ubiquitous in human judge-
ment and reasoning. Consider the following example. A
patient, Alice, is recommended a treatment X against her
disease and agrees to take it. The effectiveness of the treat-
ment has been rigorously established through a randomised
control trial, which found a positive average causal effect
(ACE). However, the ACE is an average of treatment effi-
cacy over the whole population, including some individuals
who respond better and others who respond worse. Alice
might wonder what her own chances of recovery would
have been, had she not taken X—a query called the effect
of treatment on the treated (ETT) (Heckman, 1992; Shpitser
& Pearl, 2009). This requires envisioning consequences of
a hypothetical change (not taking the treatment), given that
the opposite happened (in reality, she took it).

In a proposed hierarchy of causal reasoning termed the lad-
der of causation (Pearl & Mackenzie, 2018; Bareinboim
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spondence to: Luigi Gresele <luigi.gresele@tue.mpg.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

X Y

Z

Dataset 2Dataset 1

Figure 1: Overview of the Causal Marginal Problem.
Given observations of subsets of variables in a causal graph,
consistently merging the available causal marginal informa-
tion imposes non-trivial constraints on the set of admissible
joint and marginal causal models which can in turn be useful
for counterfactual inference.

et al., 2020), such counterfactual statements occupy the
highest, third rung, whereas the second rung corresponds to
interventions and experiments (“doing”) and the lowest, first
rung to passive observation (“seeing”). Counterfactual rea-
soning (e.g., answering personalised, individual-level ques-
tions such as Alice’s) thus requires the most fine-grained
causal modelling.1 In the graphical approach to causal in-
ference (Pearl, 2009b), counterfactuals are expressed using
structural causal models (SCMs).

In practice, however, we typically do not have access to an
SCM but only to observational or experimental data (rungs
one and two) which may be insufficient to answer questions
such as Alice’s: we simply cannot perform an experiment
where the same person is both given and not given a treat-
ment, an issue also referred to as the fundamental problem
of causal inference (Imbens & Rubin, 2015). Counterfac-
tual queries thus need to be evaluated based on a partial
state of knowledge and may be subject to an unresolvable
degree of ambiguity, even in the absence of statistical un-
certainty (Dawid, 2000). Pearl (2000) therefore postulates
restrictions on the types of inference we can make given our
data and modelling assumptions: counterfactual expressions
should be evaluated subject to an identifiability requirement,
specifying whether a given query can be estimated based
on empirical observations, under conditions which can be
phrased in the language of graphical models (Shpitser &

1the example concerns an individual causal effect; population-
level counterfactuals can also be considered (Pearl, 2009a, § 3.4).
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Pearl, 2007; 2008; Pearl, 2001; Correa et al., 2021).

When full identification is not achievable, partial identifi-
cation sometimes still yields informative bounds based on
empirically observable quantities (Robins, 1989; Manski,
1990; Balke & Pearl, 1997; Tian & Pearl, 2000). However,
these methods typically rely on joint information over all
variables, based on observational or experimental studies,
or combinations thereof (Zhang et al., 2021).

What if we instead have studies involving distinct, but over-
lapping subsets of variables? Can we combine them to
answer counterfactual questions? In Alice’s case, knowing
the effect of treatment X alone may be insufficient. Suppose,
however, that a separate study characterises the interven-
tional effect of a rare condition Y on her disease (cf. Fig. 1).
Since the condition is rare, and testing for it is costly, there
are no studies characterising the joint effect of X and Y on
recovery. Could Alice nevertheless make use of the available
information on the effect of Y and combine it with informa-
tion on X to better answer her counterfactual question?

In order to answer these kinds of questions, in the present
work we propose an approach to counterfactual causal in-
ference which does not require joint observations of all
variables: instead, our approach is based on merging infor-
mation from different datasets, involving distinct but over-
lapping sets of variables. This can be seen as the causal
reformulation of a classic problem in statistics called the
marginal problem (Vorob’ev, 1962; Kellerer, 1964).

(Statistical) Marginal Problem: Given some distri-
butions over non-identical but overlapping subsets of
variables, determine existence and uniqueness of a
consistent joint distribution over their union.

For example, consider random variables X , Y , Z, and sup-
pose that we are given the “marginals” PXZ and PY Z . Is
there a joint PXY Z that implies these marginals?2

In our proposed causal reformulation, we aim to merge
marginal causal models such that they are consistent at vari-
ous levels of the ladder of causation. In particular, we focus
on the counterfactual marginal problem, in which counter-
factual consistency across marginal and joint SCMs is en-
forced. We formalise this in the context of categorical SCMs
by exploiting their response function formulation (Green-
land & Robins, 1986; Balke & Pearl, 1994) and show that
counterfactuals can acquire empirical content when consid-
ered in the broader context of a joint model, even if only
observations of the marginal models are available.

Structure and contributions. Following a review of rel-
evant notions of causal modelling (§ 2), we introduce the

2A trivial negative example is the case where PXZ and PY Z

imply different PZ ; in general, PXY Z (if it exists) is not unique.

structural causal marginal problem (§ 3), describe how to
treat it (§ 3.2) and illustrate its applications through exam-
ples (§ 3.3), theory (§ 3.4) and numerical simulations (§ 4).
Finally, we describe extensions of the basic setting (§ 5) and
discuss our findings in the context of existing literature (§ 6).

While focusing mostly on simple examples, the present
work still makes a significant conceptual point: SCMs can
sometimes be falsified as interventional models over ad-
ditional variables become available. This provides causal
models with an additional mode of falsifiability compared to
statistical models, where the standard is to do this by means
of additional data. The boundaries between the first two
rungs of the ladder of causation and the third thus become
more blurry as additional variables are observed.

2. Categorical Structural Causal Models
An SCMM = (V,U,F ,PU) consists of (Pearl, 2009b):

(i) a tuple V = (V1, . . . , Vn) of observed, or endoge-
nous, variables whose causal relations are modelled;

(ii) a tuple U = (U1, . . . , Un) of unobserved, or exoge-
nous, variables which account for any stochasticity;

(iii) a tuple F = (f1, . . . , fn) of deterministic functions,
or mechanisms, computing each Vi from its causal
parents, or direct causes, PAi ⊆ V \ {Vi} and the
corresponding Ui via the structural equations

{Vi := fi(PAi, Ui)}ni=1 ; (1)

(iv) a joint distribution PU over the exogenous U.

Every SCM induces a directed causal graph G with nodes V
and edges Vj → Vi ∀i,∀Vj ∈ PAi (see Fig. 1 for an ex-
ample). We make the common assumption that G does not
contain cycles,3 which ensures thatM induces a unique ob-
servational distribution PV over V (see below). In addition,
we assume throughout that all Vi are categorical variables:

Assumption 1 (Finite domains). The domains Vi of all
endogenous variables Vi are finite, ∀i : |Vi| <∞.

Whereas for general SCMs the fi are arbitrary unknown
functions and the domains Ui of the exogenous Ui unspeci-
fied and potentially infinite, Asm. 1 permits an equivalent
representation that makes such SCMs easier to study. The
key observation is that, for categorical V, there are only
finitely many functions {f̃i,k}k mapping PAi to Vi. For
each value ui, the function fi(·, ui) corresponds to one such
response function f̃i,k, so Ui acts as a “random switch” that
induces a distribution on {f̃i,k}k. We can thus partition
the domain Ui into equivalence classes of values yielding
the same f̃i,k and replace Ui with a categorical response
function variable Ri defined over these equivalence classes:

3For a treatment of cyclic SCMs, see Bongers et al. (2021).
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{Vi := f̃i,Ri
(PAi)}ni=1, R ∼ PR (2)

with R = (R1, ..., Rn) and each Ri taking values in

Ri = {0, ..., |Vi|
∏

Vj∈PAi
|Vj | − 1} (3)

if PAi ̸= ∅, andRi = {0, ..., |Vi| − 1} otherwise.

This re-parametrisation of discrete SCMs is known as the
response function framework4 and we refer to Balke & Pearl
(1994) for further details. Its main benefit is that the f̃i,k
are easily enumerated, so that the categorical SCM (2) is
entirely characterised by the unknown distribution PR.

Using the shorthand P(x) for PX(X = x), the observa-
tional distribution PV induced by (2) is given by:

P(v) =
∑

r
P(r)

∏n

i=1
I{vi = f̃i,ri(pai)} (4)

where I{·} denotes the indicator function. If PV is known
from empirical observation, (4) imposes a constraint on the
space of allowed SCMs parametrised by different PR.

Interventions in the form of external manipulations to sub-
sets VI ⊆ V of variables correspond to changes to the
structural equations (1): e.g., setting VI to a constant vI
is denoted using Pearl’s do-operator by do(VI := vI), or
do(vI) for short. Interventional distributions are given by:

P(v\I |do(vI)) =
∑
r

P(r)
∏
i ̸∈I

I{vi = f̃i,ri(pai)} (5)

Counterfactuals which condition on some observation w
of a subset of variables W ⊆ V when reasoning about a
hypothetical intervention do(vI) are modelled by using the
posterior PR|w computed via (4) in place of PR in (5). Note
that the condition W = w can contradict the assignment
VI := vI , which renders the query counterfactual.

For now, we additionally make the following common as-
sumption (which we will relax again in § 5).

Assumption 2 (Causal sufficiency). The exogenous vari-
ables are mutually independent, i.e., PR factorises.

Asm. 2 means that there is no hidden confounding, i.e., no
unobserved variable influences more than one Vi. It implies
the following Markov factorisation (Spirtes et al., 2000):

P(v) =
∏n

i=1
P(vi|pai) , (6)

where each causal Markov kernel P(vi|pai) is given by

P(vi|pai) =
∑

ri∈Ri
P(ri) I{vi = f̃i,ri(pai)} . (7)

Asm. 2 has two important consequences: first, it suffices to
consider the marginals of each Ri separately (rather than

4also referred to as principal stratification (Frangakis & Rubin,
2002) or canonical representation (Peters et al., 2017)

model their joint distribution PR); second, interventional
queries become identifiable from observational data via the
g-formula (Robins, 1986), a.k.a. truncated factorisation

P(v\I |do(vI)) = δ(vI)
∏

i ̸∈I P(vi|pai) . (8)

Under Asm. 2, the boundary between interventional (rung 2)
and observational (rung 1) quantities thus disappears once
the causal graph is known. However, there is typically
still a whole family of SCMs consistent with the available
rung 1/2 information that imply different counterfactuals
(rung 3), see, e.g., Peters et al. (2017, § 3.4) for an explicit
description of this ambiguity. Next, we illustrate this point
for Boolean SCMs which will be the main objects of study.

2.1. Causally-Sufficient Cause-Effect Models

Consider a bivariate, Boolean SCM MX over X → Z.
Using response functions, this can be written w.l.o.g. as

X := RX , Z := fRZ
(X), (9)

where RZ indexes the four distinct functions fk from {0, 1}
to {0, 1}: the two constant functions f0 ≡ 0, and f1 ≡ 1, as
well as f2(X) = X (“ID”), and f3(X) = 1−X (“NOT”).

Here, PRX
coincides with the (observed) marginal PX , and

we assume that X is not constant, 0 < P(X = 1) < 1.
Under Asm. 2, the SCM MX from (9) is thus charac-
terised entirely by the distribution PRZ

over the four fk.
We represent this as a probability vector a ∈ ∆3, where
∆K−1 = {a ∈ RK | ak ≥ 0,

∑K−1
k=0 ak = 1} denotes the

probability simplex over K points. Due to the constraints
imposed on a by the observed PZ|X via (7), we can write it
in terms of a single free parameter λX ∈ [λmin

X , λmax
X ] as:

a(λX) =


0

1− p00 − p01
p00
p01

+ λX


1
1
−1
−1

 (10)

with pij = P(Z = i|X = j), λmin
X = max{0, p00+p01−1},

and λmax
X = min{p00, p01}, see Appx. A for details.

Different choices of λX ∈ [λmin
X , λmax

X ] thus define a family
of SCMs that are observationally and interventionally equiv-
alent5 but imply different counterfactual distributions. In
particular, for any given observation (x, z), the probability
that “Z would have flipped had X been different” is given by
γ(λX) := a2 + a3 = p00 + p01− 2λX . For this reason, we
call γ the counterfactual influence of X on Z. SCMs with
larger λX thus exhibit a smaller counterfactual influence.

3. The Structural Causal Marginal Problem
We now formulate the causal marginal problem, which can
be understood as a causal version of the (statistical) marginal

5i.e., indistinguishable based on all do-interventions.
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problem (Vorob’ev, 1962; Kellerer, 1964).

Causal Marginal Problem: Can marginal causal
models over subsets of variables with known causal
graph be consistently merged? What constraints on
marginal and joint causal models does this imply?

We study this problem within the SCM framework, i.e.,
the structural causal marginal problem. To build intuition
and gain a better understanding of the fundamental con-
cepts, we first analyse the causally-sufficient, Boolean set-
ting from § 2.1: we assume that in addition to PXZ , we
observe PY Z from another dataset where Y is a second
independent Boolean cause of Z, as illustrated in Fig. 1.6

Crucially, we do not have joint observations of all three
variables, i.e., PXY Z is unknown. While this case might
appear rather simple, it already bears a number of nontrivial
implications for counterfactual inference. We defer a more
general definition and a discussion of extensions to § 5.

We denote the second marginal SCM over Y → Z byMY ,

Y := QY , Z := fQZ
(Y ), (11)

using the same response functions fk as in (9) for MX ,
and parametrise the family of SCMs consistent with the ob-
served PY Z with a probability vector b ∈ ∆3 with a single
free parameter λY ∈ [λmin

Y , λmax
Y ], analogously to (10).

The space of marginal SCMs (MX ,MY ) parametrised by
(λX , λY ) that are separately consistent with PXZ and PY Z

(i.e., prior to considerations about consistently merging them
into a joint model) is illustrated in Fig. 2 as the red rectangle.
We will show that: (i) enforcing that the two marginal SCMs
can be merged into a joint SCM (§ 3.1) reduces the space of
admissible (MX ,MY ) (blue & green areas in Fig. 2; § 3.2
and § 4); (ii) knowing one of the marginal SCMs exactly
(e.g., from prior knowledge or particular observations) fur-
ther restricts the choices for the other marginal (horizontal
green line in Fig. 2; § 3.3); and (iii) some marginal models
are inherently easier to falsify than others (§ 3.4 and § 4).

3.1. Consistency Between Marginal and Joint SCMs

We now define the joint model and provide a systematic way
of linking its representation to those of the marginal models.
We write the joint SCMM over {X,Y } → Z as

X := RX , Y := QY , Z := hS(X,Y ), (12)

where S indexes the 16 response functions h0, . . . , h15 from
{0, 1}2 to {0, 1} (listed in Tab. 1 in Appx. B). We denote the
distribution PS over the hk by a probability vector c ∈ ∆15.
Note that unlike for the marginal models, we do not a priori

6Asm. 2 implies X ⊥⊥ Y , for otherwise Y (resp. X), which is
unobserved in MX (resp. MY ), would be a hidden confounder.
This is, in principle, falsifiable through observation of PXY .
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Figure 2: 2D Schematic of the Structural Causal
Marginal Problem. For the causal graph from Fig. 1
and model class from § 2.1, given PXZ and PY Z , the
two marginal SCMs MX and MY over X → Z and
Y → Z are each parametrised by a single free parameter
λX ∈ [λmin

X , λmax
X ] (x-axis) and λY ∈ [λmin

Y , λmax
Y ] (y-axis),

respectively. The outer dashed red area Λ0 corresponds to
combinations of counterfactual marginal models (λX , λY )
that are falsified in that they cannot be counterfactually
consistent (Defn. 3); the inner dotted green polytope ΛC
corresponds to (λX , λY ) that are counterfactually consis-
tent; and the solid blue area, defined as the surrounding
rectangle of the latter, corresponds to (λX , λY ) that are
not counterfactually consistent but cannot be falsified
without additional assumptions or constraints. Enforcing
consistency with the other marginal (interventional) model
implies λX ∈ [LBX ,UBX ] and λY ∈ [LBY ,UBY ], but
without additional information about the other marginal
this range cannot be reduced further. For a given MY

corresponding to λ⋆
Y (dashed horizontal green line), on

the other hand, the interval of consistent λX shrinks
further to [LB⋆

X ,UB⋆
X ] (solid green line) so that the λX

corresponding to the blue star marker can be ruled out.

have additional constraints reducing the number of free
parameters of c since PXY Z and thus PZ|XY are unknown.

To relate the joint (12) and marginal SCMs (9) and (11), a
key observation is that for any fixed value x of X (resp. y of
Y ), each two-variable function hk(X,Y ) implicitly defines
a single-variable function fj(Y ) over the remaining variable
Y (resp. fj′(X) over X). Formally, we define the following
projection operators for x, y ∈ {0, 1}:

PX
x : hk 7→ hk(x, Y ) = fj(Y ) for some j,

PY
y : hk 7→ hk(X, y) = fj′(X) for some j′.

(13)

For example, we defined h0(X,Y ) ≡ 0 (see Tab. 1
in Appx. B), so PX

0 (h0) = f0(Y ) ≡ 0; and, similarly,
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for h7(X,Y ) = ¬(X ∧ Y ) we have that PY
1 (h7) = f3(X)

since h7(X, 1) = 1−X , i.e., the NOT function f3.

Together with the marginal distributions of X and Y (ob-
tained by marginalisation of Z in PXZ and PY Z), the dis-
tribution over the hk inM parametrised by c ∈ ∆15 thus
induces distributions over the fj inMX andMY via (13).
The latter are parametrised by a(λX) and b(λY ) (see (10)),
and enforcing that they match the corresponding distribu-
tions induced byM yields the following linear constraints:

aj(λX) =
1∑

y=0

PY (y)
15∑
k=0

I{PY
y (hk) = fj(X)} ck ,

bj(λY ) =
1∑

x=0

PX(x)
15∑
k=0

I{PX
x (hk) = fj(Y )} ck ,

(14)

for j = 0, 1, 2, 3. Writing (14) in matrix form, we obtain:

a(λX) = Ac, b(λY ) = Bc , (15)

where A,B ∈ R4×16 are constant matrices whose entries
are given in terms of PY and PX , respectively.7

In general, (15) does not uniquely determine a joint SCM
in terms of the marginal ones as it involves at most eight
independent constraints. Nor does there always exist a joint
model (parametrised by c) that satisfies (15): take, e.g.,
any combination of PXZ and PY Z for which already the
statistical marginal problem does not have a solution.

To discuss solutions to the structural causal marginal prob-
lem, we introduce the following notion of consistency.

Definition 3 (Counterfactual consistency). An SCM M
over observed variables V is counterfactually consistent
with a (marginal) SCMM1 over a subset W1 ⊆ V if all
counterfactual distributions of W1 in M1 coincide with
those implied byM via marginalisation of V \W1, (see
Bongers et al., 2021, Defn. 5.3 for marginalisation of SCMs).
Two SCMsM1,M2 over subsets W1,W2 ⊆ V are coun-
terfactually consistent if there is a joint SCMM over V
which is counterfactually consistent with bothM1 andM2.

Defn. 3 can be understood as a generalisation of counterfac-
tual equivalence (see, e.g., Peters et al., 2017, Defn. 6.47)
which also involves equality of counterfactual distributions,
but applies to different SCMs over the same set of variables.

The counterfactual distributions implied by an SCM are
fully determined by the structural equations and noise distri-
bution (as parametrised by λX , λY , and c here). In our case,
a marginal SCMMX (orMY ) is thus counterfactually con-
sistent with a joint SCMM if the corresponding constraint
in (15) holds. The two marginal SCMsMX andMY are

7Specifically, (A)jk =
∑1

y=0 PY (y)I{PY
y (hk) = fj(X)},

and (B)jk =
∑1

x=0 PX(x)I{PX
x (hk) = fj(Y )}.

counterfactually consistent if both constraints in (15) hold
simultaneously for some c. In this case, we say that c (or
M) is a solution to the structural causal marginal problem.

3.2. Determining the Space of Solutions

As discussed, (15) and the simplex constraints c ∈ ∆15,
and (λX , λY ) ∈ [λmin

X , λmax
X ]×[λmin

Y , λmax
Y ] =: Λ0 define the

solution space for the structural causal marginal problem.
Specifically, they imply a set of linear equality and inequal-
ity constraints that, if satisfiable, yield a convex polytope C
as the feasible set for c (Boyd & Vandenberghe, 2004):

C := {c ∈ ∆15 | ∃(λX , λY ) ∈ Λ0 s.t. (15) holds} (16)

see Appx. F for details. By (10) and (15), we have that
λX = [Ac]0 and λY = [Bc]0, so the set of jointly feasible
(λX , λY ) is given by ΛC := {([Ac]0, [Bc]0)

⊤ | c ∈ C}.
ΛC is illustrated as the dotted green region in Fig. 2.

We could now minimise and maximise some (linear) causal
query Q(c) over c ∈ C, to obtain bounds on counterfac-
tuals of interest, e.g., the ETT for Alice mentioned in § 1.
Since C is convex, this results in a linear program which
can be solved easily and with global optimality guaran-
tees (Dantzig, 1963; Karmarkar, 1984). Such an approach
is closely related to partial identification (cf. § 1). Here, we
focus instead on how the space of marginal and joint models
is reduced when additional marginals are observed.

Does enforcing counterfactual consistency meaningfully re-
strict the space of admissible marginal SCMs? To check this,
we can compare, e.g., the interval [λmin

X , λmax
X ] of allowed λX

prior to enforcing (15) with the lower and upper bounds
[LBX ,UBX ] defined as min/maxΛC

λX , and similarly for
[LBY ,UBY ]. The region [LBX ,UBX ] × [LBY ,UBY ] is
illustrated as the solid blue area in Fig. 2. By definition, it
is the rectangle delimiting the projection ΛC of the polytope
C of feasible solutions in the (λX , λY )-plane. If the blue
and dashed red rectangles coincide, neither of the marginal
SCMs is further restricted by enforcing consistency.
Otherwise, marginals that fall outside the blue area are
falsified in that they cannot be counterfactually consistent.

We highlight a subtle point regarding the blue area in Fig. 2,
counterfactual consistency, and falsifiability: If (λX , λY )
lies within the blue region but outside ΛC (e.g., the blue
star marker in Fig. 2), the corresponding marginal SCMs
MX andMY are not counterfactually consistent. However,
neither of them is therefore falsified; it is only their combina-
tion that can be ruled out. Since we generally know neither
of the marginal SCMs exactly (assuming we only observe
PXZ and PY Z), for any λX ∈ [LBX ,UBX ], by defini-
tion, there is a λ′

Y such that (λX , λ′
Y ) are counterfactually

consistent. Hence, λX cannot be ruled out without addi-
tional knowledge about λY . If, on the other hand, we know
that λY = λ⋆

Y (illustrated as the horizontal dashed green
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line in Fig. 2), the red rectangle degenerates to the interval
[λmin

X , λmax
X ]×{λ⋆

Y }, and the blue and green regions coincide
and collapse to the sub-interval [LB⋆

X ,UB⋆
X ] × {λ⋆

Y } de-
fined as min/max(λX ,λ⋆

Y )∈ΛC
λX , shown as the solid green

interval in Fig. 2. Next, we illustrate this with an example.

3.3. Worked-Out Example

Suppose that the observed marginal distributions PXZ and
PY Z are such that they satisfy the following: (i) X ⊥⊥ Z,
(ii) P(Y = 0, Z = 1) = 0, (iii) P(Z = 1) = 0.5, and
(iv) 0 < P(X = 0),P(Y = 0) < 1. Crucially, these
assumptions only involve empirical quantities and do not re-
quire joint observations of (X,Y, Z). We focus on the main
points here and refer to Appx. C for detailed derivations.

First, we consider the Y → Z marginal SCMMY in (11).
Assumption (ii) implies zero probability for the constant
one (f1) and NOT (f3) functions. Together with (iii), it
turns out that this uniquely determinesMY : we must have
λY = λ⋆

Y := 2θ−1
2θ where θ = P(Y = 1), and the response

function distribution is given by b = ( 2θ−1
2θ , 0, 1

2θ , 0)
⊤.8

This can also be written more compactly as an AND model:

Z := Y ∧NZ , NZ ∼ Bernoulli( 1
2θ ). (17)

Next, we consider the X → Z marginal SCMMX in (9).
Intuitively, assumption (i) rules out SCMs that do not give
equal weight to the constant zero (f0) and one (f1) func-
tions, as well as to the ID (f2) and NOT (f3) functions,
for otherwise X and Z could not be statistically indepen-
dent. Substituting (i) and (iii) into (10), we indeed find the
family of response function distributions implied by PXZ

to be a(λX) = (λX , λX , 0.5 − λX , 0.5 − λX)⊤ with
0 ≤ λX ≤ 0.5. For example, for λX = 0.5 this yields

Z := MZ , MZ ∼ Bernoulli(0.5), (18)

whereas for λX = 0 we obtain

Z := X ⊕MZ , MZ ∼ Bernoulli(0.5). (19)

As discussed, (18) and (19) are interventionally equivalent—
Z is an unbiased coin toss regardless of X—but entail dif-
ferent counterfactuals: given some (x, z), the statement “Z
would have been different, had X been x′ ̸= x” would be
true only for the XOR model (19) but false for (18). This
reflects that for (19) the counterfactual influence is γ = 1,
while for (18) it is γ = 0. We also note that (19) violates
faithfulness (Spirtes et al., 2000).9

Next, we analyse whether and how the problem is further
constrained by enforcing counterfactual consistency. Re-
call that in MY we have b1 = b3 = 0. Together with

8Note that (ii) and (iii) together imply that θ ≥ 0.5 since
P(Z = 1) = P(Y = 1, Z = 1) = θ P(Z = 1|Y = 1) = 0.5

9Our point could, in principle, also be made for more generic
causal models, but the math is less simple then.

assumption (iv), the second constraint in (14) for j = 1, 3
then implies that all but four of the ck are zero. The first
constraint in (15) then yields a system of four linear equa-
tions relating the non-zero components c0, c2, c8, c10 of c
to a(λX). By solving for c0 and enforcing positivity, c0 ≥ 0,
we finally obtain the consistency constraint: 1− θ ≤ λX .

In summary, if we only observe PXZ , any λX ∈ [0, 0.5] is
allowed; if we additionally know PY Z and enforce counter-
factual consistency, this interval shrinks to λX ∈ [1−θ, 0.5].
The space of counterfactually consistentMX can thus be
arbitrarily small, depending on 0.5 ≤ θ = P(Y = 1) < 1.
This is illustrated in Fig. 3 (a) for different values of θ,
see § 4 for details. In particular, we note that the (unfaithful)
XOR model (19) is falsified in that it can never be counter-
factually consistent withMY from (17). Moreover, in the
extreme case that θ = 0.5, the interval collapses to a point
and the only admissibleMX is (18) where X has no coun-
terfactual influence on Z. This seems intuitive sinceMY

puts all weight on the ID function (Z := Y ) for θ = 0.5,
i.e., Y fully determines Z in that case.

3.4. Some Marginal SCMs Cannot Be Falsified

In the previous example, enforcing consistency with the
interventional Y → Z marginal only affected the lower
bound on λX . In fact, it can be shown that this holds more
generally for both λX and λY (proof in Appx. E):

Proposition 4. Consider the structural causal marginal
problem described in §§ 3.1 and 3.2, with X → Z ← Y ,
causal sufficiency, and Boolean X,Y, Z. If a solution exists
(i.e., C is non-empty), we have (λmax

X , λmax
Y )⊤ ∈ ΛC .

In particular, this implies UBX = λmax
X and UBY = λmax

Y ,
as illustrated in Fig. 3 (b).10 As a result, the structural causal
marginal problem cannot falsify modelsMX orMY that
assign the maximally allowed weight to the constant func-
tions Z := 0 and Z := 1. Conversely, models correspond-
ing to small values of λX , λY can sometimes be falsified:
note that these are the models where the cause X (or Y ) has
a stronger counterfactual influence on Z, as defined in § 2.1.
We elaborate on the significance of this result in § 6.

4. Experiments
In Fig. 3 (a) we visualise the worked-out example from § 3.3.
Recall that there the interventional Y → Z model uniquely
determinesMY , and Λ0 is therefore a segment with λX ∈
[0, 0.5] and y-coordinate fixed by θ = P(Y = 1). We take
20 linearly-spaced θ ∈ (0.5, 1) and plot both Λ0 (thick red
segments) and the reduced range [LB⋆

X ,UB⋆
X ] (superim-

posed, thin blue lines). Decreasing θ from 1 (top line at

10Fig. 2 should thus be understood as a conceptual visualisation
rather than an exact representation; Fig. 3 (b) is a refinement.
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Figure 3: (a) For the example from § 3.3, both the unique allowed value of λY and the range of consistent X → Z
modelsMX (thin blue lines) change as θ = P(Y = 1) is varied. (b) An instance of the structural causal marginal problem
that entails constraints for both λX and λY . Note that (λmax

X , λmax
Y ) ∈ ΛC , as implied by Prop. 4. (c) In solid/dotted blue

(resp. dashed green), CDFs of the observed ratios between the blue (resp. green) and red area for different Beta priors
over PZ|XY : often, counterfactual consistency induces meaningful constraints.

λY = 0.5) to 0.5 (bottom line at λY = 0) yields an increase
in LB⋆

X , thereby restricting the range of allowedMX mod-
els and fully specifying it for θ = 0.5 when Z := Y .

Extending the analytical treatment of § 3.3 to more general
settings is nontrivial. To characterise the entailed constraints
in generic settings, we therefore resort to numerical simu-
lations (see Appx. G for all technical details): we generate
random instances of consistent PXZ and PY Z , compute the
space of solutions ΛC , and compare it to Λ0. A specific
instance is shown in Fig. 3 (b); see [GIF1] [GIF2] for ad-
ditional visualisations, where we fix a conditional PZ|XY

and plot ΛC and Λ0 for different choices of PX ,PY .11 The
parameters used to generate Fig. 3 (b) violate some of the
restrictive assumptions of § 3.3 (most notably X ⊥⊥ Z and
P (Y = 0, Z = 1) = 0), and show that the schematic vi-
sualisation in Fig. 2 captures some aspects of the general
case: the structural causal marginal problem can yield con-
straints for both marginal SCMsMX andMY , and Λ0 and
ΛC are different. Moreover, we see that (λmax

X , λmax
Y ) ∈ ΛC ,

consistent with Prop. 4.

In Fig. 3 (c), we plot the cumulative distribution functions
(CDFs) of the ratios between the blue and red areas (i.e.,
(UBX−LBX)(UBY −LBY )/|Λ0|) in blue, and the ratio be-
tween the green and red areas (i.e., |ΛC |/|Λ0|) in green. The
CDFs are estimated based on 1,000 independent samples
of P(Z = 1|X = i, Y = j) ∼ Beta(α, β) for i, j ∈ {0, 1}
and P(X = 1),P(Y = 1) ∼ U[0, 1].11 We compare two
scenarios: α = β = 1, i.e., a Uniform prior, shown as
solid lines; and α = β = 0.5, leading to more deterministic
conditionals, shown as dashed lines. Across both scenarios,
a reduction (i.e., ratios smaller than one) can be observed

11We fix a PZ|XY to ensure a solution to the statistical marginal
problem exists; only the PXZ and PY Z derived from it are subse-
quently used to computate the solution spaces.

at least 30% of the time. Whereas many times there is no
or only a small reduction, we also sometimes (with positive
probability) observe quite substantial reductions of 50+%.
Moreover, we find that α = β = 0.5 leads to larger reduc-
tions, suggesting that more deterministic (joint) conditionals
may impose stronger constraints. Finally, we remark that
(λmax

X , λmax
Y ) ∈ ΛC indeed holds across all runs.

5. Limitations and Extensions
So far, we have focused on one of the simplest instances
of the causal marginal problem involving (i) only two
marginals, each consisting of a (ii) Boolean cause-effect
model, under (iii) causal sufficiency (Asm. 2). This sim-
plified setting allowed us to focus on the main points and
to visualise the problem in 2D (see Figs. 2 and 3 (b)). We
now discuss how each of these restrictions can be relaxed to
allow for more general settings, see Fig. 4 for an illustration.

More than two marginals. Suppose that we have ac-
cess to m > 2 marginals, e.g., by separately observing
the effect of (m − 1) additional causes Y1, . . . , Ym−1 on
Z for the setting from Fig. 1 and § 3. Enforcing counter-
factual consistency for each marginal would yield m linear
constraints in (15), subject to which we could, e.g., solve
for [LBX ,UBX ]. While intuitively this should produce a
tighter bound (if feasible), the number of response func-
tions hk(X,Y1, . . . , Ym−1) in the joint model grows as 22

m

(cf. (3)) which for large m may pose computational chal-
lenges. In this case, analogies to statistical learning the-
ory (Vapnik, 1998) suggest restrictions on the capacity of re-
sponse functions which may render SCMs with m variables
falsifiable from marginal observations with k ≪ m vari-
ables (Janzing, 2018), see Appx. I for a more detailed dis-
cussion. Causal graphs different from Fig. 1 are, of course,
also possible, leading to different parametrisations of the

https://github.com/lgresele/structural-causal-marginal/blob/main/gifs/parameter_sweep_generic.gif
https://github.com/lgresele/structural-causal-marginal/blob/main/gifs/parameter_sweep.gif
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marginal and joint models; the general procedure of deriving
linear constraints by enforcing counterfactual consistency
and finding the corresponding feasible set would still apply.
Note that causal modularity implies that (under Asm. 2) the
joint model can be specified by separately describing the re-
lations between each variable and its causal parents. Hence,
if each variable is observed jointly with all its parents in at
least one marginal, this provides the same information as
joint observation of all variables. This would for example be
the case if we had the graph X ← Z ← Y or X ← Z → Y ,
but does not hold in the considered case of Fig. 1.

Dependent causes. In our example of Fig. 1, if addition-
ally we have dependent causes, e.g., X → Y , our approach
still applies but needs to be modified: first, the joint model
now also involves a distribution over the four response func-
tions generating Y from X; second, the marginal Y → Z
model is now confounded by X , which requires specifying
a joint distribution over (QY , QZ)—see also Appx. D.

Beyond Boolean variables. It is straightforward to
extend our approach to arbitrary (non-binary) categorical
variables. As described in generality in § 2, there would
be more response functions, and the marginals may no
longer be described by a single parameter but would still be
constrained via (7). The projection operators (13) remain
the same, and the constraints would be derived analogously
to (14) with sums over the respective domains. For contin-
uous variables, it is less clear how to proceed, as no simple
parametrisation such as (2) exists in general. However,
recent work suggests that assumptions on the allowed class
of functions fi in (1) such as Lipschitz-continuity have
non-trivial implications for partial identification (Gunsilius,
2018; 2019), see also (Kilbertus et al., 2020; Zhang &
Bareinboim, 2021) for recent progress. An alternative is
to discretise continuous variables, e.g., by thresholding.

Unobserved confounding. When Asm. 2 is violated, the
Markov factorisation (6) does not hold and we cannot con-
sider the distributions PRi

of each response function vari-
able separately. Instead, we need to parametrise their joint
distribution PR (which can drastically increase the number
of parameters) and derive the constraints imposed by the
observational distributions via (4) instead of (7).12 With
hidden confounders, a gap remains between the first and
the second rung even when the causal graph is known: in-
terventional distributions are no longer determined by the
observed PV as (8) no longer holds. Knowing some of
the do-probabilities from experimental data therefore pro-
vides additional information and imposes further constraints
via (5). For a more detailed treatment of a confounded ver-

12For known confounding structures, a partially factorised PR

could be used, but this typically leads to nonlinear constraints.

V1 V2

V3 V4

V5

Dataset 1

Dataset 2

Dataset 3

Figure 4: Illustration of a More General Version of the
Causal Marginal Problem. Here, we have a causal graph
over n = 5 causal variables and observe m = 3 marginals
over the subsets W1 = {V1, V2}, W2 = {V3, V4, V5}, and
W3 = {V2, V4, V5}. Dashed bi-directed arrows indicate
unobserved confounding.

sion of the setting from § 3, we refer to Appx. D. Finally, we
note that in confounded settings it could also be interesting
to consider an instantiation of the causal marginal problem
based on interventional models such as causal Bayesian
networks (CBNs; Spirtes et al., 2000) instead of SCMs.

With these extensions in mind, we finally give a more gen-
eral definition of the causal marginal problem (cf. Fig. 4).

Definition 5 (Causal marginal problem). Consider m
marginal causal (interventional or counterfactual) models
M1, . . . ,Mm over distinct but overlapping sets of variables
W1, . . . ,Wm ⊆ {V1, . . . , Vn}, respectively. The causal
marginal problem consists of determining the space of joint
causal (interventional or counterfactual) models M over
W1 ∪ . . . ∪Wm which are (interventionally or counterfac-
tually) consistent with the marginal ones.

6. Related Work
The problem of merging causal models involving overlap-
ping subsets of variables has also been considered by Janz-
ing (2018); Mejia et al. (2022),13 though focusing on in-
terventional (rung 2) quantities. Marginalisation of SCMs,
i.e., the inverse problem of merging, has been discussed
by Bongers et al. (2016) and Rubenstein et al. (2017). The
latter introduce a notion of interventional consistency be-
tween marginal and joint SCMs, which complements ours of
counterfactual consistency (Defn. 3). A related type of con-
sistency between different abstractions of the same underly-
ing causal system has been studied by Chalupka et al. (2016;
2017); Beckers & Halpern (2019); Beckers et al. (2020).

13Federated learning (Kairouz et al., 2021) is loosely related:
there, the aim is to learn from data from multiple sources (clients),
and each client’s data is accessible and processed locally, whereas
in our setting all marginals are available and processed globally.
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In the present work, we have explored the implications of
merging for the space of allowed marginal and joint models,
i.e., partial identification of SCMs. A parallel literature in-
stead aims to identify specific causal queries from a given
collection of observational and experimental datasets (in-
volving subsets of variables), a task referred to as transporta-
bility or data fusion (Pearl & Bareinboim, 2014; Bareinboim
& Pearl, 2016)—see also Chau et al. (2021) for uncertainty
quantification in this context and Lee & Bareinboim (2021)
for a combination with proxy-based approaches.

Both our and the aforementioned line of work assume
that the causal graph is known a priori. For causal
structure learning approaches for the setting of multiple
datasets involving overlapping sets of variables, we refer
to Triantafillou et al. (2010); Tillman & Eberhardt (2014);
Triantafillou & Tsamardinos (2015); Huang et al. (2020).

7. Discussion
Empirical content of counterfactuals. The use of coun-
terfactuals in causal inference has long been a subject of
debate; as summarised by Shafer (1996): “were counter-
factuals to have objective meaning, we might take them
as basic, and define probability and causality in terms of
them”. Some prominent approaches to causal inference
indeed regard counterfactuals (or potential outcomes) as
foundational (Imbens & Rubin, 2015; Pearl, 2009b). Others
question the legitimacy of models allowing for direct for-
mulation of counterfactual queries (such as SCMs): Dawid
(2000) terms them “metaphysical”, arguing that they either
yield unscientific (i.e., empirically irrefutable) statements
or are unnecessary in that the inferences for which they are
used could also be rephrased in non-counterfactual terms.

Our work illustrates a possible mode of falsifiability for
counterfactual models: some SCMs may be falsified when
previously unobserved variables become observable to-
gether with subsets of the original ones (e.g., through a
new experiment or study) and are consistently merged into
a joint model. For example, in the setting of Fig. 1, the ex-
ogenous variable associated to Z could (partly) correspond
to Y : together with Y → Z, observing PY Z would then pro-
vide (partial) information on what is otherwise unobserved.
This reflects a view according to which counterfactuals do
carry an empirical message and “may earn predictive power”
when “the uncertainty-producing variables offer the poten-
tial of being observed sometime in the future (before our
next prediction or action)” (Pearl, 2009b, § 7.2.2). We
further illustrate this point with an example in Appx. H.

Another insight is that interventional marginal models (i.e.,
a causal graph and corresponding observational distribution)
can entail constraints for counterfactual ones such as SCMs.
In other words, questions regarding model consistency may

also be meaningful when marginal and joint models do not
refer to the same rung in the ladder of causation. This
intertwines the two model classes (rungs two and three).

SCMs and falsifiability. Popper (2005) considers falsifi-
ability a crucial property of scientific hypotheses: unfalsi-
fiable ones belong to the realm of metaphysics, and falsifi-
able ones are increasingly corroborated as many attempts
to falsify them fail. Prop. 4 suggests that some SCMs are
intrinsically ‘harder’ to falsify in that the space of interven-
tional models they can be consistently merged with is larger:
those marginal models with the weakest counterfactual in-
fluence can always be consistently merged and are thus not
falsifiable through additional variables. Conversely, if a
marginal SCM with a strong counterfactual influence can
(repeatedly) be merged consistently with new marginals, we
obtain indirect evidence for it in the Popperian sense. Which
classes of causal models (beyond our Boolean setting) offer
a larger space of possible falsifications? This parallels the
idea of capacity measures in supervised learning, where the
generalisation gap is provably smaller if a class of allowed
explanations has small capacity relative to the dataset size.
The latter means that the space of datasets that would fal-
sify it (in that they cannot be fitted by any explanation in
the class) is large (Corfield et al., 2009). By analogy, this
would suggest to prefer SCMs that are easier to falsify: the
question may be investigated in future work as a first step
towards a ‘statistical learning theory of causal data fusion’.

Concluding remarks. We introduced the structural
causal marginal problem as a framework for merging causal
information from different datasets. While previous work fo-
cused on bounds on counterfactuals from joint observations,
we have emphasised bounds and falsifiabiliy that come from
marginal causal information involving different subsets of
variables. This way, causal insights emerge from ‘bringing
puzzle pieces together’ rather than from complete datasets.

Software and Data
Code is available at https://github.com/lgresele/structural-
causal-marginal.
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A. Parametrisation of Boolean Causally-Sufficient Cause-Effect Models
The definition of the response functions of the joint model is provided in Tab. 1. We now derive the family of SCMs that are
(interventionally) consistent with X → Z and the observed PXZ for the setting considered in § 2.1, i.e., assuming causal
sufficiency and Boolean variables.

First, we note that the marginal distribution PX completely determines the distribution of RX in (9).

Next, we consider how PZ|X constrains the distribution of RZ , i.e., the probability vector a ∈ ∆3.

From (7) and the definition of the response functions fi, we obtain the following two independent constraints:

PZ|X(Z = 0|X = 0) =: p00 = a0 + a2 (20)
PZ|X(Z = 0|X = 1) =: p01 = a0 + a3 (21)

Additionally, we have the simplex constraint:

1 = a0 + a1 + a2 + a3 (22)

We now solve the under-determined system of equations (20), (21), (22) by setting a0 =: λX .

From (20) and (21), this yields

a2 = p00 − λX (23)
a3 = p01 − λX (24)

and finally, by substitution in (22),

a1 = 1− λX − (p00 − λX)− (p01 − λX) = 1− p00 − p01 + λX (25)

Writing this as a vector, we obtain the following form for a:

a =


0

1− p00 − p01
p00
p01

+ λX


1
1
−1
−1

 (26)

with a single free parameter λX ∈ R.

Since we require 0 ≤ ai ≤ 1,∀i for a to be a valid probability vector, we find the admissible range of λX to be:

max {0, p00 + p01 − 1} ≤ λX ≤ min {p00, p01} (27)

Similarly, we can characterise the other marginal SCMMB over Y → Z in terms of its observational distribution. Denoting
p′ij := P(Z = i|Y = j), this yields analogously:

b =


0

1− p′00 − p′01
p′00
p′01

+ λY


1
1
−1
−1

 (28)

with
max {0, p′00 + p′01 − 1} ≤ λY ≤ min {p′00, p′01} (29)



Causal Inference through the Structural Causal Marginal Problem

B. Parametrisation of the Joint SCM with two Boolean causes

Table 1: Definition of the 16 response functions hk(X,Y ) from (12) mapping two Boolean inputs to a Boolean output.
Each row corresponds to one of the four different combinations (x, y) of the two inputs X and Y ; columns correspond to
different hk; and cells indicate the corresponding output of hk(x, y).

X Y h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

C. Details for the Example from § 3.3
We now provide a more detailed account of the worked-out example from § 3.3.

Recall that we make the following assumptions:

(i) X ⊥⊥ Z

(ii) P(Y = 0, Z = 1) = 0,

(iii) P(Z = 1) = 0.5,

(iv) 0 < P(X = 0),P(Y = 0) < 1.

C.1. Derivation of the SCMMY over Y → Z

Recall from § 2.1 that the SCMMY over Y → Z is characterised by the probability vector

b =


0

1− p′00 − p′01
p′00
p′01

+ λY


1
1
−1
−1


where p′ij = P(Z = i|Y = j), see Appx. A.

Now by assumption (ii) and (7), we have that

P(Z = 1|Y = 0) = 0 = b1 + b3 (30)

from which we conclude that
b3 = p′01 − λY = 0⇔ λY = p′01 (31)

and
b1 = 1− p′00 − p′01 + λY = 0⇔ p′00 = 1. (32)

This yields the following intermediate form of b:

b =


p′01
0

1− p′01
0


Next, by assumptions (ii) and (iii) we have that

P(Z = 1) = 0.5 = P(Y = 1)P(Z = 1|Y = 1) = P(Y = 1)(1− p′01) (33)
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Writing θ := P(Y = 1) and solving for p′01 we find

p′01 =
2θ − 1

2θ
(34)

which yields the final expression b = ( 2θ−1
2θ , 0, 1

2θ , 0)
⊤ as stated in the main paper.

In other words, Z := Y with probability 1
2θ and Z := 0 otherwise, which corresponds to the AND model from (17).

C.2. Derivation of the family of SCMsMX over X → Z

Next, we consider the family of SCMsMX over X → Z which is characterised by the response function probability vector

a =


0

1− p00 − p01
p00
p01

+ λX


1
1
−1
−1


where pij = P(Z = i|X = j), see Appx. A.

By assumption (iii) and independence of X and Z (assumption (i)), we have that:

P(Z = 0) = 0.5 = p00 = p01 (35)

Substituting the above into the expression for a(λX), we obtain:

a(λX) =


λX

λX

0.5− λX

0.5− λX

 . (36)

as well as λX ∈ [λmin
X , λmax

X ] = [0, 0.5] as stated in § 3.3.

Moreover, for λX = 0.5, we have that Z := 0 or Z := 1, both with probability 0.5 corresponding to (18), whereas for
λX = 0, we have that Z := X or Z := 1−X , both with probability 0.5 corresponding to (19).

C.3. Enforcing counterfactual consistency between the marginal SCMs

We now explore the implications of enforcing counterfactual consistency between the two marginal SCMs taking the forms
derived in the previous two subsections. To this end, we consider what the valid choices for the joint model, i.e., for c, are,
and whether this imposes additional constraints on the marginal models.

First, note that forMY we have b1 = b3 = 0. According to (14), this implies:

b1 = 0 = P(X = 0)(c3 + c7 + c11 + c15) + P(X = 1)(c12 + c13 + c14 + c15) (37)
b3 = 0 = P(X = 0)(c1 + c5 + c9 + c13) + P(X = 1)(c4 + c5 + c6 + c7) (38)

Together with 0 < P(X = 0) < 1 from assumption (iv), and since ci ≥ 0, we must have that:

c1 = c3 = c4 = c5 = c6 = c7 = c9 = c11 = c12 = c13 = c14 = c15 = 0. (39)

This only leaves c0, c2, c8, c10 as non-zero elements of c.

We now consider counterfactual consistency withMX . Writing the constraint a(λX) = Ac from (15) subject to (39), we
obtain: 

λX

λX

0.5− λX

0.5− λX

 =


1 P(Y = 0) P(Y = 0) P(Y = 0)
0 0 0 P(Y = 1)
0 0 P(Y = 1) 0
0 P(Y = 1) 0 0




c0
c2
c8
c10

 (40)
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Whereas (c2, c8, c10) = 1
P(Y=1) (λX , 0.5− λX , 0.5− λX) are always valid probabilities for λX ∈ [0, 0.5] since we must

have θ = P(Y = 1) ≥ 0.5 by assumptions (ii) and (iii) (see footnote 7 in § 3.3), solving for c0 yields:

c0 = λX − P(Y = 0)(c2 + c8 + c10) = λX −
P(Y = 0)

P(Y = 1)
(1− λX) ≥ 0 (41)

⇔λX

(
1 +

1− θ

θ

)
≥ 1− θ

θ
⇔ λX ≥ 1− θ (42)

That is, in order for there to be a valid solution c, the additional constraint λX ≥ 1− θ must be satisfied.

D. Structural Causal Marginal Problem With Unobserved Confounding

We now provide a more detailed treatment of a version of the structural causal marginal problem from § 3 in which causal
sufficiency (Asm. 2) is violated, i.e., allowing for arbitrary unobserved confounding. Specifically, we consider the setting in
which both marginal SCMs X → Z and Y → Z are confounded (i.e., there exist unobserved variables influencing {X,Z}
and {Y,Z}, respectively). Likewise, the joint model {X,Y } → Z is also assumed to be potentially confounded.

On a technical level, unobserved confounding manifests in a potential dependence of the exogenous noise terms in the
structural equations. In other words, the distribution over exogenous variables no longer factorises—in contrast to the
unconfounded case. Within the response function framework, this means that the input or cause is no longer independent
of the function or mechanism generating the effect from the cause(s). This means that we cannot parametrise the cause
distribution and distribution over functions separately, but instead need to consider their joint distribution PR.

D.1. Constraints imposed on the marginal SCMs by the observational marginal distributions

First we consider the marginal SCMsMX andMY (defined as in the main paper) and investigate how they are constrained
by the observed PXZ and PY Z .

For notational convenience, we denote the observational distributions by

P(X = i, Z = j) = αij ,

P(Y = i, Z = j) = βij ,
(43)

for i, j ∈ {0, 1}, and collect them in vectors α,β ∈ ∆3 ⊆ [0, 1]4.

Similarly, we parametrise the joint distributions over the corresponding response function variables as follows:

P(RX = i, RZ = j) = P(X = i, RZ = j) = qXij ,

P(QY = i, QZ = j) = P(Y = i, QZ = j) = qYij ,
(44)

for i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, and collect them in vectors qX ,qY ∈ ∆7 ⊆ [0, 1]8.

Since the Markov factorisation (6) does not hold under hidden confounding, we need to derive the constraints imposed by
the observational distributions PXZ and PY Z via (4) instead of (7). This yields:

αij = P(X = i, Z = j) =

1∑
i′=0

3∑
j′=0

P(RX = i′, RZ = j′)I{i = i′}I{j = fj′(i
′)} =

3∑
j′=0

qXij′I{j = fj′(i)}

βij = P(Y = i, Z = j) =

1∑
i′=0

3∑
j′=0

P(QY = i′, QZ = j′)I{i = i′}I{j = fj′(i
′)} =

3∑
j′=0

qYij′I{j = fj′(i)}

(45)

for i, j ∈ {0, 1}. Writing the above in matrix form, we thus obtain the constraints

α = LXqX

β = LY qY
(46)

where LX ,LY ∈ {0, 1}4×8 are binary constraint matrices.
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We conclude that the space of all potentially confounded SCMs MX over binary X → Z consistent with a given
observational joint distribution α is parametrised by all qX ∈ ∆7 which satisfy α = LXqX .

Unlike in the unconfounded case, this results in four free parameters: seven free parameters with three linearly independent
constraints. (Note that matching the observational distribution only eliminates three instead of four free parameters since the
fourth constraint is a linear combination of the other three: α11 = 1− α00 − α01 − α10.)

Analogously, any potentially confounded SCM MY over binary Y → Z consistent with a given observational joint
distribution β is parametrised by all qY ∈ ∆7 which satisfy β = LY qY .

D.2. Additional constraints imposed via experimental data

Whereas in the unconfounded cases, the observational PZ|X and interventional PZ|do(X) conditionals are identical,

∀(x, z) : P(Z = z|X = x) = P(Z = z|do(X = x)),

this is not the case when unobserved confounding is allowed: there may exist some (x, z) such that

P(Z = z|X = x) ̸= P(Z = z|do(X = x)).

Intuitively, with hidden confounding, the observational conditional captures two types of dependence: (i) the direct
dependence between X and Z, and (ii) the (indirect) dependence due to their (unobserved) common cause. The interventional
distribution, on the other hand, only comprises the first type (i). As a consequence, having access not only to the marginal
observational distribution PXZ but also to the do probabilities P(Z = z|do(X = x)) may impose additional constraints.

Specifically, we have the following additional constraints:

αIV
ij = P(Z = j|do(X = i)) =

3∑
j′=0

(qX0j′ + qX1j′)I{j = fj′(i)}

β IV
ij = P(Z = j|do(Y = i)) =

3∑
j′=0

(qY0j′ + qY1j′)I{j = fj′(i)}

(47)

Note that in contrast to before, we are additionally summing over the first subscript of q leading to the (qA0j′ + qA1j′) terms.
This is because—unlike in the observational case—the value of the exogenous variable RX associated with X does not
matter, since X is fixed by intervention, rather than taking on its natural value through the mechanism f .

The above can be written in matrix form as follows:

αIV = LX
IVq

X

βIV = LY
IVq

Y .
(48)

If experimental data in the form of αIV,βIV (or parts thereof) are available, we can use it to additionally constrain qX ,qY .
The number of free parameters for each of qX ,qY can be reduced by at most two more this way, leaving a total of two free
parameters each.

D.3. Additional constraints via assumptions such as monotonicity

Another way of reducing the number of free parameters is by means of additional assumptions such as the monotonicity
assumption, which is common in epidemiology and economics, particularly in the context of instrumental variable (IV)
models (Imbens & Angrist, 1994), and posits that there are no “defiers”, i.e., the weight of the NOT function f3 is zero:

P(RZ = 3) = 0 = qX03 + qX13

P(QZ = 3) = 0 = qY03 + qY13
(49)

D.4. Parametrisation of the joint SCM

Next, we parametrise the joint SCMM over {X,Y } → Z. Whereas in the unconfounded case, we were able to conclude
that X ⊥⊥ Y (for otherwise one of the marginal SCMs would be confounded), this is not necessarily true in the more general
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confounded case. Here, we will work under the assumption that we do not know the causal ordering between X and Y and
therefore cannot specify a full SCM without additional assumptions or background knowledge. We therefore proceed with
specifying a partial causal model, consisting of (i) a joint distribution PXY , and (ii) the structural equation generating Z

Z := hS(X,Y ) (50)

Note that such a model will only allow us to reason interventionally and counterfactually about joint interventions of the
form do(X := x, Y := y) but not about single node interventions, do(X := x) or do(Y := y), since we are not modelling
the causal relationship between X and Y . (And, since we never observe X and Y jointly, we may not be able to infer it.)

As in the unconfounded case, the response function variable S takes values in {0, 1, ..., 15} indexing the 16 functions
hk : {0, 1}2 → {0, 1} listed in Tab. 1 in Appx. B.

We parametrise this joint partial causal model over binary, potentially confounded {X,Y } → Z as follows:

P(X = i, Y = j, S = k) = qijk (51)

and collect these probabilities of the 2× 2× 16 = 64 joint states in a vector q ∈ ∆63 ⊆ [0, 1]64.

D.5. Enforcing consistency between the joint and marginal models

We now impose the additional constraint that the two marginal SCMs MX and MY parametrised by qX and qY ,
respectively, must be counterfactually consistent (at the level of counterfactual involving Z under changes to X and Y )
with the (partial) joint model parametrised by q. To this end, we proceed as in the unconfounded case making use of the
projection operators PY

y and PX
x from (13) which given a particular value Y = y or X = x map the functions hk to

functions fj(X) or fj′(Y ), respectively.

Specifically, for enforcing consistency of the joint modelM withMX over X → Z after marginalisation of Y , we obtain
for all i ∈ {0, 1} and j ∈ {0, 1, 2, 3}:

qXij = P(X = i, RZ = j) =

1∑
y=0

∑
k:PY

y (hk)=fj

P(X = i, Y = y, S = k) =

1∑
y=0

∑
k:PY

y (hk)=fj

qiyk (52)

Similarly, for consistency ofM withMY after marginalisation of X we obtain for all i ∈ {0, 1} and j ∈ {0, 1, 2, 3}:

qYij = P(Y = i, QZ = j) =

1∑
x=0

∑
k:PX

x (hk)=fj

P(X = x, Y = i, S = k) =

1∑
x=0

∑
k:PX

x (hk)=fj

qxik (53)

This can be written in matrix form as

qX = KXq

qY = KY q
(54)

where KX ,KY ∈ {0, 1}8×64 are binary constraint matrices.

D.6. Linear program and polytope of solutions

We can now reason about different types of interventional and counterfactual queries that can be expressed in terms of qX ,
qY , or q subject to the constraints imposed by enforcing consistency:

(i) between the two families of marginal SCMs MX and MY parametrised by qX and qY with their respective
observational distributions α and β;

(ii) between the joint (partial) SCMM parametrised by q with the two marginal SCMsMX andMY .
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Denoting the query of interest by Q, this leads to the following optimisation problem which is again a linear program:

min/max
qX ,qY ∈∆7,q∈∆63

Q(qX ,qY ,q)

subject to: α = LXqX

β = LY qY

αIV = LX
IVq

X

βIV = LY
IVq

Y

qX = KXq

qY = KY q

(55)

where α,β and αIV,βIV (provided experimental data is available) are known constant probabilities, and
LX ,LY ,LX

IV,L
Y
IV,K

X ,KY are known constant, binary constraint matrices.

Similarly to (16) (see Appx. F for more details) we can also first define the space of allowed joint SCMs as a polytope:

Cconf :=
{
q ∈ ∆63 | ∃qX ,qY ∈ ∆7 : α = LXqX ,β = LY qY ,αIV = LX

IVq
X ,βIV = LY

IVq
Y ,qX = KXq,qY = KY q

}
.

The vertices of Cconf can be found using numerical solvers in analogy to how this is done in the unconfounded case, see
Appx. F. We could then optimise queries over allowed q simply by optimising over Cconf, an equivalent formulation to (55).
Arguably, however, if one solely cares about a specific query, solving (55) is more direct. Furthermore, if one is interested in
the consistent marginal models, we can compute the projection of the vertices of Cconf onto, say, qX via qX = KXq and
define the consistent SCMs from X → Z as the convex hull of the projected vertices.

D.7. What counterfactual queries can be addressed by which model?

We may wonder what types of counterfactual queries each of the marginal and joint SCMs may be able to answer, especially
given that we only considered a partial specification of the joint SCM. We summarise this as follows:

MX : P(Zdo(x)|x′, z′)

MY : P(Zdo(y)|y′, z′)
M: P(Zdo(x,y)|x′, y′, z′)

None: P(Zdo(x)|x′, y′, z′),P(Zdo(y)|x′, y′, z′)

Answering the last type of query would require either additional assumptions such as X ⊥⊥ Y , or knowledge of the qualitative
causal relationship between X and Y , either whether we have X → Y or Y → X .

E. Proof of Prop. 4
In order to prove Prop. 4, we will use the following Lemma, which we prove separately in Appx. E.1.

Lemma 6. Consider the setting X → Z ← Y as in § 3.2. Assume the two statistical marginal models PXZ , PY Z can
successfully be merged, and

δX := P(Z = 0|X = 1)− P(Z = 0|X = 0) ≥ 0 and δY := P(Z = 0|Y = 1)− P(Z = 0|Y = 0) ≥ 0.

Then there exist conditional probabilities qi,j := P(Z = 0|X = i, Y = j) such that

q00 ≤ q01 ≤ q11 and q00 ≤ q10 ≤ q11

and the distribution defined via PXY Z(X = i, Y = j, Z = 0) = qijP(X = i)P(Y = j), has marginals that coincide with
PXZ and PY Z .

Analogous statements as in Lemma 6 hold by swapping the roles of X = 1 and X = 0, or Y = 1 and Y = 0, respectively.
For convenience we now restate Prop. 4 and then provide its proof.
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Proposition 4. Consider the Boolean setting X → Z ← Y with marginal and joint models as defined in § 3.2. If a solution
to the structural causal marginal problem exists (i.e., C is non-empty), we have (λmax

X , λmax
Y )⊤ ∈ ΛC .

Proof of Prop. 4. As we do throughout we assume that 0 < P(X = 1) < 1, and 0 < P(Y = 1) < 1.

In the setting we consider and under the assumption that the statistical marginal models can be merged, there exists a
conditional distribution P(Z|X,Y ) such that we have P(X,Y, Z) = P(Z|X,Y )P(X)P(Y ) and all statistical constraints
are satisfied. P(Z|X,Y ) is completely characterised by four probabilities 0 ≤ qi,j ≤ 1 that are defined as

qi,j := P(Z = 0|X = i, Y = j)

for i, j ∈ {0, 1}. We will construct c for the case that

(S1) P(Z = 0|X = 0) ≤ P(Z = 0|X = 1) and P(Z = 0|Y = 0) ≤ P(Z = 0|Y = 1).

For all the other cases, the construction of c follows in analogy.

By Lemma 6, there exists q00, q01, q10, q11 that are consistent with PXZ and PY Z and such that

q00 ≤ q01 ≤ q11 and q00 ≤ q10 ≤ q11.

Given {qij}, the question is, can we find a corresponding vector c ∈ ∆15 that implies λX = λmax
X and λY = λmax

Y ? The
connection between {qij} and c is given in eq. (7) and can be derived from Tab. 1:

q00 = c0 + c2 + c4 + c6 + c8 + c10 + c12 + c14

q01 = c0 + c1 + c4 + c5 + c8 + c9 + c12 + c13

q10 = c0 + c1 + c2 + c3 + c8 + c9 + c10 + c11

q11 = c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7

(56)

Recall that (A)jk =
∑1

y=0 PY (y)I{PY
y (hk) = fj(X)}, with f0 ≡ 0, and f1 ≡ 1, as well as f2(X) = X (“ID”), and

f3(X) = 1−X (“NOT”), see § 2.1 and § 3 and footnote 6.

By (S1) setting λX = λmax
X results in [a(λX)]2 = 0 = [Ac]2. Writing out [Ac]2 we obtain

0 = c4P(Y = 0) + c6P(Y = 0) + c8P(Y = 1) + c9P(Y = 1) + c12 + c13P (Y = 1) + c14P (Y = 0).

Together with 0 < P(Y = 0) < 1 and since all entries of c are non-negative, this gives

0 = c4 = c6 = c8 = c9 = c12 = c13 = c14.

Analogously, setting λY = λmax
Y results in

0 = c2 = c6 = c8 = c9 = c10 = c11 = c14.

Thus, the only possible non-zero entries of c are c0, c1, c3, c5, c7, c15 and (56) reduces to

q00 = c0

q01 = c0 + c1 + c5

q10 = c0 + c1 + c3

q11 = c0 + c1 + c3 + c5 + c7.

(57)

Since we have q00 ≤ q01, q10 ≤ q11, we can make the following assignment:

if q01 ≥ q10: if q01 ≤ q10:
c0 = q00 c0 = q00

c1 = q10 − q00 c1 = q01 − q00

c3 = 0 c3 = q10 − q01

c5 = q01 − q10 c5 = 0

c7 = q11 − q01 c7 = q11 − q10

c15 = 1− q11 c15 = 1− q11
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Clearly the entries of c sum to 1 and since q00 ≤ q01 ≤ q11 and q00 ≤ q10 ≤ q11, all entries of c are valid probabilities. By
construction we have now found a valid probability vector that is consistent with the marginals PXZ and PY Z and implies
λX = λmax

X , λY = λmax
Y .

Let us verify that the constructed c indeed fulfils (15) for λX = λmax
X = P(Z = 0|X = 0) (Recall that are working for the

special case (S1)). Using the constructed c, Tab. 1, the definition of A we obtain

[Ac]0 = c0 + c1P(Y = 1) + c5P(Y = 1)

= q00 + P(Y = 1)(q01 − q00)

= P(Y = 0)q00 + P(Y = 1)q01

= P(Z = 0, Y = 0|X = 0) + P(Z = 0, Y = 1|X = 0)

= P(Z = 0|X = 0) = 0 + λmax
X

= [a(λmax
X )]0,

[Ac]1 = c5P(Y = 0) + c7P(Y = 0) + c15

= P(Y = 0)(c5 + c7 + c15) + P(Y = 1)c15

= P(Y = 0)(q11 − q10 + 1− q11) + P(Y = 1)(1− q11)

= 1− P(Z = 0, Y = 0|X = 1)− P(Z = 0, Y = 1|X = 1)

= 1− P(Z = 0|X = 1)

= 1− P(Z = 0|X = 1)− P(Z = 0|X = 0) + P(Z = 0|X = 0)

= 1− P(Z = 0|X = 1)− P(Z = 0|X = 0)λmax
X

= [a(λmax
X )]1,

[Ac]2 = 0

= P(Z = 0|X = 0)− λmax
X

= [a(λmax
X )]2,

[Ac]3 = c1P(Y = 0) + c3 + c7P(Y = 1)

= P(Y = 0)(c1 + c3) + P(Y = 1)(c3 + c7)

= P(Y = 0)(q10 − q00) + P(Y = 1)(q11 − q01)

= P(Z = 0, Y = 0|X = 1)− P(Z = 0, Y = 0|X = 0) + P(Z = 0, Y = 1|X = 1)− P(Z = 0, Y = 1|X = 0)

= P(Z = 0|X = 1)− P(Z = 0|X = 0)

= P(Z = 0|X = 1)− λmax
X

= [a(λmax
X )]3.

Analogously, it follows that (15) is consistent for λY = λmax
Y .

E.1. Proof of Lemma 6

Proof of Lemma 6. As we do throughout we assume that < P(X = 1) < 1, and 0 < P(Y = 1) < 1. A necessary condition
for merging PXZ and PY Z is that they imply the same marginal distribution over Z∑

i∈{0,1}

P(Z = 0|X = i)P(X = i) =
∑

j∈{0,1}

P(Z = 0|Y = j)P(Y = j). (58)

Using the definition of δX , δY we obtain

P(Z = 0|X = 0)P(X = 0) + (P(Z = 0|X = 0) + δX)P(X = 1) (59)
= (P(Z = 0|Y = 1)− δY )P(Y = 0) + P(Z = 0|Y = 1)P(Y = 1) (60)

⇔ P(Z = 0|X = 0) + δXP(X = 1) = P(Z = 0|Y = 1)− δY P(Y = 0) (61)
⇔ δY X := P(Z = 0|Y = 1)− P(Z = 0|X = 0) = δY P(Y = 0) + δXP(X = 1). (62)
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By Assumption δX ≥ 0, δY ≥ 0, and thus δY X ≥ 0. Analogously we obtain

δXY := P(Z = 0|X = 1)− P(Z = 0|Y = 0) = δXP(X = 0) + δY P(Y = 1) ≥ 0. (63)

Since we assumed that a joint statistical model PXY Z exists, which is consistent with the marginals PXZ ,PY Z , there exists
qi,j := P(Z = 0|X = i, Y = j) such that

P(Z = 0|X = 0) = q00P(Y = 0) + q01P(Y = 1),

P(Z = 0|X = 1) = q10P(Y = 0) + q11P(Y = 1),

P(Z = 0|Y = 0) = q00P(X = 0) + q10P(X = 1),

P(Z = 0|Y = 1) = q01P(X = 0) + q11P(X = 1).

Thus under our assumption that none of the marginal probabilities P(X = 0), P(Y = 0) equals 0 or 1, choosing q00
uniquely determines all the other {qij}:

(a) P(Z = 0|X = 0) = q00P(Y = 0) + q01P(Y = 1)

⇔ q01 =
P(Z = 0|X = 0)

P(Y = 1)
− q00P(Y = 0)

P(Y = 1)
,

(64)

(b) P(Z = 0|Y = 0) = q00P(X = 0) + q10P(X = 1)

⇔ q10 =
P(Z = 0|Y = 0)

P(X = 1)
− q00P(X = 0)

P(X = 1)
,

(65)

(c) P(Z = 0|Y = 1) = q01P(X = 0) + q11P(X = 1)

⇔ q11 =
P(Z = 0|Y = 1)

P(X = 1)
− q01P(X = 0)

P(X = 1)

=
P(Z = 0|Y = 1)

P(X = 1)
−

(
P(Z=0|X=0)

P(Y=1) − q00P(Y=0)
P(Y=1)

)
P(X = 0)

P(X = 1)

=
P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)
.

(66)

P(Z = 0|X = 1) = q10P(Y = 0) + q11P(Y = 1) is then ensured if the marginals can consistently be merged, which we
assumed. Our goal is thus to check whether a q00 exists such that

0 ≤ q00, q00 ≤ q01, q00 ≤ q10, q01 ≤ q11, q10 ≤ q11, q11 ≤ 1. (67)

Using the equalities defined above, we can express all these constraints in terms of q00. Ensuring that a solution exists, will
then complete the proof.
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(C1) 0 ≤ q00

(C2) q00 ≤ q01 ⇔ q00 ≤
P(Z = 0|X = 0)

P(Y = 1)
− q00P(Y = 0)

P(Y = 1)
⇔ q00 ≤ P(Z = 0|X = 0),

(C3) q00 ≤ q10 ⇔ q00 ≤
P(Z = 0|Y = 0)

P(X = 1)
− q00P(X = 0)

P(X = 1)
⇔ q00 ≤ P(Z = 0|Y = 0),

(C4) q01 ≤ q11 ⇔
P(Z = 0|X = 0)

P(Y = 1)
− q00P(Y = 0)

P(Y = 1)

≤ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)
,

(C5) q10 ≤ q11 ⇔
P(Z = 0|Y = 0)

P(X = 1)
− q00P(X = 0)

P(X = 1)

≤ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)

(C6) q11 ≤ 1⇔ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)
≤ 1.

(C1), (C2), (C3) are already in interpretable form, so next we rewrite (C4)

P(Z = 0|X = 0)

P(Y = 1)
− q00P(Y = 0)

P(Y = 1)
≤ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)

⇔P(Z = 0|X = 0)− q00P(Y = 0) ≤ P(Z = 0|Y = 1)P(Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(X = 1)

+
q00P(Y = 0)P(X = 0)

P(X = 1)

⇔ q00P(Y = 0)

(
1 +

P(X = 0)

P(X = 1)

)
≥ P(Z = 0|X = 0) +

P(Z = 0|X = 0)P(X = 0)

P(X = 1)
− P(Z = 0|Y = 1)P(Y = 1)

P(X = 1)

⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)P(X = 1) + P(Z = 0|X = 0)P(X = 0)− P(Z = 0|Y = 1)P(Y = 1)

⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)− P(Z = 0|Y = 1)P(Y = 1)

⇔ q00 ≥
P(Z = 0|X = 0)− P(Z = 0|Y = 1)P(Y = 1)

P(Y = 0)

(∗)⇔ q00 ≥
P(Z = 0|X = 0)− [P(Z = 0|X = 0)P(X = 0) + P(Z = 0|X = 1)P(X = 1)− P(Z = 0|Y = 0)P(Y = 0)]

P(Y = 0)

⇔ q00 ≥ P(Z = 0|Y = 0)− P(Z = 0|X = 0)P(X = 0) + P(Z = 0|X = 1)P(X = 1)− P(Z = 0|X = 0)

P(Y = 0)

⇔ q00 ≥ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
(P(Z = 0|X = 1)− P(Z = 0|X = 0))

⇔ q00 ≥ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
δX , (C4)
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where at (∗) we used (58). We can also rewrite (C4) once more in terms of P(Z = 0|X = 0)

q00 ≥ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
δX

⇔ q00 ≥ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
(P(Z = 0|X = 1)− P(Z = 0|X = 0))

⇔ q00P(Y = 0) ≥ P(Z = 0|Y = 0)P(Y = 0)− P(X = 1)(P(Z = 0|X = 1)− P(Z = 0|X = 0))

(∗)⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)P(X = 0)− P(Z = 0|Y = 1)P(Y = 1) + P(Z = 0|X = 0)P(X = 1)

⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)− P(Z = 0|Y = 1)P(Y = 1)

⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)(P(Y = 0) + P(Y = 1))− P(Z = 0|Y = 1)P(Y = 1)

− P(Z = 0|X = 0)P(Y = 1) + P(Z = 0|X = 0)P(Y = 1)

⇔ q00P(Y = 0) ≥ P(Z = 0|X = 0)P(Y = 0) + P(Z = 0|X = 0)P(Y = 1)− P(Z = 0|Y = 1)P(Y = 1)

⇔ q00 ≥ P(Z = 0|X = 0)− δY X
P(Y = 1)

P(Y = 0)
. (C4)

Analogously, we can work through (C5) and obtain

P(Z = 0|Y = 0)

P(X = 1)
− q00P(X = 0)

P(X = 1)
≤ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)

⇔ q00 ≥ P(Z = 0|X = 0)− δY
P(Y = 1)

P(X = 0)

⇔ q00 ≥ P(Z = 0|Y = 0)− δXY
P(X = 1)

P(X = 0)
. (C5)

Next we consider (C6)

q11 ≤ 1⇔ P(Z = 0|Y = 1)

P(X = 1)
− P(Z = 0|X = 0)P(X = 0)

P(Y = 1)P(X = 1)
+

q00P(Y = 0)P(X = 0)

P(Y = 1)P(X = 1)
≤ 1

⇔ P(Z = 0|Y = 1)P(Y = 1)− P(Z = 0|X = 0)P(X = 0) + q00P(Y = 0)P(X = 0) ≤ P(X = 1)P(Y = 1)

⇔ q00 ≤
P(X = 1)P(Y = 1)− P(Z = 0|Y = 1)P(Y = 1) + P(Z = 0|X = 0)P(X = 0)

P(Y = 0)P(X = 0)
.

Using

P(X = 1)P(Y = 1)− P(Z = 0|Y = 1)P(Y = 1) + P(Z = 0|X = 0)P(X = 0)

= P(X = 1, Y = 1)− P(Z = 0, Y = 1) + P(Z = 0, X = 0)

= [P(Z = 0, X = 1, Y = 1) + P(Z = 1, X = 1, Y = 1)]

− [P(Z = 0, X = 0, Y = 1) + P(Z = 0, X = 1, Y = 1)]

+ [P(Z = 0, X = 0, Y = 0) + P(Z = 0, X = 0, Y = 1)]

= P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0) ≥ 0,

we obtain for (C6)

q00 ≤
P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

P(X = 0)P(Y = 0)
. (C6) (68)



Causal Inference through the Structural Causal Marginal Problem

Let us summarize all constraints once more:

(C1) q00 ≥ 0 =: η1

(C2) q00 ≤ P(Z = 0|X = 0) =: η2,

(C3) q00 ≤ P(Z = 0|Y = 0) =: η3,

(C4) q00 ≥ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
δX = P(Z = 0|X = 0)− δY X

P(Y = 1)

P(Y = 0)
=: η4,

(C5) q00 ≥ P(Z = 0|X = 0)− δY
P(Y = 1)

P(X = 0)
= P(Z = 0|Y = 0)− δXY

P(X = 1)

P(X = 0)
=: η5,

(C6) q00 ≤
P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

P(X = 0)P(Y = 0)
=: η6.

We now have to check whether all the lower bounds on q00 are smaller than all the upper bounds, in other words:

The proof is complete. ⇔ max(η1, η4, η5) ≤ min(η2, η3, η6). (69)

First consider the case where η2 = min(η2, η3, η6). Then all lower bounds are achievable, since δX , δY , δXY , δY X are per
definition non-negative. The same holds if η3 = min(η2, η3, η6).

It is less apparent to see what holds in the case of η6 = min(η2, η3, η6). Since the numerator of η6 is the sum of two
probabilities we always have η6 ≥ 0 = η1. We therefore need to show η6 ≥ η4, η6 ≥ η5.

η4 ≤ η6

⇔ P(Z = 0|Y = 0)− P(X = 1)

P(Y = 0)
δX ≤

P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

P(X = 0)P(Y = 0)

⇔ P(Z = 0, Y = 0)P(X = 0)− P(X = 0)P(X = 1) [P(Z = 0|X = 1)− P(Z = 0|X = 0)]

≤ P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

⇔ [P(Z = 0, X = 0, Y = 0) + P(Z = 0, X = 1, Y = 0)]P(X = 0)− P(X = 0)P(Z = 0, X = 1)

+ P(X = 1)P(Z = 0, X = 0)

≤ P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

⇔ [P(Z = 0, X = 0, Y = 0) + P(Z = 0, X = 1, Y = 0)]P(X = 0)− P(X = 0)P(Z = 0, X = 1)

+ P(X = 1) [P(Z = 0, X = 0, Y = 0) + P(Z = 0, X = 0, Y = 1)]

≤ P(Z = 1, X = 1, Y = 1) + P(Z = 0, X = 0, Y = 0)

⇔ P(Z = 0, X = 1, Y = 0)P(X = 0)− P(X = 0)P(Z = 0, X = 1) + P(X = 1)P(Z = 0, X = 0, Y = 1)

≤ P(Z = 1, X = 1, Y = 1)

⇔ P(X = 0) [P(Z = 0, X = 1, Y = 0)− P(Z = 0, X = 1)] + P(X = 1)P(Z = 0, X = 0, Y = 1)

≤ P(Z = 1, X = 1, Y = 1)

⇔ − P(X = 0)P(Z = 0, X = 1, Y = 1) + P(X = 1)P(Z = 0, X = 0, Y = 1)

≤ P(Z = 1, X = 1, Y = 1)

⇔ P(X = 1)P(Z = 0, X = 0, Y = 1) ≤ P(Z = 1, X = 1, Y = 1) + P(X = 0)P(Z = 0, X = 1, Y = 1)

⇔ P(X = 1)P(Z = 0, X = 0, Y = 1) ≤ P(Z = 1, X = 1, Y = 1) + (1− P(X = 1))P(Z = 0, X = 1, Y = 1)

⇔ P(X = 1)P(Z = 0, X = 0, Y = 1) ≤ P(X = 1, Y = 1)− P(X = 1)P(Z = 0, X = 1, Y = 1)

⇔ P(X = 1)P(Z = 0, X = 0, Y = 1) ≤ P(X = 1)P(Y = 1)− P(X = 1)P(Z = 0, X = 1, Y = 1)

⇔ P(X = 1)P(Z = 0, Y = 1) ≤ P(X = 1) [P(Z = 0, Y = 1) + P(Z = 1, Y = 1)]

⇔ 0 ≤ P(X = 1)P(Z = 1, Y = 1),

which always is a true statement. Analogously we obtain

η5 ≤ η6 ⇔ 0 ≤ P(Y = 1)P(Z = 1, X = 1)⇔ TRUE.
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Note that the validity of η6 being larger than all lower bounds holds independently of our assumptions on δX ≥ 0 and
δY ≥ 0.

We have thus shown that under the assumptions stated in the Lemma, the interval [max(η1, η4, η5),min(η2, η3, η6)] is
non-empty. Hence, picking any q00 in this interval and computing q01, q10, q11 accordingly, leads to an example fulfilling
the Lemma’s statement.

F. Construction of the convex polytope C
In § 3.2 we defined the set of feasible joint counterfactual models via eq. (16). To clarify that this actually is a polytope and
to handle it with numerical solvers, we need to express the constraints on c as a set of equalities and inequalities. These
should take the following form (see Section 2.2.4 of Boyd & Vandenberghe (2004)):

Ãc ⪯ b̃ (70)

C̃c = d̃, (71)

for some matrices Ã, C̃ that need to be determined. Here we take on the notation a ⪯ b, to denote that ai ≤ bi for all
entries.

Inequality constraints. Starting from (15) we have

Ac = a(λA) = a0 + λA


1
1
−1
−1

 , with a0 =


0

1− P (Z = 0|X = 0)− P (Z = 0|X = 1)
P (Z = 0|X = 0)
P (Z = 0|X = 1)

 .

Therefore, using λmin
X ≤ λA ≤ λmax

X , we get the following inequalities:

Ac ⪯ a0 +


λmax
X

λmax
X

−λmin
X

−λmin
X

 . (72)

And similarly for b(λB),

Bc ⪯ b0 +


λmax
Y

λmax
Y

−λmin
Y

−λmin
Y

 . (73)

Additionally, from

−Ac = −a0 + λA


−1
−1
+1
+1

 (74)

and again using λmin
X ≤ λA ≤ λmax

X , we get

−Ac ⪯ −a0 +


−λmin

X

−λmin
X

λmax
X

λmax
X

 . (75)

And similarly for b(λB),

−Bc ⪯ −b0 +


−λmin

Y

−λmin
Y

λmax
Y

λmax
Y

 . (76)
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Finally, from the positivity constraint ci ≥ 0 ∀i, we get

−Ic ≤ [0, . . . , 0]⊤ ∈ R16

where I is the 16× 16 identity matrix.

Overall, we can express the inequality constraints as

Ãc ⪯ b̃ (77)

by defining the 32× 16 matrix Ã and the 32-dimensional vector b̃ as

Ã :=


A
−A
B
−B
−I

 , b̃ :=


ã1
ã2
b̃1

b̃2

0


Where ã1, ã2, b̃1, b̃2 respectively denote the RHS of eqs. (72), (75), (73), (76), and 0 = [0, . . . , 0]⊤ ∈ R16.

Equality constraints. Besides the inequalities above we also need to ensure that all 4 implied equations of a(λA) = Ac
are fulfilled simultaneously (i.e., they are fulfilled for the same λA). We can enforce this by ensuring that λA as computed
from the first row equals the one computed from the second, third, and fourth row, respectively. Let us make it explicit for
the equality of λA computed from the first two rows:

λA = [Ac]0 − [a0]0 = [Ac]1 − [a0]1 = λA

[Ac]0 − [Ac]1 = [a0]0 − [a0]1

⇔
(
1 −1 0 0

)
Ac =

(
1 −1 0 0

)
a0

Doing this also for the third and fourth row, we obtain the constraints

(
1 −1 0 0

)
Ac =

(
1 −1 0 0

)
a0,(

1 0 1 0
)
Ac =

(
1 0 1 0

)
a0,(

1 0 0 1
)
Ac =

(
1 0 0 1

)
a0,

which we rewrite as one set of constraints

C̃Ac = d̃a0 , with C̃A :=

1 −1 0 0
1 0 1 0
1 0 0 1

A, and d̃a0 :=

1 −1 0 0
1 0 1 0
1 0 0 1

a0. (78)

Proceeding similarly, we obtain

C̃Bc = d̃b0 , with C̃B :=

1 −1 0 0
1 0 1 0
1 0 0 1

B, and d̃b0 :=

1 −1 0 0
1 0 1 0
1 0 0 1

b0. (79)

Additionally we obtain one equality constraint ensuring that the probabilities of c sum to one
∑

i ci = 1, i.e.,

C̃1c = 1, with C̃1 := [1.0, . . . , 1.0] ,R1×16 .

Overall we can thus collect all equality constraints as C̃c = d̃ with

C̃ :=

C̃A

C̃B

C̃1

 , and d̃ :=

d̃a0

d̃b0

1


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Characterization of C. To summarise we can characterise the polytope of feasible joint models as

C := {c ∈ ∆15 | ∃(λX , λY ) ∈ Λ0 s.t. (15) holds} = {c ∈ R16 | C̃c = d̃, Ãc = b̃} .

The convex polyhedron C can alternatively be represented as the convex hull of its vertices VC := {v1, . . . ,vm} ⊂ R16,
where m ∈ N depends on the number of constraints. We use the pypoman package (Caron, 2018), to compute those vertices
of the polyhedron. After that we can project each vertex into the (λX , λY )-plane. Since [Ac]0 = λX and [Bc]0 = λY , each
c corresponds to (

λX

λY

)
= Ẽc, (80)

with

Ẽ :=

(
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

)
·
(
A
B

)
. (81)

Thus the region of admissible pairs (λX , λY ) (green region in Fig. 2) is given as the convex hull of the projected vertices of
C

ΛC = Conv
(
{Ẽv | v ∈ VC}

)
. (82)

G. Technical details on the Experiments
All the code used for the experiments and to generate the plots in Fig. 3 can be found in the supplementary material.

Parametrising PXY Z . In order to ensure that a solution to the marginal problem exists, we start from parameters of the joint
distribution PXY Z (i.e. a joint distribution exists by construction), and compute the parameters of the marginal distributions
PX and PY by marginalisation. We factorise PXY Z according to the DAG in Fig. 1 as

θX = P (X = 1) (83)
θY = P (Y = 1) (84)

θZ|X=x,Y=y = P (Z = 1|X = x, Y = y), x, y ∈ {0, 1} , (85)

which overall requires 6 parameters.

Finding solutions: projections of the 16-dimensional polytope. The polygon ΛC can be determined by projecting the
vertices of the high-dimensional polytope C in 2-dimensions and computing their convex hull. For the polytope vertices
projection, the equality and inequality constraints and affine projection are described in Appx. F. For polyhedra manipulation
in Python, we use the pypoman package (Caron, 2018), which allows to compute the 2-d projection of the vertices of our
C polytope. Once the projected vertices are computed, ΛC can be found as their convex hull, which we compute using
scipy (Virtanen et al., 2020).

Alternatively, if we are only interested in LB⋆
X ,UB⋆

X , the computation could be formulated as a linear program (Boyd &
Vandenberghe, 2004),

min/max
λX ,λY ∈R,c∈∆15

λX

subject to a(λX) = Ac

a(λY ) = Bc

λmin
X ≤ λX ≤ λmax

X

λmin
Y ≤ λY ≤ λmax

Y

(86)

and similarly for LB⋆
Y ,UB⋆

Y . This can be solved using e.g. the linprog module in scipy (Virtanen et al., 2020).

Sampling problem instances. The parameters in (83) and (84) are sampled from a Uniform distribution on [0, 1], while
those in (85) are sampled from a Beta distribution, whose parameters α and β are set either to 1 (corresponding to a
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Uniform distribution) or to 0.5 (which puts more mass towards the extremes, thus resulting in more deterministic conditional
distributions PZ|XY ).

Parameter sweeps and GIF visualisations. To generate [GIF1] we use generic (i.e., not inducing a unique SCM)
conditionals

P(Z = 1|X = 0, Y = 0) = 0.3, (87)
P(Z = 1|X = 0, Y = 1) = 0.8, (88)
P(Z = 1|X = 1, Y = 0) = 0.3, (89)
P(Z = 1|X = 1, Y = 1) = 0.7. (90)

Whereas [GIF2] is generated through a joint SCM Z := X ⊕ Y :

P(Z = 1|X = 0, Y = 0) = 0, (91)
P(Z = 1|X = 0, Y = 1) = 1, (92)
P(Z = 1|X = 1, Y = 0) = 1, (93)
P(Z = 1|X = 1, Y = 1) = 0. (94)

In both cases we then sweep over different probabilities P(X = 1),P(Y = 1) as shown in the respective plots on the right.

The green points in the plots represent the projected vertices of the high-dimensional polytope C.

H. An illustrative example
We now provide an example which—despite arguably being slightly contrived—is meant to illustrate the potential usefulness
of our approach and the structural causal marginal problem in a real-world context.

Suppose that we are interested in investigating a disease Z for which Z = 1 indicates that a person recovers completely
after ten days (fast recovery), while Z = 0 indicates that the disease went on for more than ten days (long symptoms). We
assume that there exists some medication X against disease Z, such that X = 1 denotes that a person took the medication,
while X = 0 denotes that a person did not take the medication.

Clearly, the disease does not cause the medication, but potentially vice versa, so we can take the causal graph to be X → Z.
For sake of simplicity, suppose further that X and Z are unconfounded (see Appx. D for a detailed treatment of confounding).

We have access to an observational study in the form of a distribution PXZ which indicates that without medication the
chances of having long symptoms are 50%, i.e., P(Z = 0|X = 0) = 1/2, whereas with medication the chances of long
symptoms reduce to 40%, i.e., P(Z = 0|X = 1) = 0.4. Thus, overall, the medication has a positive ACE.

The family of marginal SCMsMX over X → Z that can explain these findings can be found via (10) and are given by:

a(λX) =


0
0.1
0.5
0.4

+ λX


1
1
−1
−1

 , (95)

with λX ∈ [0, 0.4].

Since λX = 0 is allowed, we cannot exclude that what happens is the following:

• For 10% of the people the medication has no effect and they always recover fast (a1 = 0.1, Z := f1(X) ≡ 1).

• For 50% of the people the medication causes the fast recovery, while without medication, they have long symptoms
(a2 = 0.5, Z := f2(X) = X).

• For 40% of the people the medication causes active harm: If they take it, they experience long symptoms, while
without, they recover fast (a3 = 0.4, Z := f3(X) = 1−X).

https://ibb.co/rf9XYzD
https://ibb.co/nB3dTrg
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Now it is plausible that this scenario would be quite frightening and could cause some people to refuse to take the medication
because they are afraid that it harms. (Although from a purely statistical perspective it is still advisable to take it and that’s
why we assume the medication was approved.)

But now imagine that another study is conducted that investigates the (unconfounded) effect of the presence of some specific
genotype Y = 1 (Y = 0 denotes that a person has a different genotype than the one under investigation) on the chances of
fast recovery Z = 1. For, say, privacy reasons, however, this study does not document whether or not subjects undertook the
medication X , so it only provides data from PY Z and we have no joint observations of PXY Z .

Suppose the second study finds that 40% of people have the genotype, P(Y = 1) = 0.4, and all of those experience long
symptoms P(Z = 0|Y = 1) = 1.

We fix the remaining probabilities to P(X = 0) = P(X = 1) = 1/2 and P(Z = 0|Y = 0) = 1/12, although other choices
can also lead to the same conclusion.

With the methods proposed in this paper, we can then show that enforcing consistency of both datasets constrains the
possible SCMs over X → Z to a unique λX = 0.4, see Appx. H.1 below for details. Now this SCM has a totally different
interpretation to the one (previously still possible) given above:

• For 40% of people the medication has no effect and they always experience long symptoms (a0 = 0.4, Z :=
f0(X) ≡ 0).

• For 50% of people the medication has no effect and they always recover fast (a1 = 0.5, Z := f1(X) ≡ 1).

• For 10% of people the medication causes the fast recovery, while without medication, they have long symptoms
(a2 = 0.1, Z := f2(X) = X).

• For 0% of people the medication causes active harm (a3 = 0, Z := f3(X) = 1−X).

It seems plausible that people would be much more willing to take the medication now that they know ’it cannot harm’—even
if the ACE remains unchanged. However, note that we now also know that the medication only helps in 10% of the cases.

H.1. Explicit Calculation

For conciseness when we presented the example we simply stated that PY Z forces λX = 0.4. For completeness we now
provide the explicit calculation. We assumed P(Z = 0|Y = 1) = 1, thus from (10) we obtain

b(λY ) =


0

−P(Z = 0|Y = 0)
P(Z = 0|Y = 0)

1

+ λY


1
1
−1
−1

 . (96)

The only value of λY that ensures this is a valid probability vector is λY = P(Z = 0|Y = 0). This results in

b =


P(Z = 0|Y = 0)

0
0

1− P(Z = 0|Y = 0)

 . (97)

By enforcing Bc = b, for the two zero entries we obtain (by similar considerations as in the proof of Prop. 4):

0 = [Bc]1 = c3P(X = 0) + c7P(X = 0) + c11P(X = 0) + c12P(X = 1) + c13P(X = 1) + c14P(X = 1) + c15

⇔ 0 = c3 = c7 = c11 = c12 = c13 = c14 = c15.

Similarly

0 = [Bc]2 = c2P(X = 0) + c6P(X = 0) + c10 + c14P(Y = 0) + c8P(X = 1) + c9P(X = 1) + c11P(X = 1)

⇔ 0 = c2 = c6 = c10 = c14 = c8 = c9 = c11.

So overall the non-zero entries can only be c0, c1, c4, c5
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Furthermore, we have (considering only non-zero entries of c)

[Ac]0 = c0 + c1P(Y = 1) + c4P(Y = 1) + c5P(Y = 1) (98)
= P(Y = 0)c0 + P(Y = 1)(c0 + c1 + c4 + c5) (99)
= 0.6c0 + 0.4 ≥ 0.4 (100)

where we used P(Y = 1) = 0.4 and c0 + c1 + c4 + c5 = 1 as they are the only non-zero entries. On the other hand from
(95) we have [a(λX)]0 ≤ 0.4. Hence the only way [Ac]0 = [a(λX)]0 = λX , happens if c0 = 0 and λX = 0.4.

To conclude, we show that setting c1 = 0, c4 = 1
6 , c5 = 5

6 leads to the correct marginals.

We have

P(Z = 0|X = 0) = c4 + P(Y = 1)c5 =
1

6
+

5

6
· 0.4 = 1/2 ✓ (101)

P(Z = 0|X = 1) = c4P(Y = 1) + c5P(Y = 1) = (c4 + c5) · P(Y = 1) = 0.4 ✓ (102)

P(Z = 0|Y = 0) = c4P(X = 0) =
1

6
· 1
2
=

1

12
✓ (103)

P(Z = 0|Y = 1) = c4 + c5 = 1 ✓. (104)

Furthermore we have

P(Z = 0|X = 0)P(X = 0) + P(Z = 0|X = 1)P(X = 1) =
1

2
(0.5 + 0.4)

= 0.45

=
1

12
· 3
5
+ 1 · 4

10
= P(Z = 0|Y = 0)P(Y = 0) + P(Z = 0|Y = 1)P(Y = 1),

so also the marginal distribution over Z is consistent.

I. More on the connection to statistical learning theory and capacity measures
The following remarks are meant to illustrate to what extent the ambiguity in the space of allowed SCMs may be reduced
by only considering function classes with low VC dimension (Vapnik & Chervonenkis, 1971). Intuitively, if we allow all
(arbitrarily complex) response functions, the space of consistent (joint) models can be quite large. If, on the other hand, we
constrain their allowed capacity and only allow for ‘simple’ functions, this couples their behaviour across different input
values and consequently can reduce the model space substantially.

Since the space of possible SCMs compatible with all observed probabilities is a convex polytope, a simple measure for
its size is the entropy of its unique maximum entropy distribution. Let us first compute this entropy for the case where all
response functions are allowed (i.e., without restrictions on their VC dimension).

To generate any conditional PY |X with cause X and effect Y attaining values in finite sets X and Y with |X | = n by an
SCM, following Peters et al. (2017, § 3.4) we represent each function f : X → Y as an element in the n-fold Cartesian
product Yn := Y ×· · ·×Y such that the j-th component indicates f(xj). Then, each distribution P(Y |X = xj) determines
only the marginal distribution of the jth component of Yn. Thus, the MaxEnt joint distribution on Yn having these n
marginal distributions is simply given by their product. In other words, we obtain a distribution of functions in which
observing what f does with the input xj tells us nothing on what f does with a different input xi ̸= xj . The observed
probabilities are always compatible with such a ’decoupling of inputs’ since we don’t observe one draw of the function
applied to different inputs. The SCM obtained this way has the entropy

n∑
j=1

H(Y |X = xj), (105)

where the sum runs over all n possible values xj of X (without weighting factor p(xj)) and thus grows as O(n).

Restricted function classes, however, couple different inputs: If Y is binary, and we consider a function class C with
VC dimension h, the size |C| (which here coincides with the shattering coefficient) is bounded from above by log |C| ∈
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O(h log n) (Vapnik, 1998). Hence, for fixed h, the MaxEnt distribution on C grows at most logarithmically in n as opposed
to the linear growth in (105).

In summary, this means that the space of allowed models (as measured by MaxEnt here), is reduced when restrictions on the
function class are enforced.
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