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Abstract
PAC-Bayesian error bounds provide a theoretical
guarantee on the generalization abilities of meta-
learning from training tasks to unseen tasks. How-
ever, it is still unclear how tight PAC-Bayesian
bounds we can achieve for meta-learning. In this
work, we propose a general PAC-Bayesian frame-
work to cope with single-task learning and meta-
learning uniformly. With this framework, we
generalize the two tightest PAC-Bayesian bounds
(i.e., kl-bound and Catoni-bound) from single-
task learning to standard meta-learning, result-
ing in fast convergence rates for PAC-Bayesian
meta-learners. By minimizing the derived two
bounds, we develop two meta-learning algorithms
for classification problems with deep neural net-
works. For regression problems, by setting Gibbs
optimal posterior for each training task, we ob-
tain the closed-form formula of the minimizer of
our Catoni-bound, leading to an efficient Gibbs
meta-learning algorithm. Although minimizing
our kl-bound can not yield a closed-form solution,
we show that it can be extended for analyzing
the more challenging meta-learning setting where
samples from different training tasks exhibit inter-
dependencies. Experiments empirically show that
our proposed meta-learning algorithms achieve
competitive results with respect to latest works.

1. Introduction
Inspired by human beings’ ability of utilizing past experi-
ence to efficiently learn a novel task, meta-learning, also
referred to as learning to learn (Thrun & Pratt, 1998), has
received much attention from the machine learning commu-
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nity in the last decade. The goal of meta-learning is thus
to transfer the knowledge extracted from training tasks to
unseen tasks for fast adaptation. Successful applications of
such learning paradigm have been witnessed in computer
vision (Snell et al., 2017; Ye et al., 2020), natural language
processing (Wu et al., 2020; Chen et al., 2021), reinforce-
ment learning (Li et al., 2021) and other related fields.

Apart from practical applications, the theoretical analysis
of meta-learning has also been developed in the last decade.
The pioneering work was provided by (Baxter, 2000), which
first assumed that all learning tasks are independently and
identically distributed (i.i.d.) from a task environment. Un-
der this assumption, the following works investigated meta-
learning from the standpoint of VC-theory (Maurer, 2009;
Maurer et al., 2016) or algorithmic stability (Maurer, 2005;
Chen et al., 2020). In recent years, there has also emerged
an interest in studying meta-learning via PAC-Bayesian
analysis (Pentina & Lampert, 2014; 2015; Amit & Meir,
2018). However, it is still unclear how tight PAC-Bayesian
generalization bounds we can achieve for meta-learning.

This paper intends to tackle this issue and provides fast-rate
PAC-Bayesian bounds for meta-learning. Our motivation
is to generalize the two tightest PAC-Bayesian bounds, kl-
bound and Catoni-bound, from the i.i.d. single-task learning
setting (Maurer, 2004; Catoni, 2007), to the standard meta-
learning setting where observations from different tasks are
independent but not identically distributed. The main tool
to achieve this goal is a useful lemma in (Berend & Tassa,
2010) that bounds the sum of independent bounded ran-
dom variables with the sum of i.i.d. Bernoulli random vari-
ables. We can then apply the demonstration techniques in
single-task learning to meta-learning, obtaining two fast-rate
PAC-Bayesian bounds, which are still called kl-bound and
Catoni-bound for convenience (Theorems 3-4). As a result,
we unify the demonstration framework of PAC-Bayesian the-
ory for single-task learning and meta-learning, and provide
two up-to-date tightest bounds for meta-learners (see com-
parisons between different bounds in Table 1). By setting
the derived two bounds as minimization objective, we also
develop two bound-minimizing meta-learning algorithms
for classification problems with deep neural networks.

Next, we give more theoretical results and applications of
our derived two bounds. For the Catoni-bound, we show
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how to obtain a closed-form solution to finding its minimum.
Concretely, by choosing Gibbs posterior for each training
task in this bound, we can yield an explicit form of the Gibbs
optimal hyper-posterior, which is the training objective in
PAC-Bayesian meta-learning setting. Directly approximat-
ing such closed-form hyper-posterior leads to an efficient
meta-learning algorithm for regression problems. For the kl-
bound, we extend it to the more challenging meta-learning
setting where dependence exists among samples from differ-
ent tasks. The approach undertaken to establish our result
is based on the decomposition of the dependency graph
of the training data (Ralaivola et al., 2010). The extended
PAC-Bayesian kl-bound admits an analogous form of our
previous one for the standard setting, up to a multiplicative
factor that represents the degree of interdependence within
the dependency graph. This bound thus reveals the impact
of data dependence for meta-learning. Finally, we conduct
experiments on several benchmarks. The empirical results
show that our proposed meta-learning algorithms achieve
competitive performance with respect to latest works.

Our main contributions are summarized as follows:
(1) We propose a unified framework that can generalize
PAC-Bayesian analysis from single-task learning to meta-
learning. The fast-rate PAC-Bayesian kl-bound and Catoni-
bound are hence derived for meta-learning, followed by two
bound-minimizing classification algorithms.
(2) By setting Gibbs optimal posterior for each training task
in our Catoni-bound, we obtain the explicit form of the opti-
mal hyper-posterior. We thus develop an efficient regression
algorithm that only needs to approximate the Gibbs optimal
hyper-posterior, instead of learning posterior for each task
and hyper-posterior simultaneously like previous methods.
(3) We extend our kl-bound to the meta-learning setting
where tasks are dependent. To the best of our knowledge,
this is the first PAC-Bayesian bound for meta-learning with
data from different tasks exhibiting interdependencies.
(4) Experiment results on both classification and regression
problems empirically validate the effectiveness of our theo-
retical analysis for meta-learning, especially the tightness
and applicability of our PAC-Bayesian Catoni-bound.

2. Related Work
PAC-Bayesian Theory. The first PAC-Bayesian general-
ization bound was provided by (McAllester, 1998). (Seeger,
2002) developed such theory and obtained the tightest PAC-
Bayesian kl-bound. (Germain et al., 2009) provided a gen-
eral method to demonstrate a PAC-Bayesian bound. We
need to point out that in the above works, the i.i.d. assump-
tion is necessary to obtain the tightest kl-bound. Besides
that, (Catoni, 2007) yielded a generalization bound of fast
rate by just assuming the independence of observations. Un-

til now, the kl-bound in (Maurer, 2004) and Catoni’s bound
are still among the tightest PAC-Bayesian bounds. More
explanations for the similarities between these tight bounds
can be found in (Audibert, 2010) [Chapter 2]. Other works
extended PAC-Bayesian bounds to general cases, such as
martingale setting (Seldin et al., 2012), heavy-tailed data
(Alquier & Guedj, 2018), non-i.i.d. data (Ralaivola et al.,
2010) or unbounded loss functions (Holland, 2019; Had-
douche et al., 2021). In this work, we focus on bounded loss
function. We first propose the generalized PAC-Bayesian
kl-bound and Catoni-bound for independent (not necessar-
ily identically distributed) random variables (Theorem 2).
Then, we show how to apply them to derive fast-rate PAC-
Bayesian generalization error bounds for meta-learning.

Meta-Learning Theory. The first systematic analysis of
meta-learning theory was proposed by (Baxter, 2000), which
assumed that the data distributions of different tasks are
i.i.d. sampled from the same task environment. Baxter
then gave a covering number based generalization bound
for meta-learning. After that, (Maurer, 2005) investigated
meta-learning theory from the perspective of algorithm sta-
bility and proposed a new indicator, called transfer risk,
to measure the performance of a meta-learning algorithm.
Other works followed this line and intended to provide a
tighter bound on the transfer risk (Maurer, 2009; Denevi
et al., 2018; Chen et al., 2020). In this work, we study meta-
learning from the perspective of PAC-Bayesian analysis.

PAC-Bayesian Meta-Learning Theory. The pioneering
work of PAC-Bayesian meta-learning theory was proposed
by (Pentina & Lampert, 2014). They adopted the task en-
vironment notation from Baxter and proposed the concept
of hyper-posterior. The hyper-posterior is trained over the
observed tasks and generates an informative prior when
encountering a novel task for fast adaptation. The PAC-
Bayesian bound on the transfer risk (of the learned hyper-
posterior) is always composed of three parts: empirical
multi-task error, environment-level complexity and task-
level complexity (see Table 1). (Pentina & Lampert, 2015)
further generalized PAC-Bayesian meta-learning theory to
the non-i.i.d. cases where different tasks are dependent or
the task environment is changing. (Amit & Meir, 2018)
provided a new PAC-Bayesian bound and applied their the-
oretical results to the optimization of deep neural networks.
(Rothfuss et al., 2021) generalized the PAC-Bayesian meta-
learning theorem to the unbounded loss and derived the PAC-
optimal hyper-posterior. (Farid & Majumdar, 2021) studied
meta-learning with both PAC-Bayes and uniform stability
analysis. However, both the environment-level complexity
and the task-level complexity in these PAC-Bayesian bounds
suffered from slow convergence rates (e.g., the environment-
level and task-level complexities in (Pentina & Lampert,
2015) are of order O( 1√

n
) and O( 1

n
√
m

), respectively, with
n training tasks and m samples per task). In this work, we



Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning

Table 1. Different PAC-Bayesian meta-learning bounds on er(Q). Bound = Empirical Error + Environment-level Complexity +
Task-level Complexity. n is the number of training tasks. m is the sample size per task. P,Q ∈M1(M1(H)) are the hyper-prior and
hyper-posterior respectively. P,Qi = Q(Si, P ) ∈M1(H) are the prior and the posterior for the i-th training task. In our Catoni-bound,
the constant C > 1. Explicit forms of different bounds are given in Table 2 of the Appendix.

Classical Bounds Empirical Error Environment-Level Complexity Task-Level Complexity

(Pentina & Lampert, 2014) êr(Q) O
(K(Q,P)√

n

)
O
(K(Q,P)+

∑n
i=1 EP∼QK(Qi,P )

n
√
m

+ 1√
m

)
(Amit & Meir, 2018) êr(Q) O

(√K(Q,P)+lnn
n

)
O
(

1
n

∑n
i=1

√
K(Q,P)+EP∼QK(Qi,P )+ln (2nm)

m

)
(Rothfuss et al., 2021) êr(Q) O

(K(Q,P)√
n

)
O
(K(Q,P)+

∑n
i=1 EP∼QK(Qi,P )

n
√
m

+ 1√
n

)
kl-bound (ours) êr(Q) O

(√K(Q,P)+ln
√
n

n

)
O
(K(Q,P)+EP∼Q

∑n
i=1 K(Qi,P )+ln

√
nm

mn

)
Catoni-bound (ours) Cêr(Q) O

(K(Q,P)
n

)
O
(K(Q,P)+EP∼Q

∑n
i=1 K(Qi,P )

mn

)
derive two fast-rate PAC-Bayesian bounds for meta-learning
(Theorem 3-4). Specifically, the task-level complexities
in our kl-bound and Catoni-bound have a rate of O( 1

nm ).
The environment-level complexity in our Catoni-bound also
have a fast rate of O( 1

n ) (see Table 1 for detailed compar-
isons). Furthermore, we generalize our kl-bound to the
meta-learning setting of dependent observations. Note that
although (Pentina & Lampert, 2015) claimed that they de-
rived a bound for dependent tasks, they still assumed the
independence of the samples from different tasks. In con-
trast, we provide a more general PAC-Bayesian bound for
meta-learning with dependent samples from different tasks,
and show that this bound is much tighter than that in (Pentina
& Lampert, 2015) (see discussion below Theorem 6).

3. Preliminary
A supervised learning problem is characterized by the sam-
ple space Z , a hypothesis space H, and a loss function
l : H × Z → R, where Z = X × Y is the product space
of input space X and label space Y . We assume that l is
[0, 1]-valued. Actually, if the loss function l is bounded
and locates in the interval [0,M ] (M > 0), we can use
the rescaling technique and focus on the [0, 1]-valued loss
l/M . Let [K] denote the set {1, ...,K}, for any integer K.
M1(A) denotes the set of probability measures over the set
A. Throughout the paper, we ignore measurability issues.

3.1. PAC-Bayesian Theory for Single-Task Learning

In PAC-Bayesian single-task learning setting, a task is char-
acterized by an unknown distribution D over the space Z ,
from which a size-m sample S = {zi}mi=1 is provided,
with each zi drawn i.i.d. from D. For any hypothesis
h ∈ H, denote by er(h,D) , Ez∼Dl(h, z) its expected
error over D and by êr(h, S) , 1

m

∑m
i=1 l(h, zi) its empir-

ical error over S. In the PAC-Bayesian framework, the
goal is to output a posterior Q = Q(S, P ) ∈ M1(H)
by training an algorithm with the sample S and the prior

P ∈M1(H) as input. The expected error and empirical er-
ror of a randomized classifier associated with distribution Q
are defined as er(Q,D) , Eh∼Qer(h,D) and êr(Q,S) ,
Eh∼Qêr(h, S), respectively. Denote the KL-divergence be-
tween distributions Q and P by K(Q,P ) = Eh∼Q ln dQ

dP ,
where dQ

dP represents the Radon-Nikodym derivative of Q
with respect to P . Denote the relative entropy between the
Bernoulli random variables with success rate p and q by
kl(p, q) = p ln p

q + (1− p) ln 1−p
1−q . Then the PAC-Bayesian

kl-bound and Catoni-bound for single-task learning are:

Theorem 1 (Germain et al., 2009) [Corollary 2.1-2.2] Let
l be the binary-valued misclassification loss. For any fixed
prior P ∈ M1(H), any data distribution D over Z , any
δ > 0, any positive constant λ > 0, with probability at least
1− δ over the draw of i.i.d. sample S ∼ Dm, the following
two inequalities hold for any posterior Q ∈M1(H):

kl(êr(Q,S), er(Q,D)) ≤
K(Q,P ) + ln 2

√
m
δ

m
,

er(Q,D) ≤ λ

m(1−e−
λ
m )
êr(Q,S)+

K(Q,P )+ln(1/δ)

m(1− e−
λ
m )

.

3.2. PAC-Bayesian Theory for Meta-Learning

In PAC-Bayesian meta-learning setting, the learner is given
n different training tasks, each of which is associated with a
data distribution Di(1 ≤ i ≤ n) over the sample space Z
(i.e. Di ∈M1(Z)). In each task, the size-m i.i.d. training
sample Si = {zij}mj=1 ∼ Dm

i is provided. To develop
meta-learning theory, we adopt the task environment concept
proposed by (Baxter, 2000). Specifically, we assume that
the n different data distributions {Di}ni=1 are sampled from
the same distribution, referred to as environment τ . Thus,
the environment τ can be regarded as a probability measure
over the set of all distributions (i.e. τ ∈M1(M1(Z))).

Next, we follow the PAC-Bayesian meta-learning frame-
work proposed by (Pentina & Lampert, 2014). We regard the
prior P ∈ H for each training task as a random variable. P
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is sampled randomly from a distribution called hyper-prior
P ∈M1(M1(H)) given before seeing the n training tasks.
The goal of meta-learning is to output a hyper-posterior
Q ∈ M1(M1(H)) by training a meta-learning algorithm
with hyper-prior P and datasets {Si}ni=1 as input. When
encountering the new task, a new prior will be sampled from
the learned hyper-posterior Q that contains the information
of the n training tasks for fast adaptation. Under the PAC-
Bayesian framework, choosing an informative prior for a
new task can achieve a tighter generalization bound and
better performance (Catoni, 2007). Since different tasks
are sampled from the same environment and share some
similarities, the informative prior drawn from the learned
hyper-posterior is expected to adapt to the new task quickly.
Formally, the quality of the learned hyper-posterior Q can
be measured by the transfer risk (Maurer, 2009; Pentina
& Lampert, 2014) on the new data distribution D sampled
independently from the same task environment τ :

er(Q) , EP∼QED∼τES∼Dmer(Q(S, P ), D). (1)

Notice that we can not minimize the transfer risk directly
since the environment τ and the sampled probability mea-
sure D are unknown. Instead, we will choose to minimize
the following empirical multi-task risk over the n training
tasks êr(Q) to obtain a high-quality hyper-posterior Q:

êr(Q) , EP∼Q
1

n

n∑
i=1

êr(Q(Si, P ), Si). (2)

Furthermore, to obtain a PAC-Bayesian bound for er(Q),
we also consider the following expected multi-task risk:

ẽr(Q) , EP∼Q1/n

n∑
i=1

er(Q(Si, P ), Di). (3)

We will write Q(Si, P ) as Qi for abbreviation when the
context is clear. The notations of PAC-Bayesian single-
task learning and meta learning are listed in Table 6 in
Appendix H for convenient reference. The PAC-Bayesian
meta-learning theory thus will give an upper bound on the
transfer risk er(Q) of the hyper-posteriorQ according to its
empirical multi-task risk êr(Q) or its expected multi-task
risk ẽr(Q). Such results will be detailed in the next section.

4. Theoretical Results
We provide fast-rate PAC-Bayesian bounds for meta-
learning in two common scenarios: (1) All samples and
all tasks are independent (we also show how to derive the
Gibbs optimal hyper-posterior by minimizing our Catoni-
bound). (2) Samples from different tasks are dependent.

4.1. PAC-Bayesian Bounds for Meta-Learning with
Independent Samples

To give fast-rate PAC-Bayesian bounds for meta-learning,
we need to choose convex function D(p, q) and then bound

the moment generating function (MGF) of D(p, q) (i.e.,
E exp{D(er(Q), ẽr(Q))} and E exp{D(ẽr(Q), êr(Q))}).
Almost all existing works set D(p, q) = p − q, apply
Hoeffding’s lemma to bound the MGF of D(p, q), and
finally obtain a PAC-Bayesian meta learning bound of
O(1/t+ t/K)(∀t > 0), which suffers a slow convergence
rate of O(1/

√
K) (K > 0). In contrast, we set D(p, q) as

kl(q, p) or 1 Φ λ
K

(p)− q, (λ > 0), as what we do to obtain
the PAC-Bayesian kl-bound and Catoni-bound in single-
task learning. However, since ẽr(Q) and êr(Q) are the
summations of independent [0, 1]-valued random variables
(not i.i.d. {0, 1}-valued ones as in Theorem 1), we can not
directly apply the results in Theorem 1 to bound the MGF of
D(p, q). To overcome this challenge, we use the following
lemma to bound the expectation of the function of the sum
of independent [0, 1]-valued random variables (rvs) with the
expectation of the function of the sum of i.i.d. {0, 1}-valued
ones. Such result is originated from (Berend & Tassa, 2010),
and more explanations can be found in Appendix A.

Lemma 1 Let {ξk}Kk=1 be a sequence of independent ran-
dom variables with P (0 ≤ ξk ≤ 1) = 1, and {ηk}Kk=1

be a sequence of i.i.d. Bernoulli random variables with
Eηk = K−1(

∑K
k=1 Eξk). Then for any convex function g,

Eg(
1

K

K∑
k=1

ξk) ≤ Eg(
1

K

K∑
k=1

ηk).

With such lemma, it is more convenient for us to derive
generalized PAC-Bayesian kl-bound or Catoni-bound for
independent [0, 1]-valued random variables as follow.

Theorem 2 Let F be a set of random variables f . Let
S = {ξk}Kk=1 be a sequence of random variables with
each component ξk (k ∈ [K]) drawn independently ac-
cording to the measure µk over the set Ak. Let R(f) =
1
K

∑K
k=1 Eξkgk(f, ξk), r(f) = 1

K

∑K
k=1 gk(f, ξk), where

gk : F × Ak → [0, 1] is a bounded function. Denote
Ef∼ρ(R(f)),Ef∼ρ(r(f)) by ρ(R), ρ(r) respectively. Then
∀δ > 0, λ > 0, for any predefined distribution π ∈M1(F),
with probability at least 1 − δ over the draw of S, the fol-
lowing two inequalities hold for any measure ρ over F:

kl(ρ(r), ρ(R)) ≤ K(ρ, π) + ln (2
√
K/δ)

K
,

ρ(R) ≤ λρ(r)

K(1− e−
λ
K )

+
K(ρ, π) + ln(1/δ)

K(1− e−
λ
K )

.

Proof Sketch. Note that D(ρ(R), ρ(r)) ≤ 1
λ

[
K(ρ, π) +

lnEf∼πESeλD(R(f),r(f))/δ
]

holds with high probability
for any convex function D(·, ·). With Lemma 1 we can
bound ESeλD(R(f),r(f)) with the MGF of convex function
of the sum of i.i.d. Bernoulli rvs. Setting D(p, q) as kl(q, p)
or Φ λ

K
(p)− q, and using Theorem 1 finish the proof. �

1Φa(p) = −a−1 ln{1− [1− exp(−a)]p}, a ∈ R, p ∈ [0, 1]
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Setting F = H, gk = l, Ak = Z , we can recover the result
in Theorem 1. As shown in (Maurer, 2004) [Equation (2)],
the PAC-Bayesian kl-bound in the right hand side (RHS)
of the above first inequality gives the optimal order in K.
Applying Pinsker’s inequality kl(p, q) ≥ 2(p − q)2, we
can obtain a bound on the deviation |ρ(R) − ρ(r)| with
a slow convergence rate of O(1/

√
K). Further, applying

the stronger version kl(p, q) ≥ (p− q)2/(2q) when q > p
gives a fast convergence rate of O(logK/K) for general-
ization bound. Such analysis leads to our fast-rate PAC-
Bayesian kl-bound for meta-learning as below.

Theorem 3 For any predefined hyper-prior P , with prob-
ability at least 1− δ over the draw of the training sample
{Si}ni=1, the following holds for any hyper-posterior Q:

er(Q)≤êr(Q)+

√
K(Q,P)+ln 2

√
n
δ

2n
+

√
2∆êr(Q)

mn
+

2∆

mn
,

where ∆ = K(Q,P) +EP∼Q
∑n
i=1K(Qi, P ) + ln 2

√
mn
δ .

To prove the above result, applying the kl-bound in The-
orem 2 to bound kl(er(Q), ẽr(Q)) and kl(ẽr(Q), êr(Q))
respectively and then using the union bound can obtain an
upper bound on er(Q). As shown in (Pentina & Lampert,
2014; Amit & Meir, 2018), the proof of the bound for meta-
learning is always divided into two parts: bounding the devi-
ations er(Q)− ẽr(Q) and ẽr(Q)− êr(Q) respectively. The
contribution of our Theorem 3 lies in the task-level complex-

ity term
√

2∆êr(Q)
mn + 2∆

mn on the deviation ẽr(Q)− êr(Q).
When the empirical error êr(Q) is close to zero, such bound
has an magnitude of O( ln (mn)

mn ), which is tighter than the
bound of O( 1

n
√
m

) in (Pentina & Lampert, 2014, Theorem
1) when n << m. Besides that, the environment-level

complexity of our derived kl-bound O(

√
ln
√
n

n ) halves the
logarithmic dependence of n in the numerator, while it is

O(
√

lnn
n ) in the bound of (Amit & Meir, 2018). Moreover,

using the Catoni-bound in Theorem 2, we can achieve our
tighter PAC-Bayesian Catoni-bound for meta-learning.

Theorem 4 For any predefined hyper-prior P , any δ ∈
(0, 1), any C1, C2 > 1, with probability at least 1− δ over
the draw of the training sample {Si}ni=1, the following holds
for any hyper-posterior Q:

er(Q) ≤ C1C2 lnC1 lnC2

(C1 − 1)(C2 − 1)
êr(Q)+

C1

(
K(Q,P) + ln(2/δ)

)
n(C1 − 1)

+
C1C2 lnC1

(
K(Q,P)+EP∼Q

∑n
i=1K(Qi, P )+ln(2/δ)

)
(C1 − 1)(C2 − 1)nm

.

The proof strategy is also to bound the deviations er(Q)−
ẽr(Q) and ẽr(Q)− êr(Q) respectively. If we suppress the
KL-complexities in the numerator, the bound on er(Q)−
ẽr(Q) has an order of O( 1

n ) and the bound on ẽr(Q) −

êr(Q) has an order of O( 1
mn ). Both bounds have a fast

convergence rate w.r.t. the number of their observations.
Therefore, Theorem 4 provides the tightest PAC-Bayesian
bound for standard meta-learning in this paper. Setting the
above kl-bound and Catoni-bound as objective functions
can lead to two meta-learning algorithms for classification
problems, which will be detailed in the experiment section.

4.2. Optimizing PAC-Bayesian Catoni-Bound with
Gibbs Optimal Hyper-posterior

In this subsection, we show how to utilize our Catoni-bound
to obtain the closed-form formula of the Gibbs optimal
hyper-posterior. As shown in (Zhang, 2006) [Equation (5)],
we can derive an explicit form of the optimal posterior
ρ∗ for minρ{βρ(r) + K(ρ, π)}, where β ∈ R. The ob-
tained posterior is called Gibbs optimal posterior (Catoni,
2007). Next, we apply such strategy to the minimization of
our PAC-Bayesian Catoni-bound for meta-learning in The-
orem 4 to establish the explicit form of the Gibbs optimal
hyper-posterior. We first give a corollary of Theorem 4 by
choosing the Gibbs optimal posterior for each training task.

Corollary 1 ∀i ∈ [n], any prior P ∈ M1(H), any train-
ing data {Si}ni=1, let Q∗i be the Gibbs optimal posterior
such that dQ∗i

dP = exp{−mêr(h, Si)}/Z(Si, P ), where
Z(Si, P ) =

∫
H e−mêr(h,Si)dP (h) is a normalization con-

stant. Then ∀δ > 0, C1 > 1, with probability at least 1− δ
over the draw of training datasets {Si}ni=1, the following
holds for any hyper-posterior Q:

er(Q) ≤ eC1 lnC1

(C1 − 1)(e− 1)
EP∼Q

−1

nm

n∑
i=1

[lnZ(Si, P )]

+
C1

(
K(Q,P) + ln 2

δ

)
n(C1 − 1)

+
eC1 lnC1

(
K(Q,P) + ln 2

δ

)
nm(C1 − 1)(e− 1)

.

An analogous result that is also derived by setting Gibbs op-
timal posterior for each task can be found in (Rothfuss et al.,
2021) [Corollary 1]. Omitting the empirical error part, both
Rothfuss’s bound and our bound share the same order of
O
(
( 1
n + 1

mn )K(Q,P)
)
. However, Rothfuss’s bound has an

extra constant (i.e., 1/8) that can not vanish with the increase
of the size of training samples. Therefore, our generaliza-
tion bound has a better asymptotic behaviour. Next we can
obtain the explicit form of Gibbs optimal hyper-posterior by
minimizing the RHS of the inequality in Corollary 1.

Corollary 2 (Gibbs Optimal Hyper-posterior) For any
hyper-prior P ∈ M1(M1(H)) and any training datasets
{Si}ni=1, the hyper-posterior Q ∈M1(M1(H)) that mini-
mizes the PAC-Bayesian meta-learning bound in Corollary 1
has the following explicit form:

dQ∗

dP
(P ) = exp{ β

nm

n∑
i=1

lnZ(Si, P )}/Z(S,P),
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where β = eC1 lnC1

(C1−1)(e−1)α , α = eC1 lnC1

nm(C1−1)(e−1) + C1

n(C1−1) ,

Z(S,P) =
∫
M1(H)

exp{ β
nm

∑n
i=1 lnZ(Si, P )}dP(P ) is

a normalization constant.

As pointed out by (Rothfuss et al., 2021) [Proposition 1],
the explicit form of the Gibbs optimal hyper-posterior in
Corollary 2 makes it much easier to optimize the meta-
learning bound in Corollary 1, than to directly optimize the
Catoni-bound in Theorem 4 which needs to learn Q and
{Qi}ni=1 simultaneously. We will use statistical inference
methods to approximate the above Q∗ and thus develop an
efficient Gibbs optimal hyper-posterior (GOHP) algorithm
for regression problems in the experiment section.

4.3. PAC-Bayesian kl-Bound for Meta-Learning with
Dependent Samples

In this subsection, we consider the meta-learning setting
where dependence exists between different tasks and be-
tween different samples. Our strategy is to split the depen-
dent random variables into different groups of independent
random variables. Such splitting strategy is originated from
(Hoeffding, 1963) and typically developed by (Janson, 2004)
with graph decomposition techniques. We introduce two
significant concepts about Dependence Graph that help us
analyze the meta-learning setting with dependent samples.

Definition 1 (Dependence Graph) Let S = {ξ1, . . . , ξK}
be a set of K random variables. The dependence graph
Γ(S) = (V,E) of S is such that

• the set of vertices V of Γ(S) is V = [K]}.

• (i, j) /∈ E (i.e., there is no edge between i and j)⇔ ξi
and ξj are independent.

Definition 2 (Fractional Covers (Janson, 2004)) Let Γ =
(V,E) be an undirected graph with V = [K].

• C ⊆ V is independent if the vertices in C are indepen-
dent (i.e., no two vertices in C are connected).

• C = {Cj}Jj=1, with Cj ⊆ V , is a proper cover of V if
each Cj is independent and

⋃J
j=1 Cj = V .

• C = {(Cj , wj)}Jj=1, with Cj ⊆ V and wj ∈ [0, 1],
is a proper exact fractional cover of V if Cj is inde-
pendent and ∀i ∈ V ,

∑J
j=1 wj1i∈Cj = 1; w(C) =∑J

j=1 wj is defined as the chromatic weight of C.

• The fractional chromatic number χ∗(Γ) is the mini-
mum chromatic weight over all proper exact fractional
covers of the dependence graph Γ = (V,E).

Then we can obtain a chromatic PAC-Bayesian kl-bound for
dependent random variables S = {ξ1, . . . , ξK}.

Theorem 5 In the same setting of Theorem 2 with the only
difference that S = {ξk}Kk=1 is a sequence of dependent ran-
dom variables. Let χ∗(S) denote the fractional chromatic
number of the dependence graph of S . Then with probability
with at least 1− δ over the draw of S, the following holds
for any measure ρ over F:

kl(ρ(r), ρ(R)) ≤ χ∗(S)

K
[K(ρ, π) + ln(

2

δ

√
K

χ∗(S)
)].

A previous result to deal with non-identically non-
independently distributed data is the PAC-Bayesian chro-
matic bound in (Ralaivola et al., 2010) [Theorem 28], whose

order is about O(
√

lnK
K ). The main difference between

Ralaivola’s bound and ours is as follow: the bound in
Ralaivola’s Theorem 28 is obtained by directly using a chro-
matic concentration inequality from (Janson, 2004) to bound
the moment generating function (MGF) of the kl-divergence
of dependent samples; instead, we employ graph decompo-
sition techniques from (Janson, 2004) to encode dependent
samples into independent sets and then apply our Lemma 1
to bound the MGF of the kl-divergence of independent sam-
ples, leading to a tighter chromatic PAC-Bayes bound of
O( lnK

K ) in Theorem 5. Finally, applying the above theorem
to bound kl(er(Q), ẽr(Q)) and kl(ẽr(Q), êr(Q)) respec-
tively, we obtain our chromatic PAC-Bayesian bound for
meta-learning with dependent tasks and dependent samples.

Theorem 6 For any given hyper-prior P , with probability
at least 1− δ over the draw of the training sample {Si}ni=1,
the following holds for any hyper-posterior Q:

er(Q) ≤ êr(Q) +

√
∆1

2n
+

√
2∆2êr(Q)

mn
+

2∆2

mn
,

where ∆1 = χ∗(D)[K(Q,P) + ln( 2
δ

√
n

χ∗(D) )], ∆2 =

χ∗(S)
[
K(Q,P) + EP∼Q

∑n
i=1K(Qi, P ) + ln 2

√
mn

δ
√
χ∗(S)

]
,

χ∗(D), χ∗(S) denote the fractional chromatic numbers of
the dependence graphs of D = {Di}ni=1, S = {Si}ni=1.

It is not difficult to see that, when all samples S =
{zij}n,mi,j=1 in meta-learning are sampled independently, the
proper exact fractional cover of Γ(S) = {V,E} is {(V, 1)}.
Therefore χ∗(S) = 1. We can also obtain that χ∗(D) = 1
when all distributions {Di}ni=1 are sampled independently
from the task environment τ . In this case, Theorem 6 de-
grades to the PAC-Bayesian kl-bound for meta-learning with
independence assumption in Theorem 3. Another example
for calculating χ∗(D) in dependent meta learning setting is
provided in Example 1 in Appendix D.

We should point out that in Theorem 6 (or Proposition
8 in the Appendix D), our environment-level complexity√

χ∗(D)
2n [K(Q,P) + ln( 2

δ

√
n

χ∗(D) )] on er(Q) − ẽr(Q) is
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Table 2. Comparisons of different PAC-Bayesian meta-learning methods. The average test bounds and test errors are reported over 20 test
tasks (the ± shows the 95% confidence interval) in three different pixel-shuffled environments.

100 Pixels Swaps 200 Pixels Swaps 300 Pixels Swaps
Method Test Bound Test Error (%) Test Bound Test Error (%) Test Bound Test Error (%)

Variational Bayes N/A 1.606± 0.001 N/A 1.962± 0.001 N/A 2.649± 0.130

MAML N/A 1.876± 0.001 N/A 2.241± 0.002 N/A 2.788± 0.102

(Seeger, 2002) 0.133± 0.034 1.629± 0.000 0.285± 0.049 1.972± 0.001 0.408± 0.062 2.523± 0.001

(Pentina & Lampert, 2014) 0.190± 0.022 1.939± 0.001 0.240± 0.030 2.631± 0.002 0.334± 0.036 3.767± 0.003

(Amit & Meir, 2018) 0.126± 0.012 1.587± 0.001 0.197± 0.019 1.948± 0.001 0.270± 0.018 2.630± 0.001

(Rothfuss et al., 2021) 0.174± 0.023 1.921± 0.001 0.224± 0.030 2.634± 0.001 0.318± 0.036 3.754± 0.003

kl-bound (ours) 0.119± 0.024 1.746± 0.001 0.189± 0.027 2.594± 0.001 0.359± 0.042 2.993± 0.002

Catoni-bound (ours) 0.093± 0.027 1.545± 0.001 0.128± 0.025 1.889± 0.001 0.210± 0.035 2.433± 0.001

tighter than that in (Pentina & Lampert, 2015) [Theorem
3], which only bounds the deviation er(Q) − ẽr(Q) with√

χ∗(D)
n [K(Q,P) + ln (J/δ)], where J denotes the size of

the dependence graph Γ(D). Nevertheless, we also need to
admit that in the current version we are unable to extend our
PAC-Bayes Catoni-bound to the generalized meta-learning
setting. This may somewhat imply that the kl-bound is more
flexible than the Catoni-bound to be applied to learning
settings where training data show some dependencies.

5. Experiments
In this section, we empirically demonstrate the effectiveness
of our theoretical analysis for meta-learning over the classi-
fication and regression problems with deep neural networks.
For classification problems, we directly set our kl-bound
(Theorem 3) and Catoni-bound (Theorem 4) as minimiza-
tion objectives, with the bounded cross-entropy loss (Pérez-
Ortiz et al., 2021) for model optimization. For regression
problems, we develop a Gibbs optimal hyper-posterior al-
gorithm with Bayesian neural networks (GOHP-NN). Con-
cretely, we choose the classical statistical inference method,
called Stein Variational Gradient Descent (SVGD) (Liu
& Wang, 2016), to approximate the Gibbs optimal hyper-
posterior Q∗ in Corollary 2 (with C1 = 2). The mean
squared error is selected as the loss function for regression
problems. In practice, the squared loss is always bounded,
so we choose it for model optimization for fair comparisons
with existing methods. The detailed pseudo-code of our
proposed meta-learning algorithms for classification and
regression problems can be found in the Appendices E-F.

5.1. Experimental Setup
Classification Environments. We conduct classification
experiments in three different task environments, based on
the augmentations of the MNIST dataset (Yann, 1998). Each
task from the same environment is constructed by a fixed
number of pixel swaps to ensure the task relatedness. The
three environments are created by swapping 100/200/300
pixels respectively to increase the classification difficulty.
During the meta-training phase, we choose 10 training

tasks, each of which is composed of 60,000 training exam-
ples; while in the meta-test phase, each task is constructed
with fewer training samples (2,000). We choose a fully-
connected network with 3 hidden layers and a linear output
layer as backbone. All experiment details are set the same as
that in (Amit & Meir, 2018). We report the test bounds and
test errors on the novel tasks of various methods in Table 2.

Regression Environments. We conduct regression experi-
ments with one synthetic and four real-world meta-learning
environments. The first synthetic environment is composed
of regression tasks that can be interpreted as a 2-dimensional
mixture of Cauchy distributions plus a random Gaussian
Processes function. For the second environment, we employ
datasets corresponding to different calibration sessions of
Swiss Free Electron Laser(SwissFEL) (Milne et al., 2017).
The other two environments are constructed by using the
datasets from PhysioNet 2012 challenge (Silva et al., 2012),
which contains the time series of electronic health mea-
surements from patients, in terms of the Glasgow Coma
Scale (GCS) and the hematocrit value (HCT). Finally, we
create the Berkeley-Sensor environment where the tasks
need to make prediction of temperature measurements cor-
responding to the sensors installed in different places of one
building (Madden, 2004). More detailed information about
the tasks in regression environments can be found in the
Appendix F.1. We set the same experiment setup as that
in (Rothfuss et al., 2021). Then we report the root mean
squared errors (RMSE) over the novel tasks in Table 3. The
results of other methods are directly cited from (Rothfuss
et al., 2021) [Table 1]. Note that Rothfuss et al. do not
report test bounds over the novel tasks in their original work.
So Table 3 only reports the test errors for fair comparison.

5.2. Experimental Results
Classification Results. From Table 2, we can see that
minimizing our proposed two generalization bounds can
achieve competitive results w.r.t. existing PAC-Bayesian
meta-learning methods, in terms of test bounds and test er-
rors over the novel tasks. Particularly, our Catoni-bound
method can obtain the tightest test bounds and lowest predic-
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Table 3. Comparison of meta-learning algorithms in terms of test RMSE in 5 regression environments. Reported are mean and standard
deviation across 5 seeds. Our GOHP-NN achieves competitive averaged error over 5 environments.

Method Cauchy SwissFel Physionet-GCS Physionet-HCT Berkeley-Sensor
Vanilla BNN (Liu & Wang, 2016) 0.327± 0.008 0.529± 0.022 2.664± 0.274 3.938± 0.869 0.109± 0.004

MLL-GP (Fortuin & Rätsch, 2019) 0.216± 0.003 0.974± 0.093 1.654± 0.094 2.634± 0.144 0.058± 0.002

MLAP (Amit & Meir, 2018) 0.219± 0.004 0.486± 0.026 2.009± 0.248 2.470± 0.039 0.050± 0.005

MAML (Finn et al., 2017) 0.219± 0.004 0.730± 0.057 1.895± 0.141 2.413± 0.113 0.045± 0.003

BMAML (Yoon et al., 2018) 0.225± 0.004 0.577± 0.044 1.894± 0.062 2.500± 0.002 0.073± 0.014

PACOH-GP (Rothfuss et al., 2021) 0.209± 0.008 0.376± 0.024 1.498± 0.081 2.361± 0.047 0.065± 0.005

PACOH-NN (Rothfuss et al., 2021) 0.195± 0.001 0.372± 0.002 1.561± 0.061 2.405± 0.017 0.043± 0.001

GOHP-NN (ours) 0.198± 0.016 0.333± 0.013 1.521± 0.067 2.422± 0.013 0.043± 0.004
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Figure 1. Comparisons between our bounds (i.e., kl-bound & Catoni-bound) and other bounds (i.e., Pentina-bound & Amit-bound). Both
test bounds and test errors are averaged over 20 meta-test classification tasks from 200-pixel-shuffled environment. (a)-(b): Results across
a range of number n of training tasks. (c)-(d): Results across a range of sample size m per training task.

tion errors over all tasks from different environments. This is
consistent with our theoretical results that the Catoni-bound
is so far the tightest PAC-Bayesian bound for meta-learning.
Meanwhile, the prediction performance of different meth-
ods gets worse with the increase of the number of pixel
swaps. This indicates the importance of the task relatedness
of environment to the success of meta-learning approaches.

Regression Results. From Table 3, we can observe that
our proposed GOPH-NN algorithm can achieve compara-
ble results w.r.t. the state-of-the-art PAC-Bayesian meta-
learning method PACOH (Rothfuss et al., 2021) over 5
regression environments. Specifically, our GOPH-NN can
obtain the lowest test errors on 2 regression environments,
yield competitive test errors on other 3 regression environ-
ments. The detailed reasons that GOHP can achieve anal-
ogous results with PACOH can be found in Remark 2 in
Appendix F. Therefore, we can conclude that our proposed
PAC-Bayesian Catoni-bound, can obtain comparable perfor-
mance with respect to the latest meta-learning regression
methods, in terms of average test errors on the novel tasks.

Convergence Analysis. We compare the convergence rates
of our two PAC-Bayesian bounds and other two classical
bounds (Pentina & Lampert, 2014; Amit & Meir, 2018)
in the 200-pixel-shuffled classification environment. The
average test bounds and test errors are calculated over the
novel tasks across a wide range of the number n of training
tasks and across a large range of the sample size m per task.
The visualization is shown in Figure 1. We can find that:

(1) Both the test bounds and the test errors of all methods
decrease with the increase of n andm. (2) Our proposed two
bounds can achieve competitive performance with respect
to the existing methods. Particularly, our PAC-Bayesian
Catoni-bound obtains the tightest test bounds and the lowest
test errors over the novel tasks, empirically validating the
effectiveness of our theoretical analysis for meta-learning.

6. Conclusions
This work provides a unified demonstration framework of
the PAC-Bayesian bounds for single-task learning and meta-
learning. The tightest PAC-Bayesian kl-bound and Catoni-
bound in single-task learning are generalized to the meta-
learning setting, followed by two bound-minimizing meta-
learning classification algorithms. Next, we show how to
obtain the closed-form formula of the Gibbs optimal hyper-
posterior by minimizing our Catoni-bound, leading to an
efficient meta-learning regression algorithm. In addition,
we obtain a chromatic PAC-Bayesian kl-bound for the more
challenging meta-learning setting where training data show
some dependencies. Experiments on classification and re-
gression problems further validate the effectiveness of our
proposed PAC-Bayesian bounds. In particular, our Catoni-
bound obtains the tightest test bounds and the lowest test
errors in classification problems, and achieves compara-
ble results with existing methods in regression problems.
Overall, we show how to derive two fast-rate PAC-Bayesian
bounds for meta-learning, and show how to apply these
bounds to different settings to yield more theoretical results.
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APPENDIX

A. Auxiliary Results
We first recall Lemma 2-5 before obtaining our results.

Lemma 2 (Berend & Tassa, 2010)[Lemma 5.2] Let
{ξk}Kk=1 be independent random variables with P (0 ≤
ξk ≤ ak) = 1. For 1 ≤ k ≤ K, let ηk be a random vari-
able assuming only the values 0 and ak and having the same
expectation as ξk, i.e. Eηk = Eξk. Then for any convex
function g : R→ R,

Eg(

K∑
k=1

ξk) ≤ Eg(

K∑
k=1

ηk).

Lemma 3 (Berend & Tassa, 2010)[Proposition 3.1] Let
{ξk}Kk=1 be a sequence of independent random variables
with P (0 ≤ ξk ≤ 1) = 1, {ηk}Kk=1 be a sequence of i.i.d.
Bernoulli random variables with Eηk = K−1(

∑K
k=1 Eξk).

Then for any convex function g,

Eg(

K∑
k=1

ξk) ≤ Eg(

K∑
k=1

ηk).

Remark 1 Using Jensen’s inequality of convex function g,
we have g(

∑K
k=1 Eηk) = g(

∑K
k=1 Eξk) ≤ Eg(

∑K
k=1 ξk).

Thus, what Lemma 3 does is to ‘plug’ the term
Eg(

∑K
k=1 ξk) into the Jensen’s inequality g(

∑K
k=1 Eηk) ≤

Eg(
∑K
k=1 ηk). So the inequality in Lemma 3 is truly tight.

Corollary 3 (Lemma 1 in the main paper) In the set-
ting of Lemma 2 or Lemma 3, for any convex function g,
Eg( 1

K

∑K
k=1 ξk) ≤ Eg( 1

K

∑K
k=1 ηk).

Proof. The composition function (g ◦ f)(x) of the convex
function g and the linear function f(x) = ax + b is still
convex. Setting a = 1

K , b = 0 completes the proof. �

Lemma 4 (Change of Measure) Let F be a set of random
variables f . Let S = {ξk}Kk=1 be a sequence of random
variables with each component ξk (k ∈ [K]) drawn indepen-
dently according to the measure µk over the set Ak. Then,
for any functionsR(f), r(f) overF , either of which may be
a statistic of S , any reference measure π over F , any λ > 0,
and any convex function D : R × R → R, the following
holds for any measure ρ over F:

D(EρR(f),Eρr(f)))≤ K(ρ, π)+lnEf∼πeλD(R(f),r(f))

λ
,

where K(ρ, π) denotes the KL-divergence between the dis-
tributions ρ and π.

Lemma 5 (Catoni, 2007)[Lemma 1.1.1] Given indepen-
dent input-output pairs {(xk, yk)}Kk=1 ∈ (X × Y)K

and a class of classification rules F = {f : X →
Y}, let R(f) = K−1

∑K
k=1 P [f(xk) 6= yk], r(f) =

K−1
∑K
k=1 1[f(xk) 6= yk]. Then for any real constant

λ ∈ R, and any f ∈ F ,

E exp{λ[Φ λ
K

(R(f))− r(f)]} ≤ 1,

where 2Φa(p) = −a−1 ln{1 − [1 − exp(−a)]p}, a ∈ R,
p ∈ [0, 1].

B. Proofs of the PAC-Bayesian Bounds for
Meta-Learning with Independent Samples

B.1. Proof of PAC-Bayesian kl-Bound

Proposition 1 (Part of Theorem 2 in the main paper) In the
setting of Lemma 4, setD(q, p) = kl(p, q), where kl(p, q) =

p ln p
q +(1−p) ln 1−p

1−q . LetR(f) = 1
K

∑K
k=1 Eξkgk(f, ξk),

r(f) = 1
K

∑K
k=1 gk(f, ξk), where gk : F ×Ak → [0, 1] is

a bounded function. Then with probability at least 1 − δ
over the draw of S, the following holds for any measure ρ:

kl(ρ(r), ρ(R)) ≤
K(ρ, π) + ln 2

√
K
δ

K
.

In particular, we have the explicit generalization bound:

|ρ(R)− ρ(r)| ≤
√

2∆ρ(r)

K
+

2∆

K
.

where ∆ = K(ρ, π) + ln 2
√
K
δ .

Proof. For any fixed f ∈ F , let {ηk}Kk=1 be i.i.d. Bernoulli
random variables with Eηk = 1

K

∑K
k=1 Eξkgk(f, ξk). Note

that kl(p, q) is a convex function with respect to p and exp
is a nondecreasing convex function, hence exp{λ kl(p, q)}
is a convex function with respect to p (λ > 0). Then setting
λ = K, we have

ESeK kl(r(f),R(f))

=EeK kl( 1
K

∑K
k=1 gk(f,ξk), 1

K

∑K
k=1 Eηk)

≤EeK kl( 1
K

∑K
k=1 ηk,

1
K

∑K
k=1 Eηk) (Corollary 3)

≤2
√
K.

The last inequality holds due to the fact that for a bi-
nomial random variable η ∼ B(K,µ), EeK kl( ηK ,µ) =∑K
k=0

(
K
k

)
( kK )k(K−kK )K−k ∈ [

√
K, 2
√
K] (Maurer,

2004). Then recalling Lemma 4 and Markov’s inequality

2Φa(p) is a one-to-one increasing function with respect to
p ∈ [0, 1], and is convex when a > 0.
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we have

kl(ρ(r), ρ(R)) ≤ 1

K

[
K(ρ, π) + lnEf∼πeK kl(r(f),R(f))

]
≤K(ρ, π)

K
+

1

K
lnESEf∼πeK kl(r(f),R(f))/δ

=
K(ρ, π)

K
+

1

K
lnEf∼πESeK kl(r(f),R(f))/δ (Fubini)

≤K(ρ, π)

K
+

1

K
ln(2
√
K/δ),

which completes the proof of the first assertion. Using
Pinsker’s inequality kl(p, q) ≥ 2(p − q)2 we can directly
obtain an explicit upper bound on |ρ(R)− ρ(r)| with prob-
ability at least 1− δ as follow:

|ρ(R)− ρ(r)| ≤

√
K(ρ, π) + ln 2

√
K
δ

2K
.

For the second assertion, note that the first assertion is equiv-
alent to the below statement (McAllester, 2003) [Eq.(5)]:

∀ρ, ρ(R) ≤ sup
{
ε : kl(ρ(r), ε) ≤

K(ρ, π) + ln 2
√
K
δ

K

}
.

Thus we can use the tighter version of Pinsker’s inequality
kl(p, q) ≥ (p−q)2

2q , when q > p. Then, if kl(p, q) ≤ x, we
have [q − (p + x)]2 − x2 − 2px ≤ 0 and so |q − p| ≤
x +

√
x2 + 2px ≤ 2x +

√
2px. Combining this with the

bound on kl(ρ(R), ρ(r)) in the first assertion, we can give
a high-probability bound on |ρ(R)− ρ(r)| with√

2ρ(r)[K(ρ, π) + ln 2
√
K
δ ]

K
+

2[K(ρ, π) + ln 2
√
K
δ ]

K
. �

We use the above proposition to bound kl(er(Q), ẽr(Q))
and kl(ẽr(Q), êr(Q)) respectively for meta-learning.

Proposition 2 For any δ ∈ (0, 1), with probability at least
1−δ over the draw of n distributions {Di}ni=1, the following
holds for any hyper-posterior Q:

|er(Q)− ẽr(Q)| ≤

√
K(Q,P) + ln 2

√
n
δ

2n
.

Proof. Notice that

er(Q) = EP∼QE(D,S)∼τ×Dmer(Q(S, P ), D)

ẽr(Q) = EP∼Q
1

n

n∑
i=1

er(Q(Si, P ), Di).

Recalling Proposition 1, we set K = n, f = P ,
π = P , ρ = Q, ξk = (Di, Si), gk(f, ξk) =

Eh∼Q(Si,P )Ez∼Di l(h, z) ∈ [0, 1]. Thus with Pinsker’s in-
equality kl(p, q) ≥ 2(p− q)2,

|er(Q)− ẽr(Q)| ≤

√
K(Q,P) + ln 2

√
n
δ

2n
.�

Proposition 3 For any hyper-prior P , any δ ∈ (0, 1), with
probability at least 1−δ over the draw of the training sample
S = {Si}ni=1, the following holds for any hyper-posterior
Q:

|ẽr(Q)− êr(Q)| ≤
√

2∆êr(Q)

mn
+

2∆

mn
,

where ∆ = K(Q,P) +EP∼Q
∑n
i=1K(Qi, P ) + ln 2

√
mn
δ .

Proof. Notice that

ẽr(Q)=EP∼QE(h1,··· ,hn)∼Q1×···×Qn
1

n

n∑
i=1

Ez∼Di l(hi, z),

êr(Q)=EP∼QE(h1,··· ,hn)∼Q1×···×Qn
1

nm

n∑
i=1

m∑
j=1

l(hi, zij).

Recall Proposition 1, we set f = (P, h1, ..., hn), π = P ×
Pn, ρ = Q ×

∏n
i=1Qi, where Qi = Q(Si, P ), ξk = zij ,

gk(f, ξk) = l(hi, zij). With probability ≥ 1− δ we have,

|ẽr(Q)− êr(Q)| ≤
√

2∆1êr(Q)

mn
+

2∆1

mn
.

where ∆1 = K(Q ×
∏n
i=1Qi,P × Pn) + ln 2

√
mn
δ .

Further, notice that K(Q ×
∏n
i Qi,P × Pn) =

EQ×
∏n
i=1Qi

ln
d(Q×

∏n
i=1Qi)

d(P×Pn) = EQ×
∏n
i=1Qi

(
ln dQ

dP +∑n
i=1 ln dQi

dP

)
= K(Q,P) + EP∼Q

∑n
i=1K(Qi, P ),

which completes the whole proof. �

Proof of Theorem 3 in the main paper.
Note that the generalization bounds in Propositions 2-3 are
both two-sided. Actually a one-sided version can be stated
by replacing 2/δ in the two-sided version with 1/δ. There-
fore, combining the one-sided bounds in Propositions 2-3,
and applying the union bound to these two high-probability
inequalities finishes the proof. �

B.2. Proof of PAC-Bayesian Catoni-Bound

Proposition 4 (Part of Theorem 2 in the main paper)
Set D(q, p) = Φ λ

K
(q) − p in Lemma 4. Let R(f) =

1
K

∑K
k=1 Eξkgk(f, ξk), r(f) = 1

K

∑K
k=1 gk(f, ξk), where

gk : F × Ak → [0, 1] is a bounded function. Then with
probability at least 1− δ over the draw of S , the following
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holds for any measure ρ over F:

ρ(R) ≤Φ−1
λ
K

[ρ(r) +
K(ρ, π) + ln(1/δ)

λ
]

=
1− exp{− λ

K ρ(r)− K(ρ,π)+ln(1/δ)
K }

1− exp{−λ/K}

≤ λρ(r)

K[1− exp{−λ/K}]
+
K(ρ, π) + ln(1/δ)

K[1− exp{−λ/K}]
.

Proof. We proceed with similar arguments as that in the
proof of Proposition 1. Denote {ηk}Kk=1 as independent
Bernoulli random variables with Eξkgk(f, ξk) = E ηk.
Since D(q, p) is a convex function of p, and exp func-
tion is a nondecreasing convex function, thus ∀λ ∈ R+,
exp{λD(q, p)} is also a convex function with respect to p.
Then we have

ESeλD(R(f),r(f))

=ESeλD( 1
K

∑K
k=1 Eξkgk(f,ξk), 1

K

∑K
k=1 gk(f,ξk))

=EeλD( 1
K

∑
k Eηk,

1
K

∑K
k=1 gk(f,ξk))

≤EeλD( 1
K

∑
k Eηk,

1
K

∑
k ηk) (Corollary 3)

≤1 (Lemma 5).

Recalling Lemma 4 and Markov’s inequality we have

Φ λ
K

(ρ(R))− ρ(r) = D(ρ(R), ρ(r))

≤ 1

λ

[
K(ρ, π) + lnEf∼πeλD(R(f),r(f))

]
≤K(ρ, π)

λ
+

1

λ
lnESEf∼πeλD(R(f),r(f))/δ

=
K(ρ, π)+ln(1/δ)

λ
+

lnEf∼πESeλD(R(f),r(f))

λ
(Fubini)

≤K(ρ, π) + ln(1/δ)

λ
.

Further, notice that the inverse function of Φa(p)

is Φ−1
a (q) = 1−exp{−aq}

1−exp{−a} , and the basic inequality
1− exp(−x) ≤ x, we finish the whole proof. �

We can derive a more concise corollary of the above result.

Corollary 4 In the setting of Proposition 4, let λ = K lnC,
where C > 1, then exp{− λ

K } = 1
C . Then with probability

at least 1 − δ over the draw of S, the following holds for
any probability measure ρ:

ρ(R) ≤ C lnC

C − 1
ρ(r) +

C

C − 1

K(ρ, π) + ln(1/δ)

K

With almost the same proceedings as that in the proof of
Propositions 2-3, we can immediately yield the following
two propositions for meta-learning with the use of Proposi-
tion 4 and Corollary 4. The detailed proof is thus omitted.

Proposition 5 For any δ ∈ (0, 1), with probability at least
1−δ over the draw of n distributions {Di}ni=1, the following
holds for any C > 1 and any hyper-posterior Q:

er(Q) ≤ C lnC

C − 1
ẽr(Q) +

C

C − 1

K(Q,P) + ln(1/δ)

n
.

Proposition 6 For any hyper-prior P , any δ ∈ (0, 1), with
probability at least 1−δ over the draw of the training sample
S = {Si}ni=1, the following holds for any hyper-posterior
Q:

ẽr(Q) ≤ C lnC

C − 1
êr(Q)+

C

C − 1

K(Q,P) + EP∼Q
∑n
i=1K(Qi, P ) + ln(1/δ)

nm
.

Proof of Theorem 4 in the main paper. Combining Propo-
sition 5 and Proposition 6, we have with probability at least
1− δ, ∀C1, C2 > 1,

er(Q)≤ C1C2 lnC1 lnC2

(C1 − 1)(C2 − 1)
êr(Q)+

C1

(
K(Q,P)+ln(2/δ)

)
n(C1 − 1)

+
C1C2 lnC1

(
K(Q,P)+EP∼Q

∑n
i=1K(Qi, P )+ln(2/δ)

)
(C1 − 1)(C2 − 1)nm

.

(4)

C. Proof of the Theoretical Results of Gibbs
Optimal Hyper-posterior

This section details the proof of the theoretical results about
optimizing our PAC-Bayesian Catoni-bound with Gibbs
optimal hyper-posterior. We first give the following helpful
lemma that exhibits the explicit form of the Gibbs optimal
posterior to certain optimization problems.

Lemma 6 (Catoni, 2007)[Lemma 1.1.3] Let φ : F → R be
a measurable function. Then for any predefined probability
measure π ∈ M1(F), for any β > 0, the minimizing
probability measure ρ∗ of the below optimization problem

min
ρ∈M1(F)

βEf∼ρφ(f) +K(ρ, π)

has the following explicit form:

dρ∗

dπ
(f) =

e−βφ(f)

Z
,

where Z =
∫
F e−βφ(f)dπ(f) is the normalization constant.
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Proof of Corollary 1 in the main paper . Recall Theorem 4
in the main paper. We can actually rewrite the PAC-Bayesian
meta-learning bound on er(Q) in Theorem 4 as follow if
we set C2 = e:

eC1 lnC1

(C1 − 1)(e− 1)
êr(Q)+

eC1 lnC1EP∼Q
∑n
i=1K(Qi, P )

nm(C1 − 1)(e− 1)︸ ︷︷ ︸
I

+
C1

(
K(Q,P) + ln 2

δ

)
n(C1 − 1)

+
eC1 lnC1

(
K(Q,P) + ln 2

δ

)
nm(C1 − 1)(e− 1)

.

Actually, term I can be written as follow if we set Q∗i as the
Gibbs optimal posterior:

eC1 lnC1

(C1 − 1)(e− 1)

[
êr(Q) +

EP∼Q
∑n
i=1K(Q∗i , P )

nm

]
.

Then we have

êr(Q) +
EP∼Q

∑n
i=1K(Q∗i , P )

nm

=EP∼Q
1

nm

n∑
i=1

[
mêr(Q∗i , Si) +K(Q∗i , P )

]
=EP∼Q

1

nm

n∑
i=1

Eh∼Q∗i
[
mêr(h, Si) + ln

dQ∗i
dP

]
=EP∼Q

1

nm

n∑
i=1

Eh∼Q∗i
[
mêr(h, Si) + ln

e−mêr(h,Si)

Z(Si, P )

]
=EP∼Q

1

nm

n∑
i=1

[
− lnZ(Si, P )

]
,

which finishes the whole proof. �

Proof of Corollary 2 in the main paper. Recalling Corol-
lary 1 we can obtain the form of the optimal Gibbs optimal
hyper-posterior as follow:

Q∗ = arg min
Q∈M1(M1(H)){ eC1 lnC1

(C1 − 1)(e− 1)
EP∼Q

1

nm

n∑
i=1

[− lnZ(Si, P )]

+
C1

(
K(Q,P) + ln 2

δ

)
n(C1 − 1)

+
eC1 lnC1

(
K(Q,P)+ln 2

δ

)
nm(C1 − 1)(e− 1)

}
= arg min
Q∈M1(M1(H)){ eC1 lnC1

(C1 − 1)(e− 1)
EP∼Q

1

nm

n∑
i=1

[− lnZ(Si, P )]

+
[ C1

n(C1 − 1)
+

eC1 lnC1

nm(C1 − 1)(e− 1)

]
K(Q,P)

}
= arg min
Q∈M1(M1(H))

[
EP∼Q

−β
nm

n∑
i=1

lnZ(Si, P ) +K(Q,P)
]
.

Applying Lemma 6 to the above minimization problem
obtains the close-form of the Gibbs optimal hyper-posterior.
�

D. Proof of the PAC-Bayesian kl-Bound for
Meta-Learning with Dependent Samples

We first give a fundamental lemma about the property of the
exact proper fraction cover of the dependence graph.

Lemma 7 (Janson, 2004)[Lemma 3.1] If C =
{(Cj , wj)}Jj=1 is an exact fractional cover of the
dependence graph Γ = (V,E), with V = [K], then

∀~t ∈ RK ,
K∑
k=1

tk =

J∑
j=1

wj
∑
k∈Cj

tk.

Further, K =
∑J
j=1 wj |Cj |, where |Cj | is the size of Cj .

Proposition 7 (Theorem 5 in the main paper) Let F be
a set of random variables f . Let S = (ξ1, · · · , ξK) be
a size-K random vector with each component ξk(k ∈
[K]) drawn according to the measure µk over the set
Ak. Let R(f,S) = 1

K

∑K
k=1 Eξkgk(f, ξk), r(f,S) =

1
K

∑K
k=1 gk(f, ξk), where gk : F × Ak → [0, 1] is a

bounded function. Then for any reference measure π over
F , with probability at least 1 − δ over the draw of S, the
following holds for any measure ρ:

kl(Eρr(f,S),EρR(f,S))

≤ χ∗(S)

K
[K(ρ, π) + ln(

2

δ

√
K

χ∗(S)
)],

where χ∗(S) denotes the fractional chromatic number of
the dependence graph of S.

Proof. According to Lemma 3.2 in (Janson, 2004), the
fractional chromatic number is achieved when the cover
is the exact proper fractional cover. Therefore, let us just
consider C = {(Cj , wj)}Jj=1 as the exact proper fractional

cover of the dependence graph Γ(S). Denote πj =
wj |Cj |
K ,

we have
∑
j πj = 1. Let S(j) = {ξk}k∈Cj , hence the

elements in S(j) are all independent. Then we have

J∑
j=1

πjr(f,S(j)) =

J∑
j=1

wj |Cj |
K

1

|Cj |
∑
l∈Cj

gl(f, ξl)

=
1

K

J∑
j=1

wj
∑
l∈Cj

gl(f, ξl)

=
1

K

K∑
k=1

gk(f, ξk) = r(f,S) (Lemma 7).
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Meanwhile we also have

J∑
j=1

πjES(j)r(f,S(j)) =
1

K

J∑
j=1

wj
∑
l∈Cj

Eξlgl(f, ξl)

=
1

K

K∑
k=1

Eξkgk(f, ξk) = R(f,S) (Lemma 7).

Then we have

kl(Eρr(f,S),EρR(f,S))

=kl
(
Eρ

J∑
j=1

πjr(f,S(j)),Eρ

J∑
j=1

πjES(j)r(f,S(j))
)

≤
J∑
j=1

πjEρkl
(
r(f,S(j)), R(f,S(j))

)
(Jensen)

≤
J∑
j=1

πj
1

|Cj |
[
K(ρ, π) + lnEf∼πe|Cj | kl(r(f,S(j)),R(f,S(j)))

]
≤

J∑
j=1

πj
|Cj |

[
K(ρ, π)+ln

ES(j)Ef∼πe|Cj | kl(r(f,S(j)),R(f,S(j)))

δ

]
≤

J∑
j=1

πj
|Cj |

[
K(ρ, π) + ln

2
√
|Cj |
δ

]
=
w
(
K(ρ, π) + ln (2/δ)

)
K

+

∑J
j=1 wj ln

√
|Cj |

K
,

where the second inequality holds due to the ‘change of
measure’ lemma (cf. Lemma 4), the third inequality uses
Markov’s inequality, and the last inequality proceeds as the
same as the proof of Proposition 1. Further denote αj =

wj
w ,

then we have
∑
j αj = 1, and hence,∑J

j=1 wj ln
√
|Cj |

K
=

w

K

J∑
j=1

αj ln
√
|Cj |

≤w

K
ln

J∑
j=1

wj
√
|Cj |

w
(Jensen)

≤w

K
ln

(
∑J
j=1 wj)

1/2(
∑J
j=1 wj |Cj |)1/2

w
(Schwartz)

=
w

K
ln

√
K

w
.

Combining the above results we finally obtain

kl(Eρr(f,S),EρR(f,S))

≤
w
(
K(ρ, π) + ln (2/δ)

)
K

+
w

K
ln

√
K

w
.

(5)

Actually, the RHS of inequality (5) is an increasing function
with respect to w (the detailed proof is left to readers), and

hence achieve its minimum when w = χ∗(S). Thus we
complete our whole proof. �

With almost the same proceedings as that in the proof of
Propositions 2-3, we can immediately yield the following
two propositions that apply to meta-learning setting where
dependence exists among different samples . The detailed
proof is left to readers.

Proposition 8 For any δ ∈ (0, 1), with probability at least
1 − δ over the draw of n distributions D = {Di}ni=1, the
following holds for any hyper-posterior Q:

|er(Q)− ẽr(Q)| ≤

√√√√χ∗(D)[K(Q,P) + ln( 2
δ

√
n

χ∗(D) )]

2n
,

where χ∗(D) denotes the fractional chromatic number of
the dependence graph of D.

Proposition 9 For any hyper-prior P , any δ ∈ (0, 1), with
probability at least 1−δ over the draw of the training sample
S = {Si}ni=1, the following holds for any hyper-posterior
Q:

|ẽr(Q)− êr(Q)| ≤
√

2∆êr(Q)

mn
+

2∆

mn
,

where ∆ = χ∗(S)
[
K(Q,P) + EP∼Q

∑n
i=1K(Qi, P ) +

ln 2
√
mn

δ
√
χ∗(S)

]
, χ∗(S) denotes the fractional chromatic num-

ber of the dependence graph of S = {Si}ni=1 =
{zij}n,mi=1,j=1.

Proof of Theorem 6 in the main paper.
Combining Propositions 8-9 and utilizing union bound give
the high-probability bound on the transfer risk er(Q). �

We further provide an example as follow to illustrate how
to estimate the chromatic number χ∗(S) of the fractional
cover in the dependent meta learning setting.

Example 1 Consider a meta sample S = {zij}n,mi,j=1, where

∀j ∈ [m], zij
i.i.d.∼ Di, but there exists dependency between

samples drawn from different distributions. Then we can
set the exact fractional cover of Γ(S) as {(Cj , 1)}nj=1, and
hence the chromatic number χ∗(S) ≤

∑n
j=1 1 = n.

E. Details of Classification Experiments
E.1. Distributions of Neural Network

For classification problems, we can develop two meta-
learning algorithms by directly setting our kl-bound and
Catoni-bound as minimization objective functions. It suf-
fices to specify: (1) the explicit form of KL-divergences in
our meta-learning bounds, (2) how to approximate the ex-
pectation P ∼ Q. To tackle the first issue, we need to define
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Figure 2. Average test bounds and test errors of our two bound-minimizing meta-learning algorithms on new classification tasks for
different numbers of training-tasks and for different pixel-shuffled environments (average over 20 meta-test tasks). (a)-(b): Test bounds of
kl-bound and Catoni-bound. (c)-(d): Test errors of kl-bound and Catoni-bound.

the distribution of the hypothesis classH = {w : w ∈ Rd}
(i.e., neural networks), where d is the dimension of the pa-
rameter w. As that in previous work (Amit & Meir, 2018),
we first set both the hyper-prior and hyper-posterior over
M1(H) as isotropic Gaussian:

P = N (0, κ2
PId×d),Qθ = N (θ, κ2

QId×d),

where κP , κQ > 0 are both predefined constants, θ is the
optimization parameter. Then the KL-divergence between
Qθ and P can be calculated as

K(Qθ,P) =
||θ||22 + κ2

Q
2κ2
P

+ ln
κP
κQ
− 1

2
. (6)

Next, we consider the form of prior and posterior over the
hypothesis spaceH. We define the prior Pθ and the posteri-
ors Qφi (φi ∈ Rd is the hyperparameter) as the factorized
Gaussian distributions for computational convenience:

Pθ(w)=

d∏
k=1

N (wk;µP,k, σ
2
P,k),

Qφi(w) =

d∏
k=1

N (wk;ui,k, σ
2
i,k),

where θ = (µP , ρP ) ∈ R2d is composed of the means µP,k
and log-variances of each weight ρP,k = lnσ2

P,k, k ∈ [d].
The posterior vectors (µi, ρi) ∈ R2d has a similar structure.
Then the KL-divergence K(Qφi , Pθ) can be calculated as:

1

2

d∑
k=1

{
ln
σ2
P,k

σ2
i,k

+
(σ2
i,k + (µi,k − µP,k)2)

σ2
P,k

− 1
}
. (7)

Secondly, to approximate the expectation P ∼ Q in our
kl-bound and Catoni-bound, we utilize the Monte-Carlo
method. Concretely, we calculate the expectations by aver-
aging several Monte-Carlo samples of P and adding Gaus-
sian noise to the parameter θ during the meta-training pro-
cess: θ̃ = θ + ε, ε ∼ N (0, κ2

QId×d). Therefore from the

Algorithm 1 Catoni-bound-minimizing meta-learning algo-
rithm (meta-training phase)

1: Input: Datasets from n training tasks: S1, ..., Sn.
2: Output: Parameters θ of hyper-posterior Qθ.
3: Initialize:
4: θ = (µP , ρP ) ∈ R2d, φi = (µi, ρi) ∈ R2d, i =

1, ..., n.
5: while not converged do
6: for i ∈ {1, ..n} do
7: Sample a mini-batch S′i from datasets Si.
8: Calculate EPθ∼Qθ êr(Qi, Si) with the mini-batch

S′i by averaging Monte-Carlo draws.
9: Calculate K(Qθ,P) with Eq. (6).

10: Calculate EPθ∼QθK(Qφi , Pθ) with Eq. (7) by av-
eraging Monte-Carlo draws.

11: end for
12: Calculate the meta-training Catoni-bound in

Eq. (4) with EPθ∼Qθ êr(Qi, Si), K(Qθ,P) and
EPθ∼QθK(Qφi , Pθ), i = 1, ..., n.

13: Calculate the gradient of Catoni-bound w.r.t
{θ, φ1, ..., φn} using backpropagation.

14: Take an optimization step.
15: end while
16: Return θ

above discussions, we can derive two PAC-Bayesian algo-
rithms for meta-learning classification problems with deep
neural networks. The detailed pseudo code of setting our
PAC-Bayesian Catoni-bound as training objective is shown
in Algorithm 1, where we set C1 = 2, C2 = 3 for con-
venience. The pseudo code of minimizing our kl-bound
can be illustrated in a similar way. In practice, we set the
parameters κP = 2000 and κQ = 0.001 respectively, and
the confidence parameter δ = 0.1. ADAM is chose as the
optimizer with learning rate of 10−3 for all experiments.

During the meta-test phase, the informative prior is sampled
randomly from the learned hyper-posterior Qθ, and we take
this prior and the scarce data of the novel task as input
to learn a posterior. The test bound is calculated on the
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Figure 3. Average test bounds and test errors of our two bound-minimizing meta-learning algorithms on new classification tasks for
different sample sizes per training-task and for different pixel-shuffled environments (average over 20 meta-test tasks). (a)-(b): Test
bounds of kl-bound and Catoni-bound. (c)-(d): Test errors of kl-bound and Catoni-bound.

novel task by using the PAC-Bayesian bound for single-task
learning as the minimization objective (i.e., only calculate
the task-level complexity in the meta-training bound).

E.2. Convergence Analysis of PAC-Bayesian kl-bound
and Catoni-bound for Meta-Learning

In this subsection, we provide visualization of the conver-
gence performance of our kl-bound and Catoni-bound. Such
experiment is conducted for a large range of the number
n of training tasks and a large range of the sample size m
per task in different classification environments. Detailed
information can be found in Figure 2 & Figure 3. We can
observe that: (1) With the increase of the number of meta-
training tasks, our meta-learning algorithms by minimizing
the proposed kl-bound and Catoni-bound can achieve lower
test bounds and lower test errors over the novel task. This
verifies the asymptotic behaviour of our two meta-learning
bounds. (2) When the number of training task or the sample
size per task is rather small (i.e., n = 1 or m = 5, 000),
both our kl-bound and Catoni-bound suffer performance
degradation. However, when n ≥ 2 or m ≥ 10, 000, our
two bound-minimizing algorithms obtain much better per-
formance. This indicates the value of extracting knowledge
from other similar training tasks that have sufficient training
data. (3) Our Catoni-bound can always achieve a lower level
than kl-bound, in terms of the test bound and the test error,
which is consistent with the tightness of the Catoni-bound.

F. Details of Regression Experiments

Table 4. The number n of meta-training tasks and the sample size
m per task in different regression environments.

Cauchy SwissFEL Physionet (GCS-HCT) Berkeley
n 20 5 100 36
m 20 200 4 - 24 288

F.1. Regression Environments

We provide more details on the five regression environments
in Table 4. The information includes the number of training

tasks and the sample size per task of different environments.
The comprehensive introduction of each environment can
be found in (Rothfuss et al., 2021) [Appendix E].

F.2. Approximating Gibbs Optimal Hyper-posterior
with SVGD Inference Method

Algorithm 2 GOHP with SVGD approximation of Q∗
(meta-training phase)

1: Input: Hyper-prior P , datasets S1, ..., Sn.
2: Hyper-parameter: SVGD kernel function k(·, ·), step

size η, scaler factor β in Eq. (8).
3: Output: Set of priors {Pφ1 , ..., PφK}.
4: Initialize: φ := [φ1, ..., φK ] , with φk ∼ P .
5: while not converged do
6: for k = 1, ...,K do
7: for i = 1, ..., n do
8: lnZi,k ← MLL Estimator(Si, Pφk)
9: end for

10: ∇φk ln Q̃∗ ← ∇φk lnP + β
nm

∑n
i=1∇φk lnZi,k

11: end for
12: φ← φ+ η K ∇φlnQ̃∗ +∇φK // SVGD update
13: end while
14: Return {Pφ1 , ..., PφK}

In this subsection, we detail how to employ the inference
method SVGD (Liu & Wang, 2016) to approximate the
Gibbs optimal hyper-posterior Q∗. We borrow the idea
from (Rothfuss et al., 2021) to develop our GOHP algorithm.
Concretely, SVGD approximates Q∗ as a set of particles
Q̂ = {Pφ1

, . . . , PφK}, where Pφ represents a prior with
parameter φ. Initially, we sample K particles φk from the
hyper-prior P . Then according to the explicit form ofQ∗ in
Corollary 2 of the main paper, we can compute the gradient
of Q∗ w.r.t. the parameters φk, k ∈ [K]:

∇φk lnQ∗(φk)=∇φk lnP(φk)

+
β

nm

n∑
i=1

∇φk lnZ(Si, Pφk),
(8)

where the marginal log-likelihood (MLL) lnZ(Si, Pφk) is
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Table 5. Different PAC-Bayesian meta-learning bounds on er(Q). Bound = Empirical Error + Environment-level Complexity +
Task-level Complexity. n is the number of training tasks, m is the size of each training dataset Si (i ∈ [n]). P,Q ∈M1(M1(H)) are
hyper-prior and hyper-posterior respectively. P,Qi = Q(Si, P ) ∈M1(H) are the prior and the posterior for the i-th training task. Our
Catoni-bound holds for any positive constant C1, C2 > 1.

Classical Bounds Empirical Error Environment-level Complexity Task-level Complexity

Pentina & Lampert êr(Q) 1√
n

(
K(Q,P) + 1

8 + ln δ
2

) K(Q,P)+
∑n
i=1 EP∼QK(Qi,P )

n
√
m

+ 1
8
√
m

+ 1
n
√
m

ln 2
δ

Amit & Meir êr(Q)
√
K(Q,P)+ln 2n

δ

2(n−1)
1
n

∑n
i=1

√
K(Q,P)+EP∼QK(Qi,P )+ln (2nm/δ)

2(m−1)

Rothfuss et al. êr(Q) 1√
n
K(Q,P) + 1

8
√
n

K(Q,P)+
∑n
i=1 EP∼QK(Qi,P )

n
√
m

+
(

1
8n
√
m

+ 1√
n

ln 1
δ

)
kl-bound (ours) êr(Q)

√
K(Q,P)+ln 2

√
n
δ

2n

√
2∆êr(Q)
mn + 2∆

mn ,∆ = K(Q,P) + EP∼Q
∑n
i=1K(Qi, P ) + ln 2

√
mn
δ

Catoni-bound (ours) C1C2 lnC1 lnC2

(C1−1)(C2−1) êr(Q)
C1

(
K(Q,P)+ln(2/δ)

)
n(C1−1)

C1C2 lnC1

(
K(Q,P)+EP∼Q

∑n
i=1 K(Qi,P )+ln(2/δ)

)
(C1−1)(C2−1)nm

approximated by numerical Monte Carlo estimates. Then
we update the particles with the SVGD update rule:

φ← φ+ η K ∇φlnQ̃∗ +∇φK,

where φ = [φ1, ..., φK ]> is the stacked particles ma-
trix, ∇φlnQ̃∗ = [∇φ1 lnQ∗(φ1), ...,∇φK lnQ∗(φK)]>

the stacked matrix of gradients, K = [k(φk, φk′)]k,k′ the
kernel matrix induced by the kernel function k(·, ·) and η
the step size for updates. The Pseudo code for meta-training
can be found in Algorithm 2.

Algorithm 3 GOHP with SVGD on the novel tasks (meta-
test phase)

1: Input: Set of priors {Pφ1 , ..., PφK}, dataset Sn+1 from
novel task.

2: Hyper-parameter: Kernel function k(·, ·), SVGD step
size η, number of particles L.

3: Output: A set of neural networks parameters⋃K
k=1{θk1 ..., θkL}.

4: for k = 1, ...,K do
5: Initialize {θk1 , ..., θkL}, θkl ∼ Pφk , l ∈ [L].
6: while not converged do
7: for l = 1, ..., L do
8: ∇θk

l
lnQ∗(θkl )←∇θk

l
lnPφk−m∇θk

l
êr(h, Sn+1)

9: end for
10: θkl ← θkl + η

L

∑L
l′=1[k(θkl′ , θ

k
l )∇θk

l′
lnQ∗(θkl′) +

∇θk
l′
k(θkl′ , θ

k
l )].

// SVGD update
11: end while
12: end for
13: Return

⋃K
k=1{θk1 ..., θkL}

F.3. Applying Gibbs Optimal Hyper-posterior to Novel
Tasks

During the meta-test phase, the extracted knowledge from
the n training tasks is now applied to a novel task by a

base learner. The base learner is given a training dataset
Sn+1 ∼ Dn+1, where Dn+1 is sampled from the same
environment τ . We still use statistical inference method
to approximate the Gibb optimal posterior Q∗(Sn+1, P )
defined in Corollary 1 of the main paper. Then we use the
SVGD update rule in Eq. (8) to update the parameter θ of
the neural networks for the novel task. Algorithm 3 gives the
steps of the training procedure during the meta-test phase.

For a data point x∗ from the held-out evaluation set S∗ ∼
Dn+1, the neural network predictor outputs a probability dis-
tribution as p̂(y∗|x∗, Sn+1) ← 1

KL

∑K,L
k,l=1 p(y

∗|hθkl (x∗)).
Then the mean prediction is set as the expectation of the
distribution p̂, i.e., ŷ = Ey∗∼p̂(y

∗|x∗, Sn+1). Thus the root
mean squared error (RMSE) over the novel task Dn+1 is
calculated as follow:

RMSE =

√√√√ 1

|S∗|
∑

(x∗,y∗)∈S∗
(y∗ − ŷ)2.

Remark 2 Note that our mete regression algorithm GOHP
achieves analogous experimental results w.r.t. the latest
PACOH algorithm on the regression datasets in Table 3
in the main paper. There are two reasons for GOHP’s
analogous performance w.r.t. PACOH: (1) Both algorithms
minimize similar objectives: although our bound of O

(
( 1
n +

1
mn )K(Q,P)

)
in Corollary 1 is sharper than that ofO

(
( 1
n+

1
mn )K(Q,P) + θ

)
in (Rothfuss et al., 2021)[Corollary 1],

where θ is a constant that will not decrease with the increase
of the number n of training tasks or the sample size m per
task, Rothfuss’s PACOH omits the constant term θ during the
optimization process. Thus, both our minimization objective
and that of PACOH are almost the same, except for the
multiplicative factor before K(Q,P). (2) Both algorithms
use the same approximation technique: both GOHP and
PACOH employ the same inference method SVGD (Liu &
Wang, 2016) to minimizeO

(
( 1
n+ 1

mn )K(Q,P)
)

and update
the hyper-posterior Q iteratively.
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Table 6. Notations of PAC-Bayesian single-task learning and PAC-Bayesian meta-learning. H is the hypothesis space, and l : H×Z →
[0, 1] is the bounded loss function. In the main paper, we write êr(Q) , êr(Q,S), er(Q) , er(Q, τ) for abbreviation.

PAC-Bayesian Single-Task Learning PAC-Bayesian Meta-Learning

Sample z ∈ Z Sample S ∈ Zm

Training Set S = {zi}mi=1 ∈ Zm Training Set S = {Si}ni=1 ∈ (Zm)n

Unknown Task D ∈M1(Z) Unknown Environment τ ∈M1(M1(Z))

Prior P ∈M1(H) Hyper-Prior P ∈M1(M1(H))

Posterior Q ∈M1(H) Hyper-Posterior Q ∈M1(M1(H))

Empirical Error êr(Q,S) = Eh∼Q
1
m

∑m
i=1 l(h, zi) Empirical Error êr(Q,S) = EP∼Q

1
n

∑n
i=1 êr(Q(Si, P ), Si)

Expected Error er(Q,D) = Eh∼QEz∼Dl(h, z) Transfer Error er(Q, τ) = EP∼QED∼τES∼Dmer(Q(S, P ), D)

G. Explicit Forms of Different PAC-Bayesian
Meta-Learning Bounds

In this section, we provide the explicit forms of different
PAC-Bayesian bounds for meta-learning in Table 5. Note
that Table 5 provides the detailed version of those PAC-
Bayesian bounds listed in Table 1 of the main paper.

Remark 3 We remark that it is infeasible to directly com-
pare our results with the latest generalization bounds in
(Farid & Majumdar, 2021) which combines PAC-Bayes
analysis and algorithmic stability theory. The reasons
lie in two aspects: (1) It is hard to compute a precise
PAC-Bayes bound in (Farid & Majumdar, 2021)[Theorem
3], as the uniform stability parameter (referred as β) in
their bound depends on L-Lipschitzness and B-smoothness
of neural networks, where the constants L and B are
always unknown and truly big (>> 1). (2) Neverthe-
less, we can make a rough comparison as follow. In the
convex case, the stochastic gradient descent (SGD) algo-
rithm with constant step sizes has a stability parameter
β = O(L2T/m), where T is the total number of iteration.
Recall that T = 200, m = 2, 000 in our meta-test phase,
so β >> 200/2000 = 0.1 and is larger than our reported
Catoni-bound in Table 2. Therefore, Farid’s generalization
bound in the convex case is not tight enough, let alone the
bound in the non-convex case (e.g. deep neural networks).

H. Notations of Single-Task Learning and
Meta-Learning

In this section, we provide notations of PAC-Bayesian
single-task learning and PAC-Bayesian meta-learning in
Table 6 for readers convenient reference.


