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Abstract

Domain adaptation algorithms and theory have
relied upon an assumption that the observed data
uniquely specify the correct correspondence be-
tween the domains. Unfortunately, it is unclear
under what conditions this identifiability assump-
tion holds, even when restricting ourselves to the
case where a correct bijective map between do-
mains exists. We study this bijective domain
mapping problem and provide several new suf-
ficient conditions for the identifiability of linear
domain maps. As a consequence of our analy-
sis, we show that weak constraints on the third
moment tensor suffice for identifiability, prove
identifiability for common latent variable models
such as topic models, and give a computationally
tractable method for generating certificates for the
identifiability of linear maps. Inspired by our cer-
tification method, we derive a new objective func-
tion for domain mapping that explicitly accounts
for uncertainty over maps arising from unidentifi-
ability. We demonstrate that our objective leads
to improvements in uncertainty quantification and
model performance estimation.

1. Introduction
Given labeled data from a source domain and only unlabeled
data from a different target domain, can we learn a classifier
that performs well on the target domain? Many unsuper-
vised domain adaptation algorithms have been proposed to
learn such models, but the lack of labeled target-domain data
makes it difficult to evaluate or trust the resulting models.
Overcoming this challenge requires us to derive methods
that provide guarantees on target-domain error in domain
adaptation problems. More generally, these guarantees are
a key step to answering the broader research question of
“under what conditions are domain adaptation problems
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learnable?”

There is a long history of domain adaptation theory work
that attempts to bound the target-domain error (e.g. Ben-
David et al. (2010b) and survey in Redko et al. (2020)) but
these methods either require that source and target distribu-
tions already be extremely similar (and often overlapping)
or that the hypothesis class is highly constrained. While
there are invariant representation approaches (Ganin et al.,
2016) that avoid these drawbacks by learning representa-
tions that increase overlap between the domains, the target
error guarantees for these models contain terms that require
target-domain labels to estimate and can’t easily be assumed
away (Johansson et al., 2019).

There have been some recent successes in obtaining prov-
able guarantees for complex predictors with little to no
overlap in the setting where we assume the existence of
a bijective domain map that relates the source and target
inputs (Richardson & Weiss, 2021; Courty et al., 2016). In
this setting, the problem of domain adaptation reduces to
recovering the map. Domain mapping algorithms (e.g. Zhu
et al., 2017) learn such a map by minimizing a distance be-
tween the distributions of source inputs and mapped target
inputs over a family of maps with the true map achieving a
distance of zero.

…

Possible maps

Source

domain

Target

domain

Figure 1. When mapping an unlabeled target domain to a labeled
source domain, many possible maps can exist which yield different
labelings.

Domain mapping suffers from a problem: besides the cor-
rect map, our map family may also contain may contain
“spurious maps” which yield high target-domain error, but
still align the input distributions. We have no way to dis-
qualify these maps based on the data alone. We illustrate
this problem in Figure 1: if both domains’ inputs follow a
uniform distribution over a circle, any rotation matrix will
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align them, but the classifiers resulting from different rota-
tions can be very different. In other words, the solution to
the domain mapping problem can be underspecified.

Our ability to guarantee performance hinges on the identi-
fiability of the map: among all the maps in the family, the
correct map must be uniquely specified by the data. Despite
the importance of this problem, provable identifiability con-
ditions are not known for the basic case of a general linear
map and the known results focus on the special cases of a
ground-truth orthogonal linear map (Richardson & Weiss,
2021) and a positive definite linear map (Courty et al., 2016).
Identifiability conditions for general linear maps would pro-
vide provable guarantees for a range of recent linear domain
mapping methods in style transfer (Richardson & Weiss,
2021) and bilingual lexicon induction (Conneau et al., 2017;
Zhang et al., 2017), and we focus on this goal for the major-
ity of our work.

Figure 1 hints that a key roadblock to identifiability is the
existence of symmetries in the distributions: the rotational
symmetry of the circle prevents us from identifying a unique
rotation that aligns the distributions. We develop this idea
and show that linear symmetries can be ruled out through
conditions on the third moment tensor, yielding sufficient
conditions for the identifiability of a general linear map.
Our conditions are broadly applicable: as one example, they
imply identifiability for data generated by common latent
variable models like topic models.

We complement our tensor-based identifiability conditions
with a computationally tractable randomized algorithm that
can provide high-probability guarantees for the identifia-
bility of domain maps. As a proof of concept, we use this
certification algorithm to prove the identifiability of linear
maps over MNIST.

Finally, we develop new objective functions for the case
where the domain map is not identifiable. Our objective
attempts to estimate a model’s worst-case error over a set
of possible maps. This worst-case formulation can be used
both as a training loss and a post-hoc evaluation, and we
demonstrate that this approach provides improvements in
model calibration and target-domain error estimates for
neural-network based domain adaptation methods.

2. Problem Setup
In the unsupervised domain adaptation problem, we con-
sider a source distribution P s(x, y) and a target distribution
P t(x, y). We denote the corresponding random variables
from these distributions as Xs, Y s and Xt, Y t. Given la-
beled source samples (xs1, y

s
1) . . . (xsn, y

s
n) ∼ P s(x, y) and

unlabeled target samples xt1 . . . x
t
m ∼ P t(x), our goal is to

learn a predictor h ∈ H that achieves low target distribution

loss
LT := E[`(h(Xt), Y t)],

where ` : Y×Y → R≥0 is a loss function. The fundamental
challenge with the domain adaptation problem is that the
target-domain conditional distribution P t(y|x) is unknown.

Our work considers unsupervised domain mapping methods
as a way to address this problem. In many cases, there exists
a bijective map that transforms target-domain inputs into
corresponding source-domain inputs, and identifying this
map allows us to solve the domain adaptation problem. For-
mally, we call a map T admissible if it aligns the marginal
input distributions between domains as follows:

T (Xt)
d
= Xs.

We call T label-preserving if it aligns the conditional distri-
butions by ensuring that for all x ∈ X ,

Y |Xs = T (x)
d
= Y |Xt = x.

Our goal then is to identify a map T ∈ T which is both
admissible and label-preserving. If such an admissible and
label-preserving map exists, we will call the domain map-
ping problem realizable, and we call a domain mapping
problem underspecified if there exists at least one other
spurious map which is admissible but not label preserving1.

In the case that a domain mapping problem is realizable,
the original domain adaptation problem is solvable by first
learning a predictor h on our source domain as

hs := arg min
h∈H

E[`(h(Xs), Y s)]

and then performing prediction via ht := hs ◦ T ∗, which
is optimal on the class {h ◦ T : h ∈ H, t ∈ T }. Assuming
realizability, this argument reduces the problem of domain
adaptation to identifying T ∗, and we focus on this question
of identifiability in the subsequent sections.

3. Identifiability Conditions for Domain Maps
Identifying an admissible label-preserving map is impos-
sible in the presence of spurious maps. Recall our earlier
example in Figure 1: identifying the label-preserving map
was not possible due to the many spurious maps which ex-
actly matched the marginal distribution of Xs. We will now
derive conditions under which an admissible domain map
(T (Xt)

d
= Xs) is guaranteed to be unique. In this case, the

1This realizable map assumption always implies that the data
is consistent with the conditional shift assumption from domain
adaptation literature (Zhang et al., 2013). Often the distributions
of Xs and Xt are disjoint, in which case it additionally implies
that the data is consistent with the covariate shift assumption
(Shimodaira, 2000).
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only admissible map is the label-preserving one, and we can
be assured that we have a solution to the domain adaptation
problem.

Our analysis of domain map identifiability is based upon the
study of symmetries: the map in Figure 1 was unidentifiable
because of rotational symmetries in the distribution, and
we expect complex real-world distributions without simple
symmetries will have identifiable domain maps. We state
this intuitive observation more formally in the following
proposition.

Proposition 3.1. For any pair of admissible linear maps
T1, T2 from P t(x) to P s(x), there exists a linear symmetry

S of P s(x) (that is, SXs d
= Xs) such that T2 = ST1.

Proof. Let S = T2T
−1
1 , then Xs d

= T2X
t d

= T2T
−1
1 Xs

so S is a linear symmetry of P s(x) satisfying T2 = ST1
which completes the proof.

As a consequence, if the only linear symmetry for P s(x)
is S = I then admissible linear maps are identifiable, and
if the only orthogonal symmetry is the identity map, then
admissible orthogonal maps are identifiable.

The relationship between symmetries and identifiability
implies that we can understand identifiability conditions
through symmetry conditions, and we will provide a strati-
fied analysis of linear symmetries in three different regimes
of increasing generality: orthogonal linear symmetries using
second moments, general linear symmetries using third mo-
ments, and general linear symmetries using sampled data.

3.1. Orthogonal linear identifiability

We begin with a simple setting where we restrict ourselves
to orthogonal symmetries, yielding identifiability of orthogo-
nal maps. In Figure 1, we saw that rotational and reflectional
symmetries prevented us from identifying the map. These
orthogonal symmetries can be ruled out on the basis of the
eigenvectors and eigenvalues of the second moment matrix.
Intuitively, uniqueness of the eigenvalues rules out rotational
symmetries, and asymmetry of the marginal distributions
rules out reflectional symmetries. This observation has been
used in past work on linear orthogonal maps (Richardson
& Weiss, 2021) but we state and prove this result formally
to develop intuition for the more advanced identifiability
results.

Proposition 3.2. If all eigenvalues of the second moment
of P s(x) are distinct, and the marginal distribution along

each eigenvector v is asymmetric (vTXs
d

6= −vTXs), then
P s(x) has no orthogonal symmetries other than the identity.

Proof. Given in Appendix A.1.

Identifiability among orthogonal maps is useful, but this
still remains too restrictive to achieve our goal of obtain-
ing general identifiability conditions for domain maps. To
achieve this, we need conditions that rule out general linear
symmetries.

We can reduce the problem of identifying a general linear
symmetry to one of identifying an orthogonal symmetry by
first whitening the domains, which ensures that any linear
symmetries will become orthogonal ones. Unfortunately,
whitening destroys precisely the information we previously
relied upon to rule out orthogonal symmetries: the second
moment of a whitened distribution is the identity, violating
the assumptions of Proposition 3.2.

3.2. Linear identifiability with third moments

Although we can no longer rely on second moment informa-
tion to rule out orthogonal symmetries, we find that there
is an analogous condition to Proposition 3.2 that holds for
third moment tensors. If the CP decomposition of the third
moment tensor is unique and its rank is equal to the dimen-
sionality of Xs, we can rule out any orthogonal symmetries
even for whitened distributions.
Proposition 3.3. Let Xs

1 , X
s
2 , X

s
3 be three random vari-

ables from P s(x) andMs := E[Xs
1⊗Xs

2⊗Xs
3 ] be its third

moment tensor. Assume the following:

1. Ms has multilinear rank r.

2. Ms has a unique CP decomposition, up to the inherent
ambiguities of CP decompositions.

3. There are no repeated weights in the CP decomposition
of Ms when its factors are rescaled to have unit norm.

Then the CP decomposition of Ms has at least r linearly
independent mode-1 factors and for x in the span of these,
Sx = x for every orthogonal symmetry S. If r = d then P s

has no orthogonal symmetries other than the identity.

Proof. Given in Appendix A.2.

These conditions directly extend the existing second mo-
ment ones and allow us to certify the lack of linear symme-
tries by first whitening the distribution and verifying third
moment conditions. This linear symmetry condition is suf-
ficient to ensure identifiability of general linear maps (via
Proposition 3.1) and provides a useful theoretical tool with
which we can prove the uniqueness of domain maps for
many probabilistic models with known third moments. For
example, the extensive characterization of third moment
tensors for latent variable models (Anandkumar et al., 2012;
2013) means that domain adaptation problems generated by
many structured latent variable models are identifiable. We
give one such example:
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Remark 3.4. Let P s(x) be a whitened invertible linear
transformation of the word vector distribution in the sin-
gle topic model described by Anandkumar et al. (2012). Let
Xs

1 , X
s
2 , X

s
3 be sampled independently from the same doc-

ument. By sec. 4.3.1 of Anandkumar et al. (2012), we have
that Ms has an orthogonal decomposition whose factors
are the k transformed topic vectors. If the model’s topic
weights are unique, then the assumptions of Proposition 3.3
are satisfied and it follows that for a vector x in the span of
the transformed topic vectors, Sx = x for every orthogonal
symmetry S of P s(x).

More generally, we can use similar techniques to certify the
uniqueness of maps on the basis of any odd moment tensor
of order at least 3. The odd moments measure skewness
(ruling out reflectional symmetries) and the singular values
associated with the moment tensors can rule out rotational
symmetries.

While Proposition 3.3 provides a clean theoretical charac-
terization of identifiability for many probabilistic models, it
is not a statistically or computationally efficient approach
for providing identifiability guarantees. Statistically, third
moment tensor decompositions can be sensitive to noise and
require large sample sizes to be stable. Computationally, the
CP decomposition is NP hard to compute and efficient ap-
proximations do not provide the types of guarantees needed
for a certificate. We overcome these challenges by devel-
oping an alternative randomized algorithm that efficiently
certifies the lack of linear symmetries without explicit com-
putation of third moment conditions.

3.3. Efficiently certifying linear identifiability

We complement our third moment identifiability conditions
(which are useful for characterizing identifiability of distri-
butions with known third moments) with a computationally
and statistically tractable identifiability certificate.

The key idea is that we can leverage any domain mapping
algorithm MAP(·, ·) as a way to rule out orthogonal sym-
metries on a whitened distribution P s(x). Our approach
repeatedly applies a random orthogonal transformation R
on data from P s(x) and runs MAP from un-transformed
to transformed data. If there are no linear symmetries, the
resulting domain maps will be approximately R, while any
linear symmetry S will result in the mapping algorithm
sometimes returning the map RS. We show that consis-
tency over random transformations R provides a certificate
for the lack of symmetry up to a small uncertainty set in
operator norm.

Proposition 3.5. Let MAP(·, ·) be a stochastic mapping
algorithm which takes two datasets and returns an orthog-
onal linear map. Let the random variable X ∈ Rn×d
be a dataset drawn from P s(x) and let X1 be any fixed

Algorithm 1 CERTIFY

Requires: orthogonal mapping algorithm MAP(·, ·).
Inputs: dataset X sampled from P , failure probability δ,
data dimension d.
Returns: bound on the operator norm of any orthogonal
symmetry of P .
k ← 1 + log2

(
1
δ

)
Split X k ways into X1, . . . ,Xk.
for i = 2 to k do

Sample R ∼ HAAR[O(d)]
T ← R−1MAP(X1,XiR

T )
εi ← maxj ‖colj(T )− ej‖2

{ej is the jth canonical basis vector}
end for
return 2

√
dmaxi εi

draw of X. Let R be a random variable drawn from
the Haar measure on the d-dimensional orthogonal group,
and let T = R−1MAP(X1,XR

T ). Let e1, ..., en be the
canonical basis for Rd. If P(‖coli(T ) − ei‖ ≤ ε) > 0.5
for all i, then for any orthogonal symmetry S of P s(x),
‖S − I‖op ≤ 2ε

√
d.

Proof. Given in Appendix A.3

Proposition 3.5 leads to CERTIFY, a computationally-
tractable algorithm for certifying the lack of orthogonal
symmetries, which we give in Algorithm 1. At a high level,
CERTIFY splits a dataset, runs a mapping algorithm between
random transformations of subsets of the dataset, computes
a confidence bound for the value of ε in Proposition 3.5, and
finally returns the corresponding operator-norm bound.

CERTIFY allows us to test whether any admissible map
is unique by whitening P s, running CERTIFY, and us-
ing Proposition 3.1 to turn the lack of symmetry into a lack
of spurious domain maps. CERTIFY has runtime Θ(a log 1

δ )
where a is the runtime of MAP (in our implementation, MAP
is an SGD algorithm whose runtime is independent of δ).

Our results in this section demonstrate that applying random
perturbations R, running MAP, and measuring consistency
is a useful framework to obtain computationally efficient
certificates for identifiability. We now focus on how this
insight can be used to develop new loss functions for domain
mapping and adaptation.

4. A Worst-case Over Maps
Thus far we have focused our attention on certifying the
performance of models by guaranteeing the identifiability of
domain maps. However, domain maps used in practice are
unlikely to be linear or exactly identifiable. In this case, we
cannot identify a unique map, but we may be able to develop
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practical methods to quantify the degree of uncertainty in
the domain map, and to provide worst-case bounds over all
domain maps that match marginal distributions.

Our first observation is that small errors in identifiability
can be acceptable as long as they are sufficiently small so as
to not affect downstream prediction. Even in CERTIFY, the
guarantee is that the map is identifiable up to a small error
2ε
√
d. Making this idea more formal, we can consider the

set of all admissible translation maps between source and
target and learn a predictor which minimizes the worst-case
prediction error over these maps.

If all admissible maps lead to the same labeling, we can
be confident in our predictions. On the other hand, if we
find disagreements among admissible maps then we ought
to be pessimistic about model performance. Formally, we
will state this worst case approach as an upper bound on the
target error of our model.

Proposition 4.1. Let h be a target-domain predictor, hs be
a source-domain predictor, ` be a loss function satisfying
the triangle inequality, and T̃ be the set of all admissible
maps. Then

LT (h) ≤ LS(hs) + sup
T∈T̃

EP t [`(h(x), hs(T (x)))] .

Proof. Given in Appendix A.4.

The intuition is that together with hs, each possible map in
T̃ induces a labeling of the target domain, and knowing one
of the labelings to be correct, we simply take the supremum
over all possible such labelings. If our domain mapping
problem is realizable, then we have a valid upper bound to
the domain mapping performance of our predictor without
relying on labeled target-domain data.

However, one drawback of this approach is that we cannot
enumerate all admissible maps for a family of domain maps
such as neural networks. We develop a heuristic approxi-
mation inspired by the randomized certificate. Instead of
explicitly enumerating all maps, we consider a supremum
over a small number of different maps T1, ..., Tn obtained
by random restarts of a domain mapping algorithm. We
call the resulting objective function Worst-case Over Maps
(WOMP) and state it below:

LWOMP(h, hs, T1, ..., Tn)

:= LS(hs) + sup
T∈{T1,...,Tn}

EP t [`(h(x), hs(T (x)))]

Given a source-domain classifier and a small number of ad-
missible maps from a mapping algorithm, the WOMP objec-
tive provides a straightforward estimate for the worst-case
performance of a target-domain model. There are two main
ways to use the WOMP objective. When computed on an

already-trained model, it can be used as a proxy evaluation
metric for the target loss. When used to train target-domain
predictors by minimizing the WOMP objective, it yields
predictors which attain tighter values of the bound and ac-
count for underspecification in their predictions. Evaluating
the WOMP objective on a fixed set of m models requires
time Θ(mn) where n is the dataset size.

Partial Maps and Invariant Representations: The
WOMP objective is defined as a worst-case error over label-
ings induced by admissible maps. Since this definition only
uses the maps to generate the predicted labels hs(T (x)), it
can be further generalized to even apply to invariance meth-
ods which do not define bijective maps between domains.

In invariant representation methods (Ganin et al., 2016;
Tzeng et al., 2017), there are two encoders φs : X → Z
and φt : X → Z and prediction is performed on a shared
representation space Z . While the success of such methods
does not necessarily rely on the identifiability of any domain
maps, recent work has observed that successful invariant
representation learning is associated with invertibility of
the encoders φ (Johansson et al., 2019; Zhao et al., 2019),
in which case invariant representation methods behave as
domain mapping methods and both methods have the same
identifiability conditions.

Proposition 4.2. Let φs, φt ∈ Φ be invertible encoders
satisfying φs(Xs)

d
= φt(Xt). Let T ∗ be a label-preserving

map which is identifiable among a family of maps T . As-
sume ∀φ, φ′ ∈ Φ.φ ◦ (φ′)−1 ∈ T . Then for all x ∈ X ,

Y s|φs(Xs) = φt(x)
d
= Y |Xt = x.

Proof. Given in Appendix A.5.

Because of this connection, we formulate WOMP in its most
general form in our experiments, as the worst-case labeling
over a set of admissible and potentially non-bijective maps.

5. Experiments
We present experiments validating our two algorithmic con-
tributions, CERTIFY and WOMP. The focus of our work is
conceptual rather than empirical; as such, our experiments
consider illustrative simplified settings rather than realistic
benchmarks.

5.1. CERTIFY

We use CERTIFY to certify the linear asymmetry of MNIST
at a confidence level of 95%, which via Proposition 3.1
implies that domain mappings between transformations of
MNIST are identifiable. We run two experiments: in the first
experiment, we run CERTIFY on the pooled training and test
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Figure 2. WOMP (right) provides useful estimates of a target-domain accuracy for ADDA models (circles), and even tighter estimates for
WOMP-trained ones (stars). In contrast, the baseline (ADDA domain divergence, left) does not meaningfully correlate with target-domain
accuracy.

splits of MNIST (n = 70K), and in the other, we generate
n = 1M synthetic examples by applying the “InfiMNIST”
data augmentation procedure of Loosli et al. (2007) and run
CERTIFY on the augmented dataset.

As a preprocessing step, we apply PCA to whiten the data
and truncate to the top 32 principal components, which ex-
plain 74% of the variance. By visual inspection, we confirm
that the digit label remains easily identifiable. Recall that
Proposition 3.5 makes no assumptions about the mapping
algorithm (other than that it returns an orthogonal map) and
therefore we are free to implement MAP within CERTIFY
however we wish. We chose to instantiate MAP as an adver-
sarial domain alignment algorithm with a number of choices
to minimize optimization noise; we describe these, along
with other experiment details, in Appendix B.1.

CERTIFY takes a dataset and a confidence level and outputs a
bound on ‖S− I‖op for any orthogonal symmetry S, which
we translate into an `2 distance between the mappings of
any unit-norm point under any pair of admissible maps. A
small-enough distance means that all admissible maps are
essentially the same. In particular, if the distance is smaller
than a source-domain classifier’s margin for a given point,
then all admissible maps will yield the same label for that
point. As a proxy for the margin, we compare our computed

Table 1. CERTIFY results on MNIST (lower is better) at confidence
level 0.95. We bound the `2 distance between admissible mappings
of unit-normalized points. Given enough samples, our bound is
smaller than the median distance to the nearest differently-labeled
digit.

`2 DIST.
CERTIFY BOUND, n=70K 0.56
CERTIFY BOUND, n=1M (DATA AUG.) 0.16

NEAREST NEIGHBOR WITH DIFF. LABEL 0.51

bounds to the median distance between an `2-normalized
dataset example and its nearest neighbor in the dataset with
a different label.

We present results in Table 1. Evaluated on the full MNIST
dataset, CERTIFY certifies asymmetry up to an error which is
slightly larger than the nearest-neighbor distance. However,
we observe that this error is mostly an artifact of limited sam-
ple size. Given a larger sample size (through augmentation),
CERTIFY successfully certifies that MNIST has essentially
no linear symmetries, up to an error distance significantly
less than the nearest-neighbor distance.

5.2. WOMP

We now demonstrate that accounting for the underspecifi-
cation of domain adaptation problems via WOMP can be
useful for estimating target-domain model performance, as
well as improving uncertainty estimates.

Our first experiment considers the standard MNIST-USPS
benchmark task (Long et al., 2013), in which MNIST digits
form the source domain and USPS digits form the target do-
main. Our goal is to accurately estimate the performance of
domain adaptation models across different function families
and random seeds without relying on target-domain labels.

In the second task, we are interested in uncertainty quan-
tification and calibration. We consider two datasets. The
first is a semi-synthetic “Colored MNIST” dataset obtained
by coloring half of the images in MNIST red and the other
half green, yielding source and target domains. The second
is a subset of the popular DomainNet benchmark (?), con-
structed by taking the “real photos” domain as the source
and the “QuickDraw drawings” domain as the target. We
filter the DomainNet data to the ten most frequent classes to
construct a 10-way classification task. We train models with
and without WOMP, and show that the WOMP objective
leads to better calibration by accounting for unidentifiability
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Figure 3. WOMP (right) can be used to select the number of CNN layers for ADDA models. The baseline hyperparameter selection
metric (ADDA domain divergence, left) does not meaningfully separate high- and low-performing models. We plot means and standard
deviations across 8 random seeds.

of the domain map.

ADDA Models Consistent with our findings in Sec-
tion 5.1, we found in early experiments that domain map-
ping succeeds quite reliably on MNIST across a variety
of map families. To demonstrate WOMP’s benefits in a
regime where underspecification exists, our experiments
study non-invertible invariant representation models (see
Section 4) rather than invertible domain maps. More specif-
ically, we focus on ADDA models (Tzeng et al., 2017).
An ADDA model consists of separate source and target
encoders φs(xs), φt(xt) which map inputs to a shared la-
tent space, a classifier f(z) defined on the latent space
and trained using source-domain data, and a discrimina-
tor D(z) used to align the distributions of φs(Xs) and
φt(Xt). All three components are trained jointly in an
adversarial game, and at test-time we classify target inputs
via h(xt) = f(φt(xt)).

Encoder Architectures The identifiability of an ADDA
model depends on the function family of the encoders. Our
experiments make use of three encoder architectures: or-
thogonal linear maps, MLPs, and CNNs. The MLPs have a
single hidden layer of width 64. The CNNs have two layers
of 5 × 5 kernels with stride 2 and widths 16 and 32, with
no global pooling or fully-connected layers. These archi-
tectures and details were chosen to demonstrate WOMP’s
behavior across a range of underspecification levels; they
are not intended to be state-of-the-art models for the bench-
marks in question. In particular, the MLP encoders suffer
heavily from underspecification, the linear maps suffer less,
and the CNNs are essentially identifiable. For more details
about architectures and hyperparameters see Appendix B.2.

5.2.1. ESTIMATING TARGET-DOMAIN PERFORMANCE

Recall the problem from the introduction: without labeled
target-domain data, we have no means of judging the success

of our domain adaptation algorithm. Specifically, underspec-
ification can cause existing domain adaptation methods to
achieve nearly zero loss (even on held-out data) despite
having high target-domain error. We run experiments on
the MNIST-USPS task which show that by accounting for
underspecification, the WOMP objective correlates with
target-domain error across different model families, making
it a useful quantity for model selection and evaluation.

We consider ADDA models with three choices of encoder
architecture: orthogonal maps, CNNs, and MLPs. For each
of these model families, we train models using ADDA over
sixteen random seeds and compute the ADDA objective on
held-out data for each seed.2 Adversarial training in ADDA
is known to be unstable (Creswell et al., 2018); to mitigate
instability, we discard all but the eight best-ranking models
(by ADDA objective) within each family.

Next, we compute the WOMP objective for each of the 27
models3, using the eight models with the same architecture
to generate the worst-case labelings for WOMP. For each
encoder architecture, we additionally train a simple MLP
target-domain classifier from scratch by minimizing the
WOMP objective, again using the eight ADDA models of
that architecture for WOMP’s worst-case set.

We plot the WOMP objective against target-domain test
accuracy in Figure 2 (right) and see that WOMP correctly
bounds the test accuracy, and moreover ranks model fami-
lies correctly without using any target-domain labels. Fur-
thermore, we see that the WOMP-trained models (plotted

2ADDA is a min-max game whose objective includes an “ad-
versarial domain divergence” term (Huang et al., 2017) which is
not straightforward to measure, but we estimate it by training an
independent domain discriminator after training the encoders, fol-
lowing Danihelka et al. (2017). See Appendix B.3 for more details
about this procedure.

3Eight ADDA models with different random seeds plus one
WOMP-trained model, for each of 3 architectures.
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Figure 4. Reliability plots and confidence histograms for models trained with WOMP (right) and ADDA (left), on Colored MNIST (top)
and a subset of DomainNet (bottom). The WOMP-trained models successfully make high- and low-confidence predictions, whereas the
ADDA models are overconfident. We plot means and standard deviations across 5 random trials.

as stars) attain tighter values of the WOMP bound which
correlate particularly well with their test accuracy. In con-
trast, Figure 2 (left) plots each ADDA model’s test accuracy
against the ADDA objective, evaluated on held-out data. We
see that there is no correlation between the ADDA objec-
tive and the test performance across model families. These
experiments suggest that by accounting for spurious maps,
WOMP-style objectives may serve as a useful tool for model
architecture selection in domain invariance methods.

Hyperparameter Selection Having shown that WOMP
can be used to select between highly different model fam-
ilies (e.g. linear models and CNNs), we now show that it
can also be used to select hyperparameters within a model
family. Adopting the same setup as above, we train ADDA
models on Colored MNIST with CNN encoders contain-
ing between 1 and 5 convolutional layers. Restricting the
number of layers implicitly limits the CNN’s receptive field,
which eliminates spurious maps in this problem. We plot
the results in Figure 3 and observe that WOMP successfully
separates the high- and low-performing models, whereas
the ADDA domain divergence does not.

5.2.2. UNCERTAINTY ESTIMATION

Because domain adaptation algorithms ignore underspecifi-
cation, they can be highly confident about predictions which
are ultimately incorrect. Unlike the i.i.d. model calibration
setting (Gneiting et al., 2007; Guo et al., 2017a), this prob-
lem persists even in the infinite-data limit. To demonstrate
this, we train domain adaptation models on Colored MNIST
and a subset of DomainNet using ADDA with MLP en-
coders. After training, we calibrate each model’s classifier
using temperature scaling (Guo et al., 2017b) on held-out
source-domain data. Figure 4 (left) shows a histograms of
the models’ confidence values as well as reliability plots
(DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana,
2005), both computed on held-out target-domain data. The
plot reveals that the models are overconfident in most of their
predictions, and on Colored MNIST, that their confidence
does not meaningfully correlate with predictive accuracy.

Next, we train MLP target-domain classifiers by minimizing
the WOMP objective, using the eight ADDA MLP models
as WOMP’s worst-case set. We present the confidence his-
tograms and reliability plots for these models in Figure 4
(right). The WOMP-trained models’ confidence and predic-
tive accuracy correlate clearly.

The WOMP-trained and ADDA-trained MLP models rely
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on the same encoder family and therefore both suffer from
the same underspecification. Yet, Figure 4 shows that the
WOMP-trained MLP model identifies a subset of examples
which it can classify with greater confidence, and its pre-
dictions on this subset are indeed more accurate. To make
these observations quantitative, we compute the Expected
Calibration Error for the two models in Figure 4. We find
that on Colored MNIST, the WOMP model attains an ECE
of 0.10 ± 0.33 compared to 0.66 ± 0.03 for the baseline,
and on DomainNet, WOMP attains 0.04± 0.01 compared
to 0.24± 0.04 for the baseline.4

We observe consistent results for WOMP-trained models
using linear and CNN ADDA encoders, which we give
in Appendix C.2. For more experiment details, see Ap-
pendix B.

6. Related Work
Our work relates to domain adaptation theory and the study
of symmetries. We discuss these connections below.

Domain Adaptation Theory and Methods In seminal
work, Ben-David et al. (2010a) introduced the H∆H di-
vergence as a computable surrogate for the target-domain
error. Unfortunately,H∆H bounds contain ‘joint train-test
error’ terms that cannot be measured without labeled test
data and often return vacuous bounds for expressive models
(See Redko et al. (2020) for a survey).

This second drawback has motivated invariant representa-
tion methods such as Ganin et al. (2016), which optimize
H∆H bounds using divergence-minimizing encoders. How-
ever, recent work has shown that these methods suffer errors
due to unmeasurable joint-domain error terms and identifia-
bility problems (Johansson et al., 2019; Zhao et al., 2019).

Our work is motivated by these observations of unidentifia-
bility and complements existing domain adaptation theories
such asH∆H by providing conditions under which we can
rule out identifiability concerns using unlabeled data alone.

Domain Mapping Domain mapping is an empirically
successful family of methods that explicitly construct maps
between source and target domains. This approach has been
used in both visual domain adaptation (Zhu et al., 2017;
Hoffman et al., 2018; Damodaran et al., 2018) and unpaired
machine translation (Lample et al., 2017; Artetxe et al.,
2017). Recent work has shown that even linear domain
maps can be surprisingly effective in visual style transfer
across domains (Richardson & Weiss, 2021) and word em-
bedding alignment across languages (Conneau et al., 2017;
Zhang et al., 2017).

4We report means and standard deviations across 5 random
trials.

The closest work to ours is Courty et al. (2016) who develop
a method based on optimal transport with identifiability
guarantees, but only for symmetric positive-definite linear
maps. Our work greatly expands the set of known identifi-
ability conditions (to general linear maps), provides a new
computationally tractable certificate for identifiability, and
develops algorithms that can improve uncertainty quantifi-
cation when the ground truth map is not identifiable.

In complementary work, Zhang et al. (2013) and Gong et al.
(2016) consider a more general family of domain adaptation
problems in which the domain map can differ for each class.
However, their identifiability conditions are restricted to a
class of “location-scale transformations”, whereas we show
identifiability for the broader class of general linear maps.

Extrinsic Symmetries The identifiability of linear do-
main maps is equivalent to the existence of linear, extrinsic
symmetries. This problem has been studied in the graph-
ics literature, often in three dimensions (Mitra et al., 2013;
Chertok & Keller, 2010; Ovsjanikov et al., 2011). While
these existing results provide algorithms that can identify
and return symmetries from shapes, they do not provide
simple characterizations of identifiability (as in our third
moment condition) or provide provable certificates that rule
out symmetries (as in our randomized algorithm). Our work
complements existing characterizations of symmetry, and
our certificates for the lack of symmetries could be useful
beyond domain adaptation problems.

7. Conclusions
We began with the question: “when does recovery of an
admissible map guarantee success in domain adaptation?”
Through conditions on the third moment tensor, we clari-
fied that linear maps are often identifiable for parametric
distributions like topic models and we derived CERTIFY, a
computationally-tractable algorithm for certifying the iden-
tifiability of linear domain maps. We extended the ideas
behind CERTIFY to develop WOMP, a method for estimat-
ing a bound on target-domain error even in nonlinear and
unidentifiable problems, and validated our methods through
simple illustrative experiments.

Our current work is limited to certifying linear maps and
symmetries, but we believe that the same ideas and proof
techniques extend directly to the nonlinear case by consid-
ering more general Lie group symmetries and their corre-
sponding families of maps, providing a path towards certi-
fying complex real world domain mapping methods.
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A. Proofs of Things
A.1. Proof of Proposition 3.2

Proof. Let Σ := E[Xs(Xs)T ] be the second moment matrix of P , with eigenvalues λ1 < . . . < λn and corresponding
unit-norm eigenvectors v1, . . . , vn. Let S be an orthogonal symmetry of P s(x) (that is, SXs d

= Xs). Then for all i ∈ [1, n]
we have

Σvi = λivi =⇒ E[Xs(Xs)T ]vi = λivi

=⇒ SE[Xs(Xs)T ]vi = λiSvi

=⇒ SE[Xs(Xs)T ]STSvi = λiSvi

=⇒ E[(SXs)(SXs)T ]Svi = λiSvi

=⇒ ΣSvi = λiSvi

where the last line is because S is a symmetry. Therefore Sv1, . . . , Svn are eigenvectors of Σ with eigenvalues λ1, . . . , λn.
Since the eigenvalues are distinct, each corresponding eigenvector is unique up to a sign ambiguity, and therefore for each i
we have either Svi = vi or Svi = −vi. We can use the asymmetric marginal to rule out the latter case as follows: for all i,
we have

(Svi)
TXs d

= (Svi)
T (SXs)

= vTi X
s

d

6= −vTi Xs

where the first line is because S is a symmetry, the second line is by orthogonality of S, and the third line is by asymmetry
of vTXs. This implies that Svi 6= −vi, so it must be that Svi = vi for all i, and therefore S = I .

A.2. Proof of Proposition 3.3

Proof. Let (wi, ai, bi, ci)
k
i=1 be a CP decomposition of Ms (that is, Ms =

∑k
i=1 wiai ⊗ bi ⊗ ci). Let ‖ai‖ = ‖bi‖ =

‖ci‖ = 1 for all i ∈ [1, k] and wi < wi+1 for all i ∈ [1, k − 1], where both of these conditions are without loss of generality
since we can absorb the norms into wi and permute the ordering i arbitrarily (recall that we’ve assumed all wi to be distinct
in this form). Let S be an orthogonal symmetry of P s(x) (that is, SXs d

= Xs). Then we have

Ms :=E[Xs
1 ⊗Xs

2 ⊗Xs
3 ]

=E[SXs
1 ⊗ SXs

2 ⊗ SXs
3 ]

=E[Xs
1 ⊗Xs

2 ⊗Xs
3 ]×1 S ×2 S ×3 S

(since each transformation is linear along an appropriate matricization)

=

(
k∑
i=1

wiai ⊗ bi ⊗ ci

)
×1 S ×2 S ×3 S

=

k∑
i=1

wi(Sai)⊗ (Sbi)⊗ (Sci).

Therefore, (wi, Sai, Sbi, Sci)
k
i=1 also form a CP decomposition of Ms. By assumption, the CP decomposition of Ms is

unique up to rescaling of ai, bi, ci and permutation of the ordering i, and we canonicalized these ambiguities in the beginning
of the proof. Therefore the decomposition is completely unique and we have ai = Sai, bi = Sbi, ci = Sci.

Now, define A :=
[
a1 · · · ak

]
and it follows from the last paragraph that A = SA. We derive the rank of A as follows:

any vector v in the left nullspace of A is a solution to Ms×1 v = 0d×d and therefore also in the left nullspace of the mode-1
matricization of Ms. Therefore the rank of A is at least the rank of that matricization, which in turn is at least the multilinear
rank of M , which by assumption is r.
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Finally, since A = SA we have Sx = x for any x ∈ range(A), and if r = d then A is full-rank and therefore S = I , which
concludes the proof.

A.3. Proof of Proposition 3.5

Proof. Let x be any point in Rd, V be any subset of Rd, and S be any orthogonal symmetry of P s(x) (that is, Xs d
= SXs).

First we will show that P(Tx ∈ V ) = P(Tx ∈ SV ) where SV is the image of V under S. Define R′ = RS−1 and
T ′ = (R′)−1MAP(X1,X(R′)T ). Then we have

T ′ = (R′)−1MAP(X1,X(R′)T )

= SR−1MAP(X1,X(RS−1)T )

d
= SR−1MAP(X1,XR

T )

d
= ST

where the third line is because S is a symmetry of P s. By bijectivity of S we have Tx ∈ V ⇐⇒ STx ∈ SV , and
combining both statements gives P (Tx ∈ V ) = P (STx ∈ SV ) = P (T ′x ∈ SV ).

Now, R and R′ are identically distributed (because the Haar measure is invariant under multiplication by an orthogonal
matrix), which implies that T and T ′ are identically distributed, which implies P (T ′x ∈ SV ) = P (Tx ∈ SV ). Combining
both steps gives P (Tx ∈ V ) = P (Tx ∈ SV ).

Next we show that if P (Tx ∈ V ) > 0.5 then S must map V to a non-disjoint set. Assume that SV is disjoint from V ,
which leads to a contradiction:

P (Tx ∈ V ∪ Tx ∈ SV ) = P (Tx ∈ V ) + P (Tx ∈ SV )

= 2P (Tx ∈ V )

> 1.

The next step is to show that for all i, ||Sei − ei|| ≤ 2ε. For each i, let Vi be the sphere with radius ε centered at ei. From
the premise we have P(‖coli(T )− ei‖ ≤ ε) > 0.5 which is equivalent to P(Tei ∈ Vi) > 0.5, so from the previous step we
have that SVi must be non-disjoint from Vi. Since S is orthogonal, SVi is also a sphere with center Sei, and since SVi and
Vi are non-disjoint we have ||Sei − ei|| ≤ 2ε.

Now, let z be any unit-norm vector in Rd. Then we have

||(S − I)z|| = ||z1(Se1 − e1) + ...+ zd(Sed − ed)||
≤ |z1|||Se1 − e1||+ ...+ |zd|||Sed − ed||
≤ 2ε(|z1|+ ...+ |zd|)

≤ 2ε
√
d.

Finally, taking the supremum over z yields ‖S − I‖op ≤ 2ε
√
d which is the claim.

A.4. Proof of Proposition 4.1

Proof. Let T ∗ ∈ T be a label-preserving map. Then we have

LT (h) = EP t [`(h(x), y)]

≤ EP t [`(h(x), hs(T
∗(x)))] + EP t [`(hs(T

∗(x)), y)] by the triangle inequality
= EP t [`(h(x), hs(T

∗(x)))] + LS(hs) by label-preservingness of T ∗

≤ sup
T∈T̃

EP t [`(h(x), hs(T (x)))] + LS(hs) by the fact that T ∗ ∈ T̃ ,

which is the claim (with the order of the terms switched).
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A.5. Proof of Proposition 4.2

Proof. An invertible invariant representation φs, φt implies an admissible domain map φt ◦ (φs)−1. The assumption implies
that this map is in T and identifiability implies that it must be T ∗. Then for all x ∈ X we have

Y s|φs(Xs) = φt(x)
d
= Y s|(φt)−1(φs(Xs)) = x

d
= Y s|T ∗(Xs) = x

d
= Y t|Xt = x.

The second line is by invertibility of φs and the fourth line is by T ∗ being label-preserving.

B. Experiment Details
B.1. CERTIFY

MAP is implemented as follows: we learn 128 orthogonal maps with standard adversarial training and different random
seeds (the adversarial training details are the same as in Appendix B.2), take exponential moving averages of each map’s
parameters throughout training (ε = 0.999), evaluate each by computing an adversarial divergence between the two splits
(see Appendix B.3), take the top 12, average them together, and project the result onto the set of orthogonal matrices.
CERTIFY splits the dataset and holds out the first split; we leverage this held-out split for tuning the hyperparameters of
MAP.

For the MNIST experiment without data augmentation, we `2-regularize discriminator weights with λ = 10−5, train for
8K steps, and use a discriminator gradient penalty weight of 1. For the experiment with augmentation, we use the same `2
regularization but train for 16K steps and use discriminator learning rate 10−4.

B.2. ADDA training

All of the following hyperparameters were either tuned manually to minimize the adversarial divergence on a held-out set or
set manually to conservative default values.

In all cases below, the discriminator is a ReLU MLP with 2 hidden layers of width 512. The classifier, encoders, and
discriminator are trained jointly. The classifier minimizes a cross-entropy classification loss and the discriminator minimizes
a binary cross-entropy with a gradient penalty regularizer as in Mescheder et al. (2018). The encoders minimize an
equally-weighted sum of the negative discriminator loss and the classifier loss. All components are trained with Adam with
β1 = 0.5, β2 = 0.99.

Classifier The classifier is an ReLU MLP with 1 hidden layer of width 128, trained jointly with the encoders and
discriminator.

Linear encoder For Colored MNIST, inputs are PCA-whitened, truncated to 128 dimensions, and transformed by a random
orthogonal matrix. For USPS-MNIST, inputs are PCA-truncated, but not whitened, and transformed by a random orthogonal
matrix. Both source and target encoders are linear maps from 128-dimensional input space to a 64-dimensional latent
space. Training proceeds for 40K steps with encoder learning rates 10−3, classifier learning rate 10−3, and discriminator
learning rate 10−3. We use a discriminator gradient penalty weight of 10. For MNIST-USPS experiments only, we use `2
regularization with λ = 10−3 in the classifier and discriminator.

MLP encoder For Colored MNIST, inputs are PCA-whitened, truncated to 128 dimensions, and transformed by a random
orthogonal matrix. For USPS-MNIST, inputs are PCA-truncated, but not whitened, and transformed by a random orthogonal
matrix. We use MLPs with one hidden layer of width 64 and ReLU nonlinearity. The latent dimension is 64. Training
proceeds for 20K steps with encoder learning rates 10−4, classifier learning rate 10−4, and discriminator learning rate 10−3.
We use a discriminator gradient penalty weight of 10. For MNIST-USPS experiments only, we use `2 regularization with
λ = 10−3 in the classifier and discriminator.

CNN encoder We use a 2-layer CNN with 5× 5 kernels, stride 2, and ReLU nonlinearity. The channel widths are 16
and 32 for the first and second layers respectively. Training proceeds for 10K steps with encoder learning rates 10−5,
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classifier learning rate 10−4, and discriminator learning rate 10−4. We use a discriminator gradient penalty weight of 1. For
MNIST-USPS experiments only, we use `2 regularization with λ = 10−2 in the classifier and λ = 10−3 in the discriminator.

B.3. Adversarial divergence estimation

Given two datasets, we estimate the adversarial divergence between their distributions as follows: first, we split each dataset
into 50% training, 25% validation, and 25% test splits. We train a binary classifier on the training set (MLP with 2 hidden
layers of width 512), compute the validation loss every 10 steps during training, and take the test loss corresponding to the
best validation loss. The final divergence is log 2 minus the test loss.

The classifier is trained for 5000 steps with Adam (ε = 3× 10−4) and batch size 128. These hyperparameters were chosen
by hand as conservative defaults.

B.4. WOMP evaluation and training

To mitigate the effects of instability in the adversarial training procedure, when evaluating the WOMP loss and training the
WOMP predictor, we train 16 random restarts of the underlying ADDA model, compute adversarial divergences for each on
held-out data (see Appendix B.3), and use only the top half of the models as inputs to the WOMP training procedure.

The WOMP-trained classifier is a 2-layer ReLU MLP with width 512, trained for 10K steps with Adam (default hyperpa-
rameters).

C. Additional Experiments
C.1. Estimating Target-Domain Performance on Colored MNIST
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Figure 5. Model selection experiment results on Colored MNIST.

C.2. Uncertainty Estimation with Linear and CNN Encoders



Identifiability Conditions for Domain Adaptation
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Figure 6. Uncertainty estimation results for WOMP with linear and CNN ADDA encoders.


