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Abstract
We study offline reinforcement learning (RL) for
partially observable Markov decision processes
(POMDPs) with possibly infinite state and ob-
servation spaces. Under the undercompleteness
assumption, the transition kernel can be estimated
via solving a series of confounded regression prob-
lems. To solve the confounding problem, we se-
lect a proper instrumental variable (IV) and solves
the IV regression problem to construct confidence
regions for the model parameters. We get the
final policy via pessimistic planning within the
confidence regions. We prove that the proposed
algorithm attains an ϵ-optimal policy using an
offline dataset containing Õ(1/ϵ2) episodes, pro-
vided that the behavior policy has good coverage
over the optimal trajectory. To our best knowl-
edge, our algorithm is the first provably sample
efficient offline algorithm for POMDPs that is not
tabular.

1. Introduction
In the past few years, deep reinforcement learning (RL) has
shown its great potential to achieve human-level intelligence
(Mnih et al., 2015; Silver et al., 2016; 2017; Vinyals et al.,
2019; Ye et al., 2020; Wei et al., 2018; Pathak et al., 2019).
In most literature, the environment is modeled as a Markov
decision process (MDP) (Sutton & Barto, 2018), where the
agent can access a state that contains all the information
of the whole system for action selection. A bunch of algo-
rithms are proposed and proved theoretically to have strong
performance guarantees on MDPs, in terms of regret or sam-
ple complexity (Fan et al., 2020; Cai et al., 2019; Liu et al.,
2019a; Wang et al., 2019; Jin et al., 2020b; Cai et al., 2020).
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However, the assumption of full observability of the state is
often violated in practice, which restricts the application of
RL to scenarios with well-defined MDPs like video games
(Mnih et al., 2015; Vinyals et al., 2019; Ye et al., 2020). In
most cases, the agent can only observe a partial state or a
noisy version of the true state. To model such situations,
the partially observable Markov decision process (POMDP)
(Sondik, 1971; Spaan, 2012) is introduced.

In order to compensate the information loss in the partial
observations, action selections in POMDPs should depend
on the whole history instead of the observation it alone.
Such a dependency leads to huge computing burden since
processing a series of observations and actions in a POMDP
needs more careful design and consumes much more time
than processing one state in an MDP, especially when the
episode is long. Also, since the model parameters of a
POMDP can not be estimated directly from the data due to
the latency of the states, we can either infer the latent state
or estimate the model parameters from history. Both leads
to great challenges compared with learning in an MDP.

Despite those challenges, many algorithms have been pro-
posed to tackle the long dependency and are proved to have
a sound sample complexity or regret bound Azizzadenesheli
et al. (2016); Guo et al. (2016); Kwon et al. (2021); Jin
et al. (2020a); Xiong et al. (2021). Those algorithms fo-
cus on online learning settings, switching between sample
collection and strategy improvement during training. On-
line algorithms can acquire new data from interacting with
the environment, and the distribution of those data can be
altered towards a desirable direction by modulating the strat-
egy of interaction. Thus, online algorithms are often sample
efficient. However, in scenarios like healthcare (Yu et al.,
2021; Tang & Wiens, 2021; Sonabend-W et al., 2020) and
autonomous driving (Kiran et al., 2021; Shi et al., 2021b),
it’s impractical to collect new data because of the inconve-
nience or even potential danger caused by a bad interaction
strategy. Thus, in those settings, offline learning is a more
desirable way. Though sample efficient RL algorithms have
been proposed for offline setting (Jin et al., 2021; Zanette
et al., 2021; Kidambi et al., 2020; Yu et al., 2020), there is
no theoretical guarantees of any offline RL algorithm on a
POMDP. In this work, we combine offline reinforcement
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learning with POMDP framework and aim to answer the
following question,

Can offline reinforcement learning be provably efficient
on POMDPs?

To answer this question, we propose a new pessimistic of-
fline RL algorithm. Specifically, we consider a broad class
of linear POMDPs where both the observation emission
kernel and the state transition kernel are linear in the feature
mappings, which allows the state and observation space
to be arbitrarily large or continuous. A similar model has
been studied in (Yang & Wang, 2020) for MDPs. Our algo-
rithm exploits the undercompleteness assumption and the
pessimism principle in the face of uncertainty. We formu-
late the learning of the model parameters as a confounded
regression problem, and select proper instrumental variables
to cancel the correlation between the covariate and the per-
turbation. We theoretically prove that, for any ϵ > 0, our
algorithm obtains an ϵ-optimal policy with a proper offline
dataset containing poly(H, |A|, dϕ, dψ) · Õ(1/ϵ2) episodes,
whereH is the episode length, |A| is the number of available
actions, dϕ and dψ are dimensions of the feature mappings
for observations and states, respectively. To our best knowl-
edge, our algorithm is the first provably sample efficient
offline RL algorithm for POMDPs that is not tabular.

The remainder of this paper is organized as follows. We
introduce related literature in §1.1 and notations in §1.2. The
preliminaries are given in §2. We propose our algorithm in
§3. In §4, we introduce our main theoretical results. We
sketch the proof of our main theorem in §5.

1.1. Related Work

POMDPs. Our work is related to the literature on rein-
forcement learning on POMDPs. See (Spaan, 2012) and
the references therein. Recently, a polynomial sample com-
plexity for learning of the model parameters is achieved in
Azizzadenesheli et al. (2016); Xiong et al. (2021); Guo et al.
(2016), which all builds on the estimation of the parameters
of hidden Markov models (HMMs) using spectral methods
(Anandkumar et al., 2012; 2014). From the perspective of
POMDPs, an HMM is a special case with a fixed action se-
quence. To cope with this difference, Azizzadenesheli et al.
(2016) restrict their oracle to the memoryless policy that
only depends on the current observation instead of using all
historical information to form the belief of the underlying
state. Closest to our work is Jin et al. (2020a). They also
propose to make an undercompleteness assumption, where
they assume the latent states are less than the possible ob-
servations. We extend this assumption to a broader class of
POMDPs instead of tabular cases in Jin et al. (2020a) and
introduce a more sophisticated undercompleteness assump-
tion. Instead of estimating the real POMDP model, (Jin

et al., 2020a) utilizes the observable operator model (Jaeger,
2000) induced by the environment, which is the same idea
as ours.

Causal Inference. There has been a line of works that
apply methods in Causal Inference literature to identify the
POMDPs. The unobserved states admits unmeasured con-
founders in the POMDP model. Shi et al. (2021a); Bennett
& Kallus (2021) study the Off-Policy Evaluation (OPE)
problems in POMDPs and identify the POMDP with bridge
functions. The goal of OPE in POMDPs is to estimate the
value of an evaluation policy, which is a function of ob-
served variables, using the data generated by a behavior
policy. The most related work is Liao et al. (2021) that iden-
tifies the confounded transition dynamics via instrumental
variables and proposes IV-aided Value Iteration (IVVI) to
recover the optimal policy.

Offline RL. In the context of offline RL, our work is re-
lated to the recent pessimistic or conservative RL algorithms
(Zanette et al., 2021; Jin et al., 2021; Kumar et al., 2020;
Kidambi et al., 2020; Yu et al., 2020; Buckman et al., 2020)
which tries to find the best policy in the face of uncertainty
given an offline dataset. The intuition behind pessimism
is the need of worst-case guarantees arisen from the con-
cern about insufficient exploration in the offline dataset.
Specifically, Jin et al. (2021); Yu et al. (2020) adds bonus to
the rewards which penalize states not well-covered by the
dataset. The works of Zanette et al. (2021); Kidambi et al.
(2020) construct an MDP model on which the performance
of any policy lower-bounds that on the real environment,
and then learn a near-optimal policy on this model. Our idea
is closest to the second approach.

Function Approximations. Our linear POMDP assump-
tion draws connection to the rich literature on RL with
function approximations (Yang & Wang, 2020; Jin et al.,
2020b; 2021; Cai et al., 2020; Wang et al., 2020a; Zhou
et al., 2021; Ayoub et al., 2020). Among those works, our
model is most related to the linear factored MDPs (Yang &
Wang, 2020) with known feature mappings and an unknown
kernel matrix. However, the approach in Yang & Wang
(2020) can not be applied to POMDP directly because of
the latency of the states.

1.2. Notation

For any n ∈ N, we denote [n] = {1, 2, . . . , n}. We denote
by ∥ · ∥p the ℓp-norm of a vector or Lp norm of a function.
For any operator M , we denote by ∥M∥p 7→q the operator
norm of M induced by the ℓp-norm or Lp-norm of the
domain and ℓq or Lq-norm of the range. For any discrete
or continuous set X , we denote by Lp(X ) the Lp space
of functions over X and ∆(X ) the space of probability
density functions over X when X is continuous or the space
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of probability mass functions when X is discrete. Also,
the notation of the integral

∫
X in this paper is general for

summation over X no matter X is discrete or continuous.
For a sequence of variables x1, x2, . . . , we use xi:j to denote
the subsequence xi, xi+1, . . . , xj for i ≤ j. Lastly, we use
the notation linspan(·) to represent the linear span.

2. Preliminary
We consider episodic Partially Observable Markov Decision
ProcessM(H,S,A,O, T , E , r, µ1). Here, H is the hori-
zon, S is the state space, A is the action space, O is the
observation space, and µ1 is the initial state distribution. We
consider finite and discrete action space but allow the state
space and observation space to be arbitrarily large or contin-
uous. The transition kernel T = {Th : S×A → ∆(S)}Hh=1

defines the transition probabilities at state s ∈ S and when
action a ∈ A is taken. The emission E = {Eh : S →
∆(O)}Hh=1 specifies the distribution over observations for
any state s ∈ S at any step h ∈ [H]. Specifically, we as-
sume the reward functions r = {rh : O ×A → [0, 1]}Hh=1

are given and the rewards are normalized.

In POMDPs, the agent has no access to the state of the sys-
tem. Instead, only the observation for that state is revealed
to the agent. At the beginning of each episode, an initial
state s1 is sampled from µ1. At each step h ∈ [H], the
agent observes oh ∈ O, which is sampled from Eh(· | sh),
where sh is the latent state. Then, the agent picks an action
ah ∈ A by following its policy. Also, the agent receives re-
ward rh(oh, ah) for reaching the current observation oh and
taking action ah. Afterwards, the system transits to the next
latent state sh+1 ∼ T (· | sh, ah) following the transition
kernel. The process continues until reaching the terminating
state sH+1.

To deal with the partial observability, the agent takes into
account all the history observations and actions when taking
an action. That is to say, π = {πh : Γh → ∆(A)}Hh=1,
where Γh = (O × A)h−1 × O is the space of all the his-
tories at step h. We denote by Π the space of all policies,
which is known in prior. To describe the environment, we
parameterize the POMDP and use θ ∈ Θ to denote all the
unknown parameters in it, where Θ is the parameter space
given in prior, which will be specified later in Assumption
2.1. Then, we use T θ and Eθ to denote the parameterized
versions of T and E .

Similar to the MDP case, here we also aim to find the policy
π∗ ∈ Π that maximizes the expected accumulated reward.
Since the horizon is finite and the actions are discrete and

finite, there always exists an optimal policy π∗ such that

π∗ = argmax
π∈Π

J (θ∗, π), (2.1)

where J (θ, π) = Eθ,π
[ ∑
h∈[H]

rh(oh, ah)
]

(2.2)

for any θ ∈ Θ and π ∈ Π. Here, the symbols θ and π on the
subscripts of the expectations indicate that the parameter of
the underlying POMDP is θ, and all the actions are selected
by the policy π.

We consider the offline reinforcement learning setting with
a dataset DN = {(onh, anh, rnh , ρnh)}(n,h)∈[N ]×[H] that con-
tains N trajectories collected by some behavior policy π̄.
Specifically, besides the action anh in each step, we also
require the dataset to contain the probability of the behavior
policy to take that action, denoted by ρnh. Our goal is to
learn an ϵ-optimal policy π with DN . The suboptimality of
any policy π is characterized by the following regret

Regret(π) = J (θ∗, π∗)− J (θ∗, π), (2.3)

which is defined as the gap between the expected accumu-
lated reward by following the optimal policy π∗ and that by
following π in the actual POMDP.

2.1. Linear POMDP

We extend the linear MDP assumptions (Jin et al., 2020b;
2021; Wang et al., 2020a; Zhou et al., 2021; Ayoub et al.,
2020; Yang & Wang, 2020) to POMDPs and consider the
POMDPs where both the transition kernel and the emission
kernel can be fully embedded in the given feature spaces, as
stated in the following assumption.

Assumption 2.1. [Linear POMDP] For any h ∈ [H], there
exists known feature mappings

ϕh : S ×A → Rdϕ , ψ : S → Rdψ , φ : O → Rdφ ,

where the entries of ψ and φ are probability distributions.
Let θ = ({Mθ

h}h∈[H], {ηθh}h∈[H]) be all the unknown pa-
rameters in the POMDP, including matrices Mθ

h ∈ Rdϕ×dψ
and feature mappings ηθh : S → Rdη . For a given parameter
space Θ ⊂ Rdϕ×dψ × Ldη (S), there exists θ∗ ∈ Θ such
that

Th(s′ | s, a) = ϕ(s, a)⊤Mθ∗

h ψ(s′),

Eh(· | s) = φ(o)⊤ηθ
∗

h (s)

for any h ∈ [H], s, s′ ∈ S and a ∈ A.

The assumption of the linear POMDP requires that both
emission function and transition function can be linearly
approximated by known basis ψ and φ. For notational
simplicity, we denote by ψi and φj the i-th entry of ψ
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and the j-th entry of φ for any i ∈ [dψ] and j ∈ [dφ],
respectively. The same transition kernel has been defined in
Yang & Wang (2020) for MDPs. However, their algorithm
can not be applied to POMDPs since the latency of the
states. For any θ = ({Mθ

h}h∈[H], {ηθh}h∈[H]), we define the
following state transition function and observation emission
function

T θh (s′ | s, a) = ϕ(s, a)⊤Mθ
hψ(s

′), (2.4)

Eθh(· | s) = φ(o)⊤ηθh(s). (2.5)

The linearity of the transition kernel and the emission ker-
nel helps us to characterize undercompleteness (Jin et al.,
2020a). In tabular settings, it means the states are less
than the observations. Prior to introduce undercompleteness
to our linear POMDP, we define the observation operator
Oθh : L1(S)→ L1(O) for any (θ, h) ∈ Θ× [H] and func-
tion f ∈ L1(S) by

(Oθhf)(o) =
∫
S
Eθh(o | s)f(s) ds, (2.6)

where o ∈ O is arbitrarily. When f is a distribution of the
state sh, such an operator maps it to the distribution of its
observation oh under the emission kernel Eθh. In tabular
settings, such an operator is defined by matrix multiplica-
tion. Thus, the inverse operator is characterized by the
Moore-Penrose inverse of the matrix multiplication (Jin
et al., 2020a). However, in our linear POMDP with func-
tion approximations, the definition of the inverse operator
becomes more sophisticated, which is described in the fol-
lowing assumption.

Assumption 2.2. [Undercompleteness] For any h ∈ [H]
and θ ∈ Θ, there exists function ξθh : S × O → R and
corresponding operator Uθh : L1(O)→ L1(S) such that

UθhOθhf = f, ∥Uθh∥17→1 ≤ γ (2.7)

for any f ∈ linspan(ψ), where γ > 0 is an absolute con-
stant and the operator Uθh is defined by

(Uθhg)(s) =
∫
O
ξθh(s, o)g(o) do (2.8)

for any g ∈ L1(O).

Assumption is an extension of the undercompleteness as-
sumption in tabular POMDPs defined in Jin et al. (2020a).
It defines the left inverse of the observation operator O. Re-
call that O maps a distribution of the states to that of the
corresponding observations. Then, by (2.6), we can infer
the distribution of the states from that of the observations.
Though we can not directly acquire the latent state from the
observation, the distribution of the state still carries effec-
tive information To compare with Jin et al. (2020a) which
requires the number of states is smaller than that of the

observations, here we only require the linear mappings O
are injective. Interested readers can find more discussion in
§A.3. In what follows, we build our algorithm and analysis
on this assumption.

3. Algorithm
3.1. General Framework

To develop an algorithm for POMDPs, our strategy works
as follows. Given the offline dataset, we first estimate the
model parameter θ∗. Instead of having an exact estimator,
we construct a confidence region Θ̂ ⊂ Θ, which should
contain θ∗ with high probability. With such a confidence
region, for any policy π ∈ Π, we obtain a value function
estimator which lower-bounds the true value function of
π. Then, it’s natural to maximize those lower bounds over
some family Π of policies, which leads to the saddle-point
problem

(π̂, θ̂) = argmax
π∈Π

argmin
θ∈Θ̂

J (θ, π), (3.1)

where J is the expected total reward defined in (2.2). Note
that the method to solve (3.1) is out of the scope of our
study.talk about it later. The problem of our interest is
how to estimate the model parameter θ∗ and construct the
confidence region Θ̂ with the offline dataset collected by
some behavior policy π̄.

The most important part of identifying the model parameters
is to identify the transition kernel. We assume all other pa-
rameters, including the reward function and the initial state
distribution, are given in prior. In MDPs, to identify the tran-
sition kernel, it suffices to collect (sh, ah, sh+1) pairs and
the transition function can be identified by T θh (s′ | s, a) =
E[1{Sh+1 = s′} |Sh = s,Ah = a]. Thus, we can esti-
mate the transition kernel sufficiently accurate as long as
the dataset is large enough and provides a uniform coverage
over all the state-action pairs.

However, in POMDPs, the states are unobserved. We need
to find other way to identify the transition kernel. We start
by defining the following two random functions

Xh,a(o) = 1π̄do(Ah−1=a)
{Oh = o},

Yh,a,a′(o, o
′) = 1π̄do(Ah−1:h=(a,a′)){Oh:h+1 = (o, o′)},

for any (h, a, a′, o, o′) ∈ [H]×A2 ×O2. Here, the super-
script π̄ implies that we are following the behavior policy π̄,
whereas the do-operation in the subscript performs a deter-
ministic intervention on the policy π̄ at specified steps while
leaving all other actions untouched. For instance, in the
definition of Yh,a,a′ , we assign a and a′ to Ah−1 and Ah, re-
spectively, regardless of the observations, while the actions
A1:h−2 are still taken by the behavior policy π̄ based on the
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observations. Such a do-operation is commonly adopted in
Causal Inference (Pearl, 2009).

Intuitively, if there exists linear operators F̃θh,a : (O →
R) → (O2 → R) associated with the model parameter θ
such that

Yh,a,a′ = F̃θ
∗

h,a′Xh,a + Uh,a,a′ ,

where Uh,a,a′ is the perturbation term independent of Xh,a

and has an expectation of 0, then we can regress Yh,a,a′
on Xh,a for any (h, a, a′) ∈ [H] × A2 and estimate the
model parameter θ via estimating the operator F̃θh,a′ with
observations in the dataset. To that end, we define F̃θh,a to
be the linear operator

(F̃θh,af)(o, o′) =
∫
O
f(õ) · Fθh,a(õ, o, o′) dõ, (3.2)

where the integral kernel Fθh,a is given by

Fθh,a(o, o′, o′′) =
∫
S
ξθh(s, o)· (3.3)

Pθ(Oh:h+1 = (o′, o′′) |Sh = s,Ah = a) ds,

where ξθh is defined in Assumption 2.2. The operator F̃θh,a is
only influenced by the model parameter θ and is independent
of any policy. With such a linear operator, we have the
following lemma which characterizes the perturbation term.

Lemma 3.1. For any (h, a, a′) ∈ [H] × A2, we define
random function

Ũh,a,a′ = Yh,a,a′ − E[Yh,a,a′ |O1:h−1].

Then, there exists a linear operator Lθh,a : (O2 → R) →
(O2 → R) such that

Yh,a,a′ = Fθ
∗

h,a′Xh,a + Lθ
∗

h,a′Ũh,a,a′ . (3.4)

Proof. See §A.1 for a detailed proof.

Lemma 3.1 gives the closed form of the perturbation
term Uh,a,a′ = Lθh,a′Ũh,a,a′ . By this definition, we
have the desirable result E[Uh,a,a′(o, o′, o′′)] = 0 for any
(h, a, a′, o, o′) ∈ [H] × A2 × O2. However, this perturba-
tion term Uh,a,a′ influences both Xh,a and Yh,a,a′ . In the
language of Causal Inference (Pearl, 2009), we call Uh,a,a′
a confounder of Xh,a and Yh,a,a′ . The existence of such a
confounder may lead us to biased estimations of F̃θh,a′ as
well as θ. To fix this issue, we draw inspirations from
the method of instrumental variables (IV). An instrumental
variable must be correlated with the covariate Xh,a but un-
correlated with the perturbation Uh,a,a′ . We illustrate the

Uh,a,a′

Zh Xh,a Yh,a,a′

Figure 1. The relationship between Xh,a, Yh,a,a′ , Uh,a,a′ , and Zh.
The arrows indicates the dependency between those variables. The
dashed arrow indicates two uncorrelated variables. In this figure,
Uh,a,a′ affects both Xh,a and Yh,a,a′ directly, Zh only affects
Xh,a directly, and Zh and Uh,a,a′ are uncorrelated.

relationship between Xh,a, Yh,a,a′ , Uh,a,a′ and Zh in Fig-
ure 1. In our case, we introduce the following instrumental
variable

Zh = Oh−1. (3.5)

To verify that Zh is uncorrelated with Uh,a,a′ , we note that

E[Uh,a,a′ |Zh] = Lθh,a′E[Ũh,a,a′ |Zh]
= Lθh,a′(E[Yh,a,a′ |Oh−1]− E[E[Yh,a,a′ |O1:h−1] |Oh−1])

= Lθh,a′(E[Yh,a,a′ |Oh−1]− E[Yh,a,a′ |Oh−1]) = 0,

where the first equality holds because the operator Lθh,a′ is
linear, and the last equality follows from the tower property
of expectations. With the help of the instrumental variable
Zh, it holds for any (h, a, a′) that

E[Yh,a,a′ |Zh] = F̃θh,a′E[Xh,a |Zh] + E[Uh,a,a′ |Zh]

= F̃θh,a′E[Xh,a |Zh]. (3.6)

We can assign any value o ∈ O to Zh = Oh−1 in the
condition of (3.6). Then we obtain

Pπ̄do(Ah−1:h=(a,a′))(Oh:h+1 = · |Oh−1 = o) (3.7)

= F̃θh,a′Pπ̄do(Ah−1:h=(a,a′))(Oh = · |Oh−1 = o).

For notational simplicity, we define the following two distri-
butions

P †
h,a,a′(o, o

′, o′′) (3.8)

= Pπ̄do(Ah−1:h=(a,a′))(Oh−1:h+1 = (o, o′, o′′)),

P ‡
h,a(o, o

′) (3.9)

= Pπ̄do(Ah−1=a)
(Oh−1:h = (o, o′)).

Then, we multiply both sides of (3.7) by Pπ̄(Oh−1 = oh−1),
which reweights the equations in (3.7) with the obser-
vation visitation measure induced by the behavior pol-
icy π̄. We have the following moment equation for all
(h, a, a′, o, o′, o′′) ∈ [H]×A2 ×O3,

P †
h,a,a′(o, o

′, o′′) = (Fθh,a′P
‡
h,a)(o, o

′, o′′), (3.10)
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Algorithm 1 General Framework
Require: DatasetD, model parameter class Θ, policy class

Π, threshold parameter ϵ and oracle J .
1: (P̂ †

h,a,a′ , P̂
‡
h,a)← DistEst(D).

2: Θ̂ ← {θ ∈ Θ : sup(h,a,a′)∈[H]×A2{∥Fθh,a′ P̂
‡
h,a −

P̂ †
h,a,a′∥1} < ϵ}.

3: (π̂, θ̂) = argmaxπ∈Π argminθ∈Θ̂ J (θ, π).
Ensure: π̂, θ̂.

Algorithm 2 DistEst

Require: Dataset DN = {(snh, anh, ρnh)}
N,H
n,h=1.

1: for (h, a, a′) ∈ {2, . . . ,H} × A2 do
2: Dh,a,a′ = ∅
3: for n ∈ [N ] do
4: if anh−1:h = (a, a′) then
5: ρ← ρnh−1 · ρnh
6: Dh,a,a′ ← Dh,a,a′ ∪ {onh−1:h+1, ρ}
7: end if
8: end for
9: Construct matrix Υ and vector U as

[Υ]i,j = ⟨Kφ̃i,Kφ̃j⟩H, (3.11)

[U ]i = ⟨Kφ̃i, K̂Dh,a,a′⟩H, (3.12)

for any i, j ∈ [d].
10: Construct estimators

P̂ †
h,a,a′(o, o

′, o′′)← φ̃(o, o′, o′′)⊤Υ−1U, (3.13)

P̂ ‡
h,a(o, o

′)←
∫
O
P̂ †
h,a,a′(o, o

′, o′′) do′′. (3.14)

11: end for
Ensure: P †

h,a,a′ , P
‡
h,a.

where the linear operator Fθh,a is adapted from F̃θh,a such
that

(Fθh,a′P
‡
h,a)(o, o

′, o′′) =

∫
O
P ‡
h,a(o, õ) · F

θ
h,a′(õ, o

′, o′′) dõ,

where the integral kernel Fθh,a is defined in (3.3).

Finally, to estimate the model parameter θ, we construct
from the dataset empirical estimators of P †

h,a,a′ and P ‡
h,a, de-

noted by P̂ †
h,a,a′ and P̂ ‡

h,a, correspondingly. And we acquire

a confidence region of θ by selecting θ such that P̂ †
h,a,a′ and

Fθh,aP̂
‡
h,a are close enough for all (h, a, a′) ∈ [H]×A2. Our

general framework is summarized in Algorithm 1 We also
introduce one way of estimating the empirical distributions
via RKHS (Smola et al., 2007) in §3.2.

3.2. Distribution Estimators

In this section, we construct estimators for the distributions
P †
h,a,a′ and P ‡

h,a from the dataset. Our method is summa-
rized in Algorithm 2. We first construct empirical distribu-
tions of P †

h,a,a′ and P ‡
h,a. This is done by decomposing the

original dataset into trajectory pieces and grouping them
based on the actions. See Line 2-7 of Algorithm 2. It’s
noteworthy that in P †

h,a,a′ and P ‡
h,a, the actions ah−1 and

ah are specified regardless of the observations with the help
of the do-operations. In other words, the corresponding dis-
tributions are induced by first executing the behavior policy
π̄ in the first h − 2 steps, and then switch to a policy that
selects ah−1 and ah with probability 1 at step h − 1 and
h, respectively. However, the dataset is collected by policy
π̄ throughout, which incurs a distribution shift. To address
that, we assume that the dataset contains an importance
weight ρ for each (s, a) pair that equals the probability of
the behavior policy π̄ to take action a at that time. We can
also estimate this importance weight with samples from the
dataset instead of assuming its existence.

We then apply the reproducing kernel Hilbert space (RKHS)
embedding (Smola et al., 2007) to estimate P †

h,a,a′ from
Dh,a,a′ . LetH be an RKHS with the kernel K over O3, for
example, the radial basis function (RBF) kernels (Smola &
Schölkopf, 1998). With slight abuse of notation, we define
the embedding operator K that embed both the probability
distribution and the empirical distribution into the RKHSH
as follows

(Kp)(x) =
∫
O3

K(x′, x) · p(x′) dx′, (3.15)

(K̂Dh,a,a′)(x) =
∑

(x′,ρx′ )∈Dh,a,a′

K(x′, x)
Nρx′

(3.16)

for any x ∈ O3. Then, we construct estimator P̂ †
h,a,a′ to be

the distribution that is the closest to Dh,a,a′ when both are
embedded into the RKHS H. To narrow down the search
range, we present the following lemma, which gives the
linearity preserved in P †

h,a,a′ by Assumption 2.1.

Lemma 3.2. Under Assumption 2.1, for any (h, a, a′) ∈
[H] × A2, there exists a feature mapping φ̃ : O3 → Rd

3
φ

constructed from φ such that

P †
h,a,a′ ∈ linspan(φ̃),

where we considered φ̃ as a set of functions and linspan(φ̃)
is the linear span of φ̃.

Proof. See §A.2 for a detailed proof.

With Lemma 3.2, we no longer need to search over the
whole space of ∆(O3), but only linspan(φ̃). That is to say,
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we let

P̂ †
h,a,a′ = argmin

p∈linspan(φ̃)

∥Kp−KDh,a,a′∥H. (3.17)

Since φ̃ is constructed from φ, the minimization problem
in (3.17) is tractable. We can also write P̂ †

h,a,a′(x) =

φ̃(x)⊤ŵh,a,a′ , where ŵ is acquired by solving the following
minimization problem

ŵh,a,a′ = argmin
w∈Rd

3
φ

∥(Kφ̃)⊤w −KDh,a,a′∥H. (3.18)

We further rewrite the objective function (3.18) as follows

∥(Kφ̃)⊤w −KDh,a,a′∥2H
= ⟨(Kφ̃)⊤w, (Kφ̃)⊤w⟩H + ∥KDh,a,a′∥2H

− 2⟨(Kφ̃)⊤w,KDh,a,a′⟩H
= w⊤Υw + ∥KDh,a,a′∥2H − 2U⊤w, (3.19)

where the matrix Υ and vector U are given in (3.11) and
(3.12). The minimization problem of the quadratic form in
(3.19) has the following closed form

ω̂h,a,a′ = Υ−1U,

where the matrix Υ and vector U are defined in (3.11) and
(3.12), respectively. Thus, we have the closed form for P †

presented in (3.13) of Algorithm 2. The construction of P̂ ‡

in (3.14) simply follows from the fact that

P ‡
h,a(o, o

′) =

∫
O
P †
h,a,a′(o, o

′, o′′) do′′.

4. Theory
We begin this section by introducing a useful analysis tool
called the back operator in §4.1. Then, we introduce our
main theoretical results in §4.2.

4.1. Backward Operator

The main challenge of analyzing a reinforcement learning
algorithm on a POMDP is that we have to treat the whole
history including all the previous observations and the ac-
tions as the “state” to maintain the Markov property since
we do not have access to the true state. The troublesome
dependency on the history makes it difficult to perform
policy evaluation or value iteration like in the MDP cases
(Sutton & Barto, 2018; Jin et al., 2020b; Yang & Wang,
2020; Wang et al., 2020a; Jin et al., 2021). We address
this challenge by defining a Bellman operator like in MDPs,
which maps the value function at step h + 1 to its h-step
correspondence. Such a process is also referred to as dy-
namic programming (Sutton & Barto, 2018). Recall that

we exploit the undercompleteness assumption and the in-
dependence of observations given states when defining the
forward operator F in (3.2). Following a similar idea, we
define

Bθ,πh Vh+1(τ
∗
h) =

∫
O2×A

Vh+1(τ
∗
h−1, a

∗
h−1, oh, ah, oh+1)

· Fθh,ah(o
∗
h, oh, oh+1) · π(ah | τ∗h−1, a

∗
h−1, oh) dahdohdoh+1

(4.1)

for any θ ∈ Θ, π ∈ Π, h ∈ [H], and bounded function
Vh+1 : Γh+1 → R. Here, the function F is defined in (3.3),
and to avoid confusion, we write

τ∗h = (τ∗h−1, a
∗
h−1, o

∗
h) = (τ∗h−2, a

∗
h−2, o

∗
h−1, a

∗
h−1, o

∗
h)

= · · · = (o∗1, a
∗
1, o

∗
2, . . . , a

∗
h−1, o

∗
h),

for any τ∗h ∈ Γh. The construction of the forward operator is
inspired by the Observable Operator Model (OOM) (Jaeger,
2000; Jin et al., 2020a) in learning latent variables. Those
models are restricted to more strict settings, but we apply
the ideas to our linear POMDPs. We then give the following
lemma, which draws connection from our operator Bθ,πh to
the Bellman operator in MDPs.

Lemma 4.1. Under Assumption 2.1, 2.2, it holds for any
h ∈ [H], θ ∈ Θ, π ∈ Π, τ∗h−1 ∈ Γh−1, a∗h−1 ∈ A, s∗h−1 ∈
S, and bounded function Vh+1 : Γh+1 → R that

Eθ,π
[
Bθ,πh Vh+1(τ

∗
h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
= Eθ,π

[
Vh+1(τ

∗
h−1, a

∗
h−1, oh, ah, oh+1)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
,

where the expectation is taken with respect to oh ∼
Pθh(· | s∗h−1, a

∗
h−1), ah ∼ π(· | τ∗h−1, a

∗
h−1, oh), and

oh+1 ∼ Pθ(· | s∗h−1, a
∗
h−1, ah).

Proof. See §B.1 for a detailed proof.

Lemma 4.1 states that the operator Bθ,πh defined in (4.1)
maps a function on the (h + 1)-step history space to its
h-step correspondence, which is the same role played by the
Bellman operator in an MDP. We call Bθ,πh backward oper-
ator to distinguish from the forward operator Fθh. Both the
definitions of the forward operator and backward operator
take advantage of the undercompleteness assumption that
enables us to retrieve information of the latent state from
the distribution of the observations, which further explains
why the undercompleteness assumption is the foundation of
our algorithm and analysis.

To exploit the connection between the backward operator
and the Bellman operator in MDPs, we define the following
value function

V θ,πh = Bθ,πh · · ·B
θ,π
H R, (4.2)
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for any h ∈ [H+1], θ ∈ Θ, and π ∈ Π. By definition, we let
V θ,πH+1 = R. Here, the function R : ΓH+1 → R calculates
the total reward given a complete episode of observations
and actions, that is,

R(τH+1) =
∑
h∈[H]

r(oh, ah), (4.3)

for any τH+1 ∈ ΓH+1. We give the following lemma,
which reveals an integral form of V θ,πh and its connection
with the total reward,

Lemma 4.2. Under the same conditions as Lemma 4.1, for
any (θ, π, h) ∈ Θ×Π× [H] and τ∗h = (τ∗h−1, a

∗
h−1, o

∗
h) ∈

Γh, we have

V θ,πh (τ∗h) =

∫
S
Eθ,π

[ ∑
h′∈[H]

r(oh′ , ah′)
∣∣∣ sh, τ∗h−1, a

∗
h−1

]
· ξθh(sh, o∗h) dsh. (4.4)

Proof. See §B.2 for a detailed proof.

By substitute o∗h in (4.4) from a fixed observation to a ran-
dom variable and taking expectation with respect to it, we
can cancel off the function ξ on the right-hand side of (4.4),
as stated in the following lemma.

Lemma 4.3. Under the same conditions as Lemma 4.1, for
any (θ, π, h) ∈ Θ × Π × [H] and (s∗h−1, τ

∗
h−1, a

∗
h−1) ∈

S × Γh ×A, we have

Eθ
[
V θ,πh (τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
= Eθ,π

[ ∑
h′∈[H]

r(oh′ , ah′)
∣∣∣ s∗h−1, τ

∗
h−1, a

∗
h−1

]
. (4.5)

where the expectation on the left-hand side is taken with
respect to oh ∼ Pθ(· | s∗h−1, a

∗
h−1).

Proof. See §B.3 for a detailed proof.

Lemma 4.3 shows that the value function V θ,πh defined in
(4.2) corresponds to the expected total reward following
policy π from step h, just like in MDPs. By Lemma 4.3,
we have J (θ, π) = Eθ[V θ,π1 (o1)] for J defined in (2.1) by
setting h to 1.

4.2. Main Theorem

We begin this section by making more assumptions. Then,
we present our main theoretical result in Theorem 4.6.

To start with, we note that the quality of the dataset is of
great importance for offline RL algorithms (Wang et al.,
2020b; Szepesvári, 2010). To avoid insufficient coverage of
the offline dataset, we make the following assumption.

Assumption 4.4 (Coverage). There exist absolute con-
stants C,C > 0 such that (i). |Dh,a,a′ | ≥ NC and (ii).
µπ

∗

h (s)/µπ̄h(s) ≤ C for any (h, a, a′, s) ∈ [H]×A2 × S .

Recall that Dh,a,a′ is the dataset constructed by Algorithm
2, N is the cardinality of the offline dataset DN , function
µπh is the state distribution at step h induced by policy π,
and π∗ and π̄ are the optimal policy and the behavior policy,
respectively. Assumption 4.4 defines requirements for the
offline dataset and the behavior policy that collects it. The
condition (i) can be satisfied with high probability by a fixed
behavior policy that explores all the actions with positive
probabilities at any states. The condition (ii) states that
the state distribution deviation of the behavior policy from
the optimal policy should be bounded, which is a common
assumption in the offline RL literature (Jin et al., 2020a;
Agarwal et al., 2020; Liu et al., 2019b).

Recall that we apply RKHS embedding to estimate the dis-
tributions in §3.2 without specifying the kernel we are using.
We keep the flexibility in the choices of the kernel but mak-
ing the following assumption to specify the requirements
for it.

Assumption 4.5 (Well-defined Kernel). The kernel K is
bounded, continuous, and positive definite. In particular, for
any x, x′ ∈ O3, we have |K(x, x′)| ≤ 1, and there exists a
constant α > 0 such that σmin(Υ) > α where the matrix Υ
is defined in (3.11).

Assumption 4.5 is a common assumption about the RKHS
kernel, and can be satisfied by, for example, the radial basis
function (RBF) kernels (Smola & Schölkopf, 1998). Now
we’re ready to present our main theorem.

Theorem 4.6. Under Assumptions 2.1, 2.2, 4.4, 4.5, for any
δ > 0, if we let β ≥ (γ + 1) · β0 where

β0 = α−1·
√
10d · log(2H|A|2/δ)/C, (4.6)

then, it holds with probability at least 1− δ that

Regret(π̂) ≤ 2H2|A|2Cγ2β ·N−1/2,

where N is the size of the dataset.

Proof. See §5 for a sketched proof and §B.4 for a detailed
proof.

Theorem 4.6 guarantees an ϵ-optimal policy provided
an offline dataset with sufficient coverage containing
poly(H, |A|, dϕ, dψ) · Õ(1/ϵ2) episodes, where H is the
episode length, |A| is the cardinality of the action space,
dψ and dψ are feature dimensions, and Õ hides constant
factors and logarithms. Such a rate is consistent with offline
RL algorithms in MDPs such as Kidambi et al. (2020); Jin
et al. (2021); Zanette & Brunskill (2019) under sufficient
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coverage. To our best knowledge, our algorithm is the first
provably sample efficient offline RL algorithm for POMDPs
that is not tabular.

5. Proof of Theorem 4.6
We begin our proof of the main theorem by presenting the
following lemma.

Lemma 5.1. Under the same conditions as Theorem 4.6,
for any δ ∈ (0, 1), the event E that

∥P̂ ‡
h,a − P

‡
h,a∥1 ≤ β0 ·N

−1/2, (5.1)

∥P̂ †
h,a,a′ − P

†
h,a,a′∥1 ≤ β0 ·N

−1/2, (5.2)

for all (h, a, a′) ∈ [H]×A2 holds with probability at least
1− δ.

Proof. See §C.1 for a detailed proof.

Lemma 5.1 gives our concentration analysis results for Al-
gorithm 2. It states that our estimator P̂ † is close to the true
distribution P † in the sense of ℓ1 norm. Under the event E
defined above, it can be proved that the true model parame-
ter lies in the confidence region constructed in Algorithm 2,
as stated in the following lemma.

Lemma 5.2. Under the event E defined in Lemma 5.1, it
holds that θ∗ ∈ Θ̂, where Θ̂ is the output of Algorithm 2.

Proof. See §C.2 for a detailed proof.

By Lemma 5.2 and our pessimism principle in (3.1), we
have

J (θ̂, π∗) ≤ J (θ̂, π̂) ≤ J (θ∗, π̂), (5.3)

under event E. As a consequence, we transform the regret
defined in (2.3) as follows,

Regret(π̂) = J (θ∗, π∗)− J (θ∗, π̂)

≤ J (θ∗, π∗)− J (θ̂, π∗), (5.4)

The right-hand side of (5.4) is the estimation error of θ∗

under the optimal policy π∗. Next, we adopt our backward
operator to analysis such an estimation error. We define
∆B(θ,θ′),π

h V as the difference between Bθ,πh and Bθ
′,π
h when

applied to function V : Γh+1. That is,

∆B(θ,θ′),π
h V = Bθ,πh V − Bθ

′,π
h V, (5.5)

for any θ, θ′ ∈ Θ, π ∈ Π, h ∈ [H], and any bounded
function V : Γh+1 → R. With this notation, we give the
following lemma, which further quantifies the right-hand
side of (5.4).

Lemma 5.3 (Step-wise Error). Under Assumptions 2.1 and
2.2, it holds for any policy π ∈ Π and θ, θ′ ∈ Θ that

J (θ, π)− J (θ′, π)

=
∑
h∈[H]

Eθ,π
[
(∆B(θ,θ′),π

h V θ
′,π

h+1 )(τh)
]
, (5.6)

where the function V θ,πh+1 is defined in (4.2).

Proof. See §C.3 for a detailed proof.

The right-hand side of (5.6) is a step-wise decomposition of
the model estimation error. By conditioning the expectation
on sh−1 and plugging it to (5.4), we obtain

Regret(π̂) ≤
∑
h∈[H]

Eθ∗,π∗
[
ϵh(sh−1)

]
, (5.7)

where we define the state-dependent error

ϵh(sh−1) =
∣∣Eθ∗,π∗

[
(∆B(θ∗,θ̂),π∗

h V θ̂,π
∗

h+1 )(τh)
∣∣ sh−1

]∣∣.
(5.8)

The dependence of the error on sh−1 weakens the impact of
the optimal policy π∗ on the trajectory τh. We manage to
upper-bound the error under the behavior policy as follows.

Lemma 5.4. For any δ ∈ (0, 1), under the same conditions
as Theorem 4.6, it holds with probability at least 1− δ that

Eθ∗,π[ϵh(sh−1)] ≤ 2H|A|2γ2β ·N−1/2, (5.9)

for any h ∈ [H].

Proof. See §C.4 for a detailed proof.

Notice that the expectation in (5.9) is taken with respect
to the behavior policy, while the expectation in our goal in
(5.7) is taken with respect to the optimal policy. To fill the
gap, we invoke the second statement in Assumption 4.4 to
change the measure from µπ̄ to µπ

∗
, which adds another

factor C to our regret. See §B.4 for a detailed proof.
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A. Linear POMDP
A.1. Proof of Lemma 3.1

For any (h, a, a′) ∈ [H]×A2, it holds that

Fθ
∗

h,a′E[Xh,a |O1:h−1](o, o
′) =

∫
O
Pπ̄do(Ah−1=a)

(Oh = õ |O1:h−1) · Fθ
∗

h,a′(õ, o, o
′) dõ

=

∫
O×S4

Pπ̄(Sh−1 = s |O1:h−1) · Th−1(s
′ | s, a) · Eh(õ | s′)

· ξh(s̃, õ) · Eh(o | s̃) · Th(s̃′ | s̃, a′) · Eh+1(o
′ | s̃′) dsds′ dõ ds̃ds̃′.

By Assumption 2.2, we have

∫
S×O

ξh(s̃, õ) · Eh(õ | s′) · Th−1(s
′ | s, a) ds′ dõ = Th−1(s̃ | s, a). (A.1)

Thus,

Fθ
∗

h,a′E[Xh,a |O1:h−1](o, o
′)

=

∫
S3

Pπ̄(Sh−1 = s |O1:h−1) · Th−1(s̃ | s, a) · Eh(o | s̃) · Th(s̃′ | s̃, a′) · Eh+1(o
′ | s̃′) dsds̃ds̃′

= Pπ̄do(Ah−1:h=(a,a′))[Oh:h+1 = (o, o′) |O1:h−1]

= E[Yh,a,a′ |O1:h−1](o, o
′).

Then,

Yh,a,a′ = Fθ
∗

h,a′Xh,a + Fθ
∗

h,a′(E[Xh,a |O1:h−1]−Xh,a) + Yh,a,a′ − E[Yh,a,a′ |O1:h−1] (A.2)

= Fθ
∗

h,a′Xh,a + Fθ
∗

h,a′(E[Xh,a |O1:h−1]−Xh,a) + Uh,a,a′ . (A.3)

We define the following linear operator L̃ : (O2 → R)→ (O → R)

(L̃f)(o) =
∫
O
f(o, o′) do′. (A.4)

Then, we can write

Yh,a,a′ = Fθ
∗

h,a′Xh,a + Fθ
∗

h,a′L̃Uh,a,a′ + Uh,a,a′ .

Since both Fθh,a′ and L are linear operators, we conclude the proof of Lemma 3.1.

A.2. Additional Linearity

In this section, we show two additional linear structures inside our linear POMDP besides (2.4) and (2.5). We first prove
Lemma 3.2, which states that the joint probability of consecutive three observations given necessary actions is linear in
a constructed feature mapping. Then, we define an inverse transition function and show this function is also linear in a
constructed feature mapping.
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A.2.1. LINEARITY OF P †

Proof of Lemma 3.2. We write down the explicit form of P †

P †
h,ah−1,ah

(oh−1, oh, oh+1)

= Pθ∗,π̄(oh−1, oh, oh+1 | ah−1, ah)

=

∫
S3

Eθ
∗

h−1(oh−1 | sh−1) · T θ
∗

h−1(sh | sh−1, ah−1) · Eθ
∗

h (oh | sh) · T θ
∗

h (sh+1 | sh, ah)

· Eθ
∗

h+1(oh+1 | sh+1) · µπ̄h−1(sh−1) dsh−1 dsh dsh+1

=

∫
S3

φ(oh−1)
⊤ηθ

∗

h−1(sh−1) · T θ
∗

h−1(sh | sh−1, ah−1) · φ(oh)⊤ηθ
∗

h (sh) · T θ
∗

h (sh+1 | sh, ah)

· φ(oh+1)
⊤ηθ

∗

h+1(sh+1) · µπ̄h(sh−1) dsh−1 dsh dsh+1,

where the second equality follows from Assumption 2.1, and we exploit the fact that the observations are independent given
corresponding observations and the actions in the conditions are decoupled from the history as explained in (3.8). Then, by
rearranging the terms, we know there exists coefficient wh,a,a′,i,j,k for any (h, a, a′, i, j, k) ∈ [H]×A2 × [dφ]

3 such that

P †
h,a,a′(o, o

′, o′′) =
∑

(i,j,k)∈[dφ]3

φi(o)φj(o
′)φk(o

′′) · wh,a,a′,i,j,k.

Thus, by defining φ̃(o, o′, o′′) =
∑

(i,j,k)∈[dφ]3
φi(o)φj(o

′)φk(o
′′), we conclude the proof of Lemma 3.2.

A.2.2. LINEARITY OF I

In this section, we show the following inverse transition function is also linear in ψ

Iθh(sh | ah, oh+1) = Pθ(sh | ah, oh+1), for any (sh, ah, oh+1) ∈ S ×A×O. (A.5)

Here, the action ah in the conditions is also decoupled from the history, i.e., the value of it is selected by us regardless of the
history and the policy, like in (3.8) and (3.9). Thus, the function I is a property of the Linear POMDP and does not involve
any policy π. The function I defines the distribution of the state given the future action and observation. By Bayesian’s
theorem, we can write

Iθh(sh | ah, oh+1) =
Pθ(oh+1 | sh, ah) · Pθ,π(sh)

Pθ,π(oh+1 | ah)
. (A.6)

Note that

Pθ(oh+1 | sh, ah) =
∫
S
T θh (sh+1 | sh, ah) · Eθh(oh+1 | sh+1) dsh+1

= ϕ(sh, ah)
⊤Mθ

h

∫
S
ψ(sh+1) · Eθh(oh+1 | sh+1) dsh+1, (A.7)

and

Pθ,π(sh) = Eθ,π
[
T θh−1(sh | sh−1, ah−1)

]
= Eθ,π

[
ϕ(sh−1, ah−1)

⊤]Mθ
hψ(sh). (A.8)

Plugging (A.8) and (A.7) into (A.6), we obtain

Iθh(sh | ah, oh+1) = ϕ(sh, ah)
⊤M ′ψ(sh) =

∑
(i,j)∈[dϕ]×[dψ]

ϕi(sh, ah)ψj(sh)M
′
i,j , (A.9)

if we define

M ′ =
Mθ
h

(∫
S ψ(sh+1) · Eθh(oh+1 | sh+1) dsh+1

)
Eθ,π

[
ϕ(sh−1, ah−1)

⊤]Mθ
h

Pθ,π(oh+1 | ah)
.
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By (A.9), we know Iθh(· | ah, oh+1) is a linear combination of the functions {ϕi(·, ah) · ψj(·)}(i,j)∈[dϕ]×[dψ]. Thus, by
normalizing each function in it as probability distribution function and eliminating linearly dependent elements. We obtain a
new feature mapping ψ̃ : S → Rdψ̃ such that Iθh(· | ah, oh+1) ∈ linspan(ψ̃), and we have dψ̃ = dψ(dϕ + 1). With the new
feature mapping, we obtain

T θh (· | sh, ah) ∈ linspan(ψ′), Iθh(· | ah, oh+1) ∈ linspan(ψ′).

Thus, we can always substitute ψ with this new feature mapping ψ′ without violating the definition of the linear MDP.
Throughout the appendix, we assume the property Iθh(· | ah, oh+1) ∈ linspan(ψ) holds for the default ψ of the linear
POMDP.

A.3. Sufficient Conditions for the Undercompleteness Assumption

In this section, we discuss the sufficient conditions for Assumption 2.2 to hold. We give the following lemma.

Lemma A.1. Assumption 2.2 holds when the following two conditions hold.

(a). There exists mapping ϕ : O → Rdφ and constant γ1 such that:∫
O
φ(o)φ(o)⊤ do = I and sup

o∈O
∥φ(o)∥1 ≤ γ1. (A.10)

(b). For any h ∈ [H] and θ ∈ Θ, there exists constant γ2 such that

∥(Ψθh)+∥17→1 ≤ γ2, where Ψθh =

∫
S
ηθh(s)ψ(s)

⊤ ds (A.11)

has full column rank, and A+ = (A⊤A)−1A⊤ is the Moore-Penrose inverse of matrix A.

Proof of Lemma A.1. We let

ξθh(s, o) = ψ(s)⊤(Ψθh)
+φ(o).

We first prove UθhOθhf = f . For any f ∈ linspan(ψ) with the coefficient xf , i.e., f(·) = ψ(·)⊤xf , we have

UθhOθhf(s) =
∫
S×O

ξθh(s, o) · Eθh(o | s′) · ψ(s′)⊤xf ds′ do

= ψ(s)⊤(Ψθh)
+

(∫
S×O

φ(o) · φ(o)⊤ηθh(s′) · ψ(s′)⊤ ds′ do

)
xf .

By the definition of φ and Ψθh in (A.10) and (A.11), respectively, we have

UθhOθhf(s) = ψ(s)⊤(Ψθh)
+

(∫
S
ηθh(s

′) · ψ(s′)⊤ ds′
)
xf = ψ(s)⊤(Ψθh)

+Ψθhxf = f(s).

Next, we prove ∥Uθh∥17→1 is upper-bounded. For any f ∈ L1(O), h ∈ [H] and θ ∈ Θ, we have

∥Uθhf∥1 =

∫
S

∣∣∣∫
O
ψ(s)⊤(Ψθh)

+φ(o) · f(o) do
∣∣∣ds

≤
∫
S
ψ(s)⊤

∣∣∣(Ψθh)+ ∫
O
φ(o) · f(o) do

∣∣∣ds = ∥∥∥(Ψθh)+ ∫
O
φ(o) · f(o) do

∥∥∥
1
,

where the equality follows from the fact that ψ(·) is a probability distribution over S . By the triangle inequality and (A.11),
we have

∥Uθhf∥1 =
∥∥∥(Ψθh)+ ∫

O
φ(o) · f(o) do

∥∥∥
1
≤ γ2 ·

∥∥∥∫
O
φ(o) · f(o) do

∥∥∥
1
≤ γ2 · γ1∥f∥1.

Then, we conclude the proof by letting γ = γ1γ2.
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B. Missing Proofs in §4
B.1. Proof of Lemma 4.1

Proof of Lemma 4.1. By the definition of Bθ,πh in (4.1), for any s∗h−1 ∈ S, τ∗h−1 ∈ Γh−1, a∗h−1 ∈ A and bounded function
Vh+1 : Γh+1 → R, we have

Eθ,π
[
(Bθ,πh V )(τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
=

∫
O3×A×S

π(ah | τ∗h−1, a
∗
h−1, o

′
h) · Vh+1(τ

∗
h−1, a

∗
h−1, o

′
h, ah, oh+1)

· Pθ(o′h, oh+1 | sh, ah) · ξθh(sh, oh) · Pθ(oh | s∗h−1, a
∗
h−1) doh do

′
h doh+1 dah. (B.1)

The trick here is since we are taking expectation with respect to oh conditional on s∗h−1 and a∗h−1, the emission function Eθh
contained in the expectation will cancel off ξθh. To see that, we apply (??) which invokes Assumption 2.2. It holds that

Eθ,π
[
(Bθ,πh V )(τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
=

∫
O2×A×S

π(ah | τ∗h−1, a
∗
h−1, o

′
h) · Vh+1(τ

∗
h−1, a

∗
h−1, o

′
h, ah, oh+1)

· Pθ(o′h, oh+1 | sh, ah) · T θh (sh | s∗h−1, a
∗
h−1) do

′
h doh+1 dah

=

∫
O2×A

Vh+1(τ
∗
h−1, a

∗
h−1, o

′
h, ah, oh+1) · Pθ,π(o′h, ah, oh+1, | τ∗h−1, s

∗
h−1, a

∗
h−1) do

′
h dah doh+1,

which concludes the proof.

B.2. Proof of Lemma 4.2

Proof of Lemma 4.2. We prove the lemma by induction. For h = H , by the definition of Bθ,πH and V θ,πH in (4.1) and (4.2),
respectively, and the additional definition V θ,πH+1 = R, for any τ∗H = (τ∗H−1, a

∗
H−1, o

∗
H) ∈ ΓH , we have

V θ,πH (τ∗H) = (Bθ,πH V θ,πH+1)(τ
∗
H)

=

∫
S×O2

EaH∼π(· | τ∗
H−1,a

∗
H−1,oH)

[
V θ,πH+1(τ

∗
H−1, a

∗
H−1, oH , aH , oH+1) · Pθ(oH , oH+1 | sH , aH)

]
· ξθh(sH , o∗H) dsH doH doH+1

=

∫
S×O2

EaH∼π(· | τ∗
H−1,a

∗
H−1,oH)

[(
r(oH , aH) +

∑
h∈[H−1]

r(o∗H , a
∗
h)
)
· Pθ(oH , oH+1 | sH , aH)

]
· ξθh(sH , o∗H) dsH doH doH+1

=

∫
S

(
Eθ,π

[
r(oH , aH)

∣∣ sH , τ∗H−1, a
∗
H−1

]
+

∑
h∈[H−1]

r(o∗H , a
∗
h)
)
· ξθh(sH , o∗H) dsH ,

which satisfies the statement (4.4). Assume the lemma holds for the value function of the (h+ 1)-th step. Then, we have

V θ,πh (τh) = (Bθ,πh V θ,πh+1)(τh)

=

∫
S×O2

Eah∼π(· | τ∗
H−1,a

∗
H−1,oh)

[
V θ,πh+1(τ

∗
H−1, a

∗
H−1, oh, ah, oh+1) · Pθ(oh, oh+1 | sh, ah)

]
· ξθh(sh, o∗H) dsh doh doh+1

=

∫
S2×O2

Eah∼π(· | τ∗
H−1,a

∗
H−1,oh)

[
Eθ,π

[ ∑
i∈[H]

r(oi, ai)
∣∣∣ sh+1, τ

∗
H−1, a

∗
H−1, oh, ah

]
· Pθ(oh, oh+1 | sh, ah)

]
· ξθh+1(sh+1, oh+1) · ξθh(sh, o∗H) dsh dsh+1 doh doh+1. (B.2)

We write down the explicit form of Pθ(oh, oh+1 | sh, ah) as follows

Pθ(oh, oh+1 | sh, ah) = Eθh(oh | sh) ·
∫
S
Eθh+1(oh+1 | s′h+1) · T θh (s′h+1 | sh, ah) ds′h+1, (B.3)



Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes

and note that, following from Assumption 2.2, we have∫
S×O

ξθh+1(sh+1, oh+1) · Eθh+1(oh+1 | s′h+1) · T θh (s′h+1 | sh, ah) ds′h+1 doh+1 = T θh (sh+1 | sh, ah), (B.4)

since T θh (· | sh, ah) is in the linear span of ψ. Plugging (B.3) and (B.4) into (B.2), we have

V θ,πh (τh) =

∫
S2×O

Eah∼π(· | τ∗
H−1,a

∗
H−1,oh)

[
Eθ,π

[ ∑
i∈[H]

r(oi, ai)
∣∣∣ sh+1, τ

∗
H−1, a

∗
H−1, oh, ah

]]
· Eθh(oh | sh) · T θh (sh+1 | sh, ah) · ξθh(sh, o∗H) dsh dsh+1 doh

=

∫
S
Eθ,π

[ ∑
i∈[H]

r(oi, ai)
∣∣∣ sh, τ∗H−1, a

∗
H−1

]
· ξθh(sh, o∗H) dsh doh,

which concludes the proof of Lemma 4.2.

B.3. Proof of Lemma 4.3

Proof of Lemma 4.3. By the definition of the value function in (4.2), for any h ∈ [H], s∗h−1 ∈ S, τ∗h−1 ∈ Γh−1, and
a∗h−1 ∈ A, we have

Eθ
[
V θ,πh (τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
= Eθ

[
(Bθ,πh · · ·B

θ,π
H R)(τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
.

By Lemma 4.1, we have

Eθ
[
V θ,πh (τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
= Eθ,π

[
(Bθ,πh+1 · · ·B

θ,π
H R)(τ∗h−1, a

∗
h−1, oh, ah, oh+1)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
.

By the tower property and applying Lemma 4.1 repeatedly, we obtain

Eθ
[
V θ,πh (τ∗h−1, a

∗
h−1, oh)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
= · · · = Eθ,π

[
R(τ∗h−1, a

∗
h−1, oh, ah, oh+1, . . . , aH , oH+1)

∣∣ s∗h−1, τ
∗
h−1, a

∗
h−1

]
,

which concludes the proof.

B.4. Proof of the Main Theorem

Proof of Theorem 4.6. We condition our proof on the event E which holds with probability at least 1− δ. By Lemma 5.2,
we have θ∗ ∈ Θ̂. Thus, following from (3.1), we have

Regret(π̂) = J (θ∗, π̂)− J (θ∗, π∗) ≤ J (θ∗, π∗)− J (θ̂∗, π∗).

By Lemma 5.3 and the tower property of expectations, we have

Regret(π̂) ≤
∑
h∈[H]

Eθ∗,π∗
[
(∆B(θ∗,θ̂),π∗

h V θ̂,π
∗

h+1 )(τh)
]

= Eθ∗,π∗

[ ∑
h∈[H]

Eθ∗,π∗
[
(∆B(θ∗,θ̂),π∗

h V θ̂,π
∗

h+1 )(τh)
∣∣ sh−1

]]
= Eθ∗,π∗

[ ∑
h∈[H]

ϵh(sh−1)
]
,

where ϵ is defined in (5.8). Next, we invoke Assumption 4.4 to change the measure from µπ
∗

h to µπ̄h for all h ∈ [H]. We have

Regret(π̂) =
∫
S

∑
h∈[H]

ϵh(sh−1) · µπ
∗

h (sh−1) dsh−1 =

∫
S

∑
h∈[H]

ϵh(sh−1) ·
µ∗
h(sh−1)

µπ̄h(sh−1)
· µπ̄h(sh−1) dsh−1

≤ C ·
∑
h∈[H]

Eθ∗,π̄
[
ϵh(sh−1)

]
≤ 2CH2|A2|γ2β ·N−1/2,

where the last inequality follows from Lemma 5.4.
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C. Proofs for Lemmas in §5
C.1. Distribution Estimation Error

Proof of Lemma 5.1. For any h ∈ [H] and a, a′ ∈ A2, we have

∥P̂ †
h,a,a′ − P

†
h,a,a′∥1 =

∫
O3

|φ̃(o, o′, o′′)⊤ŵh,a,a′ − φ̃(o, o′, o′′)⊤wh,a,a′ |

≤ ∥ŵh,a,a′ − wh,a,a′∥2 ·
∫
O3

∥φ̃(o, o′, o′′)∥2 do do′ do′′

≤
√
d · ∥ŵh,a,a′ − wh,a,a′∥2. (C.1)

Here, the first equality follows from Lemma 3.2, the first inequality follows from the Hölder’s inequality, and the last
inequality follows from Lemma D.1(a). Since we have closed-form of ŵh,a,a′ in (3.13), we write

∥ŵh,a,a′ − wh,a,a′∥2 = ∥Υ−1U −Υ−1Υwh,a,a′∥2 ≤ α−1 · ∥U −Υwh,a,a′∥2, (C.2)

where Υ and U are defined in (3.11) and (3.12), respectively, and the last inequality follows from Assumption 4.5. We
further examine Υwh,a,a′ as follows

[Υwh,a,a′ ]i =
∑
j∈[d]

〈
Kφ̃i,Kφ̃j

〉
H · [wh,a,a′ ]j =

〈
Kφ̃i,K

(∑
j∈[d]

ϕj · [wh,a,a′ ]j
)〉

H
= ⟨Kφ̃i,KP †

h,a,a′⟩H,

where the second equality follows from the linearity of K and the last equality follows from the definition of P †
h,a,a′ in (3.9).

Together with the definition of U in (3.12), we have

∥U −Υwh,a,a′∥22 =
∑
i∈[d]

⟨Kφ̃i, K̂Dh,a,a′ −KP †
h,a,a′⟩

2
H

≤
∑
i∈[d]

∥Kφ̃i∥2H · ∥K̂Dh,a,a′ −KP †
h,a,a′∥

2
H ≤ d · ∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H, (C.3)

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows from Lemma
D.1(b). Note that we can write

P †
h,ah−1,ah

(oh−1, oh, oh+1) = Pθ,π†
h,ah−1,ah

(oh−1, ah−1, oh, ah, oh+1)

= Eθ,π†
h,ah−1,ah

[
Pθ,π†

h,ah−1,ah

(oh−1, ah−1, oh, ah, oh+1 | τh−2, ah−2)
]
,

where π†
h,ah−1,ah

is the same as the behavior policy except that it only chooses ah−1 at step h− 1 and ah at step h regarding
the history. Since

Pθ,π̄(oh−1, ah−1, oh, ah, oh+1 | τh−2, ah−2)

= Pθ,π†
h,ah−1,ah

(oh−1, ah−1, oh, ah, oh+1 | τh−2, ah−2)

· π̄(ah−1 | τh−2, ah−2, oh−1) · π̄(ah | τh−2, ah−2, oh−1, ah−1, oh),

we have

P †
h,ah−1,ah

(oh−1, oh, oh+1) = Eθ,π̄
[

Pθ,π̄(oh−1, ah−1, oh, ah, oh+1 | τh−2, ah−2)

π̄(ah−1 | τh−2, ah−2, oh−1) · π̄(ah | τh−2, ah−2, oh−1, ah−1, oh)

]
Thus, a trivial unbiased estimator of P †

h,a,a′ would be

p†h,a,a′(o, o
′, o′′) :=

∑
(oh−1,oh,oh+1,ah−1,ah,ρ)∈

⋃
a,a′ Dh,a,a′

1{(oh−1, oh, oh+1, ah−1, ah) = (o, o′, o′′, a, a′)}
Nρ

(C.4)

=
∑

(oh−1,oh,oh+1,ρ)∈Dh,a,a′

1{(oh−1, oh, oh+1) = (o, o′, o′′)}
Nρ

. (C.5)
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We can rewrite K̂Dh,a,a′ with the estimator p†h,a,a′ .

K̂Dh,a,a′(x) =
∑

(x′,ρ)∈Dh,a,a′

K(x′, x)
Nρ

=

∫
O3

∑
(x′,ρ)∈Dh,a,a′

K(x′, x)
Nρ

· 1{x′ = x′′} dx′′

=

∫
O3

K(x′′, x) · p†h,a,a′(x
′′) dx′′ = (Kp†h,a,a′)(x).

Then, P̂ †
h,a,a′ is an unbiased estimator of P †

h,a,a′ in that

E
[
(K̂Dh,a,a′)(x)

]
= E

[∫
O3

K(x′′, x) · p†h,a,a′(x
′′) dx′′

]
=

∫
O3

K(x′′, x) · E
[
p†h,a,a′(x

′′)
]
dx′′

=

∫
O3

K(x′′, x) · P †
h,a,a′(x

′′) dx′′ = (KP †
h,a,a′)(x).

In what follows, we upper bound ∥K̂Dh,a,a′ −KP †
h,a,a′∥2H. We write

(K̂h,a,a′{onh−1, o
n
h, o

n
h+1, a

n
h−1, a

n
h, ρ

n})(o, o′, o′′) = K
(
(onh−1, o

n
h, o

n
h+1), (o, o

′, o′′)
)
· 1{(anh−1, a

n
h) = (a, a′)} · ρ−1.

Note that

E
[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]
≤

√√√√E
[∥∥∥ 1

N

∑
n∈[N ]

K̂h,a,a′{onh−1, o
n
h, o

n
h+1, a

n
h−1, a

n
h, ρ

n
h} −KP †

h,a,a′

∥∥∥2
H

]

=
1

N

√√√√E
[∥∥∥ ∑

n∈[N ]

K̂{onh−1, o
n
h, o

n
h+1, a

n
h−1, a

n
h, ρ

n
h}

∥∥∥2
H

]
− E

[∥∥∥ ∑
n∈[N ]

KP †
h,a,a′

∥∥∥2
H

]
,

where the equality follows from

E
[∥∥∥ ∑

n∈[N ]

K̂{onh−1, o
n
h, o

n
h+1, a

n
h−1, a

n
h, ρ

n}
∥∥∥
H

]
=

∥∥∥ ∑
n∈[N ]

KP †
h,a,a′

∥∥∥
H
.

Let ρ̄nh,a,a′ = 1{(anh−1, a
n
h) = (a, a′)} · (ρnh)−1.

E
[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]

≤ 1

N

√ ∑
n,n′∈[N ]

E
[
K
(
(onh−1, o

n
h, o

n
h+1), (o

n′
h−1, o

n′
h , o

n′
h+1)

)
· ρ̄nh,a,a′ · ρ̄n

′
h,a,a′

]
− E

x,x′i.i.d.∼ P †
h,a,a′

[
K(x, x′)

]
=

1

N

√ ∑
n∈[N ]

E
[
K
(
(onh−1, o

n
h, o

n
h+1), (o

n
h−1, o

n
h, o

n
h+1)

)
· ρ̄nh,a,a′ · ρ̄nh,a,a′

]
− Ex∼P †

h,a,a′

[
K(x, x)

]
.

Since K(x, x′) ≤ 1 for any x, x′ ∈ O3 and π(· | ·) ≥ C by Assumption 4.4, we have

E
[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]
≤

√
2/N/C.

Finally, we invoke McDiarmid’s inequality with ci = 2/(NC2). It holds with probability at least 1− δ that

|∥K̂Dh,a,a′ −KP †
h,a,a′∥

2
H − E

[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]
| ≤

√
2 log(2/δ)/N/C.

Then, by the triangle inequality, it holds with probability at least 1− δ that

∥K̂Dh,a,a′ −KP †
h,a,a′∥

2
H ≤ E

[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]
+
∣∣∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H − E

[
∥K̂Dh,a,a′ −KP †

h,a,a′∥
2
H
]∣∣

≤
√

10 log(2/δ)/N/C. (C.6)
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By Combining (C.1), (C.2), (C.3) and (C.6), we have

∥P̂ ‡
h,a − P

‡
h,a∥1 ≤ α

−1 ·
√

10d · log(2/δ)/C ·N−1/2.

By taking a union bound for all (h, a, a′) ∈ [H]×A2, we have

∥P̂ ‡
h,a − P

‡
h,a∥1 ≤ α

−1 ·
√

10d · log(2H|A|2/δ)/C ·N−1/2

for all h ∈ [H] and a, a′ ∈ A with probability at least 1− δ, which concludes the proof of (5.1). For (5.2), we note that

∥P̂ ‡
h,a − P

‡
h,a∥1 =

∫
O2

∣∣∣∫
O
(ϕ(o, o′, o′′)⊤ŵh,a,a′ − ϕ(o, o′, o′′)⊤w) do′′

∣∣∣dodo′
≤

∫
O3

|ϕ(o, o′, o′′)⊤ŵh,a,a′ − ϕ(o, o′, o′′)⊤wh,a,a|do′′ do do′ = ∥P̂ †
h,a − P

†
h,a∥1,

which holds when (5.1) holds.

C.2. Confidence Interval

Proof of Lemma 5.2. We condition our proof on the event E defined in Lemma 5.1. By (??) and the triangle inequality, we
have

∥Fθ
∗

h,a′ P̂
‡
h,a − P̂

†
h,a,a′∥1 = ∥Fθ

∗

h,a′ P̂
‡
h,a − Fθ

∗

h,a′P
‡
h,a + P †

h,a,a′ − P̂
†
h,a,a′∥1

≤ ∥Fθ
∗

h,a′(P̂
‡
h,a − P

‡
h,a)∥1 + ∥P

†
h,a,a′ − P̂

†
h,a,a′∥1. (C.7)

By Lemma D.1(c), we have

∥Fθ
∗

h,a′(P̂
‡
h,a − P

‡
h,a)∥1 ≤ γ∥P̂

‡
h,a,a′ − P

‡
h,a,a′∥1. (C.8)

Plugging (C.7) into (C.8), it holds for all (h, a, a′) ∈ [H]×A2 that

∥Fθ
∗

h,aP̂
‡
h,a − P̂

†
h,a,a′∥1 ≤ (γ + 1) · ∥P̂ ‡

h,a,a′ − P
‡
h,a,a′∥1 ≤ β ·N

−1/2,

where the last inequality follows from Lemma 5.1 and the value of β is given in Theorem 4.6. Recall the definition of the
confidence region in (??), we obtain θ∗ ∈ Θ̂, which concludes the proof.

C.3. Proof of Lemma 5.3

Proof. Let θ, θ′ ∈ Θ be arbitrary. By the definition of R in (4.3), we have

J (θ, π) = Eθ,π
[ ∑
h∈[H]

r(sh, ah)
]
= Eθ,π

[
R(τH+1)

]
.

Meanwhile, by Lemma 4.3 and the fact that Pθ(τ1) = Pθ′(τ1) for any τ1 ∈ Γ1, we have

J (θ′, π) = Eθ′,π
[ ∑
h∈[H]

r(sh, ah)
]
= Eθ′

[
V θ

′,π
1 (τ1)

]
= Eθ

[
V θ

′,π
1 (τ1)

]
Then, by the additional definition that V θ,πH+1 = V θ

′,π
H+1 = R, we have

J (θ, π)− J (θ′, π) = Eθ,π
[
V θ

′,π
H+1(τH+1)− V θ

′,π
1 (τ1)

]
=

∑
h∈[H]

Eθ,π
[
V θ

′,π
h+1 (τh+1)− V θ

′,π
h (τh)

]
(C.9)

By Lemma 4.1, we have

Eθ,π
[
V θ

′,π
h+1 (τh+1)

]
= Eθ,π

[
(Bθ,πh V θ

′,π
h+1 )(τh)

]
. (C.10)
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Meanwhile, by the definition of V θ,πh in (4.2), we have

Eθ,π
[
V θ

′,π
h (τh)

]
= Eθ,π

[
(Bθ

′,π
h V θ

′,π
h+1 )(τh)

]
. (C.11)

Plugging (C.11) and (C.10) into (C.9), we have

J (θ, π)− J (θ′, π) =
∑
h∈[H]

Eθ,π
[
(Bθ,πh V θ

′,π
h+1 )(τh)− (Bθ

′,π
h V θ

′,π
h+1 )(τh)

]
,

which concludes the proof of Lemma 5.3.

C.4. Proof of Lemma 5.4

Proof. For notational simplicity, we denote

∆Fh,a(o, o′, o′′) = Fθ
∗

h,a(o, o
′, o′′)−F θ̂h,a(o, o′, o′′). (C.12)

Then, we invoke Lemma 4.2 and rewrite the value function as follows

ϵh(sh−1) =
∣∣∣Eθ∗,π∗

[(
(Bθ

∗,π∗

h − Bθ̂,π
∗

h )V θ̂,π
∗

h+1

)
(τ∗h)

]∣∣∣
=

∣∣∣∣Eθ∗,π∗

[∫
O2×S

∑
ah∈A

Eθ∗,π∗

[ ∑
i∈[H]

r(oi, ai)
∣∣∣ sh+1, τ

∗
h−1, a

∗
h−1, oh, ah

]
· ξθ̂h(sh+1, oh+1) ·∆Fh,ah(o∗h, oh, oh+1) · π∗(ah | τ∗h−1, a

∗
h−1, oh) doh doh+1 dsh+1

]∣∣∣∣,
where ∆Fh,ah is defined in (C.12). To handle the tricky expectation taken with respect to τh, we take advantage of the
boundedness of r and π and the fact that o∗h only depend on sh. By Jensen’s inequality, we have

ϵh(sh−1) ≤ H ·
∑

ah−1,ah∈A

∫
O×S

∣∣∣∫
O
ξθ̂h(sh+1, oh+1) · Eo∗h∼Pθ∗ (· | sh−1,ah−1)

[
∆Fh,ah(o∗h, oh, oh+1)

]
doh+1

∣∣∣doh dsh+1

≤ H · γ
∑

ah−1,ah∈A

∫
O2

∣∣Eo∗h∼Pθ∗ (· | sh−1,ah−1)

[
∆Fh,ah(o∗h, oh, oh+1)

]∣∣doh doh+1, (C.13)

where the last inequality follows from Assumption 2.2 and the action ah−1 in the condition of the expectation is decoupled
from history and the policy. The right-hand side of (C.13) does involve the optimal policy π∗ at all. Since our target is
Eθ∗,π̄[ϵh(sh−1)], we have

Eθ∗,π̄
[∣∣Eo∗h∼Pθ∗ (· | sh−1,ah−1)

[
∆Fh,ah(o∗h, oh, oh+1)

]∣∣] (C.14)

=

∫
S

∣∣∣∫
O
∆Fh,ah(o∗h, oh, oh+1) · Pθ∗,π̄(sh−1, o

∗
h | ah−1) do

∗
h

∣∣∣ dsh−1.

Prior to deriving the upper bound of (C.14), we note that for any (oh, oh+1, ah) ∈ O2 ×A,

bh,oh,o∗h,oh+1,ah−1,ah(sh−1) :=

∫
O
∆Fh,ah(o∗h, oh, oh+1) · Pθ∗,π̄(sh−1, o

∗
h | ah−1) do

∗
h

=

∫
O
∆Fh,ah(o∗h, oh, oh+1) · Iθ

∗

h−1(sh−1 | o∗h, ah−1) · Pθ∗,π̄(o∗h | ah−1) do
∗
h, (C.15)

where I is the inverse transition function defined in §A.2.2, where we also show Iθ∗h−1(· | o∗h, ah−1) ∈ linspan(ψ). Then,
we have bh,oh,o∗h,oh+1,ah−1,ah(·) ∈ linspan(ψ). Thus, by invoking Assumption 2.2, it holds that

Eθ∗,π̄
[∣∣Eo∗h∼Pθ∗ (· | sh−1,ah−1)

[
∆Fh,ah(o∗h, oh, oh+1)

]∣∣]
= ∥bh,oh,o∗h,oh+1,ah−1,ah∥1 = ∥UObh,oh,o∗h,oh+1,ah−1,ah∥1 ≤ γ · ∥Obh,oh,o∗h,oh+1,ah−1,ah∥1.
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By the definition of bh,oh,o∗h,oh+1,ah−1,ah(sh−1) in (C.15) and the definition of the operator F in (3.2), we have

Eθ∗,π̄
[∣∣Eo∗h∼Pθ∗ (· | sh−1,ah−1)

[
∆Fh,ah(o∗h, oh, oh+1)

]∣∣]
≤ γ ·

∫
O

∣∣∣∫
O
∆Fh,ah(o∗h, oh, oh+1) · Pθ∗,π̄(oh−1, o

∗
h | ah−1) do

∗
h

∣∣∣ doh−1

= γ ·
∫
O
|(Fθ̂h,ahP

‡
h,ah−1

)(oh−1, oh, oh+1)− (Fθ
∗

h,ah
P ‡
h,ah−1

)(oh−1, oh, oh+1)|doh−1. (C.16)

Combining (C.13) and (C.16), we have

Eθ∗,π̄[ϵh] ≤ Hγ2 ·
∑

a,a′∈A
∥Fθ̂h,a′P

‡
h,a − P

†
h,a,a′∥1. (C.17)

Next, by the triangle inequality, we have

∥Fθ̂h,a′P
‡
h,a − P

†
h,a,a′∥1

≤ ∥Fθ̂h,a′P
‡
h,a − Fθ̂h,a′ P̂

‡
h,a∥1︸ ︷︷ ︸

(i)

+ ∥Fθ̂h,a′ P̂
‡
h,a − P̂

†
h,a,a′∥1︸ ︷︷ ︸

(ii)

+ ∥P̂ †
h,a,a′ − P

†
h,a,a′∥1︸ ︷︷ ︸

(iii)

. (C.18)

By Lemma D.1(c), Lemma 5.1, and the definition of the confidence region in (??), we have

(i) ≤ γ · ∥P ‡
h,a − P̂

‡
h,a∥1 ≤ γ · β0 ·N

−1/2, (C.19)

(ii) ≤ β ·N−1/2, (C.20)

(iii) ≤ β0 ·N−1/2. (C.21)

Combining (C.17) - (C.21), we have

Eθ∗,π̄[ϵh] ≤ 2H|A2|γ2β ·N−1/2,

which concludes the proof of Lemma 5.4.

D. Auxiliary Lemmas
D.1. Upper Bounds

Lemma D.1. We have the following inequalities which are used in our proofs and analysis.

(a). It holds for any o, o′, o′′ ∈ O that ∥φ̃(o, o′, o′′)∥2 ≤
√
d.

(b). Under Assumption 4.5, it holds for any function p : O3 → [0, 1] that ∥Kp∥2H ≤ 1.

(c). It holds for any ℓ ∈ L1(O2), h ∈ [H] and θ ∈ Θ that ∥Fθh,af∥1 ≤ γ∥f∥1.

Proof. To prove (a), following from the fact that entries of ϕ are probability distributions, we have

∥φ̃(o, o′, o′′)∥22 =
∑

(i,j,k)∈[dφ]3

ϕi(o)
2ϕj(o

′)2ϕk(o
′′)2 ≤ d.

To prove (b), we invoke Assumption 4.5, which tells us |K(·, ·)| ≤ 1. Meanwhile, we have |p(·)| ≤ 1 by assumption. Thus,
by definition, we naturally have

∥Kp∥2H =

∫
O3×O3

K(x, y)p(x)p(y) dxdy ≤ 1.



Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes

To prove (c), we have

∥Fθh,ahf∥1 =

∫
O3

∣∣∣∫
O
f(oh−1, o

′
h) · Fθh,ah(o

′
h, oh, oh+1) do

′
h

∣∣∣ doh−1 doh doh+1

=

∫
O3

∣∣∣∫
S×O

f(oh−1, o
′
h) · Pθ(oh, oh+1 | sh, ah) · ξθh(sh, o′h) dsh do′h

∣∣∣doh−1 doh doh+1

≤
∫
O3×S

∣∣∣∫
O
f(oh−1, o

′
h) · ξθh(sh, o′h) do′h

∣∣∣ · Pθ(oh, oh+1 | sh, ah) doh−1 doh doh+1 dsh

≤
∫
O3×S

∣∣∣∫
O
f(oh−1, o

′
h) · ξθh(sh, oh) doh

∣∣∣doh−1 dsh

= γ · ∥f∥1,

where the first inequality follows from the Jensen’s inequality, and the second inequality follows from Assumption 2.2.

D.2. Concentration Inequalities

Lemma D.2. Let µ1, . . . , µt be T distributions over X and K be a kernel function over X ×X that satisfies |K(x, x′)| ≤ 1
for any x, x′ ∈ X . Suppose Xt is independently sampled from µt for any t ∈ [T ]. Define function y : Xn → R to be

y(X1, . . . , Xn) =
∥∥∥ 1

T

∑
t∈[T ]

KδXt −
1

T

∑
t∈[T ]

Kµt
∥∥∥
H
,

where δ is the Dirac delta function, K is the embedding operator of K, andH is the RKHS induced by the kernel K. Then, it
holds for any δ > 0 with probability at least 1− δ that

y(X1, . . . , Xn) ≤ (log(1/δ) + 1) · T−1/2.

Proof. By Jensen’s inequality, we have

E
[
y(X1, . . . , Xn)

]
≤

√√√√E
[∥∥∥ 1

T

∑
t∈[T ]

KδXt −
1

T

∑
t∈[T ]

Kµt
∥∥∥2
H

]

=
1

T

√√√√E
[∥∥∥∑
t∈[T ]

KδXt
∥∥∥2
H

]
− E

[∥∥∥ ∑
t∈[T ]

KδXt
∥∥∥
H
·
∥∥∥ ∑
t∈[T ]

Kµt
∥∥∥
H

]
+ E

[∥∥∥ ∑
t∈[T ]

Kµt
∥∥∥2
H

]
.

By definition, it holds for any t ∈ [T ] that

E
[∥∥∥∑
t∈[T ]

KδXt
∥∥∥
H

]
=

∥∥∥ ∑
t∈[T ]

Kµt
∥∥∥
H
.

Thus, we have

E
[
y(X1, . . . , Xn)

]
≤ 1

T

√√√√E
[∥∥∥∑
t∈[T ]

KδXt
∥∥∥2
H

]
−

∥∥∥ ∑
t∈[T ]

Kµt
∥∥∥2
H

≤ 1

T

√∑
t∈[T ]

∑
t′∈[T ]

E[K(Xt, Xt′)]− EX∼µt,X′∼µt′ [K(X,X ′)]

=
1

T

√∑
t∈[T ]

E[K(Xt, Xt)]− EX∼µt,X′∼µt′ [K(X,X ′)],
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where the equality follows from the fact that Xt and Xt′ are independent for t ̸= t′. Since |K(x, x′)| ≤ 1 for any x, x′ ∈ X ,
we have

E[y(X1, . . . , Xn)] ≤
√

2/T . (D.1)

Also, for any t′ ∈ [T ] and x1, . . . , xT , x′t′ ∈ X , we have

|y(x1, . . . , xT )− y(x1, . . . , xt−1, xt′ , xt′+1, . . . , xT )|

=
1

T

∣∣∣∥∥∥ ∑
t∈[T ]

Kδxt −Kµt
∥∥∥
H
−
∥∥∥Kδx′

t′
−Kδxt′ +

∑
t∈[T ]

Kδxt −Kµt
∥∥∥
H

∣∣∣ ≤ 1

T
∥Kδxt′ −Kδx′

t′
∥H,

where the inequality follows from the triangle inequality. By the fact that |K(x, x′)| ≤ 1 for any x, x′ ∈ X , we have

∥Kδxt′ −Kδx′
t′
∥2H = K(xt′ , xt′)−K(xt′ , x′t′)−K(x′t′ , xt′) +K(x′t′ , x′t′) ≤ 4.

Then, by invoking the McDiarmid’s inequality (see also Lemma D.3) with ci = 2/T , we have with probability at least 1− δ
that ∣∣y(X1, . . . , Xn)− E

[
y(X1, . . . , Xn)

]∣∣ ≤√
2 log(2/δ)/T . (D.2)

Then, by the triangle inequality and combining (D.1) and (D.2), it holds for any δ ∈ (0, 1) with probability at least 1− δ that

|y(X1, . . . , Xn)| ≤
∣∣E[y(X1, . . . , Xn)

]∣∣+ ∣∣y(X1, . . . , Xn)− E
[
y(X1, . . . , Xn)

]∣∣ ≤√
10 log(2/δ)/T ,

which concludes the proof of Lemma D.2.

We put here the McDiarmid’s inequality for reference without proving it.

Lemma D.3. [McDiarmid’s Inequality] Let X1, . . . , Xn be independent random variables with ranges X1, . . . ,Xn. Let
y : X1 × · · · × Xn → R be any function. If there exists constants c1, . . . , cn such that for any i ∈ [n],

|y(x1, . . . , xn)− y(x′1, . . . , x′n)| ≤ ci,

for any (x1, . . . , xn), (x
′
1, . . . , x

′
n) ∈ X1 × · · · × Xn that differ only in the i-th coordinate, then it holds for any ϵ > 0 that

P
(∣∣y(X1, . . . , Xn)− E

[
y(X1, . . . , Xn)

]∣∣ ≥ ϵ) ≤ 2 exp
(
− 2ϵ2∑n

i=1 c
2
i

)
.


