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Abstract
Auctions with partially-revealed information
about items are broadly employed in real-world
applications, but the underlying mechanisms have
limited theoretical support. In this work, we study
a machine learning formulation of these types
of mechanisms, presenting algorithms that are
no-regret from the buyer’s perspective. Specifi-
cally, a buyer who wishes to maximize his utility
interacts repeatedly with a platform over a se-
ries of T rounds. In each round, a new item is
drawn from an unknown distribution and the plat-
form publishes a price together with incomplete,
“masked” information about the item. The buyer
then decides whether to purchase the item. We
formalize this problem as an online learning task
where the goal is to have low regret with respect
to a myopic oracle that has perfect knowledge of
the distribution over items and the seller’s mask-
ing function. When the distribution over items is
known to the buyer and the mask is a SimHash
function mapping Rd to {0, 1}`, our algorithm
has regret Õ((Td`)1/2). In a fully agnostic setting
when the mask is an arbitrary function mapping
to a set of size n and the prices are stochastic, our
algorithm has regret Õ((Tn)1/2).

1. Introduction
Selling mechanisms play a crucial role in economic theory
and have a wide range of applications across many indus-
tries (Post et al., 1995; Milgrom, 2004; Edelman et al., 2007;
Milgrom, 2010; Arnosti et al., 2016). Under the canonical
mechanism design model, buyers choose whether or not to
buy items for sale based on their true values for those items.
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This fundamental model, however, assumes that the buyers
know exactly how much they value the items for sale, which
is often not the case.

One of the overriding reasons that a buyer may not know
their true values is information asymmetry: the seller may
purposefully obfuscate information about an item for sale.
For example, the seller may hide information about the item
in the hopes of better revenue (Gershkov, 2009). Alterna-
tively, information about the item may be private, and thus
the seller may wish to protect this sensitive information by
only revealing partial information about the item. For in-
stance, in online advertising auctions, bids represent how
much advertisers are willing to pay to display their ad to
a particular user. Historically, advertisers have bid based
on uniquely identifying information about users, but there
has been a growing effort to protect users’ privacy by obfus-
cating this sensitive information (Juels, 2001; Guha et al.,
2011; Epasto et al., 2021).

In these scenarios, the buyer only has partial information
about the item for sale but still must decide whether to make
a purchase. This raises the question: how should a buyer
determine their purchase strategy with only incomplete
item information?

We study posted-price auctions—a fundamental mechanism
family that is appealingly interpretable—with incomplete
item information. In particular, the seller reveals obfuscated
(“masked”) information about the item using a fixed, un-
known masking function. We study an online setting where,
at each round, a fresh item is drawn from an unknown dis-
tribution (for example, a distribution over users visiting a
webpage). The seller sets a price and the buyer chooses
whether to buy the item based on the incomplete informa-
tion that the seller provides. We propose no-regret learning
algorithms for the buyer that achieve sub-linear regret com-
pared to an oracle buyer who has perfect knowledge of the
item distribution as well as the seller’s masking function.

1.1. Our results

We study no-regret learning with incomplete item informa-
tion in two settings:

1. First, we propose an algorithm for a setting where the
item distribution is known to the buyer and the mask
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Item distribution Prices Masking function h Regret

Known Adversarial SimHash h : [0, 1]d → {0, 1}` O(
√
Td` log(T /̀δ)) (Theorem 3.5)

Unknown Stochastic Arbitrary h : X → [n] O(
√
T (n log T/n + log 1/δ)) (Theorem 4.4)

Unknown Adversarial Arbitrary h : X → [n] Õ(T 2/3n1/3) (Remark 4.5)

Table 1. Summary of regret bounds which hold with probability at least 1− δ.

is a SimHash function mapping [0, 1]d to {0, 1}`. In
other words, each item is defined by d real-valued fea-
tures and the seller reveals ` bits about the item to
the buyer, as defined by a function that is unknown to
the buyer. This model has been studied from an ap-
plied perspective in the context of ad auctions (Epasto
et al., 2021). We provide an algorithm with regret
O(
√
Td` log(T /̀δ)).

2. Next, we study a setting where the masking function is
an arbitrary mapping from the set of all items, denoted
X , to a finite set of size n. We propose an online learn-
ing algorithm with regret O(

√
T (n log T/n + log 1/δ))

when the prices are stochastic, where T is the length
of the horizon.

In the first setting where the masking function is a SimHash
function mapping [0, 1]d to {0, 1}`, the domain of the mask-
ing function is of size n = 2`, so our regret bound of
Õ((Td`)1/2) is exponentially better than the latter regret
bound.

We summarize these results in Table 1.

1.2. Related work

This work draws on several threads of research on designing
auctions with incomplete information, learning to bid, and
privacy-preserving simple auctions.

Auction design with incomplete information. Auctions
with incomplete value information have attracted much re-
search attention. Several prior works have explored auction
design where the information about the item may be in-
complete to the buyer or the seller (Ganuza, 2004; Eső &
Szentes, 2007; Bergemann & Pesendorfer, 2007; Arefeva
& Meng, 2021; Roesler & Szentes, 2017; Li & Shi, 2017;
Bergemann et al., 2021; Li & Jewitt, 2017). In particular,
Ganuza (2004) studied the incentives of the auctioneer to
release signals about the item to the buyers that refine their
private valuations before a second-price auction. In their
model, the seller reveals a noisy item feature vector which
is an unbiased estimator of the true one. Bergemann &
Pesendorfer (2007) considered single-item multi-bidder auc-
tions where the seller decides how accurately the bidders
can learn their valuations. However, all of this prior work

is limited to offline settings; they did not explore online
purchase strategies that the buyer can adopt. To the best of
our knowledge, this work constitutes the first analysis of no-
regret learning algorithms in partially-informed posted-price
auctions.

Learning to bid with an unknown value. Instead of fo-
cusing the problem from the side of the auctioneer who aims
to maximize revenue over repeated rounds, another active
line of research studies bidding strategies for the bidders
when they do not know their values (Dikkala & Tardos,
2013; Weed et al., 2016; Feng et al., 2018; Balseiro & Gur,
2019). Feng et al. (2018) considered a single-item multi-
bidder setting where the bidder learns to bid via partial
feedback, and provide algorithms with regret rates against
the best fixed bid in hindsight. Dikkala & Tardos (2013) ex-
plored a setting where bidders need to experiment in order to
learn their valuations. The key difference between this work
and ours is that our algorithms exploit the available “partial”
information instead of having zero knowledge about the
item being sold. This partial information model allows us to
trade off between the amount of information revealed about
the item and the regret. Moreover, we compete with the best
purchase policy, rather than the best fixed bid in hindsight.

Private auctions. Our theoretical model is motivated by
recent work on designing privacy-enhanced auctions for
practical usage. An important application of these auc-
tions is online advertising, where the items being auctioned
are user queries and the auctioner must trade off between
user privacy and revenue maximization (De Corniere &
De Nijs, 2016; Rafieian & Yoganarasimhan, 2021; Epasto
et al., 2021; Guha et al., 2011; Juels, 2001). Epasto et al.
(2021) present a detailed exploration of Chrome’s Federated
Learning of Cohorts (FLoC) API, where user information is
masked. Our contribution is to provide a formal treatment
of such auctions, including providing algorithms that have
theoretical guarantees in the setting of arbitrary masking
functions that are unknown to the buyer.

2. Preliminaries
We begin by defining formally the setting we study for
auctions with partial information.
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2.1. Setup

We consider a setting where there is a single seller and a
single buyer. There is a distribution P over items which
are elements of an abstract set X . The buyer has a bounded
valuation, v∗(x) ∈ [0, H] for every item x ∈ X and some
H ∈ R+

1. The seller and buyer interact over a series of
T rounds. At each round t ∈ [T ], the seller draws an item
xt

iid∼ P and sets a price pt(xt) ∈ [0, H] for the item. The
seller does not reveal xt to the buyer, but rather reveals some
partial information h(xt) ∈ Y where h : X → Y is a fixed
“masking” function that maps to an abstract set Y .

We assume that the price function pt does not give any
more information about xt than that is provided by the
masking function h. In other words, if h(x) = h(x′), then
pt(x) = pt(x

′), which implies

E[v∗(x) | h(x), p(x)] = E[v∗(x) | h(x)]. (1)

The buyer uses a strategy st : Y × R → {0, 1} to de-
cide whether to buy the item given the partially revealed
item information and the price. Here st(h(xt), pt(xt)) = 1
if and only if the buyer buys the item. Letting bt =
st(h(xt), pt(xt)), the buyer’s utility is ut = bt(v

∗(xt) −
pt(xt)) ∈ [−H,H]. We summarize this process below.

Model Online model
1: for t = 1, 2, . . . , T do
2: Seller selects a price function pt : X → [0, H].
3: Item xt is sampled from P .
4: Seller publishes item information h(xt) and a price

pt(xt).
5: Buyer decides whether or not to buy: bt =

st(h(xt), pt(xt)) ∈ {0, 1}.
6: Buyer obtains reward ut = (v∗(xt)− pt(xt)) · bt.
7: if bt then {item is purchased}
8: Buyer observes xt.
9: end if

10: end for

Example 2.1 (Advertising auctions). We instantiate our
model in the context of advertising auctions, taking inspi-
ration from Epasto et al. (2021). The seller is a platform
and the buyer is an advertiser. Each item x ∈ X describes a
user who visits the platform. For example, X = Rd might
denote features that uniquely identify each user. On round
t, the advertiser has a value v∗(xt) for the opportunity to
show the user xt an ad. In order to preserve user privacy,
the platform does not reveal xt to the advertiser, but rather

1The assumption that there is a bound on the maximum amount
that the agents value the item is widely made in prior research. In
our main application—ad auctions—the value of an impression is
typically very cheap, so this assumption is mild.

some summary h(xt). For example, Epasto et al. (2021)
study a setting where h is a SimHash function, so xt ∈ Rd
and h(xt) ∈ R` for some ` < d. The platform sets a price
pt(xt) which the advertiser pays to show the user an ad.

We study this problem from the perspective of the buyer:
how should they select the strategy st at each round to
maximize their utility? We study two settings: a setting
where the distribution P is unknown to the buyer and the
prices are stochastic (Section 4) and a model where P is
known to the buyer with adversarial prices (Section 3).

2.2. Regret and the optimal strategy

We measure the regret of the buyer in our online model
with regard to the optimal strategy s∗ of a myopic buyer2

who has perfect knowledge of the distribution P and the
masking function h, but not the realized item xt. To make
this dependence on the environment clear, in any single
round, we use the notation s∗(h(x), p(x), h,P) to denote
the optimal strategy (we drop the subscript t for simplicity).
More formally, s∗ maximizes the expected utility:

argmax
s∈S

E
x∼P

[(v∗(x)− p(x))s(h(x), p(x), h,P) | h(x)],

where S represents the set of all decision functions s(·) :
Y × R× {h(·),P} → {0, 1}.
Definition 2.2. The buyer’s (expected) regret with respect
to the optimal strategy s∗, denoted RT , is defined as

E
[ T∑
t=1

(
v∗(xt)− pt(xt)

)
s∗ (h(xt), pt(xt), h(·),P)

−
(
v∗(xt)− pt(xt)

)
st (h(xt), pt(xt))

]
. (2)

In the following proposition, we identify the form of the
optimal strategy s∗. The proof is in Appendix A.
Proposition 2.3. The strategy s∗ that maximizes
Ex∼P [(v∗(x)− p(x))s∗(h(x), p(x), h,P) | h(x)] is

s∗(h(x), p(x), h,P) = I
(

E
x∼P

[v∗(x) | h(x)] > p(x)
)
.

Even when the buyer has no information about the distri-
bution P (Section 4), we show that he can guarantee low
regret with respect to s∗ with either stochastic or adversarial
prices, in polynomial per-round runtime. When the distribu-
tion P is known (Section 3), we provide an algorithm with
exponentially better regret.

3. Known Item Distribution
First, we focus on a specific class of masking functions,
SimHash, motivated by recent practical applications in ad

2A myopic buyer optimizes his utility separately in each round.
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auctions (Epasto et al., 2021). Here, X is a feature space
[0, 1]d and the the masking function h is a SimHash func-
tion that is unknown to the buyer. In other words, there are
` unknown vectors w1, . . . ,w` ∈ Rd such that the mask-
ing function, denoted as hw with w = (w1, . . . ,w`), is
hw(x) = (sgn(w1 · x), . . . , sgn(w` · x))>.

We consider the setting where the distribution of the items
is known to the buyer (for example, via historical data). We
provide an algorithm that achieves a regret Õ(

√
Td`) even

under adversarial prices. Since the masking function maps
to a set of size n = 2`, the regret only depends logarithmi-
cally on n. As we detail in the subsequent Section 4, this
algorithm achieves exponentially better regret compared
to the algorithm we present where the distribution P over
items is unknown and the masking function is arbitrary.

Algorithm 1 Explore-then-Commit (Known Distribution)

1: Input: horizon T , distribution P , d, ` ∈ N+, and
δ ∈ (0, 1).

2: Compute t′ =
√

4Td` log( /̀δ).
3: for t = 1, 2, . . . , t′ do {Exploration phase}
4: Receive h(xt), price pt(xt) where xt

iid∼ P .
5: Make decision bt = 1 and observe xt.
6: end for

7: Use linear programming to compute ŵ = (ŵ1, . . . , ŵ`)
such that hŵ(xi) = hw(xi) for all i ∈ [t′].

8: for t = t′ + 1, t′ + 2, . . . , T do {Exploitation phase}
9: Receive hw(xt), price pt(xt) where xt

iid∼ P .
10: Obtain an estimate Ẑt of Ex∼P [v∗(x) | x ∈

h−1
ŵ (hw(xt))] using the Integration Algorithm by

Lovász & Vempala (2006).
11: Make decision bt = I(Ẑt ≥ pt(xt)).
12: end for

Algorithm 1 begins with an exploration phase of length t′ =
Õ(
√
Td`), during which the buyer buys the item in each

round. The algorithm then uses linear programming to solve
for separators ŵ = (ŵ1, . . . , ŵ`), ŵj ∈ Rd for all j ∈ [`],
such that sgn(wj · xi) = sgn(ŵj · xi) for all j ∈ [`] and
i ∈ [t′]. During the rest of the rounds t ∈ {t′ + 1, . . . , T},
the algorithm exploits. Since the optimal strategy is to buy if
Ex∼P [v∗(x) | hw(x) = hw(xt)] ≥ p(xt) (Prop. 2.3), the
algorithm uses hw(xt) and ŵ = (ŵ1, . . . , ŵ`) to compute
an estimate of Ex∼P [v∗(x) | hw(x) = hw(xt)].

The intuition behind the estimate is the following. Let-
ting h−1

w (xt) = {x : hw(x) = hw(xt)} (a convex poly-
tope), we have that Ex∼P [v∗(x) | hw(x) = hw(xt)] =
Ex∼P

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
. Since the buyer does

not know w, we cannot compute the set h−1
w (hw(xt)),

but we can compute the set h−1
ŵ (hw(xt)) using the es-

timated separators that we have obtained after the ex-

ploration phase. Even still, the conditional expectation
Ex∼P

[
v∗(x) | x ∈ h−1

ŵ (hw(xt))
]

may be challenging to
compute in high dimensions. Therefore, we use a sampling
algorithm by Lovász & Vempala (2006) to compute an es-
timate Zt of Ex∼P [v∗(x) | x ∈ h−1

ŵ (hw(xt))]. The buyer
buys the item if Zt ≥ pt(xt).

To compute the estimate Zt, Lovász & Vempala (2006) re-
quire that if π is the density function of P , then v∗(x)π(x)
is log-concave and “well-rounded.” Many well-studied dis-
tributions are log-concave, including the normal, exponen-
tial, uniform, and beta distributions, among many others.
Moreover, every concave function that is nonnegative on its
domain is log-concave. If v∗ and π are log-concave, then
v∗(x)π(x) is also log-concave. For example, the Cartesian
product of single-dimensional log-concave distributions (ex-
ponential, logistic, extreme value, Laplace, and beta distri-
butions, among many others) is log-concave. Log-concavity
has also been widely-assumed in prior works in machine
learning and high-dimensional statistics (e.g., Bagnoli &
Bergstrom, 2006; Saumard & Wellner, 2014).

The function v∗(x)π(x) is well-rounded if for any A ⊆ X ,
the distribution defined by fπ(A) =

∫
A v
∗(x)π(x)dx∫

X v
∗(x)π(x)dx

is nei-
ther too spread out nor too concentrated. We include the
formal definition in Appendix B (Def. B.1). Every log-
concave function can be brought to a well-rounded posi-
tion by an affine transformation of the space in polynomial
time (Lovász & Vempala, 2006).

Regret analysis. We now prove that the regret of Algo-
rithm 1 is Õ(

√
Td`). To do so, we must contend with two

sources of error: the fact that we use the learned linear sepa-
rators ŵ instead of w and the estimation error introduced
by the sampling algorithm.

We begin our analysis by proving that for any y ∈ {0, 1}` in
the image of hw : X → {0, 1}`, the agent’s expected value
conditioned on x ∈ h−1

ŵ (y) is close to its true expected
value conditioned on x ∈ h−1

w (y). In this section, we use
the notation ε = `

t′

(
d ln 2et′

d + ln 2`
δ

)
.

Lemma 3.1. For any y ∈ {0, 1}`, with probability at least
1− δ over x1, . . . ,xt′ ∼ P ,

∣∣E [v∗(x)|x ∈ h−1
ŵ (y)

]
− E

[
v∗(x)|x ∈ h−1

w (y)
]∣∣ ≤ Hε.

Proof. We can decompose the set h−1
ŵ (y) as

h−1
ŵ (y) =

(
h−1
ŵ (y) ∩ h−1

w (y)
)
∪
(
h−1
ŵ (y) \ h−1

w (y)
)
.
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We can therefore write

E
x∼P

[
v∗(x) | x ∈ h−1

ŵ (y)
]

=E
[
v∗(x) | x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

+E
[
v∗(x) | x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
.

Similarly, we can write

E
x∼P

[
v∗(x) | x ∈ h−1

w (y)
]

=E
[
v∗(x) | x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

+E
[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]

· Pr
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
.

Matching terms, we have that∣∣∣ E
x∼P

[
v∗(x) | x ∈ h−1

ŵ (y)
]
− E

[
v∗(x) | x ∈ h−1

w (y)
]∣∣∣

=
∣∣E [v∗(x) | x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]

− E
[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]

·Pr
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]∣∣ .

We know that x ∈
(
h−1
ŵ (y) \ h−1

w (y)
)

if and only
if hŵ(x) = y and hw(x) 6= y, which means that
hŵ(x) 6= hw(x). The following claim bounds Pr[hŵ(x) =
y and hw(x) 6= y] ≤ Pr[hŵ(x) 6= hw(x)].

Claim 3.2. With probability 1 − δ, Prx∼P [hŵ(x) 6=
hw(x)] ≤ ε.

Proof of Claim 3.2. For a fixed i ∈ [`], by the standard PAC
learning generalization bound in the realizable setting (e.g.,
Theorem 4.8 by Anthony & Bartlett (2009)), we have that
with probability 1− δ

` ,

Pr[sgn(wi · x) 6= sgn(ŵi · x)] ≤ 1

t′

(
d ln

2et′

d
+ ln

2`

δ

)
.

Therefore, with probability 1− δ,

Pr
x∼P

[hŵ(x) 6= hw(x)]

= Pr[∃i ∈ [`] such that sgn(wi · x) 6= sgn(ŵi · x)] ≤ ε,

as claimed.

By Claim 3.2 and the fact that v∗(x) ∈ [0, H], we
therefore know that E

[
v∗(x) | x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
·

Prx∼P
[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
∈ [0, Hε]. By a sym-

metric argument, E
[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
·

Prx∼P
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
∈ [0, Hε]. Therefore,

the lemma statement holds.

Lemma 3.1 guarantees that Ex∼P
[
v∗(x) | x ∈ h−1

ŵ (y)
]

is
a good approximation of E

[
v∗(x) | x ∈ h−1

w (y)
]

—which
is the key quantity needed to compute the optimal policy
(see Prop. 2.3). However, this estimate may be difficult to
compute when x is high dimensional, despite the fact that P
is known. The integration algorithm of Lovász & Vempala
(2006) allows us to estimate it in polynomial time, as we
summarize in the following lemma.

Lemma 3.3. Suppose that v∗(x)π(x) is log-concave and
well-rounded. Then for any y ∈ {0, 1}`, with probability
at least 1− δ, we can compute a constant A in polynomial
time such that

∣∣A− Ex∼P
[
v∗(x) | x ∈ h−1

w (y)
]∣∣ ≤ Hε.

Proof. By Lemma 3.1, with probability at least 1− δ/2,∣∣∣ E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]

− E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

w (hw(x))
]∣∣∣ ≤ εH.

By definition

E
x̃∼P

[v∗(x̃) | x̃ ∈ h−1
ŵ (hw(x))]

=

∫
x̃∈h−1

ŵ
(hw(x))

v∗(x̃)π(x̃)dx̃.

Then, by Lovász & Vempala (2006, Theorem 1.3), in poly-
nomial runtime with probability of at least 1− δ/2, we can
compute a constant A, such that∣∣∣A− E

x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]∣∣∣

≤ ε · E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]
≤ εH.

By the triangle inequality and a union bound, we have that
with probability of at least 1− δ, we can compute a value
A such that∣∣∣A− E

x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

w (hw(x))
]∣∣∣ ≤ 2εH,

which completes the proof.

Lemma 3.4. In each round t ∈ {t′ + 1, . . . , T} of the
exploitation phase in Algorithm 1, with probability at least
1− δ, the expected instantaneous regret incurred in round t
is at most

2H`

t′

(
d ln

2et′

d
+ ln

` · 2`+2

δ

)
.
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Proof. Given hw(xt) and price p(xt), denote the estimated
value of Ex∼P

[
v∗(x) | x ∈ h−1

ŵ (hw(xt))
]

obtained using
the sampling algorithm (Alg 1, step 1) as A(hw(xt)). For
simplicity of notation, we denote the decision of the oracle
policy as s∗ and the decision of the learned policy as st:

s∗ = I
(

E
x∼P

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
> p(xt)

)
,

st = I
(
A(hw(xt)) > p(xt)

)
.

Now we bound the expected instantaneous regret in round t:

E
xt∼P

[(v∗(xt)− p(xt)) s∗ − (v∗(xt)− p(xt)) st]

= E
xt∼P

[(v∗(xt)− p(xt)) (s∗ − st)] .

Let ∆ denote the difference ∆ = s∗−st, so ∆ ∈ {−1, 0, 1}
is a random variable that depends on xt. By the law of total
expectation,

E
xt∼P

[(v∗(xt)− p(xt)) s∗ − (v∗(xt)− p(xt)) st]

= E
xt∼P

[
E

x∼P

[
(v∗(x)− p(xt)) ∆ | x ∈ h−1

w (hw(xt))
]]

= E
xt∼P

[(
E

x∼P

[
v∗(x)|x ∈ h−1

w (hw(xt))
]
− p(xt)

)
∆
]
.

The variable ∆ is only nonzero when s∗ 6= st. Let E denote
the event where s∗ 6= st and let pE = Pxt∼P [E]. Then

E
xt∼P

[(v∗(xt)− p(xt)) s∗ − (v∗(xt)− p(xt)) st]

≤ E
xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E] · pE
≤ E

xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E] .
By definition, when event E happens, we know that

A(hw(xt)) < p(xt) ≤ E
x

[v∗(x) | x ∈ h−1
w (hw(xt))] or

E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))] < p(xt) ≤ A(hw(xt)),

where in either case we have that∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]− p(xt)

∣∣∣
≤
∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]−A(hw(xt))

∣∣∣ .
Given δ′ ∈ (0, 1), let ε′ = `

t′

(
d ln 2et′

d + ln 4`
δ′

)
. By

Lemma 3.3, for any value of hw(x) ∈ Y , with probability
at least 1− δ′,∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]−A(hw(xt))

∣∣∣ ≤ 2ε′H.

Setting δ′ = δ/|Y| = δ/2`, by a union bound over elements
in Y , we have that with probability at least 1− δ,

E
xt∼P

[(v∗(xt)− p(xt)) s∗ − (v∗(xt)− p(xt)) st]

≤ E
xt∼P

[∣∣∣ E
x∼P

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E]
≤ E

xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
−A(hw(xt))

∣∣∣ ∣∣∣ E]
≤ 2H`

t′

(
d ln

2et′

d
+ ln

` · 2`+2

δ

)
,

which completes the proof.

This instantaneous regret bound then implies a regret bound
for Algorithm 1, the proof of which is in Appendix B.

Theorem 3.5. With probability at least 1− δ, the regret of
Algorithm 1 is RT = O(

√
Td` log(T /̀δ)).

In Algorithm 1, we assumed that we knew the horizon T .
This assumption can be lifted via a doubling trick; see Ap-
pendix B.

4. General Masking Functions
We next consider a more general setting where in each round,
an item xt is drawn from an unknown distribution P and
a published price pt is drawn from some fixed unknown
distribution. We study the case where the masking function
is an arbitrary mapping h : X → [n]. In this setting, is there
a no-regret strategy that the buyer can use?

We answer this question in the affirmative, building on the
classical Exp4.VC algorithm (Beygelzimer et al., 2011).
Out of the box, Exp4.VC has per-round runtime that
is exponential in n, but we exploit the structure of our
problem setting to obtain a polynomial per-round run-
time. We prove that this algorithm has a regret bound of
O(
√
T (n log T/n + log 1/δ)) with probability at least 1− δ.

4.1. Exp4.VC algorithm

Based on the optimal strategy from Proposition 2.3, we
define an infinite set of policies that take as input (pt, h(xt))
and return decisions in {0, 1} indicating whether or not the
buyer should buy the item. Each policy is defined by a vector
v ∈ [0, H]n as follows: πv(pt, h(xt)) = I(v[h(xt)] ≥ pt).
The optimal strategy from Proposition 2.3 corresponds to the
strategy πv with v = (E[v∗(x) | h(x) = 1], . . . ,E[v∗(x) |
h(x) = n]). We use the notation Π = {πv | v ∈ [0, H]n}
to denote the set of all such policies.

A key observation is that our problem can be framed as a
contextual bandit problem with an oblivious adversary and
an infinite set of contexts. At each round t = 1, . . . , T ,
the buyer observes stochastic context (pt, h(xt)) and makes
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Algorithm 2 Exp4.VC with an unknown distribution

1: Input: T ≥ 0, δ ∈ (0, 1).

2: Set τ =
√
Tn log eT

n + log 2
δ .

3: for t = 1, 2, . . . , τ do {Initialization phase}
4: Receive h(xt), price pt where xt

iid∼ P .
5: Make decision bt ∼ Bern(0.5) at random.
6: end for

7: for i = 1, 2, . . . , n do {Extract a finite subset of poli-
cies}

8: Let i1, i2, . . . , imi ∈ [τ ] be the set of indices where
h(xij ) = i for all j ∈ {1, 2, . . . ,mi}

9: Define Vi = {0, pi1 , pi2 , . . . , pimi
}

10: end for
11: Define V = ×ni=1Vi
12: Set γ =

√
log |V|

2(T−τ) and wv
τ+1 = 1 for all v ∈ V .

13: for t = τ + 1, . . . , T do {Exp.4 subroutine}
14: Receive h(xt), price pt where xt

iid∼ P .
15: Get advice vectors ξvt ∈ {0, 1}2 for all v ∈ V where

ξvt = (1− πv(pt, h(xt)), πv(pt, h(xt))).
16: Set Wt =

∑
v∈V w

v
t and define ξ̄t ∈ (0, 1)2 as

ξ̄t[0] = (1− 2γ)
∑
v∈V

wv
t ξ

v
t [0]

Wt
+ γ

ξ̄t[1] = (1− 2γ)
∑
v∈V

wv
t ξ

v
t [1]

Wt
+ γ.

17: Draw decision bt ∼ Bern(ξ̄t[1]) and receive reward
ut = (v∗(xt)− pt)bt.

18: Set r̂t = (btut/ξ̄t[1], 0)>.

19: for v ∈ V do
20: Set

Cv
t =

γ

2

(
ξvt · r̂t +

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

√
log |V|/δ

2(T − τ)

)

21: Set wv
t+1 = wv

t expCv
t

22: end for

23: end for

a purchase decision. This is a contextual bandit problem
with two arms: the first arm corresponds to the decision “no
purchase” and the second arm corresponds to the decision
“purchase.” The reward of the first arm is always zero, while
the reward of pulling the second arm depends on the item
xt and the price pt.

We prove that the class of policies Π has a VC dimension
of n, which allows us to adapt Exp4.VC from Beygelz-
imer et al. (2011), a generic contextual bandits algorithm

for policy classes with finite VC dimension. Algorithm 2
begins with an initialization phase of length τ . In this phase,
the buyer chooses their action uniformly at random and
collects tuples {(h(xt), pt)}τt=1. The algorithm then uses
these tuples to identify a finite (though exponentially large),
representative subset of policies in Π. In particular, using
the collected tuples, the algorithm partitions Π into a finite
set of equivalence classes where two policies π, π′ are equiv-
alent if they agree on the set of τ collected tuples. Then
the buyer constructs a finite set of policies Π′ by selecting
one policy from each equivalence class. Algorithm 2 does
this by first defining for each i ∈ [n] a set Vi ⊂ R which
is the set of all prices from the first τ rounds for items xt
with h(xt) = i. The finite set Π′ of policies is then defined
as Π′ = {πv : v ∈ ×ni=1Vi}. We prove that Π′ contains a
policy from each equivalence class in Lemma 4.2.

In the remaining rounds, Algorithm 2 follows the Exp4.P
strategy (Beygelzimer et al., 2011) which runs multiplicative
weight updates on each of the selected policies πv with
v ∈ ×ni=1Vi. Out-of-the-box, Exp4.VC would therefore
have a per-round runtime that is exponential in n since
×ni=1Vi is exponentially large. However, with a careful
analysis, we show that in our setting these multiplicative
weight updates can be computed in polynomial time.

4.2. Regret

The key first step is to show that although the set of all
policies we need to consider Π is infinite, it has a finite VC
dimension. The full proof is in Appendix C.

Lemma 4.1. The VC dimension of Π is n.

Proof sketch. First, we show that the functions in Π cannot
be used to label n+ 1 contexts in all possible ways. Given
n + 1 contexts (h(x1), p1), . . . , (h(xn+1), pn+1), by the
pigeonhole principle there must exist at least two items xi
and xj that have the same index: h(xi) = h(xj). Therefore,
for any policy πv, the decisions for these two items are
determined by the same threshold v[h(xi)] = v[h(xj)].
Without loss of generality, assume that pi < pj . There is
no policy πv where the decision is to purchase item j but
not purchase item i because this would imply that pj ≤
v[h(xj)] = v[h(xi)] < pi. However, with fewer than n+ 1
items, since all items can use a different threshold, their
decisions do not interfere with each other.

Next, in order to invoke the regret bound of Exp4.VC , we
verify that Π′ is a representative set of policies. Formally,
suppose we partition Π into a set of equivalence classes
where policies π and π′ are equivalent if they agree on the
set of τ tuples collected in the initalization phase. We prove
that Π′ contains a policy from each equivalence class.
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Lemma 4.2. Let V be defined as in Algorithm 2. Then

{(πv(h(x1), p1), . . . , πv(h(xτ ), pτ )) : v ∈ [0, H]n}
= {(πv(h(x1), p1), . . . , πv(h(xτ ), pτ )) : v ∈ V} .

The proof of this lemma can be found in Appendix C.

Lemmas 4.1 and 4.2 imply the following regret bound:3

Theorem 4.3. With probability 1− δ, Algorithm 2 achieves
a regret rate that is RT = O(

√
T (n log T/n + log 1/δ)).

Proof. This theorem follows directly from Lemmas 4.1 and
4.2 and Theorem 5 of Beygelzimer et al. (2011).

4.3. Computational Complexity

The key challenge in applying Exp4.VC out-of-the-box is
that it computes multiplicative weight updates over every
policy πv with v ∈ V—an exponential number of policies.
We show that by exploiting our problem structure, we can
perform these multiplicative weight updates in each round
in polynomial time. In particular, we show that we can effi-
ciently compute the purchase probabilities ξ̄t[0] and ξ̄t[1]
without computing the multiplicative weights wv

t for each
v ∈ V explicitly, and therefore Algorithm 2 can be run with
polynomial per-round runtime. Intuitively, rather than sum
over every vector in V = ×ni=1Vi as in the definitions of
ξ̄t[0] and ξ̄t[1], we show how to sum over individual ele-
ments in ∪ni=1Vi, of which there are τ +n = Õ(

√
Tn+n).

We provide the complete proof in Appendix C.
Theorem 4.4. The purchase probabilities ξ̄t[0] and ξ̄t[1]
in Algorithm 2 can be computed in O(n + τ) = O(n +√
Tn log(T/n) + log(1/δ)) time.

Proof sketch. Our proof begins with the observation that for
each index i ∈ [n], the thresholds 0 ≤ pi1 ≤ · · · ≤ pimi

in
Vi divide the price range [0, H] intomi+1 non-overlapping
“buckets”: [0, pi1), [pi2 , pi3), . . . , [pimi

, H]. Using the no-
tation m = maximi, the total number of buckets is
O(mn). Each context (h(xt), pt) corresponds to exactly
one bucket: the bucket [pij , pij+1) containing pt where
h(xt) = i. Moreover, the decision of each policy in
each bucket is constant since the policies all use the same
thresholds, namely, the boundaries of these buckets. Given
a vector v ∈ V and a bucket k, let avk ∈ {0, 1} be
the policy’s recommendation of “buy” or “do not buy”
for any item that falls in that bucket. This allows us
to rewrite the policy decision ξvt as an alternative sum:

ξvt =
(∑

k:avk=0 I(item in k),
∑
k:avk=1 I(item in k)

)>
. In-

tuitively, I(item in k) is only nonzero for the bucket that this

3By running n copies of Exp4.VC in parallel for each context,
we would obtain a regret bound of O(

√
Tn log(Tn/δ)), but by

using a more careful analysis in this section, we improve the
dependence on n.

item belongs to, and the policy’s decision for the item is
the same as the policy’s decision for that bucket. Using this
fine-grained argument, we then show that all the purchase
probabilities ξ̄t[0] and ξ̄t[1] can be computed in polynomial
time without explicitly computing the exponentially many
weights wv

t .

Remark 4.5. Under adversarial prices, we can run n in-
dependent copies of an algorithm for Lipschitz contextual
bandits (for example, the algorithm from Section 8.3 of the
textbook by Slivkins et al. (2019)) to obtain an expected
regret bound of Õ(T 2/3n1/3).

5. Conclusion
We presented learning algorithms for buyers who partici-
pate in auctions with limited item information. This model
captures a broad set of practical applications, including ad-
vertising auctions. Our algorithms are no-regret with respect
to an oracle buyer who has perfect knowledge of the distri-
bution over items and the masking function that the seller
uses to obfuscate the item information. We proposed no-
regret learning algorithms in a variety of settings, including
when the distribution over items is either known or unknown
to the buyer, and when the prices are either stochastic or
adversarial.

To the best of our knowledge, this is the first result on
no-regret learning strategies for buyers with partial item
information. Many interesting questions remain open for
future research. First, we have assumed that the valuation
is bounded, and it would be an interesting direction for
future research to extend our results to unbounded distribu-
tions. Second, we focused on posted-prices in this work.
It would be interesting to consider extensions to second-
price auctions with partial item information. With stochastic
prices, the problem seems potentially feasible, but adversar-
ial prices might pose challenges because the adversary could
block the learner from estimating the second-highest bid.
Moreover, can the platform release partial information in a
way that optimally trades off between revenue and privacy?
When the distribution over items is unknown, our algorithm
works with general masking functions. Can better purchas-
ing strategies be developed by exploiting the properties of a
specific set of masking functions?
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A. Proofs for Section 2
Proposition 2.3. The strategy s∗ that maximizes Ex∼P [(v∗(x)− p(x))s∗(h(x), p(x), h,P) | h(x)] is

s∗(h(x), p(x), h,P) = I
(

E
x∼P

[v∗(x) | h(x)] > p(x)
)
.

Proof. For a decision b ∈ {0, 1}, let Rb denote the expected utility of buying or not buying an item given the published
information and price:

Rb
def
= E[(v∗(x)− p(x)) · b | h(x), p(x)]

= E[(v∗(x)− p(x)) · b | v∗(x) ≥ p(x), h(x), p(x)] · P[v∗(x) ≥ p(x) | h(x), p(x)]

− E[(p(x)− v∗(x)) · b | v∗(x) < p(x), h(x), p(x)] · P[v∗(x) < p(x) | h(x), p(x)].

Then, by definition, the optimal strategy s∗(h(x), p(x), p,P) = I(R1 > R0) = I(R1 > 0).

Further, letting x+ = max{0, x}, by the law of total expectation,

E[(v∗(x)− p(x))+ | h(x), p(x)]

= E[(v∗(x)− p(x)) | v∗(x) ≥ p(x), h(x), p(x)] · P[v∗(x) ≥ p(x) | h(x), p(x)]

+ E[0 | v∗(x) < p(x), h(x), p(x)] · P(v∗(x) < p(x) | h(x), p(x))

= E[(v∗(x)− p(x)) | v∗(x) ≥ p(x), h(x), p(x)] · P[v∗(x) ≥ p(x) | h(x), p(x)].

Similarly, letting x− = −min{0, x},

E[(v∗(x)− p(x))− | h(x), p(x)]

= E[(p(x)− v∗(x)) | v∗(x) < p(x), h(x), p(x)] · P(v∗(x) < p(x) | h(x), p(x)).

Therefore, the optimal strategy is:

s∗(h(x), p(x), h, p,P) = I
(
E[(v∗(x)− p(x))+ | h(x), p(x)]− E[(v∗(x)− p(x))− | h(x), p(x)] > 0

)
= I (E[(v∗(x)− p(x)) | h(x), p(x)] > 0)

= I (E[v∗(x) | h(x), p(x)] > p(x)) .

The lemma statement then follows from Equation (1).

B. Proofs for Section 3
Definition B.1 (Lovász & Vempala (2006)). Define the centroid of fπ as cf =

∫
xdfπ. Define the variance of fπ as

var(fπ) =
∫
‖x− cf‖2dfπ . Also denote L(θ) as the level set {x : v∗(x)π(x) ≥ θ}.

Theorem 3.5. With probability at least 1− δ, the regret of Algorithm 1 is RT = O(
√
Td` log(T /̀δ)).

Proof. First, in the exploration phase, the total regret is upper bounded by Ht′.

Now consider the regret in the exploitation phase. Notice that, we would have obtained {xi, hw(xi)}t
′

i=1 number of i.i.d.
samples from the exploration phase.

Let ε = `
t′

(
d ln 2et′

d + ln `·2`+2

δ′

)
. By Lemma 3.4 and a union bound over all rounds, with probability at least 1− δ′T , the

total expected regret incurred by Algorithm 1 is RT ≤ Ht′ + 2εH(T − t′).

Let t′ =
√
Td` log

(
2`
δ′

)
, we have

RT ≤ H

√
Td` log

(
2`

δ′

)
+ 2H`d

√
T

d` log
(

2`
δ′

) log

(
2`

d

√
Td` log

(
2`

δ′

))
+ 2H`

√
T

d` log
(

2`
δ′

) log

(
`2`+2

δ′

)
.



No-Regret Learning in Partially-Informed Auctions

Note that log
(
`2`+2

δ′

)
= log

(
`
δ′

)
+ ` log(4) ≤ log

(
`
δ′

)
+ d log(4). Setting δ′ = δ/T , we have that with probability at least

1− δ,

RT = Õ

(√
Td` log

(
2`T

δ

))
. (3)

This completes the proof.

B.1. Algorithm for an unknown horizon T

In Theorem 3.5, we assumed that we knew the time horizon T , which allowed us to set the correct length for the exploration
phase. This assumption can be lifted by using the doubling trick which runs the algorithm in independent intervals that are
doubling in length, as summarized by Algorithm 3. The regret bound remains the same up to constant factors.

Algorithm 3 Explore-then-Commit with Unknown Horizon

1: Input: starting epoch length T0.
2: for i = 1, 2, . . . do
3: Ti ← 2iT0.
4: Run Algorithm 1 with T = Ti.
5: end for

Corollary B.2. Suppose that v∗(x)π(x) is logconcave and well-rounded. Then with probability at least 1− δ, the regret of
Algorithm 3 is RT = Õ(

√
Td` log(T /̀δ)).

Proof. Denote the total expected accumulated regret as RT , and the expected accumulated regret in each interval with
length Ti as RTi

. Denote the number of intervals as m ≤ log2
2T
T0

. Then, by Theorem 3.5 we have that for some universal
constant C and with probability at least 1− δ′m:

RT ≤
m∑
i=1

RTi

≤
m∑
i=1

C

√
Tid` log

(
2`Ti
δ′

)

≤ C
√
d`

m∑
i=1

√
Ti

(
log

(
2`

δ′

)
+ log Ti

)

≤ C
√
d`

(√
log

(
2`

δ′

)
·
m∑
i=1

√
2iT0 +

m∑
i=1

√
2iT0 log(2iT0)

)

= O

(√
d`T log

(
2`

δ′

))
.

Let δ′ = δ/m and note that m ≤ log2
2T
T0

, applying a union bound over all intervals, we have that with probability at least
1− δ,

RT = Õ

(√
d`T log

(
2`

δ

))
.

This completes the proof.

C. Proofs for Section 4
Lemma 4.1. The VC dimension of Π is n.
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Proof. We argue that any function contained in Π cannot be used to label n + 1 input points in all possible ways. For
simplicity denote h(x) = y ∈ [n]. Consider a set of input points {yi, pi}n+1

i=1 . By the pigeonhole principle there must exist
at least two elements (yi, pi), (yj , pj) such that yi = yj and pi 6= pj . Therefore by definition, we have that for any v ∈ Rn,

πv(yi, pi) = I(v[yi] > pi) = I(v[yj ] > pi),

πv(yj , pj) = I(v[yj ] > pj) = I(v[yi] > pj).

Without loss of generality, assume that pi < pj . Then the pair of labels πv(yi, pi) = 1 and πv(yj , pj) = 0 can never be
achieved for any v ∈ Rn. Thus V Cdim(Π) < n+ 1.

Next, consider a set of n input points {(i, 0.5)}ni=1. Each point in this set is labeled using a different index i, so all possible
combinations of labels can be achieved using vectors v ∈ {0, 1}n. Thus we conclude that V Cdim(Π) = n.

Lemma 4.2. Let {(h(x1), p1), . . . , (h(xτ ), pτ )} be a subset of [n] × [0, H]. For each i ∈ [n], let i1, i2, . . . , imi
∈ [τ ] be

the set of indices where h(xij ) = i for all j ∈ {1, 2, . . . ,mi}. Define Vi = {0, pi1 , pi2 , . . . , pimi
} and V = ×ni=1Vi. Then

πv(h(x1), p1)
...

πv(h(xτ ), pτ )




v∈[0,H]n

=


πv(h(x1), p1)

...
πv(h(xτ ), pτ )




v∈V

.

Proof. We will show that for every v ∈ [0, H]n, there exists a vector v0 ∈ ×ni=1Vi such that πv(h(xj), pj) =
πv0

(h(xj), pj) for every j ∈ [τ ]. To this end, fix an index i ∈ [n] and without loss of generality, let i1, i2, . . . , imi

be sorted such that 0 := pi0 < pi1 < pi2 < · · · < pimi
. Let i′ ∈ {0, 1, 2, . . . , imi

} be the largest index such
that v[i] ≥ pi′ . Define v0[i] = pi′ . For every index ij ≤ i′, we know that v[i] ≥ pi′ = v0[i] ≥ pij , so
πv(h(xij ), pij ) = I(v[i] ≥ pij ) = 1 = I(v0[i] ≥ pij ) = πv0(h(xij ), pij ). Meanwhile, for every index ij > i′, we
know that pi′ = v0[i] ≤ v[i] < pij . Therefore, πv(h(xij ), pij ) = 0 = πv0(h(xij ), pij ). In either case, we have that
πv(h(xij ), pij ) = πv0

(h(xij ), pij ). Since this is true for every index i ∈ [n], the lemma statement holds.

Theorem 4.4. The purchase probabilities ξ̄t[0] and ξ̄t[1] in Algorithm 2 can be computed in O(n + τ) = O(n +√
Tn log(T/n) + log(1/δ)) time.

Proof. Label the elements of Vi as 0 := pi,0 < pi,1 < · · · < pi,mi . Let m = maxmi. For the ease of notation, define the
variables pi,mi+1 = pi,mi+2 = · · · pi,m = H . For each i ∈ [n], j ∈ {1, . . . ,m}, and t ∈ {τ + 1, τ2, . . . , T}, we define the
variable

di,j(t) = I(h(xt) = i and pt ∈ (pi,j−1, pi,j ]).

We also set di,0(t) = I(h(xt) = i and pt = 0). Next, for each v ∈ ×ni=1Vi, i ∈ [n], and j ∈ {0, . . . ,m}, we define the
variable avi,j = I(v[i] ≥ pi,j).

Claim C.1. For b ∈ {0, 1},
ξvt [b] =

∑
(i,j):avi,j=b

di,j(t). (4)

Proof of Claim C.1. First, let it = h(xt). If pt = 0, define jt = 0 and otherwise, define jt such that pt ∈ (pit,jt−1, pit,jt ].
Therefore, di,j(t) = 1 if (i, j) = (it, jt) and di,j(t) = 0 otherwise. This means that∑

(i,j):avi,j=b

di,j(t) = I(avit,jt = b). (5)

We split the proof into two cases: b = 0 and b = 1.
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Case 1: b = 0. We know that ξvt [0] = 1− πv(pt, h(xt)) = I(v[h(xt)] < pt) = I(v[it] < pt).

If ξvt [0] = 0, then v[it] ≥ pt. Since v ∈ V , we know that v[it] = pit,j for some j ∈ [m]. Moreover, since pt ∈
(pit,jt−1, pit,jt ], the fact that v[it] ≥ pt means that v[it] ≥ pit,jt . Therefore, avit,jt = 1. By Equation (5), this means that∑

(i,j):avi,j=0 di,j(t) = 0, so Equation (4) holds.

Meanwhile, if ξvt [0] = 1, then v[it] < pt ≤ pit,jt . Therefore, avit,jt = 0. By Equation (5), this means that∑
(i,j):avi,j=0 di,j(t) = 1, so Equation (4) holds.

Case 2: b = 1. We know that ξvt [1] = I(v[it] ≥ pt).

If ξvt [1] = 0, then v[it] < pt. By the same logic as the previous case, this means that avit,jt = 0. By Equation (5), this
means that

∑
(i,j):avi,j=1 di,j(t) = 0, so Equation (4) holds.

Meanwhile, if ξvt [1] = 1, then v[it] ≥ pt. By the same logic as the previous case, avit,jt = 1. By Equation (5), this means
that

∑
(i,j):avi,j=1 di,j(t) = 1, so Equation (4) holds.

This means that

ξvt · r̂t =

1∑
b=0

∑
(i,j):avi,j=b

di,j(t)r̂t[b]

=

n∑
i=1

m∑
j=0

di,j(t)
(
r̂t[0]I(avi,j = 0) + r̂t[1]I(avi,j = 1)

)
=

n∑
i=1

m∑
j=0

di,j(t)r̂t[a
v
i,j ].

Similarly,

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

=

1∑
b=0

∑
(i,j):avi,j=b

di,j(t)

ξ̄
v
t [b]

=

n∑
i=1

m∑
j=0

di,j(t)

ξ̄
v
t [avi,j ]

.

Therefore,

wv
t+1 = wv

t exp

(
γ

2

(
ξvt · r̂t +

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

√
log |V|/δ

2(T − τ)

))
= wv

t exp

 n∑
i=1

m∑
j=0

di,j(t)favi,j (t)

 ,

where

favi,j (t) =
γ

2

(
r̂t[a

v
i,j ] +

1

ξ̄
v
t [avi,j ]

√
log |V|/δ

2(T − τ)

)
.
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We can therefore write

wv
t+1 =

t∏
τ=1

exp

 n∑
i=1

m∑
j=0

di,j(τ)favi,j (τ)


= exp

 t∑
τ=1

n∑
i=1

m∑
j=0

di,j(τ)favi,j (τ)


= exp

 n∑
i=1

m∑
j=0

t∑
τ=1

di,j(τ)favi,j (τ)


=

n∏
i=1

m∏
j=0

exp

(
t∑

τ=1

di,j(τ)favi,j (τ)

)
.

Letting gi,j(t, b) = exp
(∑t

τ=1 di,j(τ)fb(τ)
)

, we have that

wv
t+1 =

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j).

Let b1, . . . ,bm be the set of m increasing bit vectors b1 = (1, 0, 0, . . . , 0), b2 = (1, 1, 0, . . . , 0), b3 = (1, 1, 1, . . . , 0),
. . . , bm = (1, 1, 1, . . . , 1). For each i ∈ [n] and bj , define

gi(t,bj) = gi,1(t, bj [1])gi,2(t, bj [2]) · · · gi,m(t, bj [m]).

We now prove the following claim.

Claim C.2. The normalizing constant Wt can be computed in polynomial time as

Wt =

n∏
i=1

mi∑
j=1

gi(t,bj).

Proof of Claim C.2. We first write

Wt =
∑
v∈V

wv
t

=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)

=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, I(v[i] ≥ pi,j))

=

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

m∏
j=0

gi,j(t, I(pi,ji ≥ pi,j)).

This last equality holds because V = ×ni=1Vi and Vi = {pi,0, . . . , pi,mi}. Moreover,

Wt =

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

ji∏
j=0

gi,j(t, 1)

m∏
j=ji+1

gi,j(t, 0)

because pi,ji ≥ pi,j for all j ≤ ji and pi,ji < pi,j for all j > ji.
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By definition of the vectors b1, . . . ,bm,

Wt =

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

gi(t,bji) =

n∏
i=1

mi∑
j=1

gi(t,bj),

as claimed.

We next prove that ξ̄t can be computed in polynomial time. To do so, let h(xt) = it. If pt = 0, define jt = 0 and otherwise,
define jt such that pt ∈ (pit,jt−1, pit,jt ]. Next, define m̄i as follows:

m̄i =

{
jt − 1 if i = it

mi otherwise.

Similarly, define mi as follows:

mi =

{
jt if i = it

0 otherwise.

Then ξ̄t has the following form:

Claim C.3. The probabilities ξ̄t can be computed in polynomial time as:

ξ̄t[0] =
1

Wt

n∏
i=1

m̄i∑
ji=0

gi(t,bji)

and

ξ̄t[1] =
1

Wt

n∏
i=1

mi∑
ji=mi

gi(t,bji).

Proof of Claim C.3. Recall that ξvt [0] = I(v[it] < pt). Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)ξ

v
t [0]

=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)I(v[it] < pt)

=

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

)
I(pit,jit < pt).

This last equality holds because V = ×ni=1Vi and Vi = {pi,0, . . . , pi,mi
}. Without loss of generality, suppose that it = 1,

so I(pit,jit < pt) = I(p1,j1 < pt). Then

∑
v∈V

wv
t ξ

v
t [0] =

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

)
I(p1,j1 < pt)

=

m1∑
j1=0

I(p1,j1 < pt)

 m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

) .

Since pt = 0 if jt = 0 and otherwise pt ∈ (p1,jt−1, p1,jt ] we have that I(p1,j1 < pt) = 1 if and only if j1 ≤ jt − 1.
Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

jt−1∑
j1=0

 m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

) =

m̄1∑
j1=0

· · ·
m̄n∑
jn=0

n∏
i=1

gi(t,bji) =

n∏
i=1

m̄i∑
ji=0

gi(t,bji).
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Similarly, since ξvt [1] = I(v[it] ≥ pt), we have

∑
v∈V

wv
t ξ

v
t [1] =

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

)
I(pit,jit ≥ pt).

Without loss of generality, suppose that it = 1, so I(pit,jit ≥ pt) = I(p1,j1 ≥ pt). Then

∑
v∈V

wv
t ξ

v
t [1] =

m1∑
j1=0

I(p1,j1 ≥ pt)

 m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

) .

Since pt = 0 if jt = 0 and otherwise pt ∈ (p1,jt−1, p1,jt ] we have that I(p1,j1 ≥ pt) = 1 if and only if j1 ≥ jt. Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

m1∑
j1=jt

 m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏
i=1

gi(t,bji)

)
=

m1∑
j1=m1

· · ·
mn∑

jn=mn

n∏
i=1

gi(t,bji)

=

n∏
i=1

mi∑
ji=mi

gi(t,bji).

Lastly, note that in the initialization phase of Algorithm 2, every decision bt is computed with O(1) time. In the Exp4
subroutine, by Claim C.2 and Claim C.3, every iteration is also computed in polynomial time. Therefore the theorem
statement holds.


