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Abstract
Embedding-based entity alignment (EEA) has re-
cently received great attention. Despite significant
performance improvement, few efforts have been
paid to facilitate understanding of EEA methods.
Most existing studies rest on the assumption that
a small number of pre-aligned entities can serve
as anchors connecting the embedding spaces of
two KGs. Nevertheless, no one has investigated
the rationality of such an assumption. To fill the
research gap, we define a typical paradigm ab-
stracted from existing EEA methods and analyze
how the embedding discrepancy between two po-
tentially aligned entities is implicitly bounded by
a predefined margin in the score function. Further,
we find that such a bound cannot guarantee to
be tight enough for alignment learning. We miti-
gate this problem by proposing a new approach,
named NeoEA, to explicitly learn KG-invariant
and principled entity embeddings. In this sense,
an EEA model not only pursues the closeness of
aligned entities based on geometric distance, but
also aligns the neural ontologies of two KGs by
eliminating the discrepancy in embedding distri-
bution and underlying ontology knowledge. Our
experiments demonstrate consistent and signifi-
cant performance improvement against the best-
performing EEA methods.

1. Introduction
Knowledge graphs (KGs), such as DBpedia (Auer et al.,
2007) and Wikidata (Vrandečić & Krötzsch, 2014), have be-
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come crucial resources for many AI applications. Although
a large-scale KG offers structured knowledge derived from
millions of facts in the real world, it is still incomplete by
nature, and the downstream applications always demand
more knowledge. Entity alignment (EA) is then proposed
to solve this issue, which exploits the potentially aligned
entities among different KGs to facilitate knowledge fusion
and exchange (Suchanek et al., 2012).

Recently, embedding-based entity alignment (EEA) meth-
ods (Chen et al., 2017; Sun et al., 2017; Zhu et al., 2017;
Wang et al., 2018; Guo et al., 2019; Ye et al., 2019; Wu
et al., 2019; Sun et al., 2020b; Fey et al., 2020) have been
prevailing in the EA area. The central idea is to encode en-
tity/relation semantics into embeddings and estimate entity
similarity based on their embedding distance. These meth-
ods either learn an alignment function fa to minimize the
distance between the embeddings of a pair of aligned entities
(Wang et al., 2018), or directly map these two entities to one
vector representation (Sun et al., 2017). Meanwhile, they
leverage a shared score function fs to encode semantics into
representations, such that two potentially aligned entities
shall have similar feature expression. During this process,
a small number of aligned entity pairs (a.k.a., seed align-
ment) are required as supervision data to align (or merge)
the embedding spaces of two KGs.

Different from the conventional methods (Suchanek et al.,
2012; El-Roby & Aboulnaga, 2015; Lacoste-Julien et al.,
2013) that manually collect and select discriminative fea-
tures, EEA ones rarely rely on third-party tools or pipeline
for preprocessing. Commonly, they just need triples or
adjacency matrices of KGs as the input data, and have
achieved comparable or better performance on many bench-
marks (Sun et al., 2017; 2018; 2020c).

Another strength is that EEA is free of symbolic hetero-
geneity of two KGs (Sun et al., 2020c). The relationships
among entities are interpreted by the score function fs and
manifested as distances in the embedding space. Hence,
the similarity between a pair of entities can be defined and
estimated smoothly. Without loss of generality, we consider
the score function of TransE (Bordes et al., 2013) as fs. It
describes a triple (ei, r, ej) by ei + r ≈ ej , where ei, r, ej
are the head entity, relation, and tail entity, respectively. The
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Figure 1: Illustration of margin-based score function. Blue
and green nodes denote entity embeddings and relation em-
beddings, respectively. The center of each grey circle is
assigned according to the head entity and relation in the
triple. The radii are exactly the margin λ.

approximation is achieved by defining a margin λ to ensure:

||ei + r− ej || ≤ λ, (1)

where || · || denotes the L1 or L2 distance. We illustrate this
concept in Figure 1, where the two triples (Tim Berners-Lee,
employer, W3C) and (RDF, developer, W3C) have the same
tail entity W3C. The valid area for W3C is decided by two
circles. Their centers are Tim Berners-Lee + employer and
RDF + developer, respectively. The radii are exactly the
margin λ. Therefore, the desired embedding of W3C should
be located in the intersection area.

Many existing studies (Chen et al., 2017; Sun et al., 2017;
2018) have explored how to choose a proper λ for entity
alignment, but we argue this goes beyond a mere parameter-
tuning problem. In this paper, we define a paradigm lever-
aged by the current methods. We show that the embedding
discrepancy of an underlying aligned entity pair is bounded
by ε ∝ λ, for most EEA methods (Chen et al., 2017; Sun
et al., 2017; Zhu et al., 2017; Sun et al., 2018; Pei et al.,
2019a), or allowing more divergence between two poten-
tially aligned entities (Wang et al., 2018; Guo et al., 2019;
Wu et al., 2019; Ye et al., 2019; Sun et al., 2020b). Further,
we find that this margin-based bound cannot be as tight as
expected, causing minimal constraints on the entities with
few neighbors. Take W3C in Figure 1 as an example. The
valid area will shrink and finally disappear if this entity has
more and more linked neighbors. There is only one way to
mitigate this problem – enlarging the radii, which will allow
more divergence for entities with a few neighbors.

We consider additional constraints on entity embeddings
to mitigate the above problem, which we name neural-
ontology-driven entity alignment (abbr., NeoEA). In Se-
mantic Web, an ontology (Horrocks et al., 2006; Grau et al.,
2008; Baader et al., 2005) is usually comprised of axioms

that define the concepts and relationships for entities and
relations. Those axioms make a KG principled (i.e., con-
strained by rules). For example, an “Object Property Do-
main” axiom in OWL 2 EL (Grau et al., 2008) claims the
valid head entities for a specific relation (e.g., the head en-
tities of relation “birthPlace” should be in class “Person”),
and it thus determines the head entity distributions of this
relation. The neural ontology in this paper is reversely de-
duced from the entity embedding distributions, which is
clearly different from the existing methods like OWL2Vec*
(Chen et al., 2021) that leverages external ontology data to
improve KG embeddings. We expect to align the high-level
neural ontologies to diminish the discrepancy of entity em-
bedding distributions and ontology knowledge between two
KGs. We conducted experiments to verify the effectiveness
of NeoEA with several state-of-the-art baselines. We show
that NeoEA can consistently and significantly improve their
performance across multiple datasets.

2. Background
In this section, we first introduce the preliminaries and the
related works, and then discuss the inherent limitations of
current EEA methods.

2.1. Embedding-based Entity Alignment

We start by defining a typical KG G = (E ,R, T ), where
E and R are the entity and relation sets respectively, and
T ⊆ E×R×E is the triple set. A triple (e1, r, e2) comprises
three elements, i.e., the head entity e1, the relation r, and
the tail entity e2. We use the boldface e1 to denote the
embedding of the entity e1.

The common paradigm employed by most existing EEA
methods (Chen et al., 2017; Sun et al., 2017; Zhu et al.,
2017; Sun et al., 2018; Pei et al., 2019a) is then defined as:

Definition 2.1 (Embedding-based Entity Alignment). The
input of EEA is two KGs G1 = (E1,R1, T1), G2 =
(E2,R2, T2), and a small subset of aligned entity pairs
S ⊂ E1 × E2 as seeds to connect G1 with G2. An EEA
model consists of two neural functions: an alignment func-
tion fa, which is used to regularize the embeddings of pair-
wise entities in S; and a score function fs, which scores
the embeddings based on the joint triple set T1 ∪ T2. EEA
estimates the alignment of an arbitrary entity pair (e1i , e

2
j )

by their geometric distance d(e1i , e
2
j ).

The existing studies have explored a diversity of fa. The pi-
oneering work MTransE (Chen et al., 2017) was proposed to
learn a mapping matrix to cast an entity embedding e1i to the
vector space of G2. SEA (Pei et al., 2019a) and OTEA (Pei
et al., 2019b) extended this approach with adversarial train-
ing to learn the projection matrix. Especially, OTEA is
highly related to our approach as it is also based on optimal
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Figure 2: Influence of margin λ to different entities in EEA. Blue and orange nodes denote the entities in E1 and E2. Grey
and orange circles denote the valid area w.r.t. the relevant triples of the two entities, respectively.

transport (OT) (Arjovsky et al., 2017). The differences are:
(1) NeoEA provides a general way to align entity embedding
distributions, while OTEA regularizes the projection matrix
via optimal transport. (2) NeoEA exploits the underlying
ontology information to facilitate entity alignment.

Recently, a simpler yet more efficient method was widely-
used, which directly maps a pair of aligned entities
(e1i , e

2
i ) ∈ S to one embedding vector ei (Sun et al., 2017;

Zhu et al., 2017; Guo et al., 2019). Meanwhile, some meth-
ods (Wang et al., 2018; Pei et al., 2019a; Wu et al., 2019)
started to leverage a softer way to incorporate seed infor-
mation, in which the distance between entities in a positive
pair (i.e., known alignment in S) is minimized, while that
referred to a negative pair is enlarged. As the most efficient
choice, we consider fa as Euclidean distance between two
embeddings (Sun et al., 2020b; Guo et al., 2019; Wang et al.,
2018; Pei et al., 2019a; Wu et al., 2019). The corresponding
alignment loss can be written as follows:

La =
∑

(e1i ,e
2
i )∈S

||e1i − e2i ||

+
∑

(e1
i′ ,e

2
j′ )∈S

−

ReLU (α− ||e1i′ − e2j′ ||),
(2)

where S− denotes the set of negative pairs. α is the minimal
margin allowed between entities in each negative entity pair.
The function ReLU (Nair & Hinton, 2010) will filter out
negative pairs with larger margins.

On the other hand, the score function fs also has various
design choices (Sun et al., 2017; Wang et al., 2018). Most
methods (Chen et al., 2017; Sun et al., 2017; Pei et al.,
2019a;b; Sun et al., 2018) choose TransE as their score
function, i.e., fs(τ) = fs((ei, r, ej)) = ||ei+ r− ej ||, τ =
(ei, r, ej) ∈ T1 ∪ T2. The corresponding loss is:

Ls =
∑

τ∈T1∪T2

ReLU (fs(τ)− λ)

+
∑

τ ′∈T −1 ∪T
−
2

ReLU (λ− fs(τ ′)),
(3)

where T −1 and T −2 are negative triple sets. Ls is a margin-
based loss in which the distance d(ei + r, ej) in a positive
triple should at least be smaller than λ ≥ 0, while larger
than λ for negative ones.

2.2. Understanding and Rethinking EEA

We illustrate how an EEA method works with Figure 2.
When the KG embedding model has a small margin, as
shown in the left of Figure 2a, the entities with few neigh-
bors can be constrained tightly. With aligned entity pairs
serving as anchors, the circles are very close to each other.
Therefore, two entities stay closely in the overlapped in-
tersection areas. By contrast, there is no valid area for the
entities with rich neighbors. The entities in the right of
Figure 2a are not “fully expressed” (Kazemi & Poole, 2018;
Trouillon et al., 2016).

If we enlarge the margin, as shown in Figure 2b, the em-
beddings for entities with rich neighbors can be correctly
assigned. However, the intersection areas for entities with
few neighbors are too loose to bound the underlying aligned
entities. The two embeddings are not as similar as we expect
in the vector space. We summarize the observations as:

Proposition 2.2 (Discrepancy Bound). The embedding dif-
ference of two potentially aligned entities (e1x, e

2
y) is bound

by ε, which is proportional to the hyper-parameter λ:

∃ε ∝ λ, ||e1x − e2y|| ≤ ε. (4)

Proof. We start with the case that each entity in (e1x, e
2
y) has

only one neighbor, connected by the same relation r1 =
r2. We assume that their neighbors are actually a pair of
aligned entities (e1i , e

2
i ) ∈ S . With a well-trained and almost

optimal EEA model, we have e1i = e2i (as La is minimized)
and r1 = r2 (denoted by r for simplicity). According to
Equation (3), we have:

||fs(e1x, r, e1i )|| ≈ ||fs(e2y, r, e2i )|| ≤ λ. (5)

Without loss of generality, we consider the score function
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of TransE as fs, and then derive:

||e1x + r− e1i || ≤ λ, ||e2y + r− e2i || ≤ λ. (6)

For simplicity, we use a constant C to denote r − e1i and
r− e2i , such that Equation (6) will be rewritten as

||e1x + C|| ≤ λ, ||e2y + C|| ≤ λ. (7)

Then, we get

2λ ≥||e1x + C||+ ||e2y + C||
≥||(e1x + C)− (e2y + C)||
=||e1x − e2y||. (8)

Now, we consider a more complicated case: the neighbors of
e1x and e2y are not in the known alignment set. We denote r−
e1i and r− e2i by C1

i and C2
i , respectively. If the neighbors

of the neighbors e1i , e
2
i are a pair of known alignment, we

will have ||C1
i −C2

i || = ||e2i −e1i || ≤ 2λ, otherwise we can
recursively navigate more neighbors. Therefore, we have:

2λ ≥||e1x − e2y + (C1
i − C2

i )||
≥||e1x − e2y|| − ||C1

i − C2
i ||, (9)

which results in an looser bound:

||e1x − e2y|| ≤ 2λ+ ||C1
i − C2

i ||. (10)

For the case that the entities (e1x, e
2
y) have more than one

neighbors, the bound will be further tighten as the embed-
dings are constrained by multiple triples.

Proposition 2.2 suggests that decreasing the value of λ
will decrease the embedding discrepancy in the underlying
aligned entity pairs. However, previous studies (Trouillon
et al., 2016; Kazemi & Poole, 2018) have proved that λ
cannot be set as small as we want. This is because TransE
with a small margin is not sufficient to fully capture the se-
mantics contained in triples. Some empirical statistics (Sun
et al., 2018) also illustrate such results. Enlarging the mar-
gin λ, on the other hand, will bring significant variance
between e1x and e2y, especially for those entities with few
neighbors. For the models that do not belong to the TransE
family, e.g., neural-based like ConvE (Dettmers et al., 2018)
or composition-based like ComplEx (Trouillon et al., 2016),
as well as hyperbolic models like (Chami et al., 2020; Sun
et al., 2020a), they are more expressive than TransE. In this
case, entities with sufficient neighbors can be correctly mod-
eled, while entities with only a few neighbors are also less
constrained. Therefore, those models allow more diversity
between e1x and e2y . We believe this is why they performed
badly in the EA task (Guo et al., 2019; Sun et al., 2020c).

In short, most existing works adopt the above strategy to
learn cross-KG embeddings for EA, which makes them

stuck in balancing between the bound and the expressive-
ness. They want all given triples to be properly encoded, and
meanwhile the discrepancy between potentially aligned enti-
ties to be tightly restrained. In this paper, we explore a new
approach to align the conditional embedding distributions
of two KGs to fulfill this goal.

3. Neural Ontology
In real-world KGs, entities conform with the rules defined by
some special triples, which are known as axioms. Similarly,
we call the entity embedding distributions neural axioms,
and the process of aligning multiple neural axioms between
two KGs neural ontology alignment. Aligning them allows
us to regularize the entity embeddings at a high level.

3.1. Aligning Embedding Distributions with
Adversarial Learning

We start from an introduction to the entity embedding distri-
bution. It is well-known that entity embeddings can implic-
itly capture ontology-level information (Bordes et al., 2013;
Yang et al., 2015). For example, entities from the same class
are usually spatially close to each other in the vector space.
In the other way around, a cluster of entity embeddings in
the vector space may also indicate the existence of a class.
Our goal is to exploit such ontology-level knowledge from
the embedding distributions. Therefore, we define the basic
neural axiom as the distribution of entity embeddings:

AE =pe(e), (11)

where pe is the entity probability distribution over the sam-
ple set E (in this case it equals to the entity set). Aligning
the basic neural axioms A1

E and A2
E of two KGs is trivial.

We take the advantages of existing domain adaptation (DA)
methods (Ganin & Lempitsky, 2015; Shen et al., 2018; Ben-
David et al., 2010; Courty et al., 2017) that also aims to
align the feature distributions of two datasets for knowledge
transferring. Specifically, we consider the method based
on adversarial learning (Goodfellow et al., 2014; Arjovsky
et al., 2017), where a discriminator is employed to distin-
guish entity embeddings of entity set E1 from those of E2 (or
vice versa). The embeddings, by contrast, try to confuse the
discriminator. Therefore, the same semantics in two KGs
shall be encoded in the same way to fool the discriminator.
The corresponding empirical Wasserstein distance based
loss (Arjovsky et al., 2017; Shen et al., 2018) is:

LAE
= EA1

E
[fw(e)]− EA2

E
[fw(e)], (12)

where fw is the learnable domain critic that maps the em-
bedding vector to a scalar value. As suggested in (Arjovsky
et al., 2017), the empirical Wasserstein distance can be ap-
proximated by maximizingLAE

, if the parameterized family
of fw are all 1-Lipschitz.
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Figure 3: Example of different embedding distributions. (a) Entity embedding distributions of two KGs, i.e., AE . Blue
points denote entities in G1, and orange ones are entities in G2. The two embedding sets are nearly uniformly distributed
and almost aligned (based on the EEA model RDGCN (Wu et al., 2019), the same below). (b) The head entity embedding
distributions of relation “genre”. The two distributions are only aligned partially. (c) Head entity embedding distributions
conditioned on “genre”, i.e., AEh|ri . Two conditional distributions are aligned as expected. (d) The head entity distributions
conditioned on three different relations: “genre” (colors: < blue, orange >), “writer” (colors: < purple, pink >),
“brithPlace” (colors: < green, red >). The distributions corresponding to the first two relations are overlapped, while a
clear decision boundary between them and the last one is observed. (e) Triple embedding distributions conditioned on
relations “artist” (colors: < blue, orange >) and “musicalArtist” (colors: < purple, pink >), respectively. The entity
embeddings referred to sub-relation “musicalArtist” are covered by those corresponding to “artist”.

Although the above method provides a general solution for
many alignment tasks, it is not completely appropriate to
the EEA problem. The most important reason is that entity
embeddings are initialized randomly and tend to uniformly
distributed in the vector space, as shown in Figure 3a.

Recall that the alignment loss La consists of two terms.
The first is

∑
(e1i ,e

2
i )∈S

||e1i − e2i ||, which aims to minimize
the difference of embeddings for each positive pair. The
cardinality of S is usually small in the weakly supervised
setting. However, a large size of negative samples are used
for contrastive learning, which means that ||S|| � ||S−||.
The model actually puts more effort into the second term∑

(e1
i′ ,e

2
j′ )∈S

− ReLU (α− ||e1i′ − e2j′ ||), of which the main
target is to randomly push the embeddings of non-aligned
entities away from each other. On the other hand, Ls is also
a contrastive loss and has a similar effect on maximizing the
pairwise distance between a positive entity and its sampled
negative ones. Therefore, we may conclude that:

Proposition 3.1 (Uniformity). The entity embeddings of
two KGs tend to be uniformly distributed in the vector space
as an EEA model is optimized.

This characteristic has also been studied in (Wang & Isola,
2020) in other representation learning problems. The uni-
formity property reveals that the information of entities are
efficiently encoded to maximize the entropy. However, for
the given EEA problem, the entity embedding distributions
of two KGs will be similar to each other, especially when
the seed alignment pairs exist. Thus, only aligning the basic
neural axioms is less helpful to facilitate EEA.

3.2. Conditional Neural Axiom

We can estimate the conditional distributions rather than the
raw distributions to avoid the problem brought from the uni-

formity property. Specifically, we name conditional neural
axioms to describe the entity (or triple) embedding distri-
butions under specific semantics. For example, the head
entity embedding distribution conditioned on the relation
embedding ri can be defined as:

AEh|ri = peh|ri(eh|ri), (13)

where peh|ri is the conditional probability distribution of
the head entities given ri. The corresponding sample set is
defined as:

Eh|ri = {e | ∃e′, (e, ri, e′) ∈ T }. (14)

Following the similar rule, we can define the conditional
triple distribution AEh,t|ri with the sample set

Eh,t|ri = {(eh, et) | (eh, ri, et) ∈ T }. (15)

Numerous methods have been proposed to process the neu-
ral conditioning operation, ranging from addition and con-
catenation (Mirza & Osindero, 2014; Wang et al., 2014;
Dettmers et al., 2018), to matrix multiplication (Lin et al.,
2015a; Ji et al., 2015; Nguyen et al., 2016). Rather than de-
veloping new methods, we value more on its common merit:
projecting the entities to a relation-specific subspace (Wang
et al., 2014; Lin et al., 2015a; Nguyen et al., 2016). Hence,
the corresponding embedding distributions conditioned on
different relations become discriminative, compared to uni-
formly distributed in the original embedding space.

Furthermore, conditional neural axioms capture high-level
ontology knowledge:

Proposition 3.2 (Expressiveness). Aligning the conditional
neural axioms minimizes the embedding discrepancy of two
KGs at the ontology level, without the need of type/class
information.
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Figure 4: Architecture of NeoEA. Solid lines denote forward propagation, while dotted lines represent backward propagation.
The architecture consists of three decoupled modules: entity alignment, KG sampling, and neural ontology alignment.

Proof. See Appendix A for details.

We take AEh|ri as an example that summarizes the em-
pirical “Object Property Domain” axiom of ri in OWL 2
EL (Baader et al., 2005). Supposed there exists such an
axiom stating that the head entities of ri should belong to
some specific class c (e.g., only head entities belonging to
the class ”Person” have the relation ”birthPlace”). We fur-
ther suppose that there exists a classifier fc(e) ∈ [0, 1], such
that fc(ej) = 1 if head entity ej belongs to class c, and 0
otherwise. Then, with the knowledge of the given axiom,
one may derive the following rule:

∀e ∈ {e | ∃e′, (e, ri, e′) ∈ T1 ∪ T2}, fc(e) = 1, (16)

which is equivalent to:

EA1
Eh|ri

[fc(e)] = EA2
Eh|ri

[fc(e)] = 1, (17)

both of which means that all head entities of ri in either KG
should be correctly classified to c. Then, we have:

EA1
Eh|ri

[fc(e)]− EA2
Eh|ri

[fc(e)] = 0. (18)

In fact, we do not have such knowledge about ri and class
c. Instead, we can leverage a neural function fc′(e|ri) to
estimate fc empirically. In this way, A1

Eh|ri and A2
Eh|ri are

supposed to be aligned to minimize the loss corresponding
to the above rule. Therefore, we deduce this problem back
to a similar form to Equation 12, i.e.,

LAEh|ri
= EA1

Eh|ri
[fc′(e | ri)]−EA2

Eh | ri
[fc′(e|ri)], (19)

which suggests that aligning the above conditional neural
axioms can minimize the discrepancy of potential “Object
Property Domain” axioms between two KGs.

Example 1 (OWL2 axiom: ObjectPropertyDomain). As
shown in Figures 3b and 3c, we assume that the head en-
tities of relation “genre” are under the class “Work of Art”
(although it does not exist). It is clear that the head en-
tity embedding distributions are only partially aligned in
Figure 3b, while those in Figure 3c are matched well.

In Figure 3d, we present a more complicated example. The
head entities of relations “genre” and “writer” mainly be-
long to “Work of Art”, which show overlapped distributions
(blue-orange, pink-purple). By contrast, there exists a clear
decision boundary between them and the distributions con-
ditioned on relation “birthPlace” (red-green), as the head
entities of relation “birthPlace” are under the class “Person”.

Example 2 (OWL2 axiom: SubObjectPropertyOf). We con-
sider two relations, “musicalArtist” and “artist” as an ex-
ample, where the former is the latter’s sub-relation. In Fig-
ure 3e, the triple distributions conditioned on “musicalArtist”
(colors: pink-purple) are covered by those conditioned on
“artist” (colors: orange-blue).

3.3. Implementation

We illustrate the overall structure in Figure 4. The frame-
work can be divided into three modules:

Entity Alignment This module aims at encoding the se-
mantics of KGs into embeddings. Almost all existing EEA
models can be used here, no matter what the input data look
like (e.g., triples or adjacency matrices).

KG Sampling For each KG, we randomly sample a sub-
KG to estimate the data distributions of neural axioms. It is
more efficient than separately sampling candidates for each
axiom, especially when KGs get big.
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Table 1: Results on V1 datasets (5-fold cross-validation).

Models EN-FR EN-DE D-W D-Y

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

BootEA (Sun et al., 2018) .507 .718 .603 .675 .820 .740 .572 .744 .649 .739 .849 .788
BootEA + NeoEA .521 .733 .617 .676 .820 .740 .579 .753 .658 .756 .859 .797

SEA (Pei et al., 2019a) .280 .530 .397 .530 .718 .617 .360 .572 .458 .500 .706 .591
SEA + NeoEA .320 .584 .443 .586 .766 .668 .389 .608 .490 .549 .752 .638

RSN (Guo et al., 2019) .393 .595 .487 .587 .752 .662 .441 .615 .521 .514 .655 .580
RSN + NeoEA .399 .597 .490 .600 .759 .673 .450 .624 .530 .522 .663 .588

RDGCN (Wu et al., 2019) .755 .854 .800 .830 .895 .859 .515 .669 .584 .931 .969 .949
RDGCN + NeoEA .775 .868 .817 .846 .908 .874 .527 .671 .592 .941 .972 .955
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Figure 5: Results on OpenEA 100K datasets, with the fastest EEA model SEA as baseline.

Algorithm 1 NeoEA

1: Input: two KGs G1, G2, the seed alignment set S, the
EEA modelM(fs, fa), number of steps for NeoEA n;

2: Initialize all variables;
3: repeat
4: for i := 1 to n do
5: Sample sub-KGs from respective KGs G1, G2;
6: Compute the Wasserstein-distance-based loss Lw

for each pair of neural axioms;
7: Optimize fw by maximizing Lw.
8: end for
9: Sample sub-KGs from respective KGs G1, G2;

10: Compute Lw for each pair of neural axioms;
11: Compute the losses La, Ls of the EEA modelM;
12: Minimize La, Ls, Lw;
13: until the alignment loss on the validation set converges.

Neural Ontology Alignment As aforementioned, for
each pair of embedding distributions, we align them by min-
imizing the empirical Wasserstein distance and optimizing
by gradient ascent/descent.

We present the algorithm in Algorithm 1. For the detailed
implementation, please see Appendix B.

4. Experiments
In this section, we empirically verify the effectiveness of
NeoEA by a series of experiments1.

1https://github.com/guolingbing/NeoEA

4.1. Settings

We selected four best-performing and representative models
as our baselines: BootEA (Sun et al., 2018), a TransE-based
EEA model with only structure data (i.e., triples) as in-
put; SEA (Pei et al., 2019a), a TransE-based model with
both structure and entity attribute data as input; RSN (Guo
et al., 2019), an RNN-based EEA model with only struc-
ture data as input; RDGCN (Wu et al., 2019), a GCN-
based model with both structure and attribute data as in-
put. The whole framework is based on OpenEA (Sun et al.,
2020c). We modified only the initialization of the origi-
nal project and kept the optimal hyper-parameter settings
in OpenEA to ensure a fair comparison. We used the lat-
est benchmark provided by OpenEA (Sun et al., 2020c),
which consists of four sub-datasets with two density settings.
Specifically, “D-W”, “D-Y” denote “DBpedia (Auer et al.,
2007)-WikiData (Vrandečić & Krötzsch, 2014)”, “DBpedia-
YAGO (Fabian et al., 2007)”, respectively. “EN-DE” and
“EN-FR’ denote two cross-lingual datasets, both of which
are sampled from DBpedia. The entity degree distributions
in “V1” datasets are similar to those in the original KGs,
while the average degree in “V2” datasets are doubled.

4.2. Empirical Comparisons

The main results on V1 datasets are shown in Table 1. Al-
though the performance of four baseline models varied from
different datasets, all of them gained improvement with
NeoEA. This demonstrates that aligning the neural ontology
is beneficial for all four kinds of EEA models. Furthermore,
we find the performance improvement on SEA and RDGCN
was more significant than that on other two methods, as
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Table 2: Results of ablation study based on the best-performing model RDGCN, on V1 datasets.

Models EN-FR EN-DE D-W D-Y

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

Full .775 .868 .817 .846 .908 .874 .527 .671 .592 .941 .972 .955
Partial .771 .863 .813 .840 .900 .871 .523 .669 .590 .936 .971 .952
Basic .755 .853 .799 .827 .895 .858 .512 .656 .578 .931 .969 .948
Original .755 .854 .800 .830 .895 .859 .515 .669 .584 .931 .969 .949

(a) long-tail entities (EN-FR) (b) popular entities (EN-FR)
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Figure 6: A comparison of ranking results between NeoEA and the baseline method SEA. The ranking results on the testing
datasets are grouped by the ranking intervals (Figures 6a, 6b) and entity types (Figure 6c), respectively.

BootEA and RSN are not typical EEA models. BootEA
has a sophisticated bootstrapping procedure, which may be
challenging to be injected with NeoEA. RSN tries to capture
long-term dependencies. The complicated objective may
conflict with NeoEA more or less. Even though we still
observe relatively significant improvement on some datasets
(e.g., EN-DE and D-Y). Therefore, we believe their per-
formance can be refined through a joint hyper-parameter
turning with NeoEA, which we leave to future work. The
results on V2 datasets (i.e., the denser and simpler ones)
are presented in Appendix C. Briefly, the improvement is
relatively smaller than that on V1 datasets but NeoEA still
outperformed all the baselines.

4.3. The Scalability and Efficiency of NeoEA

We also conducted experiment on the OpenEA 100K
datasets to evaluate performance of NeoEA on larger KGs.
We used a single TITAN RTX for training, and SEA (the
fastest model) as the basic EEA model. In theory, NeoEA
does not have multiple GCN/GAT layers nor the pair-wise
similarity estimation on whole graphs. The embedding dis-
tributions are also obtained from the sampled KG. Therefore,
NeoEA is applicable to large-scale datasets.

From Figure 5, we can find that the time for training one
epoch (Figure 5a) was not evidently increased, especially
considering the cost of switching the optimizers. On the
other hand, the overall training time was nearly doubled
(Figure 5b), caused by the adversarial training procedure.
Even though the loss converged more slowly in NeoEA,
we should notice that the overall training time was much
less than that of complicated EEA models, e.g., BootEA

(35,000+ seconds). In Figures 5c and 5d, we can find the im-
provement for Hits@1 and MRR was significant, especially
on the D-Y dataset that took longest training time.

4.4. The Necessity of Conditional Neural Axioms

We designed an experiment to verify some claims in Sec-
tion 3. We choose the best-performing model RDGCN as
our baseline. In Table 2, “Full” denotes NeoEA with the
full set of neural axioms. “Partial” denotes NeoEA without
the conditional triple axioms. We removed the conditional
entity axioms from “Partial” to construct “Basic”, and the
last one, “Original”, denotes the original EEA model.

Aligning the basic axiom was less effective or even harmful
to the model. This result empirically demonstrates our as-
sumption that the uniformity property of the learned entity
embeddings will make the embedding distribution align-
ment meaningless. On the other hand, aligning only a part of
conditional axioms AEh|ri ,AEt|ri that describe entity em-
bedding distributions conditioned on relation embeddings
was significantly helpful for the model. Also, the additional
improvement was observed with the full conditional axioms.

4.5. Further Analysis of the Bound

We have shown the embedding discrepancy between each
underlying aligned pair is bounded by ε in Section 2. This
section provides empirical statistics to verify this point. We
manually split the entities into two groups: (1) long-tail en-
tities, which have at most two neighbors that do not belong
to known aligned pairs; (2) popular entities, the remaining.



Understanding and Improving Knowledge Graph Embedding for Entity Alignment

We draw the histograms of alignment rankings w.r.t. respec-
tive groups based on the EEA model SEA. From Figures 6a,
6b, we can find the proportion of the inexact alignments (i.e.,
ranking > 5) for long-tail entities is evidently larger than
that of popular entities, especially for the bins (5, 20]. This
observation verified that the long-tail entities are less con-
strained compared to those popular entities in EEA problem.
Furthermore, with NeoEA, the rankings of those long-tail
entities were improved more significantly than those of pop-
ular entities, which demonstrates that NeoEA indeed tight-
ened the representation discrepancy of those less restrained
entities. We report the average ranking improvement on four
V1 datasets in Figure 6c, which shows consistent results.
It is worth noting that the ranking improvement for long-
tail entities is more than twice as larger as that for popular
entities, except the D-W dataset.

5. Conclusion and Future Work
In this paper, we proposed a new approach to learn KG
embeddings for entity alignment. We proved its expres-
siveness theoretically and demonstrated its efficiency on
extensive experiments. Four state-of-the-art EEA methods
gained evident benefits with NeoEA, where the conditional
neural axiom is the key component. For the future work, we
plan to study how to extend NeoEA with realistic ontology
knowledge for further improvement.
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A. Proof for Proposition 3.2
Aligning the conditional neural axioms minimizes the em-
bedding discrepancy of two KGs at the ontology level.

Proof. We split the proofs according to the types of axioms
in OWL2 EL (Baader et al., 2005):

ObjectPropertyDomain, ObjectPropertyRange. The
proof for ObjectPropertyDomain has been presented in Sec-
tion 3, and that for ObjectPropertyRange is similar.
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Table 3: Results on V2 datasets (5-fold cross-validation).

Models EN-FR EN-DE D-W D-Y

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

RSN (Guo et al., 2019) .579 .759 .662 .791 .890 .837 .723 .854 .782 .933 .974 .951
RSN + NeoEA .583 .760 .666 .794 .892 .839 .729 .858 .787 .935 .976 .953

SEA (Pei et al., 2019a) .360 .651 .494 .606 .779 .687 .567 .770 .660 .899 .950 .923
SEA + NeoEA .375 .666 .508 .637 .800 .712 .588 .784 .677 .917 .959 .936

BootEA (Sun et al., 2018) .660 .850 .745 .833 .912 .869 .821 .926 .867 .958 .984 .969
BootEA + NeoEA .665 .853 .749 .834 .916 .870 .822 .926 .869 .958 .984 .969

RDGCN (Wu et al., 2019) .847 .919 .880 .833 .891 .860 .623 .757 .684 .936 .966 .950
RDGCN + NeoEA .864 .933 .896 .849 .902 .874 .632 .760 .690 .940 .970 .953

ReflexiveObjectProperty, IrreflexiveObjectProperty. If
we say that a relation ri is reflexive, it must satisfy

∀(e, ri, e′) ∈ T , (e, ri, e) ∈ T , (20)

which means each head entities of ri must be connected by
ri to itself. The above rule suggests that we can align the
underlying reflexive knowledge by minimizing the discrep-
ancy between triple distributions conditioned on relation
ri, i.e., aligning A1

E(h,t)|ri with A2
E(h,t)|ri . The similar to

IrreflexiveObjectProperty axiom.

FunctionalObjectProperty, InverseFunctionalObject-
Property. We first introduce FunctionalObjectProperty
axiom. It compels each head entity e connected by relation
ri to have exactly one tail entity, implying the following
rule:

∀(e, ri, e′) ∈ T ,∀e′′ ∈ E , (e, ri, e′′) /∈ T . (21)

The above rule is also related to the triple distribution con-
ditioned on ri. The similar to the InverseFunctionalObject-
Property axiom.

SymmetricObjectProperty, AsymmetricObjectProp-
erty. The first axiom can state a relation ri is symmetric,
that is,

∀(e, ri, e′) ∈ T , (e′, ri, e) ∈ T . (22)

It is also related to the triple distributions referred to ri,
implying that aligning A1

E(h,t)|ri with A2
E(h,t)|ri is sufficient

to minimize the difference. The similar to the Asymmetri-
cObjectProperty axiom.

SubObjectPropertyOf, EquivalentObjectProperties,
DisjointObjectProperties and InverseObjectProperties.
We show that these axioms also define rules related to
triple distributions conditioned on relations. We start from
SubObjectPropertyOf, which can state that relation ri is
a sub-property of relation rj (e.g., “hasDog” is one of the
sub-properties of “hasPet”). We formulate it as

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T . (23)

To align the potential SubObjectPropertyOf axioms between
two KGs, we can respectively align (A1

E(h,t)|ri ,A
2
E(h,t)|ri)

and (A1
E(h,t)|rj ,A

2
E(h,t)|rj ), such that the joint one

(A1
E(h,t)|ri,rj ,A

2
E(h,t)|ri,rj ) will also be aligned.

Similarly, if ri and rj are equivalent, we can interpret the
axiom as

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T ; ∀(e, rj , e′) ∈ T , (e′, ri, e) ∈ T .
(24)

If they are disjoint, the corresponding rule will be

∀(e, ri, e′) ∈ T , (e, rj , e′) /∈ T . (25)

If they are inverse to each other, the rule is

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T . (26)

TransitiveObjectProperty. We show that this axiom is
also related to triple distributions conditioned on ri. Sup-
posed that a relation ri is transitive, then one can derive the
following rule:

∀(e, ri, e′) ∈ T &(e′, ri, e
′′) ∈ T , (e, ri, e′′) ∈ T , (27)

which means we can align the potential TransitiveObject-
Property axioms via minimizing the distribution discrepancy
between A1

E(h,t)|ri and A2
E(h,t)|ri .

B. Implementation Details
For efficiency, we share the parameters of Wasserstein dis-
tance critic in different type (e.g, conditional/unconditional,
head/triple) of neural axioms, which reduces the number of
model parameters and avoids the situation that some rela-
tions only have a small number of triples. This also allows
us to perform fast mini-batch training by aligning the axioms
of the same type in one operation. Given the sample KGs
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G′1 = (E ′1,R′1, T ′1 ), G′2 = (E ′2,R′2, T ′2 ), the corresponding
batch loss is:

Lsep = LAE′ + (
∑
r′∈R′1

EAE′
h
|r′
[fh|r(e|r′)]

−
∑
r′∈R′2

EAE′
h
|r′
[fh|r(e|r′)])

+(
∑
r′∈R′1

EAE′
h,t
|r′
[fh,t|r(eh, et|r′)]

−
∑
r′∈R′2

EAE′
h,t
|r′
[fh,t|r(eh, et|r′)]), (28)

where LAE′ is the basic axiom loss under the sampled KGs.
fh|r and fh,t|r are the critic functions of two types of neu-
ral axioms, respectively. The loss Lbatch will approximate
to that in pairwise calculation when batch-size is consid-
erably greater than the number of relations. We take the
second term in Equation (28) as an example. For pairwise
estimation, the loss should be:∑

(r1,r2)∈Sr (EAE′
h
|r1

[fh|r(e|r1)]− EAE′
h
|r2

[fh|r(e|r2)])

=
∑

(r1,r2)∈Sr

EAE′
h
|r1

[fh|r(e|r1)]

−
∑

(r1,r2)∈Sr

EAE′
h
|r2

[fh|r(e|r2)], (29)

where Sr ⊂ R1 ×R2 denotes the set of all aligned relation
pairs. The above equation suggests that the pairwise loss
is based on the respective relation sets of two KGs, not
constrained by each pair of aligned relations. Generally,
the number of relations is much smaller than the number of
sampled triples in one batch, which means that R′1,R′2 in
Equation (28) can cover a large proportion of elements in
the full relation setsR1,R2. Therefore, we used Lbatch to
approximate the pairwise loss in the implementation.

C. Results on V2 Datasets
The results on V2 datasets are shown in Table 3. Although
entities have doubled number of neighbors in V2 datasets,
all baseline models still gained significant improvement
with NeoEA.


