
G-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han 1 Zhimeng Jiang 1 Ninghao Liu 2 Xia Hu 3

Abstract
This work develops mixup for graph data. Mixup
has shown superiority in improving the gener-
alization and robustness of neural networks by
interpolating features and labels between two ran-
dom samples. Traditionally, Mixup can work on
regular, grid-like, and Euclidean data such as im-
age or tabular data. However, it is challenging to
directly adopt Mixup to augment graph data be-
cause different graphs typically: 1) have different
numbers of nodes; 2) are not readily aligned; and
3) have unique typologies in non-Euclidean space.
To this end, we propose G-Mixup to augment
graphs for graph classification by interpolating
the generator (i.e., graphon) of different classes
of graphs. Specifically, we first use graphs within
the same class to estimate a graphon. Then, in-
stead of directly manipulating graphs, we interpo-
late graphons of different classes in the Euclidean
space to get mixed graphons, where the synthetic
graphs are generated through sampling based on
the mixed graphons. Extensive experiments show
that G-Mixup substantially improves the general-
ization and robustness of GNNs.

1. Introduction
Recently deep learning has been widely adopted to graph
analysis. Graph Neural Networks (GNNs) (Wu et al., 2020;
Zhou et al., 2020a; Zhang et al., 2020; Xu et al., 2018)
have shown promising performance on graph classification.
Meanwhile, data augmentation (e.g., DropEdge (Rong et al.,
2020), Subgraph (You et al., 2020; Wang et al., 2020a))
has also been adopted to graph analysis by generating syn-
thetic graphs to create more training data for improving
the generalization of graph classification models. However,
existing graph data augmentation strategies typically aim to

1Department of Computer Science&Engineering, Texas A&M
University 2Department of Computer Science, University of Geor-
gia 3Department of Computer Science, Rice University. Corre-
spondence to: Xiaotian Han <han@tamu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

augment graphs at a within-graph level by either modifying
edges or nodes in an individual graph, which does not en-
able information exchange between different instances. The
between-graph augmentation methods (i.e., data augmenta-
tion between graphs) are still under-explored.

In parallel with the development of graph neural networks,
Mixup (Zhang et al., 2017) and its variants (e.g., Manifold
Mixup (Verma et al., 2019)), as data augmentation methods,
have been theoretically and empirically shown to improve
the generalization and robustness of deep neural networks
in image recognition (Zhang et al., 2017; Verma et al., 2019;
Zhang et al., 2021) and natural language processing (Guo
et al., 2019a; Guo, 2020). The basic idea of Mixup is to
linearly interpolate continuous values of random sample
pairs to generate more synthetic training data. The formal
mathematical expression of Mixup is xnew = λxi + (1−
λ)xj ,ynew = λyi+(1−λ)yj , where (xi,yi) and (xj ,yj)
are two samples drawn at random from training data and the
target y are one-hot labels. With graph neural networks and
mixup in mind, the following question naturally arises:
Can we mix up graph data to improve the generalization

and robustness of GNNs?
It remains an open and challenging problem to mix up graph
data due to the characteristics of graphs and the requirements
of applying Mixup. Typically, Mixup requires that original
data instances are regular and well-aligned in Euclidean
space, such as image data and table data. However, graph
data is distinctly different from them due to the following
reasons: (i) graph data is irregular, since the number of
nodes in different graphs are typically different from each
other; (ii) graph data is not well-aligned, where nodes in
graphs are not naturally ordered and it is hard to match
up nodes between different graphs; (iii) graph topology
between classes are divergent, where the topologies of a
pair of graphs from different classes are usually different
while those from the same class are usually similar. Thus, it
is nontrivial to directly adopt the Mixup to graph data.

To tackle the aforementioned problems, we propose G-
Mixup, a class-level graph data augmentation method, to
mix up graph data based on graphons. The graphs within one
class are produced under the same generator (i.e., graphon).
We mix up the graphons of different classes and then gener-
ate synthetic graphs. Informally, a graphon can be thought
of as a probability matrix (e.g., the matrix WG and WH

G-Mixup: Graph Data Augmentation for Graph Classification

in Figure 1), where W (i, j) represents the probability of
edge between node i and j. The real-world graphs can be
regraded as generated from graphons. Since the graphons
of different graphs is regular, well-aligned, and is defined
in Euclidean space, it is easy and natural to mix up the
graphons and then generate the synthetic graphs therefrom.
On this basis, we can achieve graphs mixup by mixing their
generators. We also provide theoretical analysis of graphons
mixup, which guarantees that the generated graphs will pre-
serve the key characteristics of both original classes. Our
proposed method is illustrated in Figure 1 with an example.
Given two graph training sets G = {G1, G2, · · · , Gm} and
H = {H1, H2, · · · , Hm} with different labels and distinct
topologies (i.e., G has two communities while H has eight
communities), we estimate graphons WG and WH respec-
tively from G and H. We then mix up the two graphons
and obtain a mixed graphon WI . After that, we sample syn-
thetic graphs from WI as additional training graphs. The
generated synthetic graphs have two major communities
and each of them have four sub-communities, which is a
mixture of the two graph sets. It thus shows that G-Mixup
is capable of mixing up graphs.

Our main contributions are as follows: First, we propose
G-Mixup to augment the training graphs for graph clas-
sification. Since directly mixing up graphs is intractable,
G-Mixup mixes the graphons of different classes of graphs
to generate synthetic graphs. Second, we theoretically prove
that the synthetic graph will be the mixture of the orig-
inal graphs, where the key topology (i.e., discriminative
motif) of source graphs will be mixed up. Third, we demon-
strate the effectiveness of the proposed G-Mixup on various
graph neural networks and datasets. Extensive experimental
results show that G-Mixup substantially improves the per-
formance of graph neural networks in terms of enhancing
their generalization and robustness. Our code is available at
https://github.com/ahxt/g-mixup.

2. Preliminaries
In this section, we first go over the notations used in this
paper, and then introduce graph related concepts including
graph homomorphism and graphons, which will be used for
theoretical analysis in this work. Finally, we briefly review
the graph neural networks for graph classification.

2.1. Notations

Given a graph G, we use V (G) and E(G) to denote its
nodes and edges, respectively. The number of nodes is
v(G) = |V (G)|, and the number of edges is e(G) =
|E(G)|. We use m, l to denote the number of graphs
and N,K to denote the number of nodes. We use
G,H, I/G,H, I to denote graphs/graph set. yG ∈ RC de-
notes the label of graph set G, where C is number of classes

of graphs. A graph could contain some frequent subgraphs
which are called motifs. The motifs in graph G is denoted
as FG. The set of motifs in graph set G is denoted as FG .
WG denotes the graphon of graph set G. W denotes the
step function. G(K,W) denotes the random graph with K
nodes based on graphon W .

2.2. Graph Homomorphism and Graphons

Graph Homomorphism. A graph homomorphism is an
adjacency-preserving mapping between two graphs, i.e.,
mapping adjacent vertices in one graph to adjacent vertices
in the other. Formally, a graph homomorphism ϕ : F → G
is a map from V (F) to V (G), where if {u, v} ∈ E(F),
then {ϕ(u), ϕ(v)} ∈ E(G). For two graphs H and G,
there could be multiple graph homomorphisms between
them. Let hom(H,G) denotes the total number of graph
homomorphisms from graph H to graph G. For exam-
ple, hom(, G) = |V (G)| if graph H is , hom(, G) =
2|E(G)| if graph H is , and hom(, G) is six times the
number of triangles in G. There are in total |V (G)||V (H)|

mappings from H to G, but only some of them are ho-
momorphisms. Thus, we define homomorphism density
to measure the relative frequency that the graph H ap-
pears in graph G as t(H,G) = hom(H,G)

|V (G)||V (H)| . For example,
t(, G) = |V (G)|/N1 = 1, t(, G) = 2|E(G)|/N2.

Graphon. A graphon (Airoldi et al., 2013) is a continu-
ous, bounded and symmetric function W : [0, 1]2 → [0, 1]
which may be thought of as the weight matrix of a graph
with infinite number of nodes. Then, given two points
ui, uj ∈ [0, 1], W (i, j) represents the probability that
nodes i and j be related with an edge. Various quan-
tities of a graph can be calculated as a function of the
graphon. For example, the degree of nodes in graphs
can be easily extended to a degree distribution function
in graphons, which is characterized by its graphon marginal
dW (x) =

∫ 1

0
W (x, y)dy. Similarly, the concept of homo-

morphism density can be naturally extended from graphs to
graphons. Given an arbitrary graph motif F , its homomor-
phism density with respect to graphon W is defined by
t(F,W) =

∫
[0,1]V (F)

∏
i,j∈E(F) W (xi, xj)

∏
i∈V (F) dxi.

For example, the edge density of graphon W is t(,W) =∫
[0,1]2

W (x, y) dxdy, and the triangle density of graphon
W is t(,W) =

∫
[0,1]3

W (x, y)W (x, z)W (y, z) dxdydz.

2.3. Graph Classification with Graph Neural Networks

Given a set of graphs, graph classification aims to assign
a class label for each graph G. Recently, graph neural
networks have become the state-of-the-art approach for
graph classification. Without loss of generalization, we
present the formal expression of a graph convolution net-
work (GCN) (Kipf & Welling, 2017). The forward propaga-

https://github.com/ahxt/g-mixup

G-Mixup: Graph Data Augmentation for Graph Classification

WI

WH

WG

I = {I1, I2, · · · , Im} with label (0.5, 0.5)

H = {H1, H2, · · · , Hm} with label (0, 1)

G = {G1, G2, · · · , Gm} with label (1, 0)

…

…

…

1) graphon
estimation

3) graph
sampling

WI = 0.5 ⇤ WG + 0.5 ⇤ WH

1) graphon
estimation

2) graphon
mixup

Figure 1. An overview of G-Mixup. The task is binary graph classification. We have two classes of graphs G and H with different
topologies (G has two communities while H has eight communities). G and H have different graphons. We mix up the graphons WG
and WH to obtain a mixed graphon WI , and then sample new graphs from the mixed graphon. Intuitively, the synthetic graphs have
two major communities and each of which has four sub-communities, demonstrating that the generated graphs preserve the structure of
original graphs from both classes.

tion at k-th layer is described as the following:

a
(k)
i = AGG(k)

({
h
(k−1)
j : j ∈ N (i)

})
,

h
(k)
i = COMBINE(k)

(
h
(k−1)
i ,a

(k)
i

)
,

(1)

where h
(k)
i ∈ Rn×dk is the intermediate representation of

node i at the k-th layer, N (i) denotes the neighbors of
node i. AGG(·) is an aggregation function to collect em-
bedding representations from neighbors, and COMBINE(·)
combines neighbors’ representation and its representation
at (k − 1)-th layer. For graph classification, a graph-level
representation is obtained by summarizing all node-level
representations in the graph by a readout function:

hG = READOUT
({

h
(k)
i : i ∈ E(G)

})
,

ŷ = softmax(hG),
(2)

where READOUT(·) is the readout function, which can be
a simple function such as average or sophisticated pooling
function (Gao & Ji, 2019; Ying et al., 2018), hG is the
representation of graph G, and ŷ ∈ RC is the predicted
probability that G belongs to each of the C classes.

3. Methodology
In this section, we formally introduce the proposed G-Mixup
and elaborate its implementation details.

3.1. G -Mixup

Different from the interpolation of image data in Euclidean
space, adopting Mixup to graph data is nontrivial since
graphs are irregular, unaligned and non-Euclidean data. In
this work, we show that the challenges could be tackled
with graphon theory. Intuitively, a graphon can be regarded
as a graph generator. Graphs of the same class can be seen

as being generated from the same graphon. With this in
mind, we propose G-Mixup, a class-level data augmentation
method via graphon interpolation. Specifically, G-Mixup
interpolates different graph generators to obtain a new mixed
one. Then, synthetic graphs are sampled based on the mixed
graphon for data augmentation. The graphs sampled from
this generator partially possess properties of the original
graphs. Formally, G-Mixup is formulated as:

Graphon Estimation: G → WG ,H → WH (3)
Graphon Mixup: WI = λWG + (1− λ)WH (4)

Graph Generation: {I1, I2, · · · , Im} i.i.d∼ G(K,WI) (5)
Label Mixup: yI = λyG + (1− λ)yH (6)

where WG ,WH are graphons of the graph set G and H. The
mixed graphon is denoted by WI , and λ ∈ [0, 1] is the
trade-off hyperparameter to control the contributions from
different source sets. The set of synthetic graphs generated
from WI is I = {I1, I2, · · · , Im}. The yG ∈ RC and
yH ∈ RC are vectors containing ground-truth labels for
graph G and H , respectively, where C is the number of
classes. The label vector of synthetic graphs in graph set I
is denoted as yI ∈ RC .

As illustrated in Figure 1 and the above equations, the pro-
posed G-Mixup includes three key steps: i) estimate a
graphon for each class of graphs, ii) mix up the graphons
of different graph classes, and iii) generate synthetic
graphs based on the mixed graphons. Specifically, suppose
we have two graph sets G = {G1, G2, · · · , Gm} with label
yG, and H = {H1, H2, · · · , Hm} with label yH. Graphons
WG and WH are estimated from graph sets G and H, respec-
tively. Then, we mix them up by linearly interpolating the
two graphons and their labels, and obtain WI and yI . Fi-
nally, a set of synthetic graphs I is sampled based on WI ,
which will be used as additional training graph data.

G-Mixup: Graph Data Augmentation for Graph Classification

Algorithm 1 Graphon Estimation
Input: graph set G, graphon estimator g ▷ each graph G has adjacency matrix A and node features matrix X
Init: sorted adjacency matrix set Ā = {}
for each graph G in G do

Calculate the degree of each nodes in G
Calculate sorted adjacency matrix Ā by sorting A based on the degree
Calculate sorted node features matrix X̄ by sorting X based on the degree
Add the sorted adjacency matrix Ā to Ā

end for
Estimate step function WG with Ā using g. ▷ we use LG as g in experiments
Obtain graphon node feature X̄G by average pooling X ▷ we can use other pooling method (e.g., maxpooling)
Return: WG , X̄G

Algorithm 2 G-Mixup
Input: train graph set S , graphon estimator g, mixup ratio λ, augmented ratio α ▷ 0 < λ,α < 1
Init: Synthetic graph set I = {}.
Obtain two graph sets G and H with different labels yG and yH
Estimate (WG , X̄G) and (WH, X̄H) from G and H using Algorithm 1
Mix up step function WI = λWG + (1− λ)WH
Mix up graphon node features X̄I = λX̄G + (1− λ)X̄H
Sample α · |S| synthetic graphs based on WI and X̄I and add them to I ▷ |I| = α · |S| after augmentation
Return: synthetic graph set I

3.2. Implementation

In this section, we introduce the implementation details of
graphon estimation and synthetic graphs generation.

Graphon Estimation and Mixup. Estimating graphons
from observed graphs is a prerequisite for G-Mixup. How-
ever, it is intractable because a graphon is an unknown func-
tion without a closed-form expression for real-world graphs.
Therefore, we use the step function (Lovász, 2012; Xu et al.,
2021) to approximate graphons1. In general, the step func-
tion can be seen as a matrix W = [wkk′] ∈ [0, 1]K×K ,
where Wij is the probability that an edge exists between
node i and node j. In practice, we use the matrix-form
step function as graphon to mix up and generate synthetic
graphs. The step function estimation methods are well-
studied, which first align the nodes in a set of graphs based
on node measurements (e.g., degree) and then estimate the
step function from all the aligned adjacency matrices. The
typical step function estimation methods includes sorting-
and-smoothing (SAS) method (Chan & Airoldi, 2014),
stochastic block approximation (SBA) (Airoldi et al., 2013),
“largest gap” (LG) (Channarond et al., 2012), matrix com-
pletion (MC) (Keshavan et al., 2010), universal singular
value thresholding (USVT) (Chatterjee et al., 2015). 2 For-

1Because weak regularity lemma of graphon (Frieze & Kannan,
1999) indicates that an arbitrary graphon can be approximated well
by step function. Detailed discussion is in Appendix A.4.

2The details about these step function estimation methods are
presented in Appendix B.

mally, a step function WP : [0, 1]2 7→ [0, 1] is defined as

WP (x, y) =
∑K

k,k′=1
wkk′1Pk×Pk′ (x, y), where P =

(P1, ..,PK) denotes the partition of [0, 1] into K adjacent
intervals of length 1/K, wkk′ ∈ [0, 1], and indicator func-
tion 1Pk×Pk′ (x, y) equals to 1 if (x, y) ∈ Pk × Pk′ and
otherwise it is 0. For binary classification, we have G =
{G1, G2, · · · , Gm} and H = {H1, H2, · · · , Hm} with dif-
ferent labels, we estimate their step functions WG ∈ RK×K

and WH ∈ RK×K , where we let K be the average number
of nodes in all graphs. For multi-class classification, we first
estimate the step function for each class of graphs and then
randomly select two to perform mix-up. The resultant step
function is WI = λWG + (1 − λ)WH ∈ RK×K , which
serves as the generator of synthetic graphs.

Synthetic Graphs Generation. A graphon W provides
a distribution to generate arbitrarily sized graphs. Specifi-
cally, a K-node random graph G(K,WI) can be generated
following the process:

u1, . . . , uK
iid∼ Unif [0,1], G(K,W)ij

iid∼ Bern(W (ui, uj)),

∀i, j ∈ [K].

Since we use the step function W to approximate the
graphon W , we set W (ui, uj) = W[⌊1/ui⌋, ⌊1/uj⌋], and
⌊·⌋ is the floor function. The first step samples K nodes in-
dependently from a uniform distribution Unif [0,1] on [0, 1].
The second step generates an adjacency matrix A = [aij] ∈
{0, 1}K×K , whose element values follow the Bernoulli
distributions Bern(·) determined by the step function. A

G-Mixup: Graph Data Augmentation for Graph Classification

graph is thus obtained as G where V (G) = {1, ...,K} and
E(G) = {(i, j) | aij = 1}. A set of synthetic graphs can be
generated by conducting the above process multiple times.
The generation of node features of synthetic graphs includes
two steps: 1) build the graphon node features based on the
original node features, 2) generate node features of synthetic
graphs based on the graphon node features. Specifically, we
first align node features of the graphs within one class while
aligning the adjacency matrices at the graphon estimation
phase. We obtain a set of aligned node features for each
graphon, then average the aligned node features to obtain
the graphon node features. The node features of gener-
ated graphs are the same as graphon features. The pseudo
code of graphon estimation and the generation process of
node features are presented in Algorithm 1. We provide the
pseudo-code of G-Mixup in Algorithm 2. We also present
a variant of G-mixup in Appendix E, which encourages the
diversity of the generated graphs by estimate graphons with
partial training graphs.

Table 1. Computational com-
plexity of graphon estimation.
Method Complexity

MC O(N3)

USVT O(N3)

LG O(mN2)

SBA O(mKN log N)

SAS O(mN log N + K2 log K2)

Computational Complex-
ity Analysis. We hereby
discuss computational com-
plexity of G-Mixup. The ma-
jor computation costs come
from graphon estimation
and synthetic graph gener-
ation. For graphon estima-
tion, suppose we have m graphs and each of them has N
nodes, and estimate step function with K partitions to ap-
proximate a graphon, the complexity of used graphon esti-
mation methods (Xu et al., 2021) is in Table 1. For graph
generation, suppose we need to generate l graphs with K
nodes, the computational complexity is O(lK) for node
generation and O(lK2) for edge generation, so the overall
complexity of graph generation is O(lK2).

3.3. Discussion

We discuss the differences and relations between G-Mixup
and other augmentation strategies. We also discuss the
potential limitation of G-Mixup.

Relation to Edge Perturbation Methods. The commonly
used edge perturbation methods are spacial cases of G-
Mixup. Edge perturbation methods randomly perturb the
edges to improve the GNNs, inlcuding DropEdge (Rong
et al., 2020), and Graphon-based edge perturbation (Hu
et al., 2021). DropEdge removes graph edges indepen-
dently with a specified probability, aiming to prevent over-
smoothing and over-fitting issues in GNNs. Graphon-based
edge perturbation (Rong et al., 2020) improves the Drope-
dge by dropping edge based on an estimated probability.
One limitation of such methods is that the edge permuta-
tion is based on one individual graph, so the graphs will

not mix up. DropEdge and Graphon-based edge perturba-
tion (Hu et al., 2021) are special cases of G-Mixup while
setting different hyperparameter λ. i) G-Mixup will de-
generate into Graphon-based edge perturbation, if λ = 0
in Equation (4), where the mathematical expression is
WI = WH, {I1, I2, · · · , Im} i.i.d∼ G(k,WI),yI = yH. ii)
G-Mixup will degenerate into DropEdge, if λ = 0 and using
the element-wise product of graphons W and adjacency ma-
trix A in Equation (4) as edge probability. The expression
is WI = A ⊙WH, {I1, I2, · · · , Im} i.i.d∼ G(k,WI),yI =
yH, where ⊙ is element-wise multiplication.

Relation to Manifold Mixup. As a model-agnostic augmen-
tation method, G-Mixup has broader applications, e.g., cre-
ating graphs for graph contrastive learning, than Manifold
Mixup. Manifold Mixup (Wang et al., 2021) is proposed
to mix up graphs in the embedding space, which interpo-
lates hidden representations of graphs. Interpolating hidden
representation could limit its applications because: 1) algo-
rithms must have hidden representation of graphs, and 2)
models must be modified to adapt it. In contrast, G-Mixup
generates synthetic graphs without modifying models.

Limitations Hereby we discuss the limitations of G-Mixup.
1) The graphs within one class may be generated by different
graphons in real-world scenarios. The potential solutions
include conducting graph clustering before graphon esti-
mation, and adopting the MixGWBs (Xu et al., 2021) to
estimate multiple graphons from graphs of a class simulta-
neously; 2) G-Mixup may induce extra computational cost
for synthetic graph generation, especially when processing
large training data; 3) G-Mixup will degenerate to within-
graph level augmentation when different classes have the
same topology but different node features.

4. Theoretical Justification
In the following, we theoretically prove that: the synthetic
graphs generated by G-Mixup will be a mixture of origi-
nal graphs. We first define the discriminative motif, and
then we justify the graphon mixup operation (Equation (4))
and graph generation operation (Equation (5)) by analysing
the homomorphism density of discriminative motifs of the
original graphs and the synthetic graphs.
Definition 4.1 (Discriminative Motif). A discriminative
motif FG of graph G is the subgraph, with the minimal
number of nodes and edges, that can decide the class the
graph G. Furthermore, FG is the set of discriminative motifs
for graphs in the set G.

Intuitively, the discriminative motif is the key topology of a
graph. We assume that (i) every graph G has a discrimina-
tive motif FG , and (ii) a set of graphs G has a finite set of
discriminative motifs FG . The goal of graph classification is
to filter out structural noise in graphs (Fox & Rajamanickam,

G-Mixup: Graph Data Augmentation for Graph Classification

2019) and recognize the key typologies (discriminative mo-
tifs) to predict the class label. For example, benzene (a
chemical compound) is distinguished by the motif (ben-
zene ring). In the following, we analyze G-Mixup from the
perspective of discriminative motifs.

4.1. Will discriminative motifs FG and FH exist in
λWG + (1− λ)WH ?

We answer this question by exploring the difference in ho-
momorphism density of discriminative motifs between the
original and mixed graphon, as the following theorems,
Theorem 4.2. Given two sets of graphs G and H, the corre-
sponding graphons are WG and WH, and the corresponding
discriminative motif set FG and FH. For every discrimina-
tive motif FG ∈ FG and FH ∈ FH, the difference between
the homomorphism density of FG /FH in the mixed graphon
WI = λWG+(1−λ)WH and that of the graphon WH/WG
is upper bounded by

|t(FG ,WI)− t(FG ,WG)| ≤ (1− λ)e(FG)||WH −WG ||□,
|t(FH,WI)− t(FH,WH)| ≤ λe(FH)||WH −WG ||□
where e(F) is the number of nodes in graph F , and ||WH−
WG ||□ denotes the cut norm 3.

Proof Sketch. The proof follows the derivation of Counting
Lemma for Graphons (Lemma 10.23 in Lovász (2012)),
which associates the homomorphism density with the cut
norm ||WH −WG ||□ of graphons. Specifically, we take the
two graphons in this Lemma to deduce the bound of the
difference of homomorphism densities of WI and WG/WH.
Detailed proof are in Appendix A.2. ■

Theorem 4.2 suggests that the difference in the homomor-
phism densities of the mixed graphon and original graphons
is upper bounded. Note that difference depends on the hy-
perparameter λ, the edge number e(FG)/e(FH) and the cut
norm ||WH −WG ||□. Since the e(FG)/e(FH) and the cut
norm ||WH−WG ||□ are decided by the dataset (can be seen
as a constant), the difference in homomorphism densities
will be decided by λ. On this basis, the label of the mixed
graphon is set to λyG + (1− λ)yH. Therefore, G-Mixup
can preserve the different discriminative motifs of the
two different graphons into one mixed graphon.

4.2. Will the generated graphs from graphon WI
preserve the mixture of discriminative motifs?

Ideally, the generated graphs should inherit the homomor-
phism density of discriminative motifs from the graphon.
To verify this, we propose the following theorem.
Theorem 4.3. Let WI be the mixed graphon, n ≥ 1, 0 <
ε < 1, and let FI be the mixed discriminative motif, then

3Cut norm is used to measure the similarity between graphs,
Details about cut norm are in Appendix A.1

the WI-random graph G = G(n,WI) satisfies

P (|t(FI ,G)− t(FI ,WI)| > ε) ≤ 2exp

(
− ε2n

8v(FI)2

)
.

Theorem 4.3 states that for any specified nonzero margin
ε, with a sufficient number of graphs sampled from the
mixed graphon, the homomorphism density of discrimina-
tive motif in synthetic graphs will approximately equal to
that in graphon t(FI ,G) ≈ t(FI ,WI) with high probabil-
ity. In other words, the synthetic graphs will preserve the
discriminative motif of the mixed graphon with a very high
probability if the sample number n is large enough. The de-
tailed proof is in Appendix A.3. Therefore, G-Mixup can
preserve the discriminative motifs of the two different
graphs into one mixed graph.

5. Experiments
We evaluate the performance of G-Mixup in this section.
First, we visualize graphons and graph generation results in
Sections 5.1 and 5.2 to investigate what G-Mixup actually
do on real-world datasets. Then, we evaluate the effec-
tiveness of G-Mixup in graph classification with various
datasets and GNN backbones in Section 5.3, as well as how
it improves the robustness of GNNs against label corruption
and adversarial attacks in Section 5.4. The experiment set-
ting and more experiments are in Appendices F and G. The
observations are highlighted with # boldface.

5.1. Do different classes of real-world graphs have
different graphons?

We visualize the estimated graphons in Figure 2. It shows
that, 1 the graphons of different class of graphs in one
dataset are distinctly different. The graphons of IMDB-
BINAERY in Figure 2 shows that the graphon of class 1
has larger dense area, which indicates that the graphs in
this class have a more large communities than the graphs
of class 0. The graphons of REDDIT-BINARY in Figure 2
shows that graphs of class 0 have one high-degree nodes
while the graphs of class 1 have two. This observation
validates that real-world graphs of different classes have
distinctly different graphons, which lays a solid foundation
for generating the mixture of graphs by mixing up graphons.

5.2. What is G-Mixup doing? A case study

To investigate the outcome of G-Mixup in real-world scenar-
ios, we visualize the generated synthetic graphs in REDDIT-
BINARY dataset in Figure 3. We observed that 2 The
synthetic graphs are indeed the mixture of the origi-
nal graphs. Original graphs and the generated synthetic
graphs are visualized in Figure 3(a)(b) and Figure 3(c)(d)(e),
respectively. Figure 3 demonstrates that mixed graphon
0.5 ∗WG +0.5 ∗WH is able to generate graphs with a high-

G-Mixup: Graph Data Augmentation for Graph Classification

IMDB-BINARY

Class 0 Class 1

REDDIT-BINARY

Class 0 Class 1

IMDB-MULTI

Class 0 Class 1 Class 2

Figure 2. Estimated graphons on IMDB-BINARY, REDDIT-BINARY, and IMDB-MULTI. Obviously, graphons of different graph classes
are quiet different. This observation validates the divergence of graphons between different classes of graphs, which is the basis of the
G-Mixup. The graphons are estimated by LG. More estimated graphons via various methods are in Appendix G.1.

(c) graphs generated from 1 ⇤ W0 + 0 ⇤ W1 (d) graphs generated from 0 ⇤ W0 + 1 ⇤ W1 (e) graphs generated from 0.5 ⇤ W0 + 0.5 ⇤ W1

W0

(a) graphs of class 0 and the graphon W0 (b) graphs of class 1 and the graphon W1

W1O
ri
gi
na
l
G
ra
ph
s

G
en
er
at
ed
G
ra
ph
s

Figure 3. The visualization of generated synthetic graphs on REDDIT-BINARY dataset. The first row is the original graphs while the
second row is the generated graphs from G-Mixup. The graphs in (a) and (b) are the original graphs of class 0 and class 1. The distinct
difference between the two classes is that graphs of class 0 have one high-degree node while graphs of class 1 have two (marked with

in (a) and (b)). (c)/(d) shows graphs generated with the mixed graphon (1 ∗W0 + 0 ∗W1) / (0 ∗W0 + 1 ∗W1), which have one/two
high-degree node/nodes (marked with in (c) and (d)) because the mixed graphon only contains W0/W1. The synthetic graphs generated
from (0.5 ∗W0 +0.5 ∗W1) is the mixture of graphs of class 0 and 1, which appears as a high-degree node and a dense subgraph (marked
with and in (e), respectively). The results show that synthetic graphs are the mixture of the original graphs.

Table 2. Performance comparisons of G-Mixup with different
GNNs on different datasets. The metric is the classification accu-
racy. Experimental settings are in Appendix F.

Dataset IMDB-B IMDB-M REDD-B REDD-M5 REDD-M12

#graphs 1000 1500 2000 4999 11929
#classes 2 3 2 5 11

#avg.nodes 19.77 13.00 429.63 508.52 391.41
#avg.edges 96.53 65.94 497.75 594.87 456.89

G
C

N vanilla 72.18±1.55 48.79±2.72 78.82±1.33 45.07±1.70 46.90±0.73
w/ Dropedge 72.50±0.31 49.08±1.89 81.25±8.15 51.35±1.54 47.08±0.55
w/ DropNode 72.00±4.09 48.58±2.85 79.25±0.35 49.35±1.80 47.93±0.64
w/ Subgraph 68.50±4.76 49.58±2.61 74.33±2.88 48.70±1.63 47.49±0.93
w/ M-Mixup 72.83±1.75 49.50±1.97 75.75±4.53 49.82±0.85 46.92±1.05
w/ G-Mixup 72.87±3.85 51.30±2.14 89.81±0.74 51.51±1.70 48.06±0.53

G
IN

vanilla 71.55±3.53 48.83±2.75 92.59±0.86 55.19±1.02 50.23±0.83
w/ Dropedge 72.20±1.82 48.83±3.02 92.00±1.13 55.10±0.44 49.77±0.76
w/ DropNode 72.16±0.28 48.33±0.98 90.25±0.98 53.26±4.99 49.95±1.70
w/ Subgraph 68.50±0.86 47.25±3.78 90.33±0.87 54.60±3.15 49.67±0.90
w/ M-Mixup 70.83±1.04 49.88±1.34 90.75±1.78 54.95±0.86 49.81±0.80
w/ G-Mixup 71.94±3.00 50.46±1.49 92.90±0.87 55.49±0.53 50.50±0.41

degree node and a dense subgraph, which can be regarded
as the mixture of graphs with one high-degree node and
two high-degree nodes. It validates that G-Mixup prefer to
preserve the discriminative motifs from the original graphs.

5.3. Can G-Mixup improve the performance and
generalization of GNNs?

To validate the effectiveness of G-Mixup, we compare the
performance of GNNs with various backbones on different

datasets, and summarize results in Tables 2 and 3 as well
as the training curves in Figure 4. We make the following
observations: 3 G-Mixup can improve the performance
of graph neural networks on various datasets. From Ta-
ble 2, G-Mixup gain 9 best performances among 10 reported
accuracies, which substantially improve the performance
of GNNs. Overall, G-Mixup performs 2.84% better than
the vanilla model. Note that G-Mixup and baseline models
adopt the same architecture of GNNs (e.g., layers, activation
functions) and the same training hyperparameters (e.g., opti-
mizer, learning rate). From Table 3, G-Mixup gains 11 best
performances among 12 cases, which substantially improve
the performance of DiffPool and MincutPool. Meanwhile,
4 G-Mixup can improve the generalization of graph neu-
ral networks. From the loss curve on test data (green line)
in Figure 4, the loss of test data of G-Mixup (dashed green
lines) are consistently lower than the vanilla model (solid
green lines). Considering both the better performance and
the better test loss curves, G-Mixup is able to substantially
improve the generalization of GNNs. Also, 5 G-Mixup
could stabilize the model training. As shown in Table 2,
G-Mixup achieves 11 lower standard deviation among total
15 reported numbers than the vanilla model. Additionally,
the train/validation/test curves of G-Mixup (dashed line) in
Figure 4 are more stable than vanilla model (solid line), in-
dicating that G-Mixup stabilize the training of graph neural

G-Mixup: Graph Data Augmentation for Graph Classification

IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI-5K

Epoch Epoch Epoch Epoch

C
ro

ss
-e

nt
ro

py
 L

os
s

Figure 4. The training/validation/test curves on IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI-5K with GCN
as backbone. The curves are depicted on ten runs.

Table 3. Performance comparisons of G-Mixup with different Pool-
ing methods. The metric is classification accuracy.

Method IMDB-B IMDB-M REDD-B REDD-M5k

To
pK

Po
ol vanilla 72.37±5.01 50.57±1.62 90.30±1.47 45.07±1.70

w/ Dropedge 71.75±2.18 48.75±2.94 88.96±1.90 47.43±1.82
w/ DropNode 69.16±1.04 48.50±2.50 81.33±4.48 46.15±2.28
w/ Subgraph 67.83±4.01 50.83±2.38 86.08±2.12 45.75±2.47
w/ M-Mixup 71.83±3.03 51.22±1.17 87.58±3.16 45.60±2.35
w/ G-Mixup 72.80±3.33 51.30±2.14 90.40±0.89 46.48±1.70

D
iff

Po
ol vanilla 71.68±3.40 47.75±2.34 78.40±4.38 31.61±5.95

w/ Dropedge 69.16±2.51 49.44±2.50 76.00±5.50 34.46±6.80
w/ DropNode 70.25±3.01 46.83±1.34 76.68±2.57 33.10±5.53
w/ Subgraph 69.50±2.16 46.00±4.43 76.06±2.81 31.65±4.43
w/ M-Mixup 66.50±4.04 45.16±4.63 78.37±2.29 34.46±6.80
w/ G-Mixup 73.25±3.89 50.70±2.79 78.87±2.27 38.42±6.51

M
in

cu
tP

oo
l vanilla 73.25±3.27 49.04±3.57 84.95±3.25 49.32±2.67

w/ Dropedge 69.16±2.51 49.66±1.73 81.37±1.59 47.20±1.10
w/ DropNode 73.50±3.89 49.91±2.83 85.68±2.04 46.82±4.60
w/ Subgraph 70.25±1.84 48.18±1.10 84.91±2.50 49.22±2.49
w/ M-Mixup 70.62±2.09 49.96±1.86 85.12±2.29 47.20±1.10
w/ G-Mixup 73.93±2.84 50.29±2.30 85.87±1.37 50.12±2.47

Table 4. Robustness to label corruption with different ratios.
Models Methods 10% 20% 30% 40%

IMDB-B vanilla 72.30±3.67 69.43±4.80 63.65±8.87 55.21±8.75
w/ Dropedge 72.00±2.44 69.52±3.25 64.12±3.44 48.50±0.00
w/ M-Mixup 71.87±3.56 69.03±4.85 65.62±9.89 48.50±0.00
w/ G-Mixup 72.56±3.08 69.87±5.41 65.50±8.90 52.56±6.97

REDD-B vanilla 73.90±1.43 75.68±2.75 68.12±0.81 46.50±0.00
w/ Dropedge 73.75±1.28 72.06±1.42 46.50±0.00 46.50±0.00
w/ M-Mixup 71.96±1.97 76.00±2.24 54.43±1.09 46.50±0.00
w/ G-Mixup 71.94±3.00 76.34±1.49 74.21±1.85 53.50±0.00

networks. Experiments on OGB (Hu et al., 2020) and more
pooling method (GMT) are in Appendices G.2 and G.3.

5.4. Can G -Mixup improve the robustness of GNNs?

We investigate the two kinds of robustness of G-Mixup,
including Label Corruption Robustness and Topology Cor-
ruption Robustness, and report the results in Table 4 and
Table 5, respectively. More experimental settings are pre-
sented in Appendix F.4. 6 G-Mixup improves the robust-
ness of graph neural networks. Table 4 shows G-Mixup
gains better performance in general, indicating it is more
robust to noisy labels than the vanilla baseline. Table 5
shows that G-Mixup is more robust when graph topology
is corrupted since the accuracy is consistently better than
baselines. This can be an advantage of G-Mixup when graph
label or topology are noisy.

Table 5. Robustness to topology corruption with different ratios.
Models Methods 10% 20% 30% 40%

Removing vanilla 77.96±3.71 67.59±5.73 64.96±8.87 65.71±8.31
edges w/ Dropedge 74.40±2.26 65.12±3.51 65.93±2.32 57.87±4.14

w/ M-Mixup 75.62±1.59 65.81±3.84 59.81±9.45 57.31±3.15
w/ G-Mixup 81.46±3.08 71.12±7.47 67.46±8.90 66.25±7.78

Adding vanilla 76.12±5.73 74.37±6.48 72.31±2.69 72.00±2.92
edges w/ Dropedge 70.53±1.47 70.18±1.29 71.18±1.53 70.90±1.53

w/ M-Mixup 73.41±2.40 71.87±1.28 71.50±2.03 71.21±2.00
w/ G-Mixup 84.31±3.21 82.21±4.31 77.00±2.25 75.56±3.05

IMDB-BINARY REDDIT-BINARY

Avg. #Nodes of
Original Graphs

Avg. #Nodes of
Original Graphs

#Node of Generated Graph #Node of Generated Graph

A
cc
ur
ac
y

Figure 5. The impact of the node numbers of generated synthetic
graphs. The red vertical line indicates the average number of all the
original training graphs. The blue line represents that classification
accuracy with different number of nodes of generated graphs.

5.5. Further Analysis

5.5.1. THE NODES NUMBER OF GENERATED GRAPHS

We investigate the impact of the nodes number in generated
synthetic graphs by G-Mixup and present the results in Fig-
ure 5. Specifically, G-Mixup generates synthetic graphs with
different numbers (hyperparameters K) of nodes and use
them to train graph neural networks. We observed form Fig-
ure 5 that 7 using the average node number of all the
original graphs is a better choice for hyperparameter K
in G-Mixup, which is in line with the intuition.

5.5.2. IMPACT ON DEEPER MODELS

We investigate the performance of G-Mixup when GCN
goes deeper. We experiment with different numbers (2− 9)
of layers and report the results in Figure 6. 8 G-Mixup
improves the performance of graph neural networks
with varying layers. In Figure 6, the left figure shows G -
Mixup gains better performance while the depth of GCNs
is 2 − 6. The performance with deeper GCNs (7 − 9) are

G-Mixup: Graph Data Augmentation for Graph Classification

IMDB-BINARY REDDIT-BINARY

#Layers of GCN #Layers of GCN

A
cc
ur
ac
y

Figure 6. The performance of G-Mixup using GCNs with different
layers on IMDB-BINARY and REDDIT-BINARY.

comparable to baselines, however, the accuracy is much
lower than shallow ones. The right figure shows G-Mixup
gains better performance by a significant margin while the
depth of GCNs is 2− 9. This validates the effectiveness of
G-Mixup when graph neural network goes deeper.

6. Related Works
Graph Data Augmentation. Graph neural networks
(GNNs) (Kipf & Welling, 2017; Veličković et al., 2018;
Hamilton et al., 2017; Xu et al., 2018; Zhang et al., 2018;
Han et al., 2022; Zhou et al., 2021; 2020c) achieve the state-
of-the-art performance on graph classification tasks. In
parallel, graph data augmentation (You et al., 2020; Huang
et al., 2018; Kong et al., 2020; Park et al., 2021b; Wang
et al., 2020a) methods improve the performance of GNNs.
There are three categories of graph data augmentation, in-
cluding node perturbation (You et al., 2020; Huang et al.,
2018), edge perturbation (Rong et al., 2020; You et al.,
2020), and subgraph sampling (You et al., 2020; Wang et al.,
2020a). However, the major limitation of the existing graph
augmentation methods is that they are based on one sin-
gle graph while G-Mixup leverages multiple input graphs.
Recently, there are also graph mixup works (Guo & Mao,
2021; Park et al., 2021b; Wang et al., 2020a). There are
also some model-dependent graph augmentation methods
(Suresh et al., 2021; You et al., 2022; Zhou et al., 2020b) for
graph classification task. Suresh et al. (2021) proposed to
enable GNNs to remove the redundant information during
the training by optimizing adversarial graph augmentation
strategies. You et al. (2022) proposed to learn a continuous
prior from graph data for contrastive training, which is used
to augment graph. The difference between our proposal and
these methods is that G-Mixup an general model-agnostic
graph data augmentation methods for graph classification.
Besides, there are a line of works focusing on graph data aug-
mentation methods for node-level tasks (Zhao et al., 2022;
Ding et al., 2022; Zhao et al., 2021; Wang et al., 2020b;
Tang et al., 2021; Park et al., 2021a; Verma et al., 2021).
More discussion are presented in Appendix D.

Graphon Estimation. Graphons and convergent graph se-
quences have been broadly studied in mathematics (Lovász,
2012; Lovász & Szegedy, 2006; Borgs et al., 2008) and have

been applied to network science (Avella-Medina et al., 2018;
Vizuete et al., 2021) and graph neural networks (Ruiz et al.,
2020a;b). There are tow lines of works to estimate step
functions, one is based on stochastic block models, such as
stochastic block approximation (SBA) (Airoldi et al., 2013),
“largest gap” (LG) (Channarond et al., 2012) and sorting-
and-smoothing (SAS) (Chan & Airoldi, 2014); another one
is based on low-rank matrix decomposition, such as matrix
completion (MC) (Keshavan et al., 2010), universal singular
value thresholding (USVT) (Chatterjee et al., 2015). More
discussion about graphon estimation are in Appendix B.

7. Conclusion
This work develops a novel graph augmentation method
called G-Mixup. Unlike image data, graph data is irregular,
unaligned and in non-Euclidean space, making it hard to
be mixed up. However, the graphs within one class have
the same generator (i.e., graphon), which is regular, well-
aligned and in Euclidean space. Thus we turn to mix up the
graphons of different classes to generate synthetic graphs.
G-Mixup is mix up and interpolate the topology of different
classes of graphs. Comprehensive experiments show that
GNNs trained with G-Mixup achieve better performance
and generalization, and improve the model robustness to
noisy labels and corrupted topology.

Acknowledgements
We would like to thank all the anonymous reviewers for their
valuable suggestions. This work is in part supported by NSF
IIS-1750074 and IIS-1900990. The views and conclusions
contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

References
Airoldi, E. M., Costa, T. B., and Chan, S. H. Stochastic

blockmodel approximation of a graphon: Theory and
consistent estimation. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems-Volume 1, pp. 692–700, 2013.

Avella-Medina, M., Parise, F., Schaub, M. T., and Segarra,
S. Centrality measures for graphons: Accounting for
uncertainty in networks. IEEE Transactions on Network
Science and Engineering, 7(1):520–537, 2018.

Baek, J., Kang, M., and Hwang, S. J. Accurate learning
of graph representations with graph multiset pooling. In
International Conference on Learning Representations,
2020.

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.

G-Mixup: Graph Data Augmentation for Graph Classification

In International Conference on Machine Learning, pp.
874–883. PMLR, 2020.

Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., and Veszter-
gombi, K. Convergent sequences of dense graphs i: Sub-
graph frequencies, metric properties and testing. Ad-
vances in Mathematics, 219(6):1801–1851, 2008.

Chan, S. and Airoldi, E. A consistent histogram estimator
for exchangeable graph models. In International Confer-
ence on Machine Learning, pp. 208–216, 2014.

Channarond, A., Daudin, J.-J., and Robin, S. Classification
and estimation in the stochastic blockmodel based on the
empirical degrees. Electronic Journal of Statistics, 6:
2574–2601, 2012.

Chatterjee, S. et al. Matrix estimation by universal singular
value thresholding. The Annals of Statistics, 43(1):177–
214, 2015.

Ding, K., Xu, Z., Tong, H., and Liu, H. Data augmenta-
tion for deep graph learning: A survey. arXiv preprint
arXiv:2202.08235, 2022.

Fox, J. and Rajamanickam, S. How robust are graph
neural networks to structural noise? arXiv preprint
arXiv:1912.10206, 2019.

Frieze, A. and Kannan, R. Quick approximation to matrices
and applications. Combinatorica, 19(2):175–220, 1999.

Gao, H. and Ji, S. Graph u-nets. In international conference
on machine learning, pp. 2083–2092. PMLR, 2019.

Guo, H. Nonlinear mixup: Out-of-manifold data augmen-
tation for text classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020.

Guo, H. and Mao, Y. Intrusion-free graph mixup. arXiv
preprint arXiv:2110.09344, 2021.

Guo, H., Mao, Y., and Zhang, R. Augmenting data with
mixup for sentence classification: An empirical study.
arXiv preprint arXiv:1905.08941, 2019a.

Guo, H., Mao, Y., and Zhang, R. Mixup as locally lin-
ear out-of-manifold regularization. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 3714–
3722, 2019b.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Han, X., Jiang, Z., Liu, N., Song, Q., Li, J., and Hu, X. Geo-
metric graph representation learning via maximizing rate
reduction. In Proceedings of the ACM Web Conference
2022, pp. 1226–1237, 2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, volume 33, pp.
22118–22133, 2020.

Hu, Z., Fang, Y., and Lin, L. Training graph neural networks
by graphon estimation, 2021.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive
sampling towards fast graph representation learning. Ad-
vances in Neural Information Processing Systems, 31:
4558–4567, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Keshavan, R. H., Montanari, A., and Oh, S. Matrix comple-
tion from a few entries. IEEE transactions on information
theory, 56(6):2980–2998, 2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem,
B., Taylor, G., and Goldstein, T. Flag: Adversarial data
augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

Lovász, L. Large networks and graph limits, volume 60.
American Mathematical Soc., 2012.

Lovász, L. and Szegedy, B. Limits of dense graph sequences.
Journal of Combinatorial Theory, Series B, 96(6):933–
957, 2006.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Icml, 2010.

Park, H., Lee, S., Kim, S., Park, J., Jeong, J., Kim, K.-
M., Ha, J.-W., and Kim, H. J. Metropolis-hastings data
augmentation for graph neural networks. Advances in
Neural Information Processing Systems, 34, 2021a.

Park, J., Shim, H., and Yang, E. Graph transplant: Node
saliency-guided graph mixup with local structure preser-
vation. arXiv preprint arXiv:2111.05639, 2021b.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge: To-
wards deep graph convolutional networks on node classi-
fication. In ICLR 2020 : Eighth International Conference
on Learning Representations, 2020.

G-Mixup: Graph Data Augmentation for Graph Classification

Ruiz, L., Chamon, L., and Ribeiro, A. Graphon neural
networks and the transferability of graph neural networks.
Advances in Neural Information Processing Systems, 33,
2020a.

Ruiz, L., Wang, Z., and Ribeiro, A. Graph and graphon neu-
ral network stability. arXiv preprint arXiv:2010.12529,
2020b.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learning.
Advances in Neural Information Processing Systems, 34:
15920–15933, 2021.

Tang, Z., Qiao, Z., Hong, X., Wang, Y., Dharejo, F. A., Zhou,
Y., and Du, Y. Data augmentation for graph convolutional
network on semi-supervised classification. In Asia-Pacific
Web (APWeb) and Web-Age Information Management
(WAIM) Joint International Conference on Web and Big
Data, pp. 33–48. Springer, 2021.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
I., Lopez-Paz, D., and Bengio, Y. Manifold mixup: Better
representations by interpolating hidden states. In Interna-
tional Conference on Machine Learning, pp. 6438–6447.
PMLR, 2019.

Verma, V., Qu, M., Kawaguchi, K., Lamb, A., Bengio, Y.,
Kannala, J., and Tang, J. Graphmix: Improved training of
gnns for semi-supervised learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 10024–
10032, 2021.

Vizuete, R., Garin, F., and Frasca, P. The laplacian spectrum
of large graphs sampled from graphons. IEEE Transac-
tions on Network Science and Engineering, 2021.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B.
Graphcrop: Subgraph cropping for graph classification.
arXiv preprint arXiv:2009.10564, 2020a.

Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., and Hooi, B.
Nodeaug: Semi-supervised node classification with data
augmentation. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 207–217, 2020b.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B. Mixup
for node and graph classification. In Proceedings of the
Web Conference 2021, pp. 3663–3674, 2021.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.

IEEE transactions on neural networks and learning sys-
tems, 2020.

Xu, H., Luo, D., Carin, L., and Zha, H. Learning graphons
via structured gromov-wasserstein barycenters. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 10505–10513, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L.,
and Leskovec, J. Hierarchical graph representation learn-
ing with differentiable pooling. In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, pp. 4805–4815, 2018.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in Neural Information Processing Systems, 33, 2020.

You, Y., Chen, T., Wang, Z., and Shen, Y. Bringing your
own view: Graph contrastive learning without prefabri-
cated data augmentations. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data
Mining, pp. 1300–1309, 2022.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2017.

Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., and
Zou, J. How does mixup help with robustness and gen-
eralization? In International Conference on Learning
Representations, 2021.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data
Engineering, 2020.

Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., and
Shah, N. Data augmentation for graph neural networks.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 11015–11023, 2021.

Zhao, T., Liu, G., Günnemann, S., and Jiang, M. Graph
data augmentation for graph machine learning: A survey.
arXiv preprint arXiv:2202.08871, 2022.

Zhao, Y. Graph theory and additive combinatorics, 2019.
URL https://yufeizhao.com/gtac/.

https://yufeizhao.com/gtac/

G-Mixup: Graph Data Augmentation for Graph Classification

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020a.

Zhou, J., Shen, J., and Xuan, Q. Data augmentation for
graph classification. In Proceedings of the 29th ACM
International Conference on Information & Knowledge
Management, pp. 2341–2344, 2020b.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. Advances in Neural Information
Processing Systems, 33:4917–4928, 2020c.

Zhou, K., Song, Q., Huang, X., Zha, D., Zou, N., and Hu,
X. Multi-channel graph neural networks. In Proceedings
of the Twenty-Ninth International Conference on Inter-
national Joint Conferences on Artificial Intelligence, pp.
1352–1358, 2021.

G-Mixup: Graph Data Augmentation for Graph Classification

A. Proof of Theorem
In the appendix, we first present the preliminaries in Appendix A.1. And then we present complete proof for Theorems 4.2
and 4.3 in Appendices A.2 and A.3, respectively.

A.1. Preliminaries

Cut norm (Lovász, 2012; Zhao, 2019) is used to measure structural similarity of two graphons. The definition of cut norm is
as follow:

Definition A.1. The cut norm of grapon W is defined as

∥W∥□ = supS,T⊂[0,1]

∣∣∣∫
S×T

W (x, y)dxdy
∣∣∣, (7)

where the supremum is taken over all measurable subsets S and T.

The following lemma follows the derivation of counting lemma for graphons, are known in the paper (Lovász, 2012). It will
be used to prove the Theorem 4.2.

Lemma A.2. Let F be a simple graph and let W,W ′ ∈ W . Then

|t(F,W)− t(F,W ′)| ≤ e(F)||W −W ′||□ (8)

Proof of Lemma A.2: The proof follows Zhao (2019). For an arbitrary simple graph F , by the triangle inequality we have

|t(F,W)− t(F,W ′)|

=

∣∣∣∣∣
∫ (∏

uivi∈E

W (ui, vi)−
∏

uivi∈E

W ′ (ui, vi)

) ∏
v∈V

dv

∣∣∣∣∣
≤

|E|∑
i=1

∣∣∣∣∣∣
∫ i−1∏

j=1

W ′ (uj , vj) (W (ui, vi)−W ′ (ui, vi))

|E|∏
k=i+1

W (uk, vk)

 ∏
v∈V

dv

∣∣∣∣∣∣
(9)

Here, each absolute value term in the sum is bounded by the cut norm ∥W −W ′∥□ if we fix all other irrelavant variables
(everything except ui and vi for the i-th term), altogether implying that

| t(F,W)− t(F,W ′)| ≤ e(F)||W −W ′||□ (10)

■

Lemma A.3 (Corollary 10.4 in (Lovász & Szegedy, 2006)). Let W be a graphon, n ≥ 1, 0 < ε < 1, and let F be a simple
graph, then the W -random graph G = G(n,W) satisfies

P (|t(F,G)− t(F,W)| > ε) ≤ 2exp

(
− ε2n

8v(F)2

)
(11)

A.2. Proof of Theorem 1

We have the mixed graphon WI = λWG + (1− λ)WH. Let W = WI , W ′ = WG , and F = FG in Lemma A.2, we have,

|t(FG ,WI)− t(FG ,WG)| ≤ e(FG)||WI −WG ||□
|t(FG , λWG + (1− λ)WH)− t(F,WG)| ≤ e(FG)||λWG + (1− λ)WH −WG ||□

≤ e(FG)||(1− λ)(WH −WG)||□
(12)

Recall that the cut norm ∥W∥□ = supS,T⊆[0,1]

∣∣∣∫S×T
W
∣∣∣ .

G-Mixup: Graph Data Augmentation for Graph Classification

obviously, suppose α ∈ R, we have

∥αW∥□ = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

αW

∣∣∣∣ = sup
S,T⊆[0,1]

∣∣∣∣α ∫
S×T

W

∣∣∣∣ = α∥W∥□ (13)

Based on Equation (12) and Equation (13), we have

|t(FG , λWG + (1− λ)WH)− t(FG ,WG)| ≤ e(FG)||(1− λ)(WH −WG)||□
≤ (1− λ)e(FG)||WH −WG ||□

(14)

Similarly, let W = WI , W ′ = WH and F = FH in Lemma A.2, We can also easily obtain

|t(FH, λWG + (1− λ)WH)− t(FH,WH)| ≤ λe(FH)||WH −WG ||□ (15)

Equation (14) and Equation (15) produce the upper bound in Equation (7). ■

A.3. Proof of Theorem 2

Let F and W be the discriminative motif FI and the mixed graphon WI in Lemma A.3, we will have

P (|t(FI ,G)− t(FI ,WI)| > ε) ≤ 2exp

(
− ε2n

8v(FI)2

)
(16)

which produces the result in Equation (7). ■

A.4. Graphons Estimation by Step Function

The proof follows Xu et al. (2021). A graphon can always be approximated by a step function in the cut norm (Frieze &
Kannan, 1999).

Let P = (P1, ..,PK) be a partition of Ω into K measurable sets. We define a step function WP : Ω2 7→ [0, 1] as

WP(x, y) =
∑K

k,k′=1
wkk′1Pk×Pk′ (x, y), (17)

where each wkk′ ∈ [0, 1] and the indicator function 1Pk×Pk′ (x, y) is 1 if (x, y) ∈ Pk × Pk′ , otherwise it is 0. The weak
regularity lemma (Lovász, 2012) shown below guarantees that every graphon can be approximated well in the cut norm by
step functions.

Theorem A.4 (Weak Regularity Lemma (Lemma 9.9 in (Lovász, 2012))). For every graphon W and K ≥ 1, there always
exists a step function W with |P| = K steps such that

∥W −W∥□ ≤ 2√
logK

∥W∥L2 . (18)

B. Graphons Estimation Methods
The adopted graphon estimated methods (e.g., LG, USVT, SBA) are well-studied methods. Typically they have rigorous
mathematical proof to upper bound the graphon estimation error. For example, Theorem 2.10 in (Chatterjee et al., 2015)
shows the graphon estimation error of USVT is strictly upper bounded. And we also copy the results of graphon estimation
methods on synthetic graphon from (Xu et al., 2021) in Table 6. The results show the graphon estimation methods in our
work can precisely estimate graphon. The details of them are listed as the following:

• SBA (Airoldi et al., 2013) The Stochastic Block Approximation learns stochastic block models to approximate graphons.
This method can consistently estimate the graphon with extremely small error and the estimation error vanishes provably
as the node number of the graph goes infinity.

G-Mixup: Graph Data Augmentation for Graph Classification

Table 6. The MSE error of graphon estimation methods on synthetic graphs from Xu et al. (2021). The graphon estimation is based on 10
graphs, the error is Mean Square Error, and the resolution of graphon is 1000× 1000. More details can be found from the original paper
(Xu et al., 2021).

W(x, y) SBA LG MC USVT SAS

xy 65.6±6.5 29.8±5.7 11.3±0.8 31.7±2.5 125.0±1.3

e−(x0.7+y0.7) 58.7±7.8 22.9±3.1 71.7±0.5 12.2±1.5 77.7±0.8
x2+y2+

√
x+

√
y

4 63.4±7.6 24.1±2.5 73.2±0.7 33.8±1.1 99.3±1.2
1
2 (x+ y) 66.2±8.3 24.0±2.5 71.9±0.6 40.2±0.8 108.3±1.0

1
1+exp(−10(x2+y2)) 5.0±9.5 23.1±3.2 64.6±0.5 37.3±0.6 73.3±0.7

• LG (Channarond et al., 2012) The “largest gap” algorithm improve the SBA method, which can be used for both
large-scale and small graphs.

• SAS (Chan & Airoldi, 2014) The smoothing-and-sorting (SAS) is a improved variant of SBA, which first sorts the
graphs based on the node degree, then smooths the sorted graph using total variation minimization.

• MC and USVT (Keshavan et al., 2010; Chatterjee et al., 2015) Matrix Completion and Universal Singular Value
Thresholding are matrix decomposition based methods, which learn low-rank matrices to approximate graphons.

C. Discussion about Manifold Intrusion in G-Mixup
In this appendix, we discuss that manifold intrusion in G-Mixup and argue that G-Mixup does not suffer from manifold
intrusion issue. The manifold intrusion may be harmful for mixup method. Manifold intrusion in mixup is a form of
under-fitting resulting from conflicts between the labels of the synthetic examples and the labels of original training data (Guo
et al., 2019b). The manifold intrusion in graph learning represents that the generated graphs have identical topology but
different labels. In our method, the adjacency matrix A ∈ RK×K of generated graphs are generated from the matrix-from
graphon W ∈ RK×K , thus we have Aij

iid∼ Bern(Wij),∀i, j ∈ [K]. In the graph generation phase, G-Mixup may cause
manifold intrusion in two cases: 1) two generated two graphs are identical, 2) a generated graph is identical to an original
graph. We hereby show that graph manifold intrusion issue will not happen with a very high probability in G-Mixup as
follows:

• Two generated two graphs are identical. The probability of generating two identical graphs from the same graphon
W is ΠK

i=1Π
K
j=1(W

2
ij + (1 −Wij)

2), which is extremely small since 0 < W2
ij + (1 −Wij)

2 < 1 and K is large
enough in the real-world graphs. The probability that two generated two graphs are identical are extremely small.

• A generated graph is identical to an original graph. The probability of generating a new graph that is identical to

an original graph (the adjacency matrix is Ã) is ΠK
i=1Π

K
j=1(W

Ãij

ij (1−Wij)
1−Ãij), which is extremely small since

0 < W
Ãij

ij (1 −Wij)
1−Ãij < 1 and K is large enough in the real-world graphs. The probability that a generated

graph is identical to an original graph are identical are extremely small too.

D. More Discussion about Related Works
In this appendix, we discuss two categories of related works. The first one is graph data augmentation for node classification,
and the second is model-dependent graph data augmentation for graph classification. Both of them are different to our
proposed G-Mixup.

Graph Data Augmentation for Node Classification. There is another line of works targeting graph data augmentation
for node classification (Zhao et al., 2021; Wang et al., 2020b; Tang et al., 2021; Park et al., 2021a; Verma et al., 2021).
Zhou et al. (2020b) leverage information inherent in the graph to predict edge probability to augment a new graph for node
classification task. Verma et al. (2021) proposed GraphMix to augment the vanilla GNN with a Fully-Connected Network

G-Mixup: Graph Data Augmentation for Graph Classification

Algorithm 3 G-Mixup (batch)
Input: train graph set S with B batches, graphon estimator g, mixup ratio λ, augmented ratio α ▷ 0 < λ,α < 1
Init: Synthetic graph set I = {}
for batch in S do

Obtain two graph sets G and H with different labels yG and yH
Estimate (WG , X̄G) and (WH, X̄H) from G and H using Algorithm 1
Mix up step function WI = λWG + (1− λ)WH
Mix up graphon node features X̄I = λX̄G + (1− λ)X̄H
Sample α · |S|/B synthetic graphs based on WI and X̄I and add them to I ▷ |I| = α · |S| after for loop ends

end for
Return: synthetic graph set I

(FCN) and the FCN loss is computed using Manifold Mixup. Verma et al. (2021) proposed to generate augmented graphs
from an explicit target distribution for semi-supervised learning, which has flexible control of the strength and diversity
of augmentation. Many graph augmentation methods are proposed to solve node classificaiton task. However, the node
classification task is a different task in graph learning from graph classification task. The node classification task usually
has one input graph, thus the graph augmentation methods for node classification is limited to one graph while the graph
augmentation for graph classification can manipulate multiple graphs. Thus graph data augmentation for node-level task is
not applicable to our scenario.

E. Implementation Details
In this appendix, we present the pseudo code for G-Mixup. We first present the pseudo code for graphon estimation in
Algorithm 1, which depicts how to generate the graphon and the node features. Since our proposed method is a model-
agnostic method, which can be conducted before the model training. Then we present the pseudo code G-Mixup. The
graphon estimation is based on the one class of graphs, thus we can estimate on graphon using all the graphs in the same
class or a random batch of graphs in the same class. On this basis, we have two version of concrete implementations: 1)
estimating graphon on graphon using all the graphs in the same class (Algorithm 2), 2) estimating graphon on graphon
using a random batch of graphs in the same class (Algorithm 3). The first implementation provide more accurate estimated
graphons while the second encourages more diversity of the synthetic graphs. Note that all these two versions can be done
as a pre-processing before model training.

F. Experiments Details
F.1. Experimental Setting

To ensure a fair comparison, we use the same hyperparater for modeling training and the same architecture for vanilla model
and other baselines. For model training, we use the Adam optimizer(Kingma & Ba, 2015). The initial learning rate is 0.01
and will drop the learning rate by half every 100 epochs. The batch size is set to 128. We split the dataset into train/val/test
data by 7 : 1 : 2. Note that best test epoch is selected on a validation set, and we report the test accuracy on ten runs. For
hyperparemeter in G-Mixup, we generate 20% more graphs for training graph. The graphons are estimated based on the
training graphs. We use different λ ∈ [0.1, 0.2] to mix up the graphon and generate synthetic with different strength of
mixing up.

F.2. Architectures of Graph Neural Networks

We adopted two categories of graph neural networks as our baselines, The first category is Graph Convolutional Network
(GCN) and Graph Isomorphism Network (GIN). The second category is graph polling methods, including TopK Pooling
(TopKPool), Differentiable Pooling (DiffPool), MinCut Pooling (MincutPool) and Graph Multiset Pooling (GMT). The
details of the GNNs are listed as follows:

• GCN4 (Kipf & Welling, 2017). Four GNN layers and global mean pooling are applied. All the hidden units is set to 64.

4https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/gcn2_ppi.py

https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/gcn2_ppi.py

G-Mixup: Graph Data Augmentation for Graph Classification

The activation is ReLU (Nair & Hinton, 2010).

• GIN5 (Xu et al., 2018). We apply five GNN layers and all MLPs have two layers. Batch normalization (Ioffe &
Szegedy, 2015) is applied on every hidden layer. All hidden units are set to 64. The activation is ReLU (Nair & Hinton,
2010).

• TopKPool6 (Gao & Ji, 2019). Three GNN layers and three TopK pooling are applied. A there-layer percetron are
adopted to predict the labels. All the hidden units is set to 64. The activation is ReLU (Nair & Hinton, 2010).

• DiffPool7 (Ying et al., 2018) is a differentiable graph pooling methods that can be adapted to various GNN architectures,
which maps nodes to clusters based on their learned embeddings.

• MincutPool8 (Bianchi et al., 2020) is a differentiable pooling baselines. It learns a clustering function that can be
quickly evaluated on out-of-sample graphs.

• GMT9 (Baek et al., 2020) is a multi-head attention based global pooling layer to generate graph representation, which
captures the interaction between nodes according to their structure.

F.3. Baseline Methods

We adopted three mainstream graph data augmentation methods as our baselines, including DropEdge, DropNode, Subgraph
and Manifold-Mixup. The details of the baselines are listed as follows,

• DropEdge10 (Rong et al., 2020). DropEdge randomly removes a certain ratios of edges from the input graph at each
training epoch, which can prevent over-fitting and alleviate over-smoothing.

• DropNode11 (You et al., 2020). DropNode randomly remove certain portion of nodes as well as their connections,
which under a underlying assumption that missing part of nodes will note affect the semantic meaning of original
graph.

• Subgraph12 (You et al., 2020; Wang et al., 2020a). Subgraph method samples a subgraph from the original graph using
random walk The generated graph will keep part of the the semantic meaning of original graphs.

• M-Manifold13 (Wang et al., 2021) Manifold-Mixup conducts Mixup operation for graph classification in the embedding
space, which interpolates graph-level embedding after the READOUT function.

F.4. Experimental Setting of Robustness

The graph neural network adopted in this experiment is GCN, the architecture of which is as above. For label corruption, we
randomly corrupt the graph labels with different corruption ratio 10%, 20%, 30%, 40%. For topology corruption, we we
randomly remove/add edges with different corruption ratio 10%, 20%, 30%, 40%. The dataset for topology corruption is
REDDIT-BINARY.

G. Additional Experiments
In this appendix, we conduct additional experiments to further investigate the proposed method.

5https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/mutag_gin.py
6https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_topk_pool.py
7https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_diff_pool.py
8https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_mincut_pool.

py
9https://github.com/JinheonBaek/GMT

10https://github.com/DropEdge/DropEdge
11https://github.com/Shen-Lab/GraphCL
12https://github.com/Shen-Lab/GraphCL
13https://github.com/vanoracai/MixupForGraph

https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/mutag_gin.py
https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_topk_pool.py
https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_diff_pool.py
https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_mincut_pool.py
https://github.com/pyg-team/pytorch_geometric/blob/1.7.2/examples/proteins_mincut_pool.py
https://github.com/JinheonBaek/GMT
https://github.com/DropEdge/DropEdge
https://github.com/Shen-Lab/GraphCL
https://github.com/Shen-Lab/GraphCL
https://github.com/vanoracai/MixupForGraph

G-Mixup: Graph Data Augmentation for Graph Classification

LG MC SAS SBA USVT

IM
D
B
-B

R
E
D
D
IT
-B

IM
D
B
-M

Figure 7. The estimated graphon on various dataset with different graphon estimation methods.

Table 7. Performance comparisons of G-Mixup with GMT on different dataset. The metric is the classification accuracy and its standard
deviation. The best performance is in boldface.

Backbone Method D&D MUTAG PROTEINS IMDB-B IMDB-M

GMT vanilla 78.29±5.77 82.77±6.30 74.59±5.29 73.60±3.87 50.73±3.03

w/ Dropedge 78.37±4.17 82.22±8.88 74.32±5.42 73.40±3.85 50.73±3.09

w/ M-Mixup 77.69±3.81 82.22±10.48 74.41±3.97 73.70±3.79 49.93±3.49

w/ G-Mixup 79.57±3.69 84.44±8.88 75.13±5.06 74.70±3.76 51.33±3.52

G.1. Visualization of Graphons on More Real-world Dataset

G-Mixup explores five graphon estimation methods, including sorting-and-smoothing (SAS) method (Chan & Airoldi,
2014), stochastic block approximation (SBA) (Airoldi et al., 2013), “largest gap” (LG) (Channarond et al., 2012), matrix
completion (MC) (Keshavan et al., 2010) and the universal singular value thresholding (USVT) (Chatterjee et al., 2015). We
present the estimated graphon by LG in Figure 2. Here we present more visualization of graphons on IMDB-BINARY,
REDDIT-BINARY and IMDB-MULTI dataset. An obvious observation is that graphons of different classes of graphs are
different. This observation further validates the divergence of graphon between different classes of graphs.

G.2. Experiment on More Graph Neural Networks Pooling Method (GMT)

To further validate the effectiveness of G-Mixup on more graph neural networks, we experiment with GMT (Baek et al.,
2020), a modern pooling method. To reproduce GMT results, we the released code and the recommended hyperparameters
for their used datasets (D&D, MUTAG, PROTEINS, IMDB-B, IMDB-M) in their paper. The results are presented in Table 7.
9 G-Mixup can significantly improve the performance of GMT. Table 7 shows that G-Mixup outperform all the baselines
on all datasets. Overall, G-Mixup outperform vanilla, Dropedge, ManifoldMixup by 1.44%, 1.28%, 2.01%, respectively.
This indicates the superiority of G-Mixup for graph classification task.

G.3. Experiment on Molecular Property Prediction

We experiment on molecular property prediction task (Hu et al., 2020), including ogbg-molhiv, ogbg-molbace, ogbg-
molbbbp. In these dataset, each graph represents a molecule, where nodes are atoms, and edges are chemical bonds. We
adopte official reference graph neural network backbones (gcn, gcn-vitual, gin, gin-vitual) 14 as our backbones, and we
generate the edge attributes randomly for synthetic graphs. The results are presented in Table 8. 10 G-Mixup can improve
the performance of GNNs on molecular property prediction task with the experimental setting for a fair comparison.
Table 8 shows that G-Mixup gains 9 best performances among 12 reported AUCs.

14https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
16The metric is Area Under Receiver Operating Characteristic.

https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol

G-Mixup: Graph Data Augmentation for Graph Classification

Table 8. Performance comparisons of G-Mixup on molecular property prediction task. The metric is AUROC 16 and its standard deviation.
The best performance is in boldface.

Backbones Mehtods ogbg-molhiv ogbg-molbbbp ogbg-molbace

GCN vanilla 76.24±0.98 68.05±1.52 80.36±1.56

w/ Dropedge 75.93±0.76 68.02±0.95 80.22±1.59

w/ ManifoldMixup 76.24±1.40 68.36±2.05 80.46±2.05

w/ G-Mixup 76.29±0.80 69.51±1.20 80.73±2.06

GCN-virtual vanilla 75.62±1.65 65.13±1.11 74.49±3.04

w/ Dropedge 74.64±1.32 66.46±1.61 69.75±3.47

w/ ManifoldMixup 74.04±2.06 65.51±1.74 73.10±4.97

w/ G-Mixup 76.56±0.80 70.05±1.78 73.55±4.79

GIN vanilla 77.08±1.96 68.42±2.31 75.91±1.01

w/ Dropedge 75.77±1.75 66.16±2.96 70.50±6.24

w/ ManifoldMixup 75.73±1.25 68.15±2.04 77.44±4.13

w/ G-Mixup 77.14±0.45 70.17±1.03 77.79±3.34

GIN-virtual vanilla 77.52±1.56 67.10±2.10 74.19±4.99

w/ Dropedge 76.83±1.11 68.87±1.17 72.20±3.37

w/ ManifoldMixup 76.51±2.22 68.04±2.87 74.17±1.38

w/ G-Mixup 77.09±1.07 69.18±0.87 73.53±3.98

Table 9. The sensitivity of G-Mixup to Mixup Ratio λ on ogbg-molbbbp dataset. The p-value is 0.00515, 0.0994, 0.0109, 0.0471 ,
indicating the 3 improvements are statistically significant (p < 0.05).
λ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Vanilla
GCN 68.23±0.75 68.23±1.81 68.45±0.84 67.54±3.09 69.51±1.20 67.79±0.82 67.60±1.31 69.48±2.62 67.86±1.02 68.78±2.61 68.05±1.52
GCN-virtual 68.57±2.61 68.81±1.57 67.20±1.30 68.64±2.09 70.05±1.78 68.77±2.31 69.11±1.12 68.82±0.98 69.07±1.48 68.37±0.95 65.13±1.11
GIN 68.20±1.04 69.37±1.38 69.28±1.24 68.89±2.70 70.17±1.03 66.95±0.92 69.86±1.05 70.01±1.14 68.65±1.03 69.73±1.32 68.42±2.31
GIN-virtual 70.58±1.55 69.44±1.88 70.02±1.68 69.77±0.88 69.18±0.87 68.17±1.67 68.62±1.15 69.16±1.87 70.15±1.32 68.66±0.68 67.10±2.10

Table 10. The sensitivity of G-Mixup to Mixup Ratio λ on ogbg-molbace dataset. The p-value is 0.0227, 0.0375, 0.0401, 0.0427,
indicating the 4 improvements are statistically significant (p < 0.05).
λ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Vanilla
GCN 77.41±2.24 77.33±2.10 80.73±2.06 78.42±2.25 77.98±2.03 79.25±1.64 75.80±4.31 78.40±1.88 79.54±1.25 77.90±2.67 80.36±1.56
GCN-virtual 75.64±4.03 76.80±1.74 73.55±4.79 76.46±1.05 73.97±4.11 76.55±2.28 75.91±2.73 77.99±2.59 78.34±1.10 72.84±5.52 74.49±3.04
GIN 76.44±2.19 75.55±4.05 77.79±3.34 75.20±2.91 74.79±2.64 76.27±4.61 73.02±3.68 76.29±3.55 75.77±2.30 74.12±4.12 75.91±1.01
GIN-virtual 74.51±4.91 74.07±2.76 73.53±3.98 78.85±1.98 77.15±2.44 76.85±3.42 79.69±1.37 75.13±5.46 77.04±1.37 78.63±2.04 74.19±4.99

G.4. Sensitivity Analysis to Mixup Ratio λ

To further investigate the performance of G-Mixup, we provide experimental results of G-Mixup to analyse the sensitivity to
hyperparameter mixup ratio λ. Specifically, we use the different mixing ratio λ in WI = λWG+(1−λ)WH, λyG+(1−λ)yH
on molecular property prediction task (i.e., ogbg-molbbbp, ogbg-molbace). The p-value17 is computed with the best
performance compared to the Vanilla GCN (last column in Table 9 and Table 9). We can observed that G-Mixup significantly
improves graph neural networks’ performance while we tune the hyperparameter of G-Mixup.

17A p-value less than 0.05 (typically ≤ 0.05) is statistically significant.

