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Abstract

Avoiding feature collapse, when a Neural Net-
work (NN) encoder maps all inputs to a constant
vector, is a shared implicit desideratum of various
methodological advances in self-supervised learn-
ing (SSL). To that end, whitened features have
been proposed as an explicit objective to ensure
uncollapsed features (Zbontar et al., 2021; Er-
molov et al., 2021; Hua et al., 2021; Bardes et al.,
2022). We identify power law behaviour in eigen-
value decay, parameterised by exponent >0, as
a spectrum that bridges between the collapsed &
whitened feature extremes. We provide theoreti-
cal & empirical evidence highlighting the factors
in SSL, like projection layers & regularisation
strength, that influence eigenvalue decay rate, &
demonstrate that the degree of feature whitening
affects generalisation, particularly in label scarce
regimes. We use our insights to motivate a novel
method, Post-hoc Manipulation of the Principal
Axes & Trace (PostMan-Pat), which efficiently
post-processes a pretrained encoder to enforce
eigenvalue decay rate with power law exponent
B, & find that PostMan-Pat delivers improved la-
bel efficiency and transferability across a range of
SSL methods and encoder architectures.

1. Introduction

As label procurement can be expensive relative to the avail-
ability of unlabelled data, self-supervised learning (SSL),
where a learning algorithm operates without access to la-
bels, has grown both in importance & interest in recent years.
Without labels, a general recipe that has produced impres-
sive results is: 1) learning NN features/representations that
are invariant to transformations of the same input, whilst
2) avoiding a completely collapsed representation, when all
inputs map to a constant feature vector.
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A variety of approaches have been proposed to successfully
avoid feature collapse, including: contrastive learning (Chen
et al., 2020a; He et al., 2020b); clustering (Caron et al.,
2018; 2020); non-contrastive learning (Grill et al., 2020;
Chen & He, 2021); and kernel dependence maximisation (Li
et al., 2021). Of particular relevance to this work are feature
decorrelation/whitening SSL methods (Ermolov et al., 2021;
Zbontar et al., 2021; Hua et al., 2021; Bardes et al., 2022),
which promote whitened/decorrelated features as a sufficient
condition to avoid collapse.

Existing theoretical analyses into feature collapse & its
mechanisms in SSL have focused on explaining why it does
not occur in non-contrastive SSL (Tian et al., 2021; Zhang
et al., 2022) or how a related notion of dimensional collapse
(Hua et al., 2021), where features span a low-dimension sub-
space of the entire feature space, occurs (Jing et al., 2021).
In these works, (dimensional) feature collapse can be inter-
preted in terms of a binary outcome for each dimension of
the encoder NN: collapsed or uncollapsed. Thus, the size of
uncollapsed feature dimensions and the importance of their
rate of decay have so far been unexplored in SSL.

In this work, we examine the gap between collapsed &
whitened features, highlighting its significance by first iden-
tifying power law behaviour in eigenvalue decay as a bridge
between collapse & whitening in Section 2. We theoretically
& empirically study elements of SSL that affect eigenvalue
decay rate in Section 3, including projector head depth &
regularisation strength, before demonstrating that generali-
sation performance in SSL is non-monotonic in the degree
of feature whitening/collapse in Section 4. We show that the
extent of feature whitening has implications for generalisa-
tion in low-labelled data regimes in Section 4.1, & use this to
motivate our methodological contribution in Section 5: Post-
hoc Manipulation of the Principal Axes & Trace (PostMan-
Pat or PMP), which takes a pretrained SSL encoder and
enforces a power law in its feature eigenspectrum. In Sec-
tion 6, we show that PMP improves label-efficiency and
transferability of pretrained SSL encoders under linear eval-
uation & often outperforms semi-supervised finetuning. For
example, a pretrained Barlow Twins (Zbontar et al., 2021)
encoder is improved by over 1% top-1 accuracy (56.2% vs
55.0%) on ImageNet-1K with only 1% of labels.
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2. Background, Related Work, & Notation

Suppose we have a large unlabelled dataset X ={x,, }/\_,,
with N samples of dimension d. We denote the empirical
distribution over X by p(x). The SSL setting we consider
is to learn a useful feature encoder NN, hg: R¢—R% from
X, with trainable parameters 8, for downstream tasks. If
appropriate, we drop the 8 subscript for clarity.

Self-supervised representations are generally evaluated with
a labelled/supervised dataset of samples X geR**? and
labels Yg€R5*C, We assume X g are sampled i.i.d. from
the same marginal distribution p(x) as our unlabelled X,
and that there is an additional conditional ¢(-|x) such that
ys|zs~q(y|xs). Typically the task is C-class classification,
& a linear layer WoeR%*C is composed on top of the
encoder hg to give predictor f(x)=he(x)We.

Evaluation is usually via: 1) non-linear finetuning by train-
ing both W & hg (finetuning) or, 2) linear training of W¢
only (linear probe). Linear probes train the following loss,
where [ is typically cross-entropy & ”—5.2 is weight decay:

S
[’(WC) :Zl(f(ms)vys)+02||WC”§ (1)
s=1

As mentioned, recent approaches (Chen et al., 2020a; Caron
et al., 2020; Zbontar et al., 2021; Grill et al., 2020) all adopt
the idea of training @ to be invariant to a distribution of
R?—R? transformations 7 that preserves semantic content
(like random crops). In other words, given an image x€R?,
we have hg (T (x))~he(T2(x)) for T}, T,"%T , where the
joint-embeddings 77 () & T (x) are known as a positive
pair. Figure 1 visualises this general approach.

Where these methods differ is in how they avoid
the trivial (& useless) solution of collapsed features:
he(x')2c, Vx'c€R?, for constant ¢ € R%. We highlight
two popular approaches to avoid collapse:

Contrastive SSL.  methods avoid collapse by simultane-
ously encouraging representations of different images (neg-
ative pairs) x#x' to be further apart in contrast to positive
pairs’ representations through the InfoNCE loss (Oord et al.,
2018). SimCLR (Chen et al., 2020a;b) demonstrates the
benefit of scaling to large batch sizes for contrastive SSL
& introduces several techniques that seem to improve SSL
performance in practice, such as stronger data augmenta-
tion, and the use of trainable (nonlinear) MLP projector
heads g(-) : R% — R?. The projection g(-) takes en-
coder outputs hg () as input, so the InfoNCE loss actually
acts on projections z(x)=g(hg(x)), not encodings hg(x).
It has been suggested that projectors serve to prevent en-
coder dimensional collapse (Jing et al., 2021) & ease the
encoder’s constraints on transformation invariance (Bordes
et al., 2021). We see in Section 3 that another effect of
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Figure 1. Schematic of joint-embedding approach in SSL.

projectors could be to whiten representations. MoCo (He
et al., 2020b; Chen et al., 2020c) uses a memory bank to
ease the large batch size bottleneck of contrastive SSL.

Feature decorrelation SSL. removes the need for nega-
tive pairs (hence large batch size) instead by encouraging
whitened/decorrelated projections z(x) over x~p(x), as
a sufficient condition to avoid feature collapse. W-MSE
(Ermolov et al., 2021) uses an explicit Cholesky transfor-
mation to enforce an exactly whitened representation, by
which we mean that the empirical distribution of repre-
sentations {z(x, )}, has mean 0 & identity covariance
S L2(X)T2(X)=14, xaq,. Hua et al. (2021) considered
dimensional collapse, where 3 has m<d,, non-zero eigen-
values, as a milder but also undesirable form of collapse,
thus motivating their study of feature whitening SSL.

We see that the degree of (projection) feature whitening
or collapse can be defined through the eigenvalues of the
covariance matrix X: identical non-zero eigenvalues give
entirely whitened representations, whereas a collapsed rep-
resentation has all-zero eigenvalues (or a single non-zero
eigenvalue if the representation is uncentred). Between
these two extremes there is a spectrum of possibilities for
how the eigenvalues {)\i}?il of covariance ¥ decay, which
we characterise as follows using power law behaviour:

Definition 2.1 (S8-power law of eigenvalues). Let
¢(X) € RV*4s be arepresentation of X with feature-wise
covariance matrix $% € R% *4s and corresponding sorted
eigenvalues {)\i}fil. We say ¢(X) follows an eigenvalue
power law with exponent 3 > 0 if there exist' G4 , (1) posi-
tive constants a < b, such that V7 > 1: Z.% <\ < Z.%.

Definition 2.2 (Whitened & collapsed representation). We
say a representation ¢(X) is whitened if it follows an eigen-
value power law with exponent 5 = 0, & collapsed if it
follows an eigenvalue power law with exponent 8 = oco.

Remark 2.3. Def. 2.1 is a softer definition than one where
the eigenvalues follow a strict power law (i.e. a = b > 0),
and is found elsewhere in the literature, e.g. Jin et al. (2021).

In Def. 2.1, ¢(X) can be any function of X. At various
points, we consider: the identity function; a hidden layer of

'We presume d; to be a large but finite feature dimension; in
an NN dy corresponds to the NN width.
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Figure 2. Toy illustration of the gap between collapsed & whitened
features as two extremes of a spectrum. The 2D feature covariances
above share eigenvectors, but have different eigenvalues.

an encoder h; an encoder h; or an encoder h + projection
g. Figure 2 depicts a 2D visualisation of the range between
collapse and whitened features, which may be parameterised
by power-law exponent /3 in eigenvalue decay, as in Def. 2.1.

In lieu of explicit whitening, Barlow Twins (Zbontar et al.,
2021) introduces a regularised loss Lgr, with strength p>0
providing a soft constraint on feature correlation:

dp

Lpr = Z {(1 —Ciu)® + pZCEj], 2)

i=1 j#i
where for x~p(x) & {Ta}aemi%]1 “T, we have correlations:

__ E[a(Ti(@)%(T(@)]
Y EE((@)] E[5(T(@)?)

3)

with z;(z) £ 2;(x) — Egp[2i(x)] defined to be centred. In
practice, the expectations in Eq. (3) are estimated with mini-

batches & random transformations sampled from 7. Note
oL
i,

In Lgr, the on-diagonal elements of C' encourage z(x) to
be invariant to transformations of the same image, whereas
the off-diagonal contributions encourage the d,, individual
projection features to be pairwise uncorrelated across inputs,
preventing collapse (of both the encoder and projection).

that, up to input transformations, we have C;;=

Key takeaways: S-power law of eigenvalues in SSL.

» Power law behaviour, determined by exponent 3 > 0,
in feature eigenspectrum decay is one possible way to
bridge the gap between collapsed & whitened features.

3. Projection Layers Whiten Eigenspectra

Having highlighted the gap between collapsed and whitened
features, we now study the factors, such as projector layers
and choice of SSL method, that influence where a pretrained
encoder lies along this spectrum.

Intuitively, low Barlow Twins training loss results in
whitened projections, if individual neurons’ variance across
inputs satisfies X7, = ©(1) for ¢ € [d,]. This is because if

Lpr is small, then ¥* is approximately diagonal, and we
can read off the eigenvalues {¥7 };, as follows:

Proposition 3.1. Suppose an NN encoder+projection

trained via Barlow Twins (Zbontar et al., 2021) achieves (i)

training loss Lgr = €, & ii) da < b positive constants such
2

that o < X5, < b ,Vi€[dy] . Then, if e < 5, the projector

has a whitened eigenspectrum.

From Proposition 3.1 (proof in Appendix A), a successfully
trained Barlow Twin encoder obtains a whitened projec-
tion eigenspectrum. Moreover, the larger the regularisation
strength p, the more likely the condition € < “;% is to be
satisfied, so larger p leads to more whitened projector eigen-
spectra, which we later empirically confirm in Figure 4.

To justify our assumptions on feature variances, we note
that ensuring ¥7,=0(1), Vi€[d,], is one motivation for the
VICReg (Bardes et al., 2022) extension of the Barlow Twins
loss function Lpr. Having said that, we empirically ver-
ify Proposition 3.1 in Figure 3 (center left) for a Barlow
Twin ResNet-18 on CIFAR-10, where we plot (normalised)
projection eigenvalues by size as training progresses.

As seen in Figure 3, at initialisation, the projection eigen-
spectrum is dominated by one eigenvalue. Through training,
the relative size of smaller eigenvalues increases, such that
after 100 epochs, we have around 120 dominant eigenvalues
within an order of magnitude of the largest eigenvalue. We
note some dimensional collapse is still observed for Barlow
Twins projectors, as found for BYOL (Grill et al., 2020;
Tian et al., 2021) & SimCLR (Chen et al., 2020a; Jing et al.,
2021), as the encoder dimension is 512 with projector width
of 1024. We leave an exploration of dimensional collapse
in feature decorrelation methods like Barlow Twins for fu-
ture work, & focus here on the decay rate of the dominant
eigenvalues, both for Barlow Twins and in general in SSL.

This whitened eigenspectrum property of feature decorre-
lation SSL projections is somewhat at odds with findings
from neuroscience (Stringer et al., 2019), where it has been
observed empirically that neuronal population responses in
the visual cortex of mice follow an eigenspectrum power
law decay with =1 in Def. 2.1. In all subplots of Figure 3,
we plot the line y = % for reference, observing that the
dominant projection eigenvalues decay much slower than a
B=1 power law. However, in Figure 3 (left) we also see that
the eigenvalues for the corresponding encoder decay much
faster compared to the projector (noting the log-log scale).

To provide theoretical support for this observation that pro-
jection layers change the eigenspectra to encourage faster
eigenspectrum decay in encoder layers, we consider the
setting of a deep linear MLP, with widths d; at layer [ satis-
fying d; > d ,VI € [L] (so that the MLP is wider than input
dimension). Under an additional assumption of alignment
between the first layer weight matrix W; € R%*< and the
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Figure 3. Eigenspectra for features & projections of both Barlow Twins & SimCLR networks. Projector MLPs use ReLU & have depth 2.

input covariance matrix ¥* € R4*?, we show that changes
in the eigenspectrum decay between input and output layers
are evenly spaced amongst hidden layers in Corollary 3.4.

Definition 3.2. AcR**¢ & BcR*? are aligned if there
exist Singular Value Decompositions (SVDs) A=U DAV}
and B=UgDgV2 such that V Ug=I.x..

We note that this input-layer alignment phenomenon has
been shown for the top principal component for linear NNs
(Ji & Telgarsky, 2018), has been proven & observed em-
pirically for deep non-linear NNs trained on random labels
(Maennel et al., 2020), & that first layer alignment has been
exploited to design Bayesian NN priors that are robust to
covariate shift (Izmailov et al., 2021). Adjacent-layer align-
ment has been shown for contrastive SSL (Jing et al., 2021).

Proposition 3.3. Suppose we have an L-layer linear MLP,
f(x)= Hlel Wi - € R, trained to convergence using
gradient flow & no bias terms on some loss L(f(X)) with
weight decay n > 0. Assume further that the first layer
matrix Wy € R4 X4 & input covariance matrix = € R1*4
are aligned as in Def. 3.2. Then:

1. Adjacent layers’ matrices Wi & W;_1 become aligned
during training for 1 < 1 < L so that principal com-
ponents can be grouped together across layers. If \;
denotes the j™ eigenvalue of the empirical covariance
of features at layer I, then:

2. For any uncollapsed output eigenvalue j with Ar, ;>0
& any two layers 0<k<l (where k = 0 denotes the
input layer), we have:

L

ALj=(Ag,j) T=F

-k

-1
-k (/\L,j) L=k,

i.e. \ij is a weighted geometric mean between A, ; &
AL,j, with weighting specified by closeness to k or L.

The proof of Proposition 3.3 can be found in Appendix A,
& is largely inspired from previous work (Saxe et al., 2013;
Ji & Telgarsky, 2018; Tian et al., 2021; Jing et al., 2021).

However, it allows us to deduce that deeper projection MLPs
result in a faster decaying encoder eigenspectrum:

Corollary 3.4. In the setting of Proposition 3.3, suppose we
have a fixed encoder depth l., & that for some encoder layer
k < l., the feature eigenspectrum at layer k follows power
law decay with exponent 3 > 0. Then, deeper projection
MLPs result in faster encoder eigenvalue decay, if projection
outputs are whitened (as in Proposition 3.1).

Proof. Suppose the projector has depth /,, giving combined
depth L=I[.+I,. We are given )\k’j:j*B & Apj=1upto
constant, V5 (for simplicity of argument here we suppose
a = bin Def. 2.1). Applying Proposmon 3.3 at the encoder

layer, we conclude \;, ;=7 =3 ,1.e. power law behaviour

Ly
with exponent W which is increasing in I,,. O
Remark 3.5. We use power law behaviour in Corollary 3.4 as
a convenient medium to express eigenspectrum decay rate,
though our conclusion extends to representations without

an obvious eigenvalue power law (c.f. Figures 3 and 4).

We now justify our assumptions on eigenspectra in Corol-
lary 3.4. For hidden layers, there are at least two phenomena
that encourage hidden feature eigenspectra to decay in prac-
tice: 1) the fact that, at the input layer, natural images in-
herently possess such a power law decaying eigenspectrum
(Field, 1987; Ruderman & Bialek, 1994) and 2) it is well
known in the signal propagation/wide NN literature that
common NN initialisation schemes (e.g. Kaiming (He et al.,
2015)) converge to collapsed representations (with an at best
polynomial rate) in depth (Schoenholz et al., 2016; Hayou
etal., 2019;2021; Martens et al., 2021). This is corroborated
by Figure 3, where both projection & encoders’ eigenspectra
are dominated by the largest eigenvalue at epoch 0.

For the output eigenspectrum, decorrelation SSL methods
are covered by Proposition 3.1 and Figure 3. However, we
note that Proposition 3.3 and Corollary 3.4 are agnostic to
the specific loss function £ & can also apply to SimCLR
with InfoNCE loss (Oord et al., 2018). In Figure 3, we em-
pirically observe for a SimCLR-trained NN that the biggest
normalised eigenvalues for projection features (right) are
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larger compared to the encoder eigenspectrum (center right),
although the effect is weaker for SimCLR compared to Bar-
low Twins, perhaps due to increased dimensional collapse
in the projector (Hua et al., 2021; Jing et al., 2021).

Key takeaways: Whitening and collapse in SSL.

* Trained Barlow Twins NNs have whitened projections.

* Whitened projections don’t imply whitened encoders,
especially for non-whitened inputs & deeper encoders.

* Deeper projector MLPs may result in more collapsed
encoder eigenspectra (empirically verified in Figure 4).

4. Whitened Features Affect Generalisation

In the previous section, we’ve seen theoretical & empir-
ical evidence that interactions exist between SSL design
choices (e.g. projection depth, or choice of method), and the
speed of eigenspectrum decay of encoder features. We now
demonstrate the rate of decay in the encoder eigenspectrum
is important for the quality of learnt SSL representations, in
terms of generalisation under linear evaluation. In particu-
lar, we show that the relationship between degree of feature
whitening & generalisation is not monotonically increasing.

We first seek a quantitative metric to measure how whitened
a feature representation is, beyond the power law exponent
[ of Def. 2.1, as we wish to handle representations that do
not possess an obvious eigenvalue power law. Instead, we
consider the normalised eigenvalue sum (NESum):

Definition 4.1. Given a feature representation
¢(X)eRN*ds  with feature-wise covariance matrix
5 € Ré>ds and eigenvalues {\;} %, in decreasing order.
Then, we define the normalised eigenvalue sum to be:

d
NESum({\;};) £ ) %
i=1 "1

with convention 3=0. NESum takes values in [0, dy)], with
collapsed features having NESum=0, and NESum=d,, cor-

responding to exactly whitened features.

Moreover, it is clear via a geometric series argument that for
power law decaying feature eigenspectra with exponent /3,
NESum decreases as [3 increases, so we view larger values
of NESum to denote whiter representations.

In Figure 4, we compare various ResNet-18 trained with
Barlow Twins on CIFAR-10, in terms of encoder NESum
against test accuracy under linear probe. For projection
MLP depths from 1 to 5 & a range of regularisation strengths
p (on a logarithmic scale from 0.001 to 0.05), we plot mark-
ers for NNs trained from three independent initialisations.
The different coloured lines denote splines interpolating
the three-seed averages across p for different depths. The
size of the markers correspond to regularisation strength p.
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Figure 4. Different Barlow Twins networks on CIFAR-10 with
ResNet18 encoder. Each marker corresponds to a trained NN, with
marker size denoting regularisation strength p. Different coloured
lines are spline fits split by projection MLP depth. We see that
test accuracy across all depths does not monotonically increase as
features become less collapsed.

As suggested by Corollary 3.4, we see that the deeper the
projection MLP, the lower NESum across different values
of p, indicating that encoder NNs trained with shallower
projectors are more whitened. Moreover, for each depth, we
see that too low NESum results in lower test accuracy, pre-
sumably because the features are too collapsed as expected
from previous works studying collapse in SSL.

On the other hand, we also see that too high a value of
NESum (which we see is due to larger p from the marker
sizes, as supported by Proposition 3.1) results in lower test
accuracy too. This might seem perplexing from the existing
feature decorrelation SSL literature where whitening is sim-
ply used as a mechanism to avoid feature collapse, and so
one might expect a monotonically increasing relationship
between NESum & test accuracy.

However, we note that this is somewhat unsurprising given
that eigenspectra in biological NNs such as a mouse’s visual
cortex are known to decay (Stringer et al., 2019). Thus, Fig-
ure 4 suggests that in SSL, we should not only seek to avoid
too collapsed feature representations, but also too whitened
representations. A corresponding figure with STL10 dataset
can be found in Appendix B, with similar conclusions.

Key takeaways: Whitening and generalisation in SSL.

* The relationship between extent of feature whitening &
generalisation performance in SSL is not monotonic.

* Lower Barlow Twins regulariser p yields more col-
lapsed features.

4.1. Insights for Generalisation on Low Labelled Data

To examine the impact of feature whitening in SSL theo-
retically, we turn to the setting of low labelled data, when
S <« N in the notation of Section 2. We focus on lin-
ear evaluation, as opposed to semi-supervised finetuning.
Notwithstanding the fact that linear evaluation is one of the
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main benchmarks for evaluating SSL. methods, nonlinear
finetuning in the setting of small labelled-data is vulnerable
to tampering with useful features acquired from large-scale
unlabelled data. Empirically, we demonstrate this in Sec-
tion 6 on small labelled-data ImageNet evaluation, where
we show that linear evaluation schemes can outperform
semi-supervised non-linear finetuning.

Moreover, linear evaluation of SSL lends itself more kindly
to theoretical analysis, particularly connections to kernel
methods/Gaussian processes (GPs) (Sollich, 1999; Sollich &
Halees, 2002; Sollich, 2002; Bordelon et al., 2020; Jin et al.,
2021; Cui et al., 2021). These works study learning curves
of kernel/GP regression, describing how generalisation error
changes with the amount of labelled data .S.

To this end, we define a kernel k(x, x)=(hg(x), hg(x’))
using the inner product of encoder features. If inputs are
assumed to have compact support e.g. normalised, then we
can use Mercer’s Theorem (Mercer, 1909) to decompose k:

de
k(a,a') =) Nii(@)vi(a), “4)
i=1

with kernel eigenfunctions {v;}, & eigenvalues {\;};
(equivalent to the covariance eigenvalues we consider in
Def. 2.1) satisfying [ k(x, ")y (a")p(z')dx’ = N\ ().

We consider a single output C'=1 for simplicity, as the
results we use extend straightforwardly for C'>1 (Borde-
lon et al., 2020). We also consider squared error instead
of cross-entropy, noting that solving classification tasks
with squared error (by treating labels as one-hot regression
targets) is often used due to the connection with kernels
(Lee et al., 2019; Shankar et al., 2020; Lee et al., 2020;
He et al., 2020a). In this case, we obtain trained predic-
tor fg(w):k(:c, Xs) (KXS,XS-i-UQIs)ilYS from Eq. (1),
where K x4 x,€R%*? is the Gram matrix of h(Xg).
Finally, let us assume we have noiseless observations
q(ylz)=0+(2)(y) & the true target function f* satisfies:

de
f(x) = Z pithi(x). &)
i=1

Then, existing works have derived the learning curves
for generalisation error of fs, ész]Ep(w) [(fA(w)ff* (x)) 2],
when k & f* both observe power law behaviour:
Proposition 4.2 (Bordelon et al. (2020); Jin et al. (2021)).
IF\i=0(i"P) & u2=0(i=*) , Vi, with a>1 to ensure f*
square integrable, then as S— o0, we have 5526(5 e ).
We see in Proposition 4.2 that if {);}; & {y;}; observe
power laws, then so does the generalisation error £g. More-

over, for fixed f* (& « > 1), larger /3 results in slower
decaying error as S increases. This allows us to conclude:

Corollary 4.3. Let k' be defined like k in Eq. (4) but
with new eigenvalues {\.};, & corresponding general-
isation error . If X; ~ ©(i=%") Vi, then we have

log%z ~c+ (1—a)(B7t = B Ylog(9), for some c.

- ---- B 1 (more whitened)
.o —— B 1 (more collapsed)

log(Gen. error)

Less labelled data More labelled data

log(S)
Figure 5. Power law in S for generalisation error Es.

Figure 5 illustrates Corollary 4.3’s implications: kernels
with small § enjoy fast decaying error curves as S— o0,
but this means for low S, the relative error is larger for
small 8. In Figure 5, we see that a more collapsed feature
eigenspectrum can perform better at low labelled data .S,
despite performing worse at larger S. Though hypothetical,
Figure 5 shows that one can alter generalisation by simply
regulating eigenvalue decay, which we utilise in Section 5.

In Appendix A, we prove Theorem A.2, which shows that
kernels with whitened eigenspectra may perform relatively
worse at low S, compared to unwhitened eigenspectra, for
f* without power law assumptions.

Key takeaways: Generalisation and labelled data size.

* Decay rate in feature eigenspectra affects how gener-
alisation changes with labelled data size.

* More collapsed features may perform relatively better
than more whitened features on small labelled data.

5. PostMan-Pat: Post-hoc Manipulation of
the Principal Axes & Trace

In the previous section, we have seen that the degree to
which features are whitened has an impact on generalisation
error, particularly when one has varying amounts of labelled
data S. The motivation for our methodological contribution
is now clear: one can affect (& potentially improve) the
generalisation performance of SSL simply by explicitly con-
trolling the eigenspectrum decay of trained SSL methods.

Our method, named Post-hoc Manipulation of the Principal
Axes & Trace or PostMan-Pat (PMP), rescales the princi-
pal components of any encoder’s covariance Xy, after pre-
training to enforce a power law decay in the eigenvalues
{A:}4, with exponent (3 acting as a hyperparameter. We do
so efficiently by estimating the encoder covariance matrix
¥ € R *de ysing our unlabelled data X, from which
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we derive an untrainable rescaling matrix Wpyp € Rexde
detailed in Alg. 1. Then, we redefine our pretrained encoder
by appending Wemp, hpmp ()< he () Wemp, before train-
ing linear classifier W in Eq. (1) as before. Pseudocode
for PMP is provided in Alg. 1.

Algorithm 1 PyTorch pseudocode for PostMan-Pat (PMP).

# h: Pretrained encoder (with standardised neurons) .

# beta: Power law exponent.

# base_rank: Rank from which to start power law.

# B: Batch size.

# N: Unlabelled data size.

# D: Dimensionality of the encoder embeddings.

# harmonic: D-dim tensor with the i"th element 1/ (i+l).
# mm: Matrix-matrix multiplication.

# eig: SVD operator (eigenvalues in decreasing order).

class PMPEncoder (nn.Module) :
def _ _init__ (self, encoder, W_pmp):
super () .__init__ ()
self.encoder = encoder
W_pmp.requires_grad = False # Fixed
self.W_pmp = W_pmp

def forward(self, x):
x = self.encoder (x) # 1xD
return mm(x, self.W_pmp) # 1xD

# Compute feature covariance matrix.
cov = torch.zeros (D, D)
for x in loader:

z = h(x) # BxD

cov += mm(z.T, z) / N # DxD

# Compute W_pmp.
eig_vals, eig_vecs = eig(cov)
eig_ratio = eig_vals[base_rank] / eig_vals[base_rank:]
eig_rescaled = torch.ones (D)
eig_rescaled[base_rank:] = eig_ratio * \
(base_rank * harmonic[base_rank:]) .pow(beta)

W_pmp_sqrt = eig_vecs * eig_rescaled.sqrt () # DxD
W_pmp = mm(W_pmp_sqrt, eig _vecs.T) # DxD

# New PMP encoder for linear evaluation in Eq. (1).
h_pmp = PMPEncoder (h, W_pmp)

We next show that PMP does indeed result in a power law
decaying eigenspectra with exponent /3

Proposition 5.1. The PMP encoder hpyp, as described in
Alg. 1, has i) a B-power law eigenspectrum, & ii) the same
left & right eigenvectors as h.

Proof. Let UDzVT be SVD of h(X), so that
Sp=1VDVT. We defined Wenp2V R2 V7 in Alg. 1, for
R diagonal & R”:g (f)ﬂ if 1 > r & 1 else, where r
denotes the base rank.

So if hPMP((I)):h(SC)WPMP, then hpMp(X):h(X)WPMP

1
has  SVD: UDZpVT  where Dpyp satisfies
(DPMP)“-:DTT(%)'B if >r & Dii else. O

As /y-regularisation/weight decay can be thought of
as minimising an unregularised version of Eq. (1),
Zle I(f(xs),ys), subject to constraints on the ¢3-norm of
W, we see that PMP can be viewed as an alternative to lin-

ear probes, but with eigendecomposition specific constraints.

We speculate this specificity allows PMP to outperform lin-
ear probes on complex datasets, like ImageNet in Section 6.

PMP can also be viewed as using a 2-layer linear MLP
classifier, instead of W in Eq. (1), but with fixed first layer.
Training both layers in a 2-layer MLP adds non-convexity
to the optimisation process: we compare PMP to a 2-layer
linear MLP classifier with all layers trainable in Section 6.

Implementation details PMP requires a single eigende-
composition of ¥;,, which is 2048 x 2048 for a ResNet-50,
so adds minimal cost to the standard ImageNet benchmark
for SSL. To compute 3, we need a single forward pass over
unlabelled data X, or we can estimate X5, with a moving
average online. We standardise the d. neurons in / to have
zero mean and unit variance to avoid non-zero means result-
ing in a dominant largest eigenvalue. Though Corollary 4.3
and Figure 5 suggest larger values of 3 may be preferable
with smaller S, we stress there are interactions with ¢ reg-
ularisation not covered by our theory (c.f. Figure 10), & it
is important to tune hyperparameters (as usual for complex
machine learning tasks), in PMP’s case 8 & W’s weight
decay, for best results.

6. Experiments

In interest of space, experimental details not covered in
the main paper can be found in Appendix C. In all PMP
experiments we start the power-law behaviour after the tenth
largest eigenvalue, in line with Nassar et al. (2020), who
studied importance of power-law decay in eigenspectra for
adversarial robustness in NNs.

Analysis of PMP on CIFAR-10 In Figure 6, we exam-
ine the efficacy of PMP on CIFAR-10 for Barlow Twins,
SimCLR and a pretrained supervised NN compared to stan-
dard linear probe evaluation. All methods use ResNet-18
encoder. On the leftmost column, we plot eigenspectra for
different values of power law exponent 3, compared to the
original encoder. The linear trends (after the 10th largest
eigenvalue) observed on log-log scale indicate that PMP
successfully induces a power law, with larger /3 resulting in
faster decaying eigenvalues. SSL methods on the left-most
column have projector depth 2.

In all other columns, we plot the relative change in test accu-
racy when using PMP compared to standard linear probe (on
the same pretrained encoder), as a function of the power law
B. Error bars indicate 95% confidence over 20 data splits
(if applicable) & 3 independent encoder initialisations.

We see that the performance of PMP is monotonically in-
creasing in (3 for the lowest amounts of labelled data, achiev-
ing up to 4% higher test accuracy for Barlow Twins when
0.1% labelled data is available (i.e. 5 examples per CIFAR-
10 class), and that performance drops off dramatically for
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Figure 6. PMP eigenspectra (left) & CIFAR-10 test acc. relative to standard linear probe for varying labelled data sizes across methods.

low 8 when the features are more whitened. On the other
hand, when more labelled data is available, we observe drop-
offs in performance using PMP with larger 3, although with
a well-tuned /3, PMP always at least matches the standard
linear probe in test-accuracy across all settings. These ob-
servations are to be expected from Corollary 4.3: suppress-
ing the useful tail eigenmodes is helpful when not enough
labelled data is available to learn them, but can harm perfor-
mance when there is sufficient labelled data.

We also observe that encoders trained with deeper projection
layers benefit less from PMP in small S regimes. This is
again suggested by Corollary 3.4, as deeper projection layers
already have more collapsed encoder eigenspectra.

Finally, we note that PMP does not seem to be very effec-
tive for supervised encoders, which may be because we
observe in Figure 6 (bottom left) that supervised training
encourages the ResNet-18 encoder to have 10 dominant
eigenvalues (corresponding to the 10 classes of CIFAR-10,
c.f. Figure 8), and that increasing the size of the smaller
eigenvalues via lower 3 hurts performance, suggesting that
the smaller eigenmodes contain unuseful features.

ImageNet-1K For a given pretrained ResNet-50 encoder
hg, we compare PMP to other evaluation schemes on dif-
fering amounts of ImageNet-1K labelled data. We compare
PMP both to baseline schemes that are also linear in the
pretrained encoder hg: i) standard linear probe (LP), & ii)
replacing W with a 2-layer linear MLP (MLP) in Eq. (1),
as well as non-linear finetuning (NFT), where encoder hg is
also trainable. We use the same data splits for 1% & 10% as
provided by Chen et al. (2020a), and for 0.3%, we sample 3
independent subsets from the 1% split to provide standard
deviations. We use a validation split from the accessible

training labels to tune hyperparameters for all evaluation
schemes, c.f. Appendix C.

In Table 1, we see that PMP improves considerably over
other linear evaluations (LP & MLP) over a range of
labelled-data sizes & SSL methods: Barlow Twins, Sim-
CLR, & SwAV (Caron et al., 2020). Moreover, we see that
PMP consistently outperforms NFT with Barlow Twins &
SwAV encoders for smaller values of labelled data, despite
keeping hg fixed. For example, with 0.3% labelled data &
Barlow Twins encoder, PMP obtains 42.3% top-1 accuracy
compared to 40.7% for NFT. Likewise, for 1% labelled data
& SwAV, PMP beats NFT by over 2.5% in top-1 accuracy.
Our top-1 accuracy of 56.2% (obtained via PMP with Bar-
low Twins pretraining) is to our knowledge the best reported
result for an SSL-pretrained ResNet-50 encoder linearly
evaluated on 1% ImageNet-1K labels.

Interestingly, standard LP with SWAV can also outperform
NFT under label scarcity, where encoder updates may be
susceptible to intefering with the useful features acquired
during SSL pretraining. However, we also find that NFT
outperforms all linear evaluation schemes for SimCLR. Ad-
ditional experiments are provided in Appendix B includ-
ing: analysis of the effect of weight decay on PMP in low-
labelled data (Figure 10) and evaluation on the ImageNetV2
(Recht et al., 2019) test sets (Table 4).

Transfer Learning We next investigate the ability of
PMP to improve transferability of SSL features to new
datasets.  Using ResNet-50 encoders pretrained on
ImageNet- 1K, we compare linear probing against PMP on
a variety of downstream image classification tasks: CIFAR-
100 (Krizhevsky, 2009), Stanford Cars (Krause et al., 2013)
and Oxford 102 Flowers (Nilsback & Zisserman, 2008)
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Table 1. ImageNet-1K validation accuracy (%) of PMP against
standard SSL evaluation schemes, across pretrained checkpoints,
with low labelled-data (0.3%, 1%, or 10% labels). Supervised
results are from Zhai et al. (2019). Top-1 accuracies with LP on
100% labelled-data are in brackets. 1% & 2" best results per SSL
method & labelled-data level are bold & underlined respectively.

Top-1
0.3% 1% 10%

Topr-5
0.3% 1% 10%

METHOD

PRETRAIN EVAL

SIMCLR LP  342., 48.1 61.0 57243 73.8 843
(69.3) MLP 318., 452 61.5 541.3 711 85.0
PMP 359,., 509 625 57.9., 76.6 852

NFT 39.8., 52.5 67.5 655., 78.9 88.7

SWAV LP  365,, 538 682 618,, 78.8 88.8
(74.7) MLP 34644 520 67.5 593., 772 88.6
PMP 393., 559 68.5 64.1., 79.7 89.1

NFT 324.3 53.6 708
39941 550 632

57812 79.1 90.5
63842 79.0 83.4

BARLOW LP

(73.5) MLP 37.64+; 53.0 663 61.5.; 769 87.2
PMP 423.;, 56.2 673 658.; 79.7 88.6

NFT 40.7,., 553 70.0 658.; 79.6 89.9
SUPERVISED - 254 564 - 48.4 80.4

in Table 2. Across transfer datasets and pretrained SSL
encoders, we observe that our PostMan-Pat (PMP) outper-
forms linear probe (LP) evaluation. We use 100% labelled
training data from the transfer dataset in Table 1, demonstrat-
ing that while one motivation for PMP was for low-labelled
data (Section 4.1), PMP can still outperform LP on large-
labelled data settings.

Table 2. Transfer Learning: Comparison of top-1 test accuracies
(%) for PMP and LP across SSL methods and transfer datasets.

METHOD TRANSFER DATASET
PRETRAIN EvAL C-100 CARS FLOWERS
SIMCLR LP 65.26 46.88 84.65

PMP 66.13 47.83 85.88
BARLOW LP 74.19  69.36 92.29
PMP 75.10 69.67 92.54
SWAV LP 75.24  63.39 90.47
PMP 76.10 64.46 92.00

Different Architectures To assess whether PMP is able
to improve label efficiency across different encoder archi-
tectures, Table 3 shows compares linear probing and PMP
for a ViT-B/16 vision transformer (Dosovitskiy et al., 2020)
pretrained using MoCo-v3 (Chen et al., 2021) on ImageNet-
1K. We see that PMP consistently improves against LP for
ViT-B/16 with lower labelled settings, e.g. 55.2% vs. 54.0%
Top-1 on 0.3% labels, and 65.1% vs. 64.5% on 1% labels,
although the improvement is more modest on 10% labels.
Understanding better how the encoder architecture impacts
SSL features (beyond Corollary 3.4), and hence PMP’s ef-
fectiveness, is interesting future work.

Table 3. Different Architecture: PMP and LP ImageNet test ac-
curacies on 1% and 10% labels using ViT-B/16 with MoCo-v3.

Tor-1 Tor-5
EvaL 0.3% 1% 10% 0.3% 1% 10%
LP 54.043 64.5 723 78.013 86.6 91.2
PMP 55.2,, 65.1 724 787,, 868 91.2

7. Summary & Discussion

Inspired by work on feature whitening self-supervised learn-
ing (SSL) to avoid collapse, we explored the gap between
whitening & collapse in SSL. We identified power law be-
haviour in feature eigenspectra decay as a possible way
to bridge between these extremes, and studied the design
choices in SSL that affect the rate at which feature eigen-
values decay. We demonstrated theoretically & empirically
that weaker regularisation in Barlow Twins & deeper pro-
jector layers lead to more collapsed encoders. Moreover,
we found empirically that generalisation performance in
SSL is non-monotonic in the degree of feature whitening,
& highlighted the significance of considering feature eigen-
spectrum decay in label scarce settings. Finally, we used
our insights to motivate a novel post-processing method:
PostMan-Pat (PMP) that efficiently enforces a power law in
encoder eigenvalues, & demonstrated the ability of PMP to
outperform other linear schemes (consistently) & non-linear
finetuning (at times) across low labelled-data settings. We
hope that the improved label efficiency of PMP can be ap-
plied to practical settings of label scarcity. More generally,
we hope that our work leads to further progress in SSL by
highlighting both the spectrum that exists between collapsed
& whitened features, and that where one lies along this spec-
trum is significant for generalisation performance & label
efficiency.

‘We point out that although we provide empirical evidence
from practical settings to corroborate our theoretical results,
our theory has some non-standard assumptions to ease an-
alytical exposition, such as linear projector MLPs, much
like related theoretical work in SSL (Tian et al., 2021; Wang
et al., 2021; Jing et al., 2021). Moreover, we have not
studied the actual features acquired during SSL pretraining,
e.g. the impact of transformation choice, instead showing
that one can improve generalisation accuracy simply by
rescaling pre-defined features. Finally, compared to stan-
dard linear probes, PMP introduces a new hyperparameter
£ which needs to be tuned, although it is worth noting that
PMP has far fewer significant hyperparameters than non-
linear finetuning. For future work, it would be interesting
to design an SSL method that directly factors in the rate of
feature eigenvalue decay into the pretraining regime, & also
to study tuning schemes for PMP hyperparameters.
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Exploring the Gap between Collapsed & Whitened Features in SSL

A. Proofs & Additional Results

Throughout, we use o, O, © to denote standard mathematical notation for order size.

A.1. Proposition 3.1

We start by proving Proposition 3.1.

Proposition 3.1. Suppose an NN encoder+projection trained via Barlow Twins (Zbontar et al., 2021) achieves (i) training
2

loss Lgr = €, & ii) 3a < b positive constants such that a < Y7, < b ,Vi€[d,] . Then, if ¢ < 5, the projector has a

whitened eigenspectrum.

Proof. Because Lyt = ¢, we see that the off-diagonal contribution to the loss satisfies:

ZZC%

i=1 j#i

7 . .
From Eq. (3), we see that Cij:ﬁ up to transformations (see remark below), and from assumption ii), we deduce

1,174,

that:

dp
YY(E) <

b2e
i=1 j#i P

Thus, if diag(X*) denotes the diagonal version of X* , then we see that

b2
Idiag(2?) — 22[|% < ==

. .. . . . 2
Recall that the squared Frobenius norm of a matrix is also the sum of its squared eigenvalues. So if E < a?, then we have

a whitened projection eigenspectrum of X%, with new constants a’ = /a2 — %e and ' = (/b% + " ¢ satisfying Def. 2.1.
O

Remark A.1. Though it is not strictly true that C;;= due to the input transformations in C};, we note that test-time

feature-averaging across transformations has been shown to be an effective method (at the expense of extra forward passes)
to improve generalisation of contrastive SSL (Foster et al., 2021).

In this case, we can replace features z(z) € R% with augmented features Z(x) € R%*X where Z(x); = z:(Tk(x)),

corresponding to K independently sampled transformations {7} } X, T

Then, the natural covariance definition 7, = % SN | (Z(z,)Z (n)"), ; does satisty Cy;= in the K — oo

limit.
A.2. Proposition 3.3

We next prove Proposition 3.3, restated below:

Proposition 3.3. Suppose we have an L-layer linear MLP, f(x)= Hlel W, -« € R, trained to convergence using
gradient flow & no bias terms on some loss L(f (X)) with weight decay 1 > 0. Assume further that the first layer matrix
Wi € RUX4 & input covariance matrix £ € R4*¢ are aligned as in Def. 3.2. Then:

1. Adjacent layers’ matrices Wi & W;_1 become aligned during training for 1 <l < L so that principal components can
be grouped together across layers. If \; j denotes the 7™ eigenvalue of the empirical covariance of features at layer |,
then:
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2. For any uncollapsed output eigenvalue j with \r, ;>0 & any two layers 0<k<l (where k = 0 denotes the input layer),
we have:
=

l—k
A=Ak ) T=F (AL j) T=F,

i.e. \jj is a weighted geometric mean between My, ; & Ap_j, with weighting specified by closeness to k or L.

Proof. If our linear MLP is f(x) = H1L:1 W - « with weight matrices W; € R%*d-1_then gradient flow on loss £ with
weight decay n > 0 yields dynamics (c.f. (Ji & Telgarsky, 2018)):

Wi= =Wy WixX Wi Wik, —aw, ©)
Vvl > 1, where:
= xT 20 € R¥<s, ()
Of lp=rx)
We see from Eq. (6) that:
W Wi+ W We = Wi Wi + Wi Wiy, )

and taking the transpose of Eq. (8) yields:

WIW, + gWEW, = Wi W + Wi Wik, 9)

Taking the sum of Egs. (8) and (9), and integrating both sides with respect to time gives us:

WEW, = Wi W | + Cre™, (10)

for some constant matrix C;. Thus, we see that limtﬁooVVlTWl — Wl,1WlT_1 =0.Ifwelet U, D, V}T denote the Singular
Value Decomposition (SVD) of W in this limit, then (noting that SVDs are unique only up to permutations of the principal
components, so we are free to choose a permutation that ensures alignment) we see that:

o VlTUl_l =14 ,, VI>2.
«Dj=-..=D;=Dy_,=---=Dj.

This concludes the proof for 1).

For 2), recall we assumed that VT U,, = I, where the empirical input covariance has SVD $% = U, D2UZ". For simplicity,
we can assume that the input distribution is centred % >, &, = 0 without loss of generality due to linearity, which ensures
that the empirical output distribution is too: x>, f(®,) = 0.

Thus by construction, the empirical input covariance is X% = % >on x, L, s0 we can put everything together and calculate
the output covariance to be:

1
L __ T d d
» 7N;f(wn)f(wn) € R xdr an
ZWL"'Wl'Zm'WlT"'Wg (12)
L
= UL<HD?)D3ULT (13)
=1
= U.D¥*D2UT (14)

Let us denote 7; = (D1)? ; and Ao ; = (Dg)? ;. then we see from Eq. (14) that A, ; = /Ao ;, such that v; = (iﬁJ ).
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In a similar vein to Egs. (11) to (14), it is simple to calculate the empirical covariance at layer [ > 0 by

> =UD¥DIUT. (15)
We thus conclude that A; ; = Ag ; ( o " )% = (Ao, J) =t AL, )% VI, from which the result 2) follows easily, by noting that
o\ ARt
Li is constant in [: i.e. one can set ; = | ki and simplify. O
(AL )T >\L AT (AL )T

A.3. Theorem A.2

Finally, we state and prove Theorem A.2. Suppose that we have two kernels k; and k2, with which we want to learn two
(potentially different) functions f; and f5 respectively using kernel ridge regression. If one kernel has whitened eigenvalues
but the other does not, then the whitened kernel has relatively worse generalisation error at a particular value of labelled
data §* < oo, under certain assumptions. Note Theorem A.2 does not require power law assumptions on f;, unlike
Proposition 4.2.

The intuition is that all eigenmodes are learnt as S — oo, but at a large but intermediate value of S* (depending on ridge
parameter o and the level of imbalance in eigenvalue sizes), only the largest eigenvalues are learnt. As it is harder to learn
the smaller eigenvalues (in the sense that we need more data to learn the same size eigenmode 4.7 if eigenvalue ); is smaller,
c.f. Eq. (20)) compared to larger eigenvalues, at this intermediate value of S* it is possible to have relatively lower error at
the small eigenmodes by not learning the small eigenmodes (and only learning the dominant eigenmodes), compared to
larger values of S:

Theorem A.2. For a€[2), let kernel k, have sorted (in decreasing order) eigenvalues {/\a,i}?i1 & eigenfunctions {¢a,i}g;1~
Let f* be such that I pua.: Y0, satisfying Eq. (5) with {1}, i.e. f(x) = Zf;l Ha,iVa.i ().

Suppose & X _—G)( ), Va € [2],i € [da], and also that 0® = O(1) is fixed.

Suppose also {2, }i are whitened, but {\ ;}; are not, in that 3i € [dy], and M > 0 large sansfymg )\ = M>0and
A11=06(1).

If we try to learn f with kernel k, via ridge regression with ridge parameter o2, and let ES denote the associated
generalisation error.

Then:

Ss S—o0 dq #17 M21
1. —>C’ where C' > 0 satisfies ) ,~, v —sz 132

2. Moreover, if M is large enough, then 3S* <oo depending on o2 and \; s.t. 55* <C.
£z,

Proof. Fora = 1,2, let us define

W, ;= Ha,i
a,t — )
\ )\a [
such that f*(x) = Z 1 Wa,i1/Aa,ia,i(x) and let 52‘1 g denote the generalisation error associated to mode ¢ for learning
function f, so that by orthogonality, we have
£g =Y &l (16)
i

Then, from Bordelon et al. (2020) (Proposition 3), we have the following approximation:

fa wii 1 S -2 S’Ya(S) -
o=t rnm) (@ raer) w
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where ¢,(5) is the solution to the implicit equation

d —1
- S
—_ 18
z—1< Aaji 02+ta(s)> ’ (%)
and 7, (.5) is defined by
= y 75 - (19)
i=1 a @ 02 + ta(S) .

Note that, 0 < ¢,(S) < Z?;l Aai < 00, and likewise 0 < ~,(S) < Z ° )\il < o0o. Moreover, we have
Ya(S) < ©(S72). Also note that t,(S) = o(1) as S — oo.

Then, as S — oo, we have from Eq. (17):

A a4w27i
&g = m(l +0(1)). (20)
So from Eq. (16), we see that
5*; CiniNgi @1
S

where C satisfies

wl i w3 ;
Z TP Dbt (22)

This concludes the proof for 1).
Now we are given that M\, ; = A1 1 = O(1) for large M.
Suppose that we have S* satisfying:

S*
1<« —> <M 2). 2
< ariE <M Va € [2] (23)

We know that such an S* exists as 02 < 02 + £4(S) < 02 + 3%, Aoy < 00,5, a € [2].

Then, we have:

51 « 2 A * -2 % 2
o :wx<xl+ TR > <A1+Ss> @9
Elg- WinAni\ALi O + t1(S™) 11 02+ 11(S")
2 2
wy ;A1 ApiS* S*
) ' 1 25
w%,l)‘lﬂ <0’2+t1(5*)> < +O(S )+O( )>7 ( )

and by construction, we have
A1iS*

K1
Zrt(5)

so we see that:
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51 2
gi,S* wl,i)‘Ll

_ Ta—
El g WinALi

(26)

>

s
A1
i s

S

from Eq. (20) (27)

=limg

* w? 2 .
upto (1+O(g5) + O(%7)) multiplicative error, as /\11 = ’1% = 0(1) > 0 by assumption.

Likewise, for j ¢ {i,1}, we know A1,; < A11 (as eigenvalues are sorted so Aq; is the largest eigenvalue), so that from
Eq. (24) (replacing ¢ with j):

Ajl.S* w% j\ 1,1 . A}S
51 <— = limg_, Al’ . (28)
Ei g WiiAL is
On the other hand, for ks, as (A2 ;); are whitened, i.e. Ao ; = ©(1), Vi, we have:
22 = limg_y00 52 (29)
7 5 =l
up to (1 + O(g+)) multiplicative error.
Finally, we have the following ratio for the dominant eigenmode errors between k; and ks:
Elge wiidon( 1 s* o s ’
= ( + 2> ( + 2) x (30)
£ g wi A1 \ A1 0% +1(S5%) Ao 02+ ta(S)
o Sy NG S ) G31)
(02 4+ 11(5%))? (02 +12(5%))?
(32)

but note that by construction in Eq. (23), S* satisfies 1 (S*), t2(S*) = o(c?) as we recall 02 = ©(1). Moreover, as both
A1,1 and Ag; are ©(1), we have (up to (14 O(g=) + O(%)) multiplicative error):

1 2
51,5* _wl,l)‘ll

=02
Elg.  wWiiAia

(33)

™

1
—limg s }2*5 . (34)
5175

Putting this all together, for large enough M & S* satisfying Eq. (23) (such that all (1 4 o(1)) multiplicative errors may be
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ignored):
51 dq £l
& _ Zm:l m,S* (35)
& yh e,
A di Epysn
gll,S* mel 511,5* (36)
52 * d é] S*
1,8 Zj2=1 ‘élz,s*
A i Ems
. gll,S Zm:l 511,5
< limg_, 0 T by Eqgs. (26), (28), (29) and (34) 37
€is Zdz LS
’ =l ézg
, £l
= hmg_mc%g (38)
€5
= (39)
as required. O

B. Additional Experiments

STL-10 analysis Figure 7 is akin to Figure 4, but trained with Barlow Twins on STL-10 dataset. Training hyperparameters
matched exactly the values in Figure 7, except slightly different data-augmentations (Color Jitter & Gaussian Blur) were
used for SSL pretraining, matching the default values of the codebase in Footnote 2. We observe similar trends in Figure 7
to Figure 4 where deeper projections have more collapsed encoder representations, and also test accuracy is not monotonic
in the degree of whitening.

78
— A T 4
76 P 9. @
o N
- ’ \,‘!;\‘— ————— *
> / - - So
® 74 ¥/ o ‘ ~
5 Val I N * s

4
O / ¥ N *
Q K ’ S,
© 72 s AN
n /' /,
1] 4
=70 I~
S / I,’ Projection MLP depth
N ! / -—1
[ —
5 68 ,f‘l 2
/ 3
66 4
0 5 10 15 20 25

Normalised eigensum

Figure 7. Akin to Figure 4 but using STL-10 as unlabelled dataset for Barlow Twins training as opposed to CIFAR-10.

Gram matrices across methods In Figure 8 we plot feature Gram correlation matrices, with (4, )™ entry

(he(i), he(z;))
[he (i) ll2[lhe(x;)]]2
over 1000 CIFAR-10 test points, for the 3 pretrained ResNet-18 (either with SimCLR, Barlow Twins, or Supervised)

displayed in Figure 6. We see that the NN trained with supervision has feature Gram matrix that is much closer qualitatively
to the classwise Gram matrix in R1000%1000 (which takes (i, j)™ value 1 if input 7 and input j are from the same class, and 0
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else). As the classwise Gram matrix has exactly C' non-zero eigenvalues for C classes, this provides evidence that the feature
collapse in Figure 6 (bottom left) is due to the fact that the 10 dominant eigenvalues correspond to the 10 different classes in
CIFAR-10. This is consistent with the recently observed Neural Collapse phenomenon (Papyan et al., 2020). On the other
hand, without training labels, SSL methods do not have as obvious a correspondence between dominant eigenvalues and
classes.

CIFAR-10 Normalised eigenvalues Classwise feature gram matrix

le-1

le-2

le-3

Barlow Twins

le-4

le-1

le-2

le-3

SimCLR

le-4

=

—— E-value size

Supervised

-
?
EN

=

10 100 512
Eigenvalue rank

Figure 8. Feature eigenspectra and Gram matrices corresponding to Figure 6, over 1000 CIFAR-10 test examples.

ImageNet-1K with large labelled-data. In Figure 9 (right), we plot the performance of PMP with Barlow Twins
pretrained ResNet-50 encoder when given access to all 1.2 million training labels for evaluation. We see that PMP is able to
match the performance of standard linear probe of 73.5% at values of 8 = 0.8. This is unsurprising given Figure 9 (left),
which shows that the encoder eigenspectra (after rank 10) already approximately decays with exponent 0.9. Weight decay
0.0001 is used. It would be interesting to see if one can improve SSL in large labelled data regimes with more optimal tuning
of e.g. weight decay, but for this it would also be desirable to first design more efficient methods of PMP hyperparameter
tuning.

Interactions between weight decay and [ for low labelled data. In Figure 10, we plot the accuracy of PMP with
SimCLR, SwWAV and Barlow Twins pretrained ResNet-50 encoders with 1% training labels, for different values of weight
decay. For smaller values of weight decay, we see that larger 3, corresponding to more collapsed features, yield higher
top-1 accuracy. This is consistent with the findings of Corollary 4.3, Theorem A.2, and Figure 6, where suppressing the
smaller eigenvalues is useful in low labelled data regimes. However, we also find that for larger values of weight decay,
this trend is reversed, in that the best values of 3 are small, hence more whitened eigenspectra perform better. Indeed, the
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Figure 9. Barlow Twins eigenspectra plot (left) & ImageNet-1k validation accuracy using all 1.2 million training labels for PMP as a
function of 3 (right). We see that the best values of S match standard linear probe at the value of 5 = 0.8 which matches the rate of
decay of the original encoder. The encoder was pretrained with Barlow Twins and taken from the official implementation of Zbontar et al.
(2021). Weight decay 0.0001 was used at evaluation time.

SimCLR with 1% labels SWAV with 1% labels Barlow Twins with 1% labels
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Figure 10. Accuracy in low labelled data setting as a function of PMP power law exponent 3 for different weight decay settings.

best performing hyperparameter setting chose a relatively large weight decay combined with small /5 (although we see that
too large weight decay also hurts accuracy, particularly for better performing encoders: SWAV and Barlow Twins). This
surprising observation is not covered by our theoretical results (which concern fixed weight decay), but does emphasise the
importance of where an encoder lies along the gap between collapsed & whitened features, and its decay rate of eigenspectra,
in determining its generalisation performance, particularly in low-labelled data settings.

B.1. ImageNetV2 results for PMP

To verify that our results in Table 1 are not overfit to the ImageNet-1K validation set, in Table 4 we provide corresponding
results for evaluating PMP in low-labelled settings (from the ImageNet-1K training set) on the ImageNetV2 test datasets.
We observe the same trends in Table 4 as in Table 1: PMP always outperforms LP; PMP often outperforms NFT; and LP
sometimes outperforms NFT on SwAV.

C. Experimental Details
C.1. Figure 3

Our SimCLR implementation was taken from an open-source codebase” & we used default hyperparameters provided like
0.5 temperature for InfoNCE; our Barlow Twins implementation used Alg. 1 of Zbontar et al. (2021).

Both Barlow Twins & SimCLR ResNet-18 encoders used projectors of depth 2, with ReLU & BatchNorm. Barlow Twins
used wide projector width 1024 & batch size 256 whereas SimCLR used smaller width 256 & larger batch size 512, which
are all standard hyperparameter choices. All networks were trained with SGD loss for 100 epochs with weight decay 0.0004,
momentum 0.9 & a cosine annealed learning rate.

“https://github.com/facebookresearch/luckmatters
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Table 4. ImageNetV2 test evaluation: PMP top-1 % accuracy vs. LP & non-linear finetuning (NFT) on the 3 ImageNetv2 test sets:
Matched Frequency (MF), Threshold0.7 (T-0.7) & TopImages (Top-I), across low-label settings & SSL methods.

METHOD LABELS EvAL MF T-0.7 Topr-I

BARLOW 1% LP 44.18  52.65 58.85
PMP 45.60 54.11 60.03

NFT 45.00 53.39 59.06

10% LP 51.62 60.40 66.32
PMP 55.36 64.49 70.65

NFT 58.57 67.46 73.15

SIMCLR 1% LP 37.78 45.73 51.58
PMP 40.89 49.06 54.62

NFT 41.76 49.80 55.63

10% LP 48.62  57.77  64.15
PMP 49.77 59.26 65.72

NFT 54.80 64.00 69.70

SWAV 1% LP 42.46  50.68 57.15
PMP 44.24 52.44 58.63

NFT 42.74 50.21 56.70

10% LP 55.68 64.76  70.88
PMP 56.44 65.29 71.54

NFT 58.76 68.13 73.92

Factors such as learning rate and regularisation strength were chosen to ensure all networks achieved similar test accuracy
under linear probe (285%). Learning rate was 0.32 for SimCLR & 0.25 for Barlow Twins, with p = 0.01. All methods
used the default data-augmentations on CIFAR-10 as described in Chen et al. (2020a).

C.2. Figure 4
All training details follow Figure 3 above, though we add that the values for p used were {0.001, 0.003, 0.01,0.03,0.05}.

C.3. Figure 6

For all PMP experiments, we start eigenvalue decay power law after the tenth largest eigenvalue in PMP, Alg. 1. This is
consistent with Nassar et al. (2020), who studied importance of power-law decay in eigenspectra for adversarial robustness,
& the findings of Stringer et al. (2019). For the subsets of labelled data (including for 0.3% ImageNet-1K too), we sample
uniformly at random from the CIFAR-10 train set, ensuring that all classes have an equal number of examples (so that 0.1%
labelled-data corresponds to 5 examples per class). In all cases at evaluation time, for linear probe or PMP, we trained W¢
using SGD for 50 epochs with batch size 128, momentum 0.9, weight decay 0.001, learning rate 0.1 and cross-entropy loss.

The supervised NN was trained for 160 epochs using SGD+momentum with learning rate 0.05 and batch size 128. Weight
decay for supervised training was set to 0.0003 to ensure the NN also achieved similar CIFAR-10 test accuracy (85%).
To that end, standard data augmentation (random crops & flips) was not used to train the supervised NN, and the only
preprocessing of images was normalising before training.

C.4. ImageNet-1K evaluation: Table 1

Our ImageNet-1K implementation was based off the official Barlow Twins (Zbontar et al., 2021) implemtation®, which is
also where we obtained the ResNet-50 Barlow Twin checkpoint pretrained on ImageNet-1K. The SimCLR (Chen et al.,
2020a) & SwAV (Caron et al., 2020) ResNet-50 checkpoints were obtained from the VISSL library’s (Goyal et al., 2021)
model zoo. In particular, we selected the SimCLR checkpoint that was trained for 800 epochs, and the SWAV checkpoint
that was trained for 800 epochs with multi-crop setting: 2 x 224 4+ 6 x 96. These selections were based on the best top-1
accuracy performing checkpoints (under linear probe).

*https://github.com/facebookresearch/barlowtwins
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The top-1 accuracies under linear probe in Table 1 have slight discrepancies to those reported in VISSL (< 0.4% difference),
possibly reflecting slight differences in linear evaluation training schemes e.g. we use weight decay 0.0001 & normalise
each of the 2048 features to have zero mean and unit variance across the unlabelled ImageNet-1K dataset. Indeed, we
normalised neurons across all linear evaluation schemes & all labelled-data settings, in order to avoid the setting where
non-zero means result in a single eigenvalue that is orders of magnitude larger than others.

In all linear evaluation schemes: standard linear probe (LP); 2-layer linear MLP classifier (MLP); & our PostMan-Pat (PMP),
we train the classifier for 100 epochs using SGD & momentum 0.9, with a cosine annealed learning rate starting at 0.1, with
weight decay tuned in all cases (along with power law exponent 3 for PMP). For the linear MLP classifier we used single
hidden layer of width 4096.

For non-linear finetuning (NFT), we tuned followed the same training procedure, apart from additionally tuning the number
of training epochs (between 20 & 40, which is consistent with Zbontar et al. (2021)), as well as separate encoder & classifier
learning rates. In NFT, we did not use weight decay for the encoder, as this would remove the useful features learning in the
encoder during pretraining. However, we did tune weight decay for the linear classifier W¢.

Hyperparameter tuning data splits For any given set of labelled data, we split the data into 4:1 splits for the 1% or 10%
labelled-data setting, or 2:1 splits for the 0.3% labelled-data setting (as in the 0.3% setting we have only 3 labels per class).
Splits were chosen uniformly at random so that each class had an equal number of examples in the larger split, which was
then used for training. Top-1 accuracy on the smaller split was used for hyperparameter tuning.

C.5. Dataset Transfer: Table 2

We found it important to recalculate the PMP rescaling matrix Wpyp on unlabeled data from the new dataset, and all
hyperparameters were tuned on a 4:1 split of the training data. For Oxford Flowers, as there are only 1020 training images,
which would result in a low-rank approximation to Wpyp € R2048%2048 for each training image we generate 10 data
augmented versions (using standard random crop and horizontal flips) to estimate the empirical covariance used in Wpyp.
All datasets were obtained from the Torchvision PyTorch library (Paszke et al., 2019)

C.6. Different Architecture evaluation: Table 3

All experimental details follow those in Appendix C.4, and the pretrained ViT-B/16 checkpoint was again obtained from
VISSL (Goyal et al., 2021).

D. Postman Pat

The Postman Pat abbreviation (which we further shorten to PMP) for our method, Post-hoc Manipulation of the Principal
Axes & Trace, was inspired by the now retired British children’s TV character: Postman Pat, pictured in Figure 11 with his
cat Jess (though in the Danish version Jess is renamed to Emil).

Figure 11. Postman Pat and his cat Jess.



