
HyperPrompt: Prompt-based Task-Conditioning of Transformers

Yun He * 1 Huaixiu Steven Zheng * 2 Yi Tay 2 Jai Gupta 2 Yu Du 2 Vamsi Aribandi 2 Zhe Zhao 2 YaGuang Li 2

Zhao Chen 3 Donald Metzler 2 Heng-Tze Cheng 2 Ed H. Chi 2

Abstract
Prompt-Tuning is a new paradigm for finetun-
ing pre-trained language models in a parameter-
efficient way. Here, we explore the use of Hyper-
Networks to generate hyper-prompts: we propose
HyperPrompt, a novel architecture for prompt-
based task-conditioning of self-attention in Trans-
formers. The hyper-prompts are end-to-end learn-
able via generation by a HyperNetwork. Hyper-
Prompt allows the network to learn task-specific
feature maps where the hyper-prompts serve as
task global memories for the queries to attend to,
at the same time enabling flexible information
sharing among tasks. We show that HyperPrompt
is competitive against strong multi-task learning
baselines with as few as 0.14% of additional task-
conditioning parameters, achieving great param-
eter and computational efficiency. Through ex-
tensive empirical experiments, we demonstrate
that HyperPrompt can achieve superior perfor-
mances over strong T5 multi-task learning base-
lines and parameter-efficient adapter variants in-
cluding Prompt-Tuning and HyperFormer++ on
Natural Language Understanding benchmarks of
GLUE and SuperGLUE across many model sizes.

1. Introduction
Prompt-Tuning (Lester et al., 2021), learning to condition
large language models with soft learnable memory tokens,
have recently garnered attention owing to their ability for
parameter-efficient finetuning. Prompts are lightly tuned,
allowing the model to be trained quickly since the main
body of the pretrained model is kept frozen. To this end, this
paradigm is strongly reminiscent of adapter layers (Houlsby

*Equal contribution 1Texas A&M University, work done as an
intern at Google 2Google Research 3Waymo LLC. Correspondence
to: Huaixiu Steven Zheng <stevenzheng@google.com>, Yi Tay
<yitay@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

220M 770M 3B 11B
Parameters

70

75

80

85

90

95

Su
pe

rG
LU

E
Sc

or
e

MODEL
 HyperPrompt

Prompt-Tuning (Lester et al.)
MTL
Prompt-Tuning
HyperFormer++

Figure 1. HyperPrompt achieves state-of-the-art performance on
SuperGLUE for T5 models up to XXL. Prompt-tuning (Lester
et al., 2021) with tuning prompt parameters only achieves compet-
itive performance against multi-task learning (MTL) baseline for
the 11B parameter model with a big performance gap for smaller
models. HyperPrompt-Global outperforms the strong parameter-
efficient adapter variant HyperFormer++ (Karimi Mahabadi et al.,
2021), the MTL baseline, and the full fine-tuning of Prompt-Tuning
(our implementation) across model sizes with a large margin [e.g.
91.3 vs 90.2 (MTL) for T5 XXL].

et al., 2019a; Karimi Mahabadi et al., 2021; Zaken et al.,
2021; He et al., 2021) which are also efficiently finetuned.

We introduce HyperPrompt, a natural but novel extension of
Prompt-Tuning to multi-task learning (MTL) for language.
HyperPrompt introduces task-conditioned hyper-prompts
that conditions the model on task-specific information for
constructing these prompts. Hyper-prompts are injected
to the keys and values in the self-attention module, remi-
niscent of memory augmented Transformers (Sukhbaatar
et al., 2019). This mitigates the cost of having prompts pass
through the standard FFN layers in Transformers and serves
as additional task-specific memory tokens for queries to
attend to.

We further improve upon this by introducing task-aware and
layer-aware HyperNetworks (Ha et al., 2017) that parameter-
ize and generate weights for the prompt generation process.
The usage of HyperNetwork imbues our model with the
necessary flexibility and expressiveness, especially when it
comes to incorporating task-specific and layer-specific infor-
mation to the network. Meanwhile, HyperPrompt remains
very parameter and computational efficient and friendly
to multi-task scaling: the additional parameters scale sub-

HyperPrompt: Prompt-based Task-Conditioning of Transformers

linearly with, and are independent of the number of tasks
in practice. While Hypernetworks have enjoyed some suc-
cess in learning adapters (Karimi Mahabadi et al., 2021;
Tay et al., 2020) and/or continual learning (von Oswald
et al., 2019), we note that this is the first exploration of
HyperNetworks as a prompt generator.

Contrary to prior work, we additionally propose to finetune
the entire network instead of only the hyper-prompts. We
make several compelling arguments for this. Firstly, Lester
et al. (2021) shows that parameter efficient Prompt-Tuning
only shines for large (e.g., 11B) models and substantially
pales in comparison to fine-tuning when the model is mod-
erately parameterized (e.g., 220M). Secondly, finetuning
only adaptive parameters (e.g., prompts/adapters) simply
presents an illusion of efficiency (Dehghani et al., 2021).
In reality, the FLOPs incurred by the model is still identi-
cal on the forward pass, which saves no compute during
inference. Parameter counts, especially when including only
prompts and adapters, are not the only measurement of com-
putational efficiency. Instead, the FLOPs and training time
should be considered together to provide a holistic view.

Our Contributions Our main contributions include:

• We propose a novel HyperPrompt Transformer archi-
tecture with learnable hyper-prompts for multi-task
fine-tuning with great parameter and computational
efficiency.

• We demonstrate that for difficult tasks, it is crucial
to fine-tune the task-specific parameters together with
the backbone model to achieve Pareto efficiency on all
tasks.

• We explore HyperNetworks as a prompt generator, and
inject hyper-prompts into the self-attention module as
global task memory tokens.

• HyperPrompt outperforms state-of-the-art parameter-
efficient T5 models (Raffel et al., 2019) using Prompt-
Tuning or adapters on well-established benchmarks
such as SuperGLUE and GLUE, across all explored
model sizes (see Figure 1).

2. Problem Statement
We consider the general setting of multi-task learning
for a set of tasks {Dτ}Tτ=1, where T is the total num-
ber of tasks and {Dτ} = {x(n)τ , y

(n)
τ }Nτn=1 indicates the

corresponding training set of the τ -th task with Nτ sam-
ples. We assume that a pre-trained Transformer model
fθ(·) (e.g., T5) is given, where the model is parameter-
ized by θ. To tackle such multi-task learning problem
with fθ(·), we minimize the following objective function
L(θ) =

∑T
τ=1

∑Nτ
n=1 C(fθ(x

(n)
τ), y

(n)
τ), where C(·, ·) is

typically the cross-entropy loss and fθ(x
(n)
τ) is the output

for training sample x(n)τ .

Transformer-based pre-trained language models such as T5
(Raffel et al., 2019) and BART (Lewis et al., 2020) are
unified text-to-text frameworks where all tasks share the
same encoder-decoder architecture – {{x(n)τ }Nτn=1}Tτ=1 are
fed into the same encoder and {{ŷ(n)τ }Nτn=1}Tτ=1 are gen-
erated by the same decoder. For such universal modules,
multi-task learning simply corresponds to mixing task data
sets together and there is no task-specific classification or re-
gression networks for each task as in encoder-only modules
Devlin et al. (2019); Liu et al. (2019b).

Previous work Raffel et al. (2019) shows that co-learning
all tasks together on a pre-trained Transformer model is
inferior to fine-tuning on each task separately. A possible
reason is that θ is task-agnostic (i.e., all parameters are
shared) and hence task-specific information is not well cap-
tured which can be especially true for low-resource tasks.
Therefore, a natural way to improve the performance of
Transformers on multi-task learning is to introduce a set
of task-conditioned parameters {δτ}Tτ=1 into fθ(.). The
objective function can be updated as L(θ, {δτ}Tτ=1) =∑T
τ=1

∑Nτ
n=1 C(fθ,δτ (x

(n)
τ), y

(n)
τ), where δτ is the task-

specific parameterization for the τ -th task. During training,
both θ and {δτ}Tτ=1 are updated via back-propagation be-
cause we observe a large performance drop in SuperGLUE
when backbone model θ is frozen and only task-conditioned
parameters are tuned, as done in Karimi Mahabadi et al.
(2021), which will be detailed in Section 4.3.

To this end, our goal is to design task-conditioned param-
eterization of Transformer models to achieve greater pa-
rameter and computational efficiency as well as Pareto ef-
ficiency for multi-task learning. More explicitly, we have
two goals: (1) improving the finetuning performance of
most tasks in {Dτ}Tτ=1 by introducing task-conditioned pa-
rameters {δτ}Tτ=1 into fθ(.) and (2) under the constraint
that

∑
τ ‖{δτ}Tτ=1‖0 � ‖θ‖0, which means that the model

capacity will not be significantly increased. And the compu-
tational cost would not increase substantially either.

3. Methods
In this section, we introduce HyperPrompt which has
three variants: HyperPrompt-Share, HyperPrompt-Sep and
HyperPrompt-Global (Figure 2). We follow two key design
principles to formulate HyperPrompt: (1) injecting task-
conditioning into self-attention module for better computa-
tional efficiency and more expressive power via token-level
interactions, and (2) using HyperNetworks to simultane-
ously improve the parameter efficiency and allow a flexible
degree of task sharing for better generalization.

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Scaled Dot-Product Attention

Concat

Linear

QKVPV PK

Multi-Head Attention

UV

RELU

P

DV

PV PK
Local (at each layer)
HyperNetwork hk,v

Hyper Prompts Global Prompts

(a)

Global HyperNetwork Hk,v

UK,V DK,V

I
Layer-Aware Task Embedding

HyperPrompt-Share/Sep HyperPrompt-Global(b) (c)

UK

RELU

DK

Figure 2. HyperPrompt framework: (a) in each Transformer block, task-specific hyper-prompts PK,V are prepended to the original key K
and value V for the query Q to attend to, (b) in HyperPrompt-Share/Sep, global prompts P are used to generate the hyper-prompts PK,V
through local HyperNetworks hk,v at each Transformer layer, which consists of a down-projection matrix DK,V , a RELU layer and a
up-project matrix UK,V , (c) in HyperPrompt-Global, all the local HyperNetworks (DK,V , UK,V) are generated by global HyperNetworks
Hk,v using layer-aware task embeddings I as task-specific inputs (see Section 3.3 for details).

3.1. Prompt-Based Task-Conditioned Transformer

Previous adapter-based methods (Karimi Mahabadi et al.,
2021; Tay et al., 2020) for multi-task learning normally add
an adapter (i.e., dense-relu-dense network) for each task
after the feed-forward layers at every Transformer block.
Instead, the key idea of our approach is to prepend l task-
conditioned trainable vectors to the keys and values of the
multihead self-attention layer at every Transformer block,
where the task-specific attention feature maps are jointly
learned with the task-agnostic representation.

The idea of prepending learnable prompts to the network is
explored before by Li & Liang (2021); Lester et al. (2021);
Liu et al. (2021) for single-task fine-tuning. We first intro-
duce and expand this idea for multi-task learning in this
subsection. Specifically, we design a novel method called
HyperPrompt following the design principle #1 of injecting
hyper-prompts into self-attention and #2 using HyperNet-
works as generators for hyper-prompts.

At a multihead self-attention layer, the original key, value
and query are calculated as Kτ = XτWk, Vτ = XτWv,
Qτ = XτWq , where Xτ ∈ RL×d is the input sequence of
a training sample from the τ -th task, L is the sequence
length, d is the model dimension. Wk ∈ Rd×h×dh ,
Wv ∈ Rd×h×dh and Wq ∈ Rd×h×dh project the input
into original key Kτ ∈ RL×h×dh , value Vτ ∈ RL×h×dh
and query Qτ ∈ RL×h×dh , h is the number of heads, dh is
the dimension of each head and typically set to d/h to save
parameters.

To learn the task-specific information for the τ -th task, we
have l trainable d-dimensional vectors as the hyper-prompts

for the key and the value respectively, denoted as Pτ,k ∈
Rl×h×dh and Pτ,v ∈ Rl×h×dh , as shown in Figure 2(a).
Then, the hyper-prompts are concatenated with the original
key and value:

K′
τ = concat(Pτ,k, Kτ) (1)

V ′
τ = concat(Pτ,v, Vτ) (2)

where the new key (value) K′
τ (V ′

τ) ∈ R(l+L)×h×dh are
used to compute the multihead self-attention.

After that, the multihead self-attention can be operated:
Oτ = Attention(Qτ ,K

′
τ ,V

′
τ) = softmax(QτK

′T
τ)V ′

τ

where Oτ ∈ RL×d is the output of multihead attention.

The hyper-prompts benefit Transformers for multi-task
learning in two ways: (1) Prompt for key Pτ,k is prepended
with the original key and will participate in the calcula-
tion of attention feature map: softmax(QτK

′T
τ). Pτ,k

directly interacts (matrix multiplication) with the original
query Qτ , allowing tokens to acquire task-specific seman-
tics. (2) Prompt for value Pτ,v is prepended with the original
value and will be absorbed into the self-attention output Oτ ,
where each position in Oτ is the weighted-sum of vectors in
V ′
τ with weights from the attention scores. This way, Pτ,v

can serve as task-specific memories for multihead attention
to retrieve information from.

3.2. HyperPrompt

How to obtain the prompts for the m-th Transformer block?
A straightforward way is to directly initialize Pm

τ,k and Pm
τ,v .

However, this way is parameter-inefficient, as it scales lin-
early with both the number of tasks T and the number layers
M as O(T ×M).

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Instead, we initialize a global1 prompt Pτ for each task and
apply local HyperNetworks at every Transformer block to
project this prompt into {Pm

τ,k}Mm=1 and {Pm
τ,v}Mm=1.

Global Prompts. Specifically, we initialize a set of global
prompts {Pτ}Tτ=1, where Pτ ∈ Rl×d is a trainable matrix
to learn the task-specific information of the τ -th task, d is
the model dimension and l is the length of the prompt.

Local HyperNetworks. At them-th Transformer block, we
apply two local HyperNetworks hmk and hmv to transform
the global prompt Pτ into layer-specific and task-specific
prompts as shown in Figure 2(b):

Pm
τ,k = hmk (Pτ) = Um

k (Relu(Dm
k (Pτ))), (3)

Pm
τ,v = hmv (Pτ) = Um

v (Relu(Dm
v (Pτ))), (4)

where Pm
τ,k/v ∈ Rl×h×dh . We call these generated prompts

hyper-prompts to distinguish from global prompts.

In particular, to limit the number of parameters, the local
HyperNetworks are designed using a bottleneck architecture:
Dm
k/v ∈ Rd×b and Um

k/v ∈ Rb×h×dh are down-projection
and up-projection matrices, respectively. b is the bottleneck
dimension satisfying b� d.

HyperPrompt-Share. We first have all tasks share the
same two local HyperNetworks defined by the down-project
matrices Dm

k and Dm
v , and the up-project matrices Um

k and
Um
v . We refer to this design choice as HyperPrompt-Share.

Despite the saving of parameters, one drawback of
HyperPrompt-Share is that the task conflicts could arise
given the limited model capacity (Wu et al., 2020; Wang
et al., 2020) of the shared local HyperNetworks.

HyperPrompt-Sep. In the opposite extreme of
HyperPrompt-Share, each task can have its own local Hy-
perNetworks hmτ,k(Pτ) and hmτ,v(Pτ) as following:

Pm
τ,k = hmτ,k(Pτ) = Um

τ,k(Relu(Dm
τ,k(Pτ))), (5)

Pm
τ,v = hmτ,v(Pτ) = Um

τ,v(Relu(Dm
τ,v(Pτ))), (6)

where Dm
τ,k/v and Um

τ,k/v are down-projection and up-
projection matrices for the τ task, respectively. In this case,
each task hyper-prompt is trained independently and hence
there is no information sharing.

3.3. HyperPrompt-Global

We further propose a novel design of HyperPrompt-Global
to flexibly share information and knowledge among tasks
and blocks while maintaining a low parameter cost. As
shown in Figure 2(c), the key idea of HyperPrompt-Global
is to generate the local HyperNetworks using the same

1we term it global because it is independent of the layer number
as opposed to layer-dependent prompt Pm

τ .

global HyperNetwork shared by all tasks and all Trans-
former blocks.

Layer-Aware Task Embedding. Following the same
recipe in Karimi Mahabadi et al. (2021), we define a
layer-aware task embedding for better generalization. Let
kτ ∈ Rt′ denote the task embedding for the τ task and t′

is the dimension. To capture the layer-specific information,
layer embedding zm ∈ Rt′ is introduced. After that, a task
projection network ht(·, ·) is applied to fuse the task embed-
ding and the layer embedding into the final layer-awared
task embedding Imτ = ht(kτ , zm), where Imτ is the input to
the shared global HyperNetworks as shown in Figure 2(c).
ht is a MLP consisting of two feed-forward layers and a
ReLU non-linearity, which takes the concatenation of kτ
and zm as input.

Global HyperNetworks. Hk(·) generates the weight matri-
ces (Um

τ,k,D
m
τ,k) in the local HyperNetworks of key hyper-

prompts and another global HyperNetwork Hv(·) generates
the weight matrices (Um

τ,v,D
m
τ,v) in the local HyperNet-

works of value hyper-prompts:

(Um
τ,k,D

m
τ,k) = Hk(I

m
τ) = (WUk ,WDk)Imτ , (7)

(Um
τ,v,D

m
τ,v) = Hv(I

m
τ) = (WUv ,WDv)Imτ , (8)

where Imτ ∈ Rt is the layer-aware task embedding
for the τ task at the m-th block. WDk ∈ R(d×b)×t,
WDv ∈ R(d×b)×t, WUk ∈ R(b×h×dh)×t and WUv ∈
R(b×h×dh)×t are the weight matrices of Hk(·) and Hv(·).

Given that Um
τ,k/v, and Dm

τ,k/v are generated by the global
HyperNetworks, we project the global prompts Pτ,k/v into
hyper-promtps Pm

τ,k/v following Eqs. 5 and 6. Finally, the
hyper-prompts Pm

τ,k/v are prepended with original key and
value at every self-attention layer as shown in Figure 2(a) to
calculate the task-conditioned attention scores.

Using global HyperNetworks to generate the projection
networks has two benefits:

1. It enables a more flexible way to share information
across tasks and layers: the transformation matrices are
decomposed into Hk/v(·) that are shared by all tasks
and all layers. Therefore, the model can adjust the
degree of information sharing across tasks and layers
through learning the appropriate parameter values in
Hk/v(·) during the end-to-end training.

2. A parameter-efficient task conditioned parameteriza-
tion is enabled. The number of extra task-conditioned
parameters doesn’t depend on the number of layers
M , and scales sub-linearly with respect to the total
number of tasks T . In practice, since task embeddings

HyperPrompt: Prompt-based Task-Conditioning of Transformers

and task prompts have far fewer parameters than the
global HyperNetworks, the additional task-conditioned
parameters is almost independent of T .

3.4. Parameter Efficiency of HyperPrompt

As shown in A.1, the total number of additional parame-
ters from HyperPrompt-Global is dlT + 4(bdt) + Tt′ +
Mt′ + (2t′ + t)e, where d is the model dimension, l is the
length of the prompts, T is the total number of tasks, b is
the bottleneck dimension of the weight matrices of the local
HyperNetworks, d is the model dimension, t′/t is the di-
mension of the raw/final layer-aware task embedding, and e
is the hidden dimension of hk/v . Therefore, the space com-
plexity is O(d(lT + 4bt)), given that in practice M ∼ T ,
t′ � dl, and e� bd. This leads to a sub-linear scaling with
respect to T .

Furthermore, T is typical ∼ O(10) for multi-task learning.
A reasonable l ∼ O(10) is required to achieve the optimal
performance, which will be detailed in Section 4.7. On
the other hand, typical values for b ∼ 24 and t ≥ 32, and
therefore 4bt � lT is satisfied in most cases. Hence, the
space complexity could be further simplified as O(bdt). In
conclusion, the space complexity of HyperPrompt-Global
mainly comes from the global HyperNetworks and is prac-
tically independent of the prompt length l, the number of
Transformer layers M , and the number of tasks T .

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of the models on
GLUE (Wang et al., 2018) and SuperGLUE (Wang et al.,
2019) respectively. Each of them is a collection of text
classification tasks to test the general language understand-
ing ability. Specifically, the tasks include: sentence ac-
ceptability (CoLA), sentiment analysis (SST-2), paraphras-
ing/sentence similarity (MRPC, STS-B and QQP), natural
language inference (MNLI, QNLI, RTE and CB), corefer-
ence resolution (WSC), sentence completion (COPA), word
sense disambiguation (WIC) and question answering (Mul-
tiRC and ReCoRD, BoolQ).

Transformers. Following previous work Karimi Mahabadi
et al. (2021) and Tay et al. (2020), our models are built on
top of the state-of-the-art Transformer model T5 (Raffel
et al., 2019), which uses encoder-decoder architecture from
Vaswani et al. (2017). We use already pre-trained T5 with
sizes from Base (220M parameters) to XXL (11B).

Evaluation. We save a checkpoint every 2000 steps for
all models and follow the same convention as Raffel et al.
(2019) in selecting the best checkpoint for each task. The
emphasis of our evaluation is not to find the best single

checkpoint for all tasks but to test the model’s ability of
transfer learning among the co-trained tasks. We first calcu-
late the average of all metrics for each task and then report
the average of all tasks for GLUE and SuperGLUE.

Baselines. We compare our proposed HyperPrompt-
Share/Sep/Global with vanilla T5 models (Raffel et al.,
2019) for multi-task learning, which is referred to MTL. An-
other baseline is Vanilla Adapter proposed in Houlsby et al.
(2019b) that add adapters modules for each task after each
of the the two feed-forward modules in each Transformer
block of the T5 model. The state-of-the-art adapter-based
method for multi-task learning is HyperFormer++ proposed
in Karimi Mahabadi et al. (2021) that use HyperNetworks
to generate adapters for each task and add them after the
feed-forward modules following Houlsby et al. (2019b).
In addition, Prompt-Tuning (Lester et al., 2021) is origi-
nally for parameter-efficient single-task fine-tuning and only
prepends prompts to the input word embeddings in the first
layer. We slightly modify it by initializing and prepending
prompts for each task respectively so that Prompt-Tuning
can be applied to multi-task learning.

We defer additional details of the experiments to A.2

4.2. Key Results

Figure 1 provides an overall summary of the results of Hy-
perPrompt. Previous prompt-tuning (Lester et al., 2021;
Li & Liang, 2021) methods focus on parameter-efficient
single-task fine-tuning and hence freeze the backbone and
only fine-tune the prompts. Their experiments show that the
performance of only tuning the prompts can match the full
model training with a very large 11B model (Figure 1), but
substantially pales for moderate model sizes.

Our HyperPrompt-Global architecture when fully fine-tuned
achieves state-of-the-art performance on SuperGLUE across
four different model sizes. Competitive adapter-tuning vari-
ants including Prompt-Tuning and HyperFormer++ can ei-
ther match or slightly improve upon the multi-task learning
(MTL) baseline on the SuperGLUE dataset. In contrast,
HyperPrompt-Global outperforms the strong MTL baseline
by a large margin on SuperGLUE score (78.9 vs 77.2 for
T5 Base). Interestingly, such a performance gain continues
all the way to model size as big as XXL (e.g. 91.3 vs 90.2)
with only 0.14% additional parameters.

4.3. Tuning all vs Task-Conditioned Parameters

Recently, Karimi Mahabadi et al. (2021) show that only
tuning adapters can be competitive against the full fine-
tuning. However, the evaluation is conducted only on the
GLUE with smaller models including T5 Small and Base.

In the experiments, we first compare tuning the full model vs.
only task-conditioned parameters. Table 1 shows the com-

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Tunable Model GLUE SuperGLUE

All MTL 88.3 85.9
All HyperFormer++ 88.8 86.4
All HyperPrompt-Global 89.4 87
Task HyperFormer++ 87.3 80.5
Task HyperPrompt-Global 87.5 81.5

Table 1. Comparison of fine-tuning all vs task-specific parameters
using T5 Large. The average scores of GLUE and SuperGLUE are
reported on T5 Large.

parison on the GLUE and SuperGLUE average scores using
T5 large (for per-task performance, please refer to A.4). For
GLUE, the observation is consistent with (Karimi Mahabadi
et al., 2021), where task-specific only fine-tuning of Hy-
perFormer++ and HyperPrompt-Global is comparable to
the MTL baseline. However, on SuperGLUE, we observe
a large gap: the average score drops by 5.5 and 5.9 for
HyperPrompt-Global and HyperFormer++, respectively.

Therefore, these experiments show that only tuning the task-
conditioned parameters is not enough to achieve competitive
results as full model training for multi-task learning on high-
difficulty tasks such as SuperGLUE. This is consistent with
the results of Prompt-Tuning (Lester et al., 2021). Hence,
the rest of the experiments are conducted with tuning all
model parameters.

4.4. Computational Efficiency

Table 2 presents the computational efficiency of the
Adapter/Prompt models. HyperPrompt-Global (together
with HyperPrompt-Share) has the lowest # Ops since hyper-
prompts are injected into self-attention and skip the stan-
dard FFN layers. In contrast, HyperFormer++ has ∼ 3x #
Ops compared to other variants. Regarding training time,
HyperPrompt-Share is fastest given that the local Hyper-
Networks are shared across tasks. Vanilla Adapter and
HyperPrompt-Global are comparable while HyperFormer++
and Prompt-Tuning take significant longer to do the full
fine-tuning. This shows the computational efficiency of
HyperPrompt for both training and inference.

Model # Ops Training Time (hours)

Vanilla Adapter 1.01 ×1013 8.4
HyperFormer++ 3.14 ×1013 10.3
Prompt-Tuning 1.16 ×1013 11.1
HyperPrompt-Sep 1.01 ×1013 8.9
HyperPrompt-Share 9.8×1012 8.0
HyperPrompt-Global 9.8×1012 8.7

Table 2. The number of operations for a single forward pass and
training time on T5 Base.

Model #Params GLUE SuperGLUE

MTL 1.0x 85.5 (0.9) 77.2 (0.2)
Vanilla Adapter 1.06x 86.7 (0.3) 77.5 (0.1)
HyperFormer++ 1.04x 86.5 (0.0) 78.2 (0.7)
Prompt-Tuning 1.0003x 84.8 (0.6) 77.3 (0.2)

HyperPrompt-Share 1.008x 86.4 (0.6) 78.2 (0.7)
HyperPrompt-Sep 1.06x 86.8 (0.1) 77.5 (0.1)
HyperPrompt-Global 1.04x 86.8 (0.4) 78.9 (0.5)

Table 3. GLUE and SuperGLUE average scores (standard devia-
tions) over 3 runs of HyperPrompt against baselines on T5 Base.

4.5. Ablation Study

Table 3 presents the results on T5 Base and Table 4 presents
the results on T5 Large (see more detailed results in A.4).
HyperPrompt-Global outperforms all baselines in terms of
the average score of GLUE and SuperGLUE.

HyperPrompt-Global vs. Prompt-Tuning. The original
Prompt-Tuning (Lester et al., 2021) is for single-task fine-
tuning. To be parameter-efficient, it only trains the prompts
with the backbone frozen. To make a fair comparison, we
modify Prompt-Tuning by (1) training both prompts and
backbone, and (2) adding prompt to each task and co-train
all tasks together. As shown in Table 3 and 4, HyperPrompt-
Global outperforms Prompt-Tuning by 2.0 (0.6) and 1.6
(1.4) on GLUE and SuperGLUE using T5 Base (Large),
respectively. HyperPrompt-Global improves upon Prompt-
Tuning in two places: (1) Prompt-Tuning only adds prompts
to the word embedding layer while HyperPrompt-Global
adds hyper-prompts at every Transformer layer and hence
is more expressive; and (2) Prompts of tasks are trained in-
dependently in Prompt-Tuning while HyperPrompt-Global
enables a flexible information sharing via HyperNetworks.

HyperPrompt-Global vs. HyperFormer++. Our method
is superior to the state-of-the-art baseline HyperFormer++ in
the average score of GLUE and SuperGLUE for both Base
and Large T5 model. For example, HyperPrompt-Global of
T5 large achieves 87.0 on the SuperGLUE compared to 86.4
by HyperFormer++ (Table 4). Note that the main differ-

Model #Params GLUE SuperGLUE

MTL 1.0x 88.3 (0.6) 85.9 (0.3)
Vanilla Adapter 1.06x 88.8 (0.2) 86.1 (0.5)
HyperFormer++ 1.02x 88.8 (0.0) 86.4 (0.5)
Prompt-Tuning 1.0001x 88.8 (0.3) 85.6 (0.1)

HyperPrompt-Share 1.008x 89.3 (0.1) 86.8 (0.2)
HyperPrompt-Sep 1.06x 89.4 (0.2) 86.1 (0.3)
HyperPrompt-Global 1.02x 89.4 (0.1) 87.0 (0.5)

Table 4. GLUE and SuperGLUE average scores (standard devia-
tions) over 3 runs of HyperPrompt against baselines on T5 Large.

HyperPrompt: Prompt-based Task-Conditioning of Transformers

ence between the two methods is that HyperPrompt-Global
inserts the task-conditioned parameters as prompts into self-
attention layers while HyperFormer++ insert adapters after
each block. We believe task-conditioning in self-attention
gives more expressive power than in the feed-forward net-
work as done in adapters. Hyper-prompts that are prepended
with the key and value participate in the attention interac-
tions between different token positions, which helps the
model to better capture the task-dependent semantics.

HyperPrompt-Global vs. MTL. Next, we observe that
using HyperPrompt-Global can greatly improve the per-
formance upon the vanilla Transformer model (referred to
MTL): 1.7 (1.1) gain on SuperGLUE score for T5 Base
(Large) with 4% (2%) additional paramters. In conclu-
sion, the experiments show that HyperPrompt-Global is
a parameter-efficient and effective task-conditioned parame-
terization of Transformers for multi-task learning.

HyperPrompt-Global vs. HyperPrompt-Share/Sep. In-
terestingly, HyperPrompt-Share is better than HyperPrompt-
Sep on the SuperGLUE on both Base and Large models
while the opposite is true for GLUE. Notice that all tasks
share the same two projection networks in HyperPrompt-
Share while each task has its own projection networks
in HyperPrompt-Sep. More importantly, we observe that
HyperPrompt-Global, where the projection networks are
generated by the global HyperNetworks, always achieves
the best performance on both GLUE and SuperGLUE.
Hence, the experiments show that HyperPrompt-Global can
adjust the degree of information sharing for better multi-task
generalization, compared to HyperPrompt-Share/Sep.

4.6. Peeking into Hyper-Prompts

To shed light on how hyper-prompts help improve the
multi-task generalization via task-conditioning, we peek
into HyperPrompt-Global models by looking at the distribu-
tion of attention scores. We choose the GLUE task MRPC
as an example. To avoid biasing on individual examples,
we aggregate over 100 validation examples to compute the
quantity of interest (see A.3 for details). First, we compute
the attention mass on hyper-prompts for each encoder layer.
Figure 3 (top) shows that the network has lower attention
mass on hyper-prompts in the lower layers and gradually in-
creases attention mass for higher layers. This phenomenon
indicates that higher-levels of Transformer becomes more
task-specialized while it is beneficial for the lower-levels
to learn task-agnostic representation (Yosinski et al., 2014)
by casting lower attention mass on hyper-prompts. Further-
more, we calculate the entropy of the attention scores on
the tokens. For HyperPrompt-Global, we remove the hyper-
prompts from the calculation and re-normalize the attention
scores on the tokens to make a fair comparison with the
MTL baseline. Figure 3 (bottom) shows a shift of entropy

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

At
te

nt
io

n
M

as
s o

n
Pr

om
pt

s

2 3 4 5 6
Entropy Over Tokens

0

500

1000

1500

Co
un

t

Model
MTL
HyperPrompt

Figure 3. Visualization of attention mass and entropy distribution.

distribution towards higher values for HyperPrompt-Global.
This signifies that injecting hyper-prompts encourages a
more diverse attention distribution, which seems to be bene-
ficial to model generalization.

4.7. Impact of Hyper-Prompt Length

HyperPrompt prepends l trainable hyper-prompts to the
keys and values of self-attention layer at every Transformer
layer. In Figure 4, we present the results of tuning the
prompt length l on GLUE using T5 Base as the example
for HyperPrompt-Global (similar patterns are observed on
T5 Large and SuperGLUE). We first add hyper-prompts on
the decoder and search the best l and then search the best
l for the encoder with the fixed best decoder hyper-prompt
length. As shown in Figure 4(a), l = 6 is the best for the
decoder. As shown in Figure 4(b), HyperPrompt-Global

86.1

86.3

86.0

85.9

4 6 8 12

(a) Decoder

86.2

86.7 86.8

86.4

86.4

86.3

8 12 16 20 24 28

(b) Encoder

Figure 4. Impact of hyper-prompt length in HyperPrompt-Global
(GLUE score on T5 Base).

HyperPrompt: Prompt-based Task-Conditioning of Transformers

achieves the best result of 86.8 when l = 16 on the encoder
with l = 6 fixed for the decoder. The experiments show
that hyper-prompts with length l ∼ O(10) are good enough
to achieve superior performance. Note that the original
sequence length is 512 on the encoder and 32 on the decoder.
Therefore, HyperPrompt does not substantially increase the
time complexity of self-attention layers in practice.

4.8. Encoder vs Decoder

To understand the effect of adding task-conditioned parame-
ters to different parts of the network, we present the results
of HyperPrompt-Global and HyperFormer++ with adding
hyper-prompts/adapters to: (1) encoder-only, (2) decoder-
only, and (3) both encoder-decoder. As shown in Table
5, we observe adding task-conditioned parameters to en-
coder (encoder-only) performs better than decoder-only
on GLUE. However, the opposite is true for SuperGLUE,
where encoder-only is substantially worse than decoder-
only. This potentially could be a trainability issue when
prompts are inserted into encoders, i.e. a different learning
rate might be required to learn the prompt parameters from
scratch. We leave this investigation as a future work. Based
on this experiment, we add task-conditioned parameters to
the decoder for SuperGLUE in our experiments.

Model #Params GLUE SuperGLUE

MTL 1.0x 85.5 77.2
HyperFormer++-Encoder 1.02x 85.9 74.4
HyperFormer++-Decoder 1.02x 85.7 78.2
HyperFormer++-Enc-Dec 1.04x 86.5 74.8
HyperPrompt-Encoder 1.02x 86.6 76.5
HyperPrompt-Decoder 1.02x 86.3 78.9
HyperPrompt-Enc-Dec 1.04x 86.8 78.7

Table 5. Ablation of inserting hyper-prompts or adapters into
Encoder/Decoder/Enc-Dec (T5 Base).

5. Related Work
Prompt-Tuning. Prompt tuning is becoming a new
paradigm for adapting pre-trained general-purpose language
models to downstream tasks, as a lightweight alternative to
the popular fine-tuning approach. Here, we use the term
Prompt-Tuning to cover a family of methods following the
prompting idea in GPT-3 (Brown et al., 2020). To avoid
manually design the prompts, recent efforts have focused on
search for discrete prommpting words automatically (Shin
et al., 2020). On the other hand, soft prompts (Li & Liang,
2021; Hambardzumyan et al., 2021; Lester et al., 2021; Liu
et al., 2021) in the form of continuous vectors are intro-
duced to simplify the process and have shown competitive
results (Lester et al., 2021; Liu et al., 2021; Li & Liang,
2021). In particular, Lester et al. (2021) show that soft

prompts can become competitive against full fine-tuning for
a 11B parameters model, but with a big performance gap
for moderate-size models. In our work, we close this gap
in the full fine-tuning setting and demonstrate that Hyper-
Prompt can outperform strong baselines across all model
sizes studied.

Adapter-Tuning. Adapter tuning (Houlsby et al., 2019a;b;
Karimi Mahabadi et al., 2021) is an alternative approach
for parameter-efficient lightweight tuning of pre-trained
langauge models. Task-specific adapter layers (Houlsby
et al., 2019a) are inserted into the Transformer block for
fine-tuning while the rest of the backbone model is frozen.
By adding only a few percent of additional parameters,
Karimi Mahabadi et al. (2021) show that competitive perfor-
mance can be obtained on NLU benchmarks such as GLUE
(Wang et al., 2018). However, one limitation from the exist-
ing work is the evaluation of NLU on GLUE dataset, which
is known to be no longer suitable for measuring the progress
of language understanding (Wang et al., 2019). In our work,
we evaluate HyperPrompt on SuperGLUE in addition to
GLUE, and show that indeed higher-difficulty tasks such
as SuperGLUE requires full-tuning of the model beyond
adapter tuning, to be competitive against state-of-the-art
baselines. We also demonstrate that it is advantageous to
inject prompts into self-attention than adding adapters.

Multi-task Natural Language Understanding. Multi-
task learning is an important and challenge research direc-
tion in both full fine-tuning and prompt-tuning paradigms
because of the competing needs of training and serving a
single model while achieving Pareto efficiency in all tasks.

The T5 model (Raffel et al., 2019) renders all NLP tasks as a
Text-to-Text problem. However, the best results are obtained
by task-specific fine-tuning. MTDNN (multi-task deep neu-
ral network) (Liu et al., 2019a) shares parameters between
several NLP tasks, and achieves strong performance on the
GLUE benchmark. Aghajanyan et al. (2021) use around 50
tasks to boost the multi-task learning performance. Aribandi
et al. (2021) builds an extremely diverse set of 107 NLP
tasks for extreme multi-task scaling and demonstrate supe-
rior performances on a wide range of benchmarks. Recently,
Wei et al. (2021); Sanh et al. (2021) also illustrated how a
multi-task learning stage can greatly improve the zero-shot
prompting performance of large language models.

6. Conclusion
We propose a novel architecture for prompt-based task-
conditioning of self-attention in Transformers. The hyper-
prompts are generated by a HyperNetwork to enable flex-
ible information sharing among tasks while remain effi-
cient in parameters and computation. HyperPrompt allows
the network to learn task-specific feature maps where the

HyperPrompt: Prompt-based Task-Conditioning of Transformers

hyper-prompts serve as task global memories, encouraging
a more diverse distribution of attention. Extensive experi-
ments show that HyperPrompt can achieve superior perfor-
mances over strong T5 multi-task learning baselines and
parameter-efficient models including Prompt-Tuning and
HyperFormer++ on GLUE and SuperGLUE benchmarks.

References
Aghajanyan, A., Gupta, A., Shrivastava, A., Chen, X.,

Zettlemoyer, L., and Gupta, S. Muppet: Massive multi-
task representations with pre-finetuning. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5799–5811, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.468. URL https://
aclanthology.org/2021.emnlp-main.468.

Aribandi, V., Tay, Y., Schuster, T., Rao, J., Zheng, H. S.,
Mehta, S. V., Zhuang, H., Tran, V. Q., Bahri, D., Ni,
J., Gupta, J., Hui, K., Ruder, S., and Metzler, D. Ext5:
Towards extreme multi-task scaling for transfer learning,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. Language models are few-shot learners. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Dehghani, M., Arnab, A., Beyer, L., Vaswani, A., and
Tay, Y. The efficiency misnomer. arXiv preprint
arXiv:2110.12894, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks.

In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?
id=rkpACe1lx.

Hambardzumyan, K., Khachatrian, H., and May, J. WARP:
Word-level Adversarial ReProgramming. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 4921–4933, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.381. URL https:
//aclanthology.org/2021.acl-long.381.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient transfer
learning, 2021.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 2790–2799. PMLR, 09–15 Jun 2019a.
URL https://proceedings.mlr.press/v97/
houlsby19a.html.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019b.

Karimi Mahabadi, R., Ruder, S., Dehghani, M., and Hen-
derson, J. Parameter-efficient multi-task fine-tuning for
transformers via shared hypernetworks. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), August 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

https://aclanthology.org/2021.emnlp-main.468
https://aclanthology.org/2021.emnlp-main.468
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://aclanthology.org/2021.acl-long.381
https://aclanthology.org/2021.acl-long.381
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 7871–7880,
2020.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep
neural networks for natural language understanding. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4487–4496,
Florence, Italy, July 2019a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1441. URL
https://aclanthology.org/P19-1441.

Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep neural
networks for natural language understanding. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4487–4496, 2019b.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z.,
and Tang, J. Gpt understands, too, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja,
A., Dey, M., Bari, M. S., Xu, C., Thakker, U., Sharma,
S. S., Szczechla, E., Kim, T., Chhablani, G., Nayak, N.,
Datta, D., Chang, J., Jiang, M. T.-J., Wang, H., Manica,
M., Shen, S., Yong, Z. X., Pandey, H., Bawden, R., Wang,
T., Neeraj, T., Rozen, J., Sharma, A., Santilli, A., Fevry,
T., Fries, J. A., Teehan, R., Biderman, S., Gao, L., Bers,
T., Wolf, T., and Rush, A. M. Multitask prompted training
enables zero-shot task generalization, 2021.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani,
A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M.,
Young, C., et al. Mesh-tensorflow: Deep learning for
supercomputers. arXiv preprint arXiv:1811.02084, 2018.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. AutoPrompt: Eliciting Knowledge from Lan-
guage Models with Automatically Generated Prompts. In
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 4222–
4235, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.
346. URL https://aclanthology.org/2020.
emnlp-main.346.

Sukhbaatar, S., Grave, E., Lample, G., Jegou, H., and Joulin,
A. Augmenting self-attention with persistent memory.
arXiv preprint arXiv:1907.01470, 2019.

Tay, Y., Zhao, Z., Bahri, D., Metzler, D., and Juan, D.-C.
Hypergrid: Efficient multi-task transformers with grid-
wise decomposable hyper projections. arXiv preprint
arXiv:2007.05891, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. arXiv
preprint arXiv:1906.00695, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537,
2019.

Wang, Y., Zhao, Z., Dai, B., Fifty, C., Lin, D., Hong, L., and
Chi, E. H. Small towers make big differences, 2020.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners, 2021.

Wu, S., Zhang, H. R., and Ré, C. Understanding and im-
proving information transfer in multi-task learning. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SylzhkBtDB.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Advances in neural information processing systems, pp.
3320–3328, 2014.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

https://aclanthology.org/P19-1441
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://openreview.net/forum?id=SylzhkBtDB
https://openreview.net/forum?id=SylzhkBtDB

HyperPrompt: Prompt-based Task-Conditioning of Transformers

A. Appendix
This section covers the parameter count of HyperPrompt, the experimental details, the calculation of attention mass and
entropy, and per-task performance of GLUE and SuperGLUE.

A.1. Parameter Count of HyperPrompt-Global (§3.4)

Since the encoder and the decoder of Transformers have approximately the same capacity, the calculation considers only
the decoder-side for simplicity. First, we have global task prompts Pτ ∈ Rl×d for the τ -th task, which contains dlT
parameters for T tasks. The global HyperNetworks contain four weight matrices WDk ∈ R(d×b)×t, WDv ∈ R(d×b)×t,
WUk ∈ R(b×h×dh)×t and WUv ∈ R(b×h×dh)×t, which result in 4(bdt) parameters (we let d = h × dh). To obtain
layer-aware task embedding, HyperPrompt-Global learns task embedding kτ ∈ Rt′ for the τ task and layer embedding
zm ∈ Rt′ for the m-th Transformer block, which in total results in Tt′+Mt′ parameters. Besides, a task projection network
ht is applied to fuse the task embedding and the layer embedding into the final layer-aware task embedding Imτ ∈ Rt. ht is
a two-layer feed-forward networks and contains (2t′ + t)e parameters, where e is the hidden dimension for ht.

A.2. Experimental Details (§4.1)

Our models were implemented using Mesh Tensorflow2 (Shazeer et al., 2018) with the T5 library3 (Raffel et al., 2019).
Following Raffel et al. (2019), all data are preprocessed as into a ”sequence-to-sequence” format. The length of the sequence
is 512 at the encoder and 32 at the decoder. For all experiments, we train models 300K steps with a batch size of 128 and
each batch is a mixture which samples each task proportionately to the number of examples in the dataset. Learning rate is a
constant of 1e-3 with Adam optimizer (Kingma & Ba, 2014).

For hyper-parameters tuning, the length of prompt l is selected from {12, 16, 20, 20, 24} at the encoder and
{2, 4, 6, 8, 10, 12, 14, 16} at the decoder. The bottleneck dimension b in the transform matrices is set to d/r, where d
is the model dimension of the T5 models and r is a reduction factor and selected from {16, 32, 64}. The dimension t of
the layer-aware task embedding is selected from {32, 64, 128}. For a fair comparison, the hyper-parameters of baseline
methods are set to have approximately the same numbers of parameters as HyperPrompt-Global with the exception that
Prompt-Tuning and HyperPrompt-Share are extremely parameter-efficient with significantly fewer parameters.

A.3. Attention Mass and Entropy calculation (§4.6)

To calculate the attention mass over hyper-prompts per layer, we averaged the hyper-prompt attention softmax scores across
100 validation examples and each attention head in a layer, and summed across each query attending to the hyper-prompts.
In other words, we aggregated the amount of attention given to hyper-prompts by queries. To calculate the attention entropy
over tokens (other than hyper-prompts), we calculated the entropy of the attention distributions (averaged across attention
heads) for 100 validation examples. This results in

∑100
n=1

∑12
L=1 |Xn| entropies calculated and visualized in Figure 3

(bottom). For the HyperPrompt model, this involved re-normalizing the softmax distribution after removing hyper-prompts,
as we wanted to understand how the original tokens are attended to.

A.4. Per-Task Performance of GLUE and SuperGLUE

Table 6 and 7 below show the comparison of fine-tuning the entire model against task-specific parameters only on GLUE
and SuperGLUE datasets. Table 8 and 9 show the detailed results of full-tuning of HyperPrompt against baselines on T5
Base. Table 10 and 11 show the detailed results of full-tuning of HyperPrompt against baselines on T5 Large.

2https://github.com/tensorflow/mesh
3https://github.com/google-research/text-to-text-transfer-Transformer

https://github.com/tensorflow/mesh
https://github.com/google-research/text-to-text-transfer-Transformer

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Tunable Parameters Model CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

All MTL 59.4 96.6 93.3/90.7 90.6/90.4 89.8/92.3 90.8/90.8 95.2 90.8 88.3
All HyperFormer++-T5.1.1LARGE 63.3 96.6 93.2/90.7 92.1/91.9 89.7/92.3 90.5/90.7 95.1 89.9 88.8
All HyperPrompt-T5.1.1LARGE 64.6 96.7 94.0/91.8 91.3/91.4 90.0/92.4 90.8/91.0 95.4 91.9 89.4
Task-Specific HyperFormer++-T5.1.1LARGE 58.9 95.7 92.7/90.0 91.6/91.5 87.7/90.7 89.8/90.0 94.5 87.0 87.3
Task-Specific HyperPrompt-T5.1.1LARGE 57.5 96.7 93.6/91.2 91.9/92.0 87.0/90.1 90.3/90.6 95.0 87.7 87.5

Table 6. Comparison of fine-tuning all vs task-specific parameters on GLUE.

Tunable Parameters Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AVG

All MTL 88.5 95.8/98.2 87.0 85.5/56.3 89.2/88.6 91.7 74.0 89.4 85.9
All HyperFormer++-T5.1.1LARGE 88.9 98.7/98.2 86.7 85.4/56.7 89.4/88.8 92.1 74.5 90.7 86.4
All HyperPrompt-T5.1.1LARGE 88.7 99.1/98.8 91.0 85.0/55.6 89.8/89.1 91.3 74.2 92.0 87.0
Task-Specific HyperFormer++-T5.1.1LARGE 85.2 90.9/94.6 76.7 81.5/48.8 87.2/86.4 87.7 67.8 82.1 80.5
Task-Specific HyperPrompt-T5.1.1LARGE 85.2 95.2/95.5 75.5 82.9/52.9 89.1/88.3 85.7 71.1 82.2 81.5

Table 7. Comparison of fine-tuning all vs task-specific parameters on SuperGLUE.

Model #Params CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

MTL 1.0x 49.8 94.6 92.5/89.8 90.7/90.5 89.2/91.9 88.8/88.5 93.3 85.0 85.5
Vanilla Adapter 1.06x 60.0 95.4 92.7/89.8 90.2/90.2 89.3/91.9 88.5/88.1 93.5 84.4 86.7
HyperFormer++ 1.04x 56.9 94.8 92.9/90.1 91.1/90.9 88.9/91.7 88.7/88.3 93.4 85.6 86.5
Prompt-Tuning 1.0003x 48.0 95.0 92.2/89.0 90.3/90.2 89.0/91.7 88.8/88.5 93.2 82.9 84.8

HyperPrompt-Share (ours) 1.008x 56.2 94.7 93.0/90.4 90.6/90.4 89.2/91.9 88.7/88.4 93.4 85.2 86.4
HyperPrompt-Sep (ours) 1.06x 57.2 94.6 93.8/91.4 91.0/90.8 89.2/91.9 88.5/88.4 93.4 86.6 86.8
HyperPrompt-Global (ours) 1.04x 57.0 95.2 93.4/90.9 90.4/90.2 89.2/92.0 88.7/88.5 93.4 87.1 86.8

Table 8. Comparison of HyperPrompt with baselines on GLUE using T5 Base.

Model #Params BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC AVG

MTL 1.0x 82.6 93.4/93.5 65.7 76.7/39.7 80.9/80.2 85.6 70.5 81.4 77.2
Vanilla Adapter 1.03x 83.5 93.4/94.6 65.3 77.6/42.7 81.0/80.2 88.2 71.0 76.9 77.5
HyperFormer++ 1.02x 83.5 96.2/97.0 66.3 77.8/41.9 81.2/80.4 87.4 71.0 80.1 78.2
Prompt-Tuning 1.0003x 82.5 94.0/95.8 68.0 76.9/40.2 80.9/80.2 84.1 69.3 80.8 77.3

HyperPrompt-Share (ours) 1.004x 83.1 95.7/95.2 67.7 77.3/41.3 81.9/81.0 87.4 70.4 80.8 78.2
HyperPrompt-Sep (ours) 1.03x 83.3 97.8/97.0 61.7 77.6/42.3 81.5/80.6 86.8 71.4 78.2 77.5
HyperPrompt-Global (ours) 1.02x 83.3 96.6/96.4 69.7 77.5/41.0 81.7/80.9 86.8 70.5 83.7 78.9

Table 9. Comparison of HyperPrompt with baselines on SuperGLUE using T5 Base.

Model #Params CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

MTL 1.0x 59.4 96.6 93.3/90.7 90.6/90.4 89.8/92.3 90.8/90.8 95.2 90.8 88.3
Vanilla Adapter 1.06x 63.8 96.5 93.7/91.3 92.0/91.9 90.0/92.5 90.6/90.5 94.9 88.7 88.8
HyperFormer++ 1.02x 63.3 96.6 93.2/90.7 92.1/91.9 89.7/92.3 90.5/90.7 95.1 89.9 88.8
Prompt-Tuning 1.0001x 62.5 96.7 93.4/91.0 91.3/91.0 90.0/92.4 90.9/91.0 95.4 89.9 88.8
HyperPrompt-Share (ours) 1.008x 65.0 96.7 93.8/91.6 91.1/90.8 90.0/92.4 90.8/91.1 95.3 91.3 89.3
HyperPrompt-Sep (ours) 1.06x 63.9 96.6 94.6/92.6 92.0/91.7 90.0/92.4 90.9/91.0 95.2 91.6 89.4
HyperPrompt-Global (ours) 1.02x 64.6 96.7 94.0/91.8 91.3/91.4 90.0/92.4 90.8/91.0 95.4 91.9 89.4

Table 10. Comparison of HyperPrompt with baselines on GLUE using T5 Large.

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Model #Params BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC AVG

MTL 1.0x 88.5 95.8/98.2 87.0 85.5/56.3 89.2/88.6 91.7 74.0 89.4 85.9
Vanilla Adapter 1.03x 88.8 98.3/98.8 86.0 85.3/56.0 89.3/88.7 91.2 73.6 91.3 86.1
HyperFormer++ 1.01x 88.9 98.7/98.2 86.7 85.4/56.7 89.4/88.8 92.1 74.5 90.7 86.4
Prompt-Tuning 1.0001x 88.5 97.6/98.8 85.0 84.9/55.2 89.0/88.4 91.5 72.8 90.1 85.6
HyperPrompt-Share (ours) 1.004x 88.5 98.7/98.2 88.0 85.2/55.8 89.7/89.1 91.8 74.1 93.9 86.8
HyperPrompt-Sep (ours) 1.03x 88.6 97.6/98.8 87.7 85.2/56.4 89.7/89.1 91.6 73.5 89.4 86.1
HyperPrompt-Global (ours) 1.01x 88.7 99.1/98.8 91.0 85.0/55.6 89.8/89.1 91.3 74.2 92.0 87.0

Table 11. Comparison of HyperPrompt with baselines on SuperGLUE using T5 Large.

