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Abstract
Federated Learning (FL) is a powerful technique
to train a model on a server with data from sev-
eral clients in a privacy-preserving manner. FL
incurs significant communication costs because
it repeatedly transmits the model between the
server and clients. Recently proposed algorithms
quantize the model parameters to efficiently
compress FL communication. We find that
dynamic adaptations of the quantization level
can boost compression without sacrificing model
quality. We introduce DAdaQuant as a doubly-
adaptive quantization algorithm that dynamically
changes the quantization level across time and
different clients. Our experiments show that
DAdaQuant consistently improves client→server
compression, outperforming the strongest non-
adaptive baselines by up to 2.8×.

1. Introduction
Edge devices such as smartphones, remote sensors and
smart home appliances generate massive amounts of data
(Wang et al., 2018b; Cao et al., 2017; Shi & Dustdar, 2016).
In recent years, Federated Learning (FL) has emerged as a
technique to train models on this data while preserving pri-
vacy (McMahan et al., 2017; Li et al., 2018).

In FL, we have a single server that is connected to many
clients. Each client stores a local dataset that it does not
want to share with the server because of privacy concerns
or law enforcement (Voigt & Von dem Bussche, 2017). The
server wants to train a model on all local datasets. To this
end, it initializes the model and sends it to a random subset
of clients. Each client trains the model on its local dataset
and sends the trained model back to the server. The server
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accumulates all trained models into an updated model for
the next iteration and repeats the process for several rounds
until some termination criterion is met. This procedure en-
ables the server to train a model without accessing any local
datasets.

Today’s neural network models often have millions or even
billions (Brown et al., 2020) of parameters, which makes
high communication costs a concern in FL. In fact, Qiu
et al. (2020) suggest that communication between clients
and server may account for over 70% of energy consump-
tion in FL. Reducing communication in FL is an attractive
area of research because it lowers bandwidth requirements,
energy consumption and training time.

Communication in FL occurs in two phases: Sending pa-
rameters from the server to clients (downlink) and sending
updated parameters from clients to the server (uplink). Up-
link bandwidth usually imposes a tighter bottleneck than
downlink bandwidth. This has several reasons. For one, the
average global mobile upload bandwidth is currently less
than one fourth of the download bandwidth (Speedtest).
For another, FL downlink communication sends the same
parameters to each client. Broadcasting parameters is usu-
ally more efficient than the accumulation of parameters
from different clients that is required for uplink commu-
nication (Amiri et al., 2020; Reisizadeh et al., 2019). For
these reasons, we seek to compress uplink communication.

A large class of compression algorithms for FL apply some
lossy quantizer Q, optionally followed by a lossless com-
pression stage. Q usually provides a “quantization level”
hyperparameter q to control the coarseness of quantiza-
tion (e.g. the number of bins for fixed-point quantization).
When q is kept constant during training, we speak of static
quantization. When q changes, we speak of adaptive quan-
tization. Adaptive quantization can exploit asymmetries in
the FL framework to minimize communication. One such
asymmetry lies in FL’s training time, where Jhunjhunwala
et al. (2021) observed that early training rounds can use
a lower q without affecting convergence. Figure 2 illus-
trates how time-adaptive quantization leverages this phe-
nomenon to minimize communication. Another asymme-
try lies in FL’s client space, because most FL algorithms
weight client contributions to the global model proportional
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(a) Static quantization.

Client A Client B

Server
pA ∝ [0, 1] pB ∝ [0, 1]

Q(pB)

Q(p)
EpA,pB [Var (Q(p))] = 0.0017

Q(pA)

qA = 4 qB = 9

× 1
5

× 4
5

(b) Client-adaptive quantization.

Figure 1. Static quantization vs. client-adaptive quantization
when accumulating parameters pA and pB . (a): Static quanti-
zation uses the same quantization level for pA and pB . (b) Client-
adaptive quantization uses a slightly higher quantization level for
pB because pB is weighted more heavily. This allows us to use
a significantly lower quantization level qA for pA while keep-
ing the quantization error measure EpA,pB [Var (Q(p))] roughly
constant. Since communication is approximately proportional to
qA + qB , client-adaptive quantization communicates less data.

to their local dataset sizes. Figure 1 illustrates how client-
adaptive quantization can minimize the quantization error.
Intuitively, FL clients with greater weighting should have
a greater communication budget and our proposed client-
adaptive quantization achieves this in a principled way. To
this end, we introduce the expected variance of an accumu-
lation of quantized parameters, E[Var(

∑
Q(p))], as a mea-

sure of the quantization error. Our client-adaptive quanti-
zation algorithm then assigns clients minimal quantization
levels, subject to a fixed E[Var(

∑
Q(p))]. This lowers the

amount of data communicated from clients to the server,
without increasing the quantization error.

DAdaQuant (Doubly Adaptive Quantization) combines
time- and client-adaptive quantization with an adaptation
of the QSGD fixed-point quantization algorithm to achieve
state-of-the-art FL uplink compression. In this paper, we
make the following contributions:

• We introduce the concept of client-adaptive quantiza-
tion and develop algorithms for time- and client-adaptive
quantization that are computationally efficient, empir-
ically superior to existing algorithms, and compatible
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Figure 2. Time-adaptive quantization. A small quantization level
(q) decreases the loss with less communication than a large q, but
converges to a higher loss. This motivates an adaptive quantiza-
tion strategy that uses a small q as long as it is beneficial and then
switches over to a large q. We generalize this idea into an algo-
rithm that monotonically increases q based on the training loss.

with arbitrary FL quantizers. Our client-adaptive quan-
tization is provably optimal for stochastic fixed-point
quantizers.

• We create Federated QSGD as an adaptation of the
stochastic fixed-point quantizer QSGD that works with
FL. Federated QSGD outperforms all other quantizers,
establishing a strong baseline for FL compression with
static quantization.

• We combine time- and client-adaptive quantization into
DAdaQuant. We demonstrate DAdaQuant’s state-of-the-
art compression by empirically comparing it against sev-
eral competitive FL compression algorithms.

2. Related Work
FL research has explored several approaches to reduce
communication. We identify three general directions.

First, there is a growing interest of investigating FL algo-
rithms that can converge in fewer rounds. FedAvg (McMa-
han et al., 2017) achieves this with prolonged local training,
while FOLB (Nguyen et al., 2020) speeds up convergence
through a more principled client sampling. Since commu-
nication is proportional to the number of training rounds,
these algorithms effectively reduce communication.

Secondly, communication can be reduced by reducing the
model size because the model size is proportional to the
amount of training communication. PruneFL (Jiang et al.,
2019) progressively prunes the model over the course of
training, while AFD (Bouacida et al., 2021) only trains sub-
models on clients.

Thirdly, it is possible to directly compress FL training com-
munication. FL compression algorithms typically apply
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techniques like top-k sparsification (Malekijoo et al., 2021;
Rothchild et al., 2020) or quantization (Reisizadeh et al.,
2019; Shlezinger et al., 2020) to parameter updates, op-
tionally followed by lossless compression. Our work ap-
plies to quantization-based compression algorithms. It is
partially based on QSGD (Alistarh et al., 2017), which
combines lossy fixed-point quantization with a lossless
compression algorithm to compress gradients communi-
cated in distributed training. DAdaQuant adapts QSGD
into Federated QSGD, which works with Federated Learn-
ing. DAdaQuant also draws inspiration from FedPAQ (Rei-
sizadeh et al., 2019), the first FL framework to use lossy
compression based on model parameter update quantiza-
tion. However, FedPAQ does not explore the advantages
of additional lossless compression or adaptive quantiza-
tion. UVeQFed (Shlezinger et al., 2020) is an FL compres-
sion algorithm that generalizes scalar quantization to vector
quantization and subsequently employs lossless compres-
sion with arithmetic coding. Like FedPAQ, UVeQFed also
limits itself to a single static quantization level.

Faster convergence, model size reduction and communica-
tion compression are orthogonal techniques, so they can
be combined for further communication savings. For this
paper, we limit the scope of empirical comparisons to
quantization-based FL compression algorithms.

For quantization-based compression for model training,
prior works have demonstrated that DNNs can be success-
fully trained in low-precision (Banner et al., 2018; Gupta
et al., 2015; Sun et al., 2019). There are also several adap-
tive quantization algorithms for training neural networks
in a non-distributed setting. Shen et al. (2020) use differ-
ent quantization levels for different parameters of a neu-
ral network. FracTrain (Fu et al., 2020) introduced multi-
dimensional adaptive quantization by developing time-
adaptive quantization and combining it with parameter-
adaptive quantization. However, FracTrain uses the cur-
rent loss to decide on the quantization level. FL generally
can only compute local client losses that are too noisy to
be practical for FracTrain. AdaQuantFL introduces time-
adaptive quantization to FL, but requires the global loss
(Jhunjhunwala et al., 2021). To compute the global loss,
AdaQuantFL has to communicate with every client each
round. We show in Section 4.2 that this quickly becomes
impractical as the number of clients grows. DAdaQuant’s
time-adaptive quantization overcomes this issue without
compromising on the underlying FL communication. In
addition, to the best of our knowledge, DAdaQuant is the
first algorithm to use client-adaptive quantization.

3. The DAdaQuant method
3.1. Federated Learning

Federated Learning assumes a client-server topology with a
set C = {ci|i ∈ {1, 2...N}} ofN clients that are connected
to a single server. Each client ck has a local dataset Dk

from the local data distribution Dk. Given a modelM with
parameters p, a loss function fp(d ∈ Dk) and the local
loss Fk(p) = 1

|Dk|
∑
d∈Dk

fp(d), FL seeks to minimize

the global loss G(p) =
∑N
k=1

|Dk|∑
l |Dl|Fk(p).

3.2. Federated Averaging (FedAvg)

DAdaQuant makes only minimal assumptions about the FL
algorithm. Crucially, DAdaquant can complement FedAvg
(McMahan et al., 2017), which is representative of a large
class of FL algorithms.

FedAvg trains the model M over several rounds. In each
round t, FedAvg sends the model parameters pt to a ran-
dom subset St of K clients who then optimize their lo-
cal objectives Fk(pt) and send the updated model pa-
rameters pkt+1 back to the server. The server accumu-
lates all parameters into the new global model pt+1 =∑
k∈St

|Dk|∑
j |Dj |p

k
t+1 and starts the next round. Algorithm 1

lists FedAvg in detail. For our experiments, we use the Fed-
Prox (Li et al., 2018) adaptation of FedAvg. FedProx im-
proves the convergence of FedAvg by adding the proximal
term µ

2 ‖p
k
t+1−pt‖2 to the local objective Fk(pkt+1) in line

19 of Algorithm 1.

3.3. Quantization with Federated QSGD

While DAdaQuant can be applied to any quantizer with a
configurable quantization level, it is optimized for fixed-
point quantization. We introduce Federated QSGD as
a competitive stochastic fixed-point quantizer on top of
which DAdaQuant is applied.

In general, stochastic fixed-point quantization uses a quan-
tizer Qq with quantization level q that splits R≥0 and R≤0
into q intervals each. Qq(p) then returns the sign of p and |p|
stochastically rounded to one of the endpoints of its encom-
passing interval. Qq(p) quantizes the vector p elementwise.

We design DAdaQuant’s quantization stage based on
QSGD, an efficient fixed-point quantizer for state-of-the-
art gradient compression. QSGD quantizes a vector p in
three steps:

1. Quantize p as Qq(
p
||p||2 ) into q bins in [0, 1], storing

signs and ||p||2 separately. (lossy)
2. Encode the resulting integers with 0 run-length encod-

ing. (lossless)
3. Encode the resulting integers with Elias ω coding.

(lossless)
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QSGD has been designed specifically for quantizing gra-
dients. This makes it not directly applicable to param-
eter compression. To overcome this limitation, we ap-
ply difference coding to uplink compression, first intro-
duced to FL by FedPAQ. Each client ck applies Qq to
the parameter updates pkt+1 − pt (cf. line 7 of Algo-
rithm 1) and sends them to the server. The server keeps
track of the previous parameters pt and accumulates the
quantized parameter updates into the new parameters as
pt+1 = pt +

∑
k∈St

|Dk|∑
l |Dl|Qq(p

k
t+1 − pt) (cf. line 10

of Algorithm 1). We find that QSGD works well with pa-
rameter updates, which can be regarded as an accumulation
of gradients over several training steps. We call this adap-
tation of QSGD Federated QSGD.

3.4. Time-adaptive quantization

Time-adaptive quantization uses a different quantization
level qt for each round t of FL training. DAdaQuant
chooses qt to minimize communication costs without sac-
rificing accuracy. To this end, we find that lower quantiza-
tion levels suffice to initially reduce the loss, while partly
trained models require higher quantization levels to further
improve (as illustrated in Figure 2). FracTrain is built on
similar observations for non-distributed training. There-
fore, we design DAdaQuant to mimic FracTrain in mono-
tonically increasing qt as a function of t and using the train-
ing loss to inform increases in qt.

When q is too low, FL converges prematurely. Like Frac-
Train, DAdaQuant monitors the FL loss and increases q
when it converges. Unlike FracTrain, there is no single cen-
tralized loss function to evaluate and unlike AdaQuantFL,
we do not assume availability of global training lossG(pt).
Instead, we estimate G(pt) as the average local loss Ĝt =∑
k∈St

|Dk|∑
l |Dl|Fk(pt) where St is the set of clients sam-

pled at round t. Since St typically consists of only a
small fraction of all clients, Ĝt is a very noisy estimate
of G(pt). This makes it unsuitable for convergence de-
tection. Instead, DAdaQuant tracks a running average loss
ˆ̂Gt = ψ ˆ̂Gt−1+(1−ψ)Ĝt. Figure 3 visualizes ˆ̂Gt on a real
training example.

We initialize q1 = qmin for some qmin ∈ N. DAdaQuant
determines training to converge whenever ˆ̂Gt ≥ ˆ̂Gt+1−φ
for some φ ∈ N that specifies the number of rounds across
which we compare ˆ̂G. On convergence, DAdaQuant sets
qt = 2qt−1 and keeps the quantization level fixed for at
least φ rounds to enable reductions in G to manifest in
ˆ̂G. Eventually, the training loss converges regardless of the
quantization level. To avoid unconstrained quantization in-
creases on convergence, we limit the quantization level to
qmax.

The following equation summarizes DAdaQuant’s time-
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Figure 3. Client losses Ĝ0
t and Ĝ1

t , global loss estimate Ĝt and
moving average loss ˆ̂Gt when training on the Synthetic dataset
with two clients per round, assuming equal client weightings.

adaptive quantization:

qt ←−


qmin t = 0

2qt−1 t > 0 and ˆ̂Gt−1 ≥ ˆ̂Gt−φ and t >
φ and 2qt−1 < qmax and qt−1 = qt−φ

qt−1 else

Doubling the quantization level proves empirically suc-
cessful and ensures that experiments sensitive to noise
quickly reach a sufficiently high quantization level. How-
ever, we note that other strategies, such as increments by
one, could in principle match or even outperform doubling.

3.5. Client-adaptive quantization

FL algorithms typically accumulate each parameter pi over
all clients into a weighted average p =

∑K
i=1 wipi (see Al-

gorithm 1). Quantized FL accumulates quantized param-
eters Qq(p) =

∑K
i=1 wiQq(pi) where q is the quantization

level. We define the quantization error eqp = |p− Qq(p)|.

We observe in our experiments that communication cost
per client is roughly a linear function of Federated QSGD’s
quantization level q. This means that the communication
cost per round is proportional to Q = Kq. We call Q the
communication budget and use it as a proxy measure of
communication cost.

Client-adaptive quantization dynamically adjusts the quan-
tization level of each client. This means that even within
a single round, each client ck can be assigned a different
quantization level qk. The previous definitions then gener-
alize to Q =

∑K
k=1 qk and Qq1...qK (p) =

∑K
i=1 wiQqi(pi)

and eq1...qKp = |p− Qq1...qK (p)|.

Prior convergence results for distributed training and FL
rely on an upper bound b on Var(Qq1...qK (p)) that de-
termines the convergence speed (Li et al., 2017; Horváth
et al., 2019; Reisizadeh et al., 2019). This makes
V(Qq1...qK (p)) a natural measure to optimize for when
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Round 1 2 3 4 5
Client Samples Quantization level
A 1 8
B 2 8 8 8 8
C 3 8 8 8
D 4 8 8

(a) Static quantization.
Round 1 2 3 4 5

Client Samples Quantization level
A 1 4
B 2 1 2 2 4
C 3 1 2 8
D 4 2 8

(b) Time-adaptive quantization.
Round 1 2 3 4 5

Client Samples Quantization level
A 1 6
B 2 7 6 7 9
C 3 9 9 7
D 4 9 9

(c) Client-adaptive quantization.
Round 1 2 3 4 5

Client Samples Quantization level
A 1 3
B 2 1 1 2 5
C 3 1 2 7
D 4 1 9

(d) Time-adaptive and client-adaptive quantization.

Figure 4. Exemplary quantization level assignment for 4 FL
clients that train over 5 rounds. Each round, two clients get sam-
pled for training.

choosing qk. We optimize for the closely related mea-
sure Ep1...pK [Var(Qq1...qK (p))] that replaces the upper
bound with an expectation over parameters p1 . . . pK .
Heuristically, we expect an this averaged measure to
provide a better estimate of practically observed quan-
tization errors than an upper bound. For a stochastic,
unbiased fixed-point compressor like Federated QSGD,
Ep1...−pK [Var(Qq1...qK (p))] equals Ep1...pK [Var(eqp)] and
can be evaluated analytically.

We devise an algorithm that chooses qk to minimizeQ sub-
ject to Ep1...pK [Var(eq1...qKp )] = Ep1...pK [Var(eqp)] for a
given q. Thus, our algorithm effectively minimizes com-
munication costs while maintaining a quantization error
similar to static quantization. Theorem 1 provides us with
an analytical formula for quantization levels q1 . . . qK .

Theorem 1. Given parameters p1 . . . pk ∼ U[−t, t]
and quantization level q, minq1...qK

∑K
i=1 qi subject to

Ep1...pK [Var(eq1...qKp )] = Ep1...pK [Var(eqp)] is minimized

by qi =
√

a
b × w

2/3
i where a =

∑K
j=1 w

2/3
j and b =∑K

j=1

w2
j

q2 .

DAdaQuant applies Theorem 1 to lower communication

Algorithm 1 The FedAvg and DAdaQuant algorithms. The
uncolored lines list FedAvg. Adding the colored lines cre-
ates DAdaQuant. — quantization, — client-adaptive
quantization, — time-adaptive quantization.

1: Function RunServer()
2: Initialize wi =

|Di|∑
j |Dj | for all i ∈ [1, . . . , N ]

3: Choose St ⊂ C with |St| = K, including each ck ∈ C
with uniform probability

4: qt ←−



qmin t = 0

2qt−1 t > 0 and ˆ̂Gt−1 ≥ ˆ̂Gt−φ and t >
φ and 2qt−1 < qmax and qt−1 =
qt−φ

qt−1 else
5: for all ck ∈ St do

6: qkt ←−
√∑K

j=1 w
2/3
j /

∑K
j=1

w2
j

q2

7: Send(ck,pt,q
k
t )

8: Receive(ck,p
k
t+1,Ĝ

k
t )

9: end for
10: pt+1 ←−

∑
k∈St wkp

k
t+1

11: Ĝt ←−
∑
k∈St wkĜ

k
t

12: ˆ̂Gt ←−

{
Ĝ0 t = 0

ψ ˆ̂Gt−1 + (1− ψ)Ĝt else
13: EndFunction
14:
15: Function RunClient(ck)
16: while True do
17: Receive(Server,pt, qkt )
18: Ĝkt ←− Fk(pt)
19: pkt+1 ←− Fk(pkt+1) trained with SGD for E epochs

with learning rate η
20: Send(Server, Qqkt (p

k
t+1) ,Ĝ

k
t )

21: end while
22: EndFunction

costs while maintaining the same loss as static quantiza-
tion does with a fixed q. To ensure that quantization levels
are natural numbers, DAdaQuant approximates the optimal
real-valued solution as qi = max(1, round(

√
a
b × w

2/3
i )).

Appendix B gives a detailed proof of Theorem 1. To the
best of our knowledge, DAdaQuant is the first algorithm to
use client-adaptive quantization.

3.6. Doubly-adaptive quantization (DAdaQuant)

DAdaQuant combines the time-adaptive and client-
adaptive quantization algorithms described in the previ-
ous sections. At each round t, time-adaptive quantiza-
tion determines a preliminary quantization level qt. Client-
adaptive quantization then finds the client quantization lev-



DAdaQuant: Doubly-adaptive quantization for communication-efficient Federated Learning

Dataset Model Parameters Clients Samples Samples per client
mean min max stddev

Synthetic MLR 610 30 9,600 320.0 45 5,953 1051.6
FEMNIST 2-layer CNN 6.6× 106 3,500 785,582 224.1 19 584 87.8
CelebA 4-layer CNN 6.3× 105 9,343 200,288 21.4 5 35 7.6
Sent140 2-layer LSTM 1.1× 106 21,876 430,707 51.1 10 549 17.1
Shakespeare 2-layer LSTM 1.3× 105 1,129 4,226,158 3743 3 66,903 6212

Table 1. Statistics of the models and datasets used for evaluation. MLR stands for “Multinomial Logistic Regression”.

Synthetic FEMNIST Sent140
Uncompressed 78.3± 0.3 12.2MB 77.7± 0.4 132.1GB 69.7± 0.5 43.9GB
Federated QSGD −0.1± 0.1 17× +0.7± 0.5 2809× −0.0± 0.5 90×
FP8 +0.1 ± 0.4 4.0× (0.23××) −0.1± 0.4 4.0× (0.00××) −0.2± 0.5 4.0× (0.04××)
FedPAQ (FxPQ) −0.1± 0.1 6.4× (0.37××) +0.7± 0.5 11× (0.00××) −0.0± 0.5 4.0× (0.04××)
FxPQ + GZip −0.1± 0.1 14× (0.82××) +0.6± 0.2 1557× (0.55××) −0.0± 0.6 71× (0.79××)
UVeQFed −0.5± 0.2 0.6× (0.03××) −2.8± 0.5 12× (0.00××) +0.0± 0.2 15× (0.16××)
DAdaQuant −0.2± 0.4 48× (2.81××) +0.7± 0.1 4772× (1.70××) −0.1± 0.4 108× (1.19××)
DAdaQuanttime −0.1± 0.5 37× (2.16××) +0.8 ± 0.2 4518× (1.61××) −0.1± 0.6 93× (1.03××)
DAdaQuantclients +0.0± 0.3 26× (1.51××) +0.7± 0.4 3017× (1.07××) +0.1 ± 0.6 105× (1.16××)

Shakespeare Celeba
Uncompressed 49.9 ± 0.3 267.0MB 90.4± 0.0 12.6GB
Federated QSGD −0.5± 0.6 9.5× −0.1± 0.1 648×
FP8 −0.2± 0.4 4.0× (0.42××) +0.0 ± 0.1 4.0× (0.01××)
FedPAQ (FxPQ) −0.5± 0.6 3.2× (0.34××) −0.1± 0.1 6.4× (0.01××)
FxPQ + GZip −0.5± 0.6 9.3× (0.97××) −0.1± 0.2 494× (0.76××)
UVeQFed −0.0± 0.4 7.9× (0.83××) −0.4± 0.3 31× (0.05××)
DAdaQuant −0.6± 0.5 21× (2.21××) −0.1± 0.1 775× (1.20××)
DAdaQuanttime −0.5± 0.5 12× (1.29××) −0.1± 0.2 716× (1.10××)
DAdaQuantclients −0.4± 0.5 16× (1.67××) −0.1± 0.0 700× (1.08××)

Table 2. Top-1 test accuracies and total client→server communication of all baselines, DAdaQuant, DAdaQuanttime and DAdaQuantclients.
Entry x ± y p× (q××) denotes an accuracy difference of x% w.r.t. the uncompressed accuracy with a standard deviation of y%, a
compression factor of p w.r.t. the uncompressed communication and a compression factor of q w.r.t. Federated QSGD.

els qkt , k ∈ {1, . . . ,K} that minimize
∑K
i=1 qi subject

to Ep1...pK [Var(eq1...qKp )] = Ep1...pK [Var(eqp)]. Algo-
rithm 1 lists DAdaQuant in detail. Figure 4 gives an exam-
ple of how our time-adaptive, client-adaptive and doubly-
adaptive quantization algorithms set quantization levels.

Reisizadeh et al. (2019) prove the convergence of FL with
quantization for convex and non-convex cases as long as
the quantizer Q is (1) unbiased and (2) has a bounded vari-
ance. These convergence results extend to DAdaQuant
when combined with any quantizer that satisfies (1) and
(2) for DAdaQuant’s minimum quantization level q = 1.
Crucially, this includes Federated QSGD.

We highlight DAdaQuant’s low overhead and general ap-
plicability. The computational overhead is dominated by
an additional evaluation epoch per round per client to com-
pute ˆ̂Gt, which is negligible when training for many epochs
per round. In our experiments, we observe computational
overheads of ≈ 1% (see Appendix A.3). DAdaQuant can
compliment any FL algorithm that trains models over sev-
eral rounds and accumulates a weighted average of client
parameters. Most FL algorithms, including FedAvg, fol-
low this design.

4. Experiments
4.1. Experimental details

Evaluation We use DAdaQuant with Federated QSGD to
train different models with FedProx on different datasets
for a fixed number of rounds. We monitor the test loss and
accuracy at fixed intervals and measure uplink communi-
cation at every round across all devices.

Models & datasets We select a broad and diverse set of
five models and datasets to demonstrate the general appli-
cability of DAdaQuant. To this end, we use DAdaQuant
to train a linear model, CNNs and LSTMs of varying com-
plexity on a federated synthetic dataset (Synthetic), as well
as two federated image datasets (FEMNIST and CelebA)
and two federated natural language datasets (Sent140 and
Shakespeare) from the LEAF (Caldas et al., 2018) project
for standardized FL research. Table 1 provides statistics
of our models and datasets. We refer to Appendix A.1 for
more information on the training objectives and implemen-
tation.

System heterogeneity In practice, FL has to cope with
clients that have different compute capabilities. We follow
Li et al. (2018) and simulate this system heterogeneity by
randomly reducing the number of epochs to E′ for a ran-
dom subset S′t ⊂ St of clients at each round t, where E′ is
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sampled from [1, . . . , E] and |S′t| = 0.9K.

Baselines We compare DAdaQuant against competing
quantization-based algorithms for FL parameter compres-
sion, namely Federated QSGD, FedPAQ (Reisizadeh et al.,
2019), GZip with fixed-point quantization (FxPQ + GZip),
UVeQFed (Shlezinger et al., 2020) and FP8. Federated
QSGD (see section 3.3) is our most important baseline be-
cause it outperforms the other algorithms. FedPAQ only
applies fixed-point quantization, which is equivalent to
Federated QSGD without lossless compression. Similarly,
FxPQ + GZip is equivalent to Federated QSGD with Gzip
for its lossless compression stages. UVeQFed general-
izes scalar quantization to vector quantization, followed
by arithmetic coding. We apply UVeQFed with the opti-
mal hyperparameters reported by its authors. FP8 (Wang
et al., 2018a) is a floating-point quantizer that uses an 8-bit
floating-point format designed for storing neural network
gradients. We also evaluate all experiments without com-
pression to establish an accuracy benchmark.

Hyperparameters With the exception of CelebA, all our
datasets and models are also used by Li et al.. We there-
fore adopt most of the hyperparameters from Li et al. and
use LEAF’s hyperparameters for CelebA (Caldas et al.,
2018). For all experiments, we sample 10 clients each
round. We train Synthetic, FEMNIST and CelebA for 500
rounds each. We train Sent140 for 1000 rounds due to slow
convergence and Shakespeare for 50 rounds due to rapid
convergence. We use batch size 10, learning rates 0.01,
0.003, 0.3, 0.8, 0.1 and µs (FedProx’s proximal term coef-
ficient) 1, 1, 1, 0.001, 0 for Synthetic, FEMNIST, Sent140,
Shakespeare, CelebA respectively. We randomly split the
local datasets into 80% training set and 20% test set.

To select the quantization level q for static quantization
with Federated QSGD, FedPAQ and FxPQ + GZip, we run
a gridsearch over q = 1, 2, 4, 8, . . . and choose for each
dataset the lowest q for which Federated QSGD exceeds
uncompressed training in accuracy. We set UVeQFed’s
“coding rate” hyperparameter R = 4, which is the low-
est value for which UVeQFed achieves negligible accuracy
differences compared to uncompressed training. We set the
remaining hyperparameters of UVeQFed to the optimal val-
ues reported by its authors. Appendix A.4 shows further
experiments that compare against UVeQFed with R cho-
sen to maximize its compression factor.

For DAdaQuant’s time-adaptive quantization, we set ψ to
0.9, φ to 1/10

th of the number of rounds and qmax to
the quantization level q for each experiment. For Syn-
thetic and FEMNIST, we set qmin to 1. We find that
Sent140, Shakespeare and CelebA require a high quanti-
zation level to achieve top accuracies and/or converge in
few rounds. This prevents time-adaptive quantization from
increasing the quantization level quickly enough, resulting

in prolonged low-precision training that hurts model per-
formance. To counter this effect, we set qmin to qmax/2.
This effectively results in binary time-adaptive quantiza-
tion with an initial low-precision phase with q = qmax/2,
followed by a high-precision phase with q = qmax.

4.2. Results

We repeat the main experiments three times and report av-
erage results and their standard deviation (where applica-
ble). Table 2 shows the highest accuracy and total commu-
nication for each experiment. Figure 5 plots the maximum
accuracy achieved for any given amount of communication.

Baselines Table 2 shows that the accuracy of most exper-
iments lies within the margin of error of the uncompressed
experiments. This reiterates the viability of quantization-
based compression algorithms for communication reduc-
tion in FL. For all experiments, Federated QSGD achieves a
significantly higher compression factor than the other base-
lines. The authors of FedPAQ and UVeQFed also com-
pare their methods against QSGD and report them as supe-
rior. However, FedPAQ is compared against “unfederated”
QSGD that communicates gradients after each local train-
ing step and UVeQFed is compared against QSGD without
its lossless compression stages.

Time-adaptive quantization The purely time-adaptive
version of DAdaQuant, DAdaQuanttime, universally outper-
forms Federated QSGD and the other baselines in Table 2,
achieving comparable accuracies while lowering commu-
nication costs. DAdaQuanttime performs particularly well
on Synthetic and FEMNIST, where it starts from the low-
est possible quantization level q = 1. However, binary
time-adaptive quantization still measurably improves over
QSGD for Sent140, Shakespeare and Celeba.

Figure 8 in Appendix A.5 provides empirical evidence
that AdaQuantFL’s communication scales linearly with the
number of clients. As a result, AdaQuantFL is prohibitively
expensive for datasets with thousands of clients such as
Celeba and Sent140. DAdaQuant does not face this prob-
lem because its communication is unaffected by the num-
ber of clients.

Client-adaptive quantization The purely time-adaptive
version of DAdaQuant, DAdaQuantclients, also universally
outperforms Federated QSGD and the other baselines in
Table 2, achieving similar accuracies while lowering com-
munication costs. Unsurprisingly, the performance of
DAdaQuantclients is correlated with the coefficient of vari-
ation cv = σ

µ of the numbers of samples in the local
datasets with mean µ and standard deviation σ: Synthetic
(cv = 3.3) and Shakespeare (cv = 1.7) achieve signifi-
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Figure 5. Communication-accuracy trade-off curves for training with Federated QSGD and DAdaQuant. For each dataset, we plot
the average highest accuracies achieved up to any given amount of client→server communication. Appendix A.2 shows curves for
DAdaQuanttime and DAdaQuantclients, with similar results.

cantly higher compression factors than Sent140 (cv = 0.3),
FEMNIST (cv = 0.4) and Celeba (cv = 0.3).

DAdaQuant DAdaQuant outperforms DAdaQuanttime
and DAdaQuantclients in communication while achieving
similar accuracies. The compression factors of DAdaQuant
are roughly multiplicative in those of DAdaQuantclients
and DAdaQuanttime. This demonstrates that we can ef-
fectively combine time- and client-adaptive quantization
for maximal communication savings. Figure 5 shows
that DAdaQuant achieves a higher accuracy than the
strongest baseline, Federated QSGD, for any fixed amount
of client→server communication.

5. Conclusion
We introduced DAdaQuant as a computationally effi-
cient and robust algorithm to boost the performance
of quantization-based FL compression algorithms. We
showed intuitively and mathematically how DAdaQuant’s
dynamic adjustment of the quantization level across time
and clients minimize client→server communication while
maintaining convergence speed. Our experiments establish
DAdaQuant as nearly universally superior over static quan-
tizers, achieving state-of-the-art compression factors when
applied to Federated QSGD. The communication savings
of DAdaQuant effectively lower FL bandwidth usage, en-
ergy consumption and training time. Future work may ap-
ply and adapt DAdaQuant to new quantizers, further push-
ing the state of the art in FL uplink compression.

6. Reproducibility Statement
Our submission includes a repository with the source code
for DAdaQuant and for the experiments presented in this
paper. All the datasets used in our experiments are publicly
available. Any post-processing steps of the datasets are de-
scribed in Appendix A.1. To facilitate the reproduction of
our results, we have bundled all our source code, depen-
dencies and datasets into a Docker image. The repository
submitted with this paper contains instructions on how to
use this Docker image and reproduce all plots and tables in
this paper.
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A. Additional simulation details and experiments
A.1. Additional simulation details

Here, we give detailed information on the models, datasets, training objectives and implementation that we use for our
experiments. We set the five following FL tasks:

• Multinomial logistic regression (MLR) on a synthetic dataset called Synthetic that contains vectors in R60 with a label
of one out of 10 classes. We use the synthetic dataset generator in Li et al. (2018) to generate synthetic datasets. The
generator samples Synthetic’s local datasets and labels from MLR models with randomly initialized parameters. For this
purpose, parameters α and β control different kinds of data heterogeneity. α controls the variation in the local models
from which the local dataset labels are generated. β controls the variation in the local dataset samples. We set α = 1 and
β = 1 to simulate an FL setting with both kinds of data heterogeneity. This makes Synthetic a useful testbed for FL.

• Character classification into 62 classes of handwritten characters from the FEMNIST dataset using a CNN. FEMNIST
groups samples from the same author into the same local dataset.

• Smile detection in facial images from the CelebA dataset using a CNN. CelebA groups samples of the same person into
the same local dataset. We note that LEAF’s CNN for CelebA uses BatchNorm layers. We replace them with LayerNorm
layers because they are more amenable to quantization. This change does not affect the final accuracy.

• Binary sentiment analysis of tweets from the Sent140 dataset using an LSTM. Sent140 groups tweets from the same
user into the same local dataset. The majority of local datasets in the raw Sent140 dataset only have a single sample.
This impedes FL convergence. Therefore, we filter Sent140 to clients with at least 10 samples (i.e. one complete batch).
Caldas et al. (2018); Li et al. (2018) similarly filter Sent140 for their FL experiments.

• Next character prediction on text snippets from the Shakespeare dataset of Shakespeare’s collected plays using an LSTM.
Shakespeare groups lines from the same character into the same local dataset.

For our experiments in Figure 8, AdaQuantFL requires a hyperparameter s that determines the initial quantization level.
We set s to 2, the optimal value reported by the authors of AdaQuantFL. The remaining hyperparameters are identical to
those used for the Synthetic dataset experiments in Table 2.

We implement the models with PyTorch (Paszke et al., 2019) and use Flower (Beutel et al., 2020) to simulate the FL server
and clients.

A.2. Additional communication-accuracy trade-off curves
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Figure 6. Communication-accuracy trade-off curves for Federated QSGD and DAdaQuanttime. We plot the average highest accuracies
achieved up to any given amount of communication.
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Figure 7. Communication-accuracy trade-off curves for Federated QSGD and DAdaQuantclients. We plot the average highest accuracies
achieved up to any given amount of communication.

A.3. Computational overhead of DAdaQuant

Training DAdaQuanttime DAdaQuantclients Federated QSGD Total overhead
36 s <1 ms (0.00%) 0.17 s (0.47%) 0.24 s (0.67%) 0.41 s (1.14%)

Table 3. Execution time measurements for different stages of a FL training round on FEMNIST with DAdaQuant. Each entry contains
the execution time in seconds and as a fraction of the normal training time. The total overhead of DAdaQuant, including Federated
QSGD, is ≈ 1%.

A.4. Additional UVeQFed experiments

To demonstrate that the choice of UVeQFed’s “coding rate” hyperparameter R does not affect our findings on the superior
compression factors of DAdaQuant, we re-evaluate UVeQFed with R = 1, which maximizes UVeQFed’s compression
factor. Our results in Table 4 show that with the exception of Shakespeare, DAdaQuant still achieves considerably higher
compression factors than UVeQFed.

Synthetic FEMNIST Sent140 Shakespeare Celeba
Uncompressed 12.2MB 132.1GB 43.9GB 267.0MB 12.6GB
QSGD 17× 2809× 90× 9.5× 648×
UVeQFed (R=4) 0.6× (0.03××) 12× (0.00××) 15× (0.16××) 7.9× (0.83××) 31× (0.05××)
UVeQFed (R=1) 13× (0.77××) 34× (0.01××) 41× (0.45××) 21× (2.22××) 93× (0.14××)
DAdaQuant 48× (2.81××) 4772× (1.70××) 108× (1.19××) 21× (2.21××) 775× (1.20××)

Table 4. Comparison of the compression factors of DAdaQuant, UVeQFed with R = 4 (default value used for our experiments in
Table 2) and UVeQFed with R = 1 (maximizes UVeQFed’s compression factor). Entry p× (q××) denotes a compression factor of p
w.r.t. the uncompressed communication and a compression factor of q w.r.t. Federated QSGD.



DAdaQuant: Doubly-adaptive quantization for communication-efficient Federated Learning

A.5. Additional AdaQuantFL experiments
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(a) Comparison of the per-round-communication for
AdaQuantFL and DAdaQuant. We plot the average
client→server communication per round that is required to
train an MLR model on synthetic datasets with 10, 100, 200 and
400 clients. AdaQuantFL’s communication increases linearly
with the number of clients because it trains the model on all
clients at each round. In contrast, DAdaQuant’s communication
does not change with the number of clients.
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(b) Comparison of the convergence speed for AdaQuantFL and
DAdaQuant. We plot the test accuracy while training on a syn-
thetic dataset with 100 clients. Although AdaQuantFL has full
client participation each round, it converges only slightly faster
than DAdaQuant and achieves a similar top accuracy. This means
that AdaQuantFL’s linear increase in communication is not offset
by a proportional reduction in training rounds.

Figure 8. Scalability of AdaQuantFL vs. DAdaQuant.

In principle, AdaQuantFL could be adapted to work with partial client participation by computing an estimate of the global
loss from the sampled subset of clients. While a full evaluation of this approach is out of the scope of this paper, we conduct
a brief feasibility study on FEMNIST. Concretely, we find that a single run of AdaQuantFL with partial client participation
on FEMNIST achieved an accuracy of 78.7%, with a total client→server communication of 50.5 MB. In contrast, the same
run with DAdaQuanttime similarly achieved an accuracy of 78.4%, while lowering the total client→server communication
to 27.5 MB.

B. Proofs
Lemma 1. Take arbitrary quantization level qi ∈ N and parameter pi ∈ [−t, t]. Then,
Qqi(pi) is an unbiased estimator of pi.

Proof. Let si = t
qi

, bi = rem (pi, si) and ui = si − bi. Then, we have

E
[
Qqi(pi)− pi

]
=

ui
si
(pi − bi) +

bi
si
(pi + ui) see Figure 9

= pi

Lemma 2. For arbitrary t > 0 and parameter pi ∈ [−t, t], let si = t
qi

, bi = rem (pi, si) and ui = si − bi. Then,
Var

(
Qqi(pi)

)
= uibi.

Proof.

Var
(
Qqi(pi)

)
= E

[(
Qqi(pi)− E

[
Qqi(pi)

])2]
= E

[(
Qqi(pi)− pi

)2]
see Lemma 1

=
bi
si
u2i +

ui
si
b2i see Figure 9
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=
uibi
si

(ui + bi)

= uibi

picsi (c+ 1)si

P (csi) =
ui

si
P ((c+ 1)si) =

bi
si

Figure 9. Illustration of the Bernoulli random variable Qqi(pi). si is the length of the quantization interval. pi is rounded up to (c+1)si
with a probability proportional to its distance from csi.

Lemma 3. Assume that parameters p1 . . . pK are sampled from U[−t, t] for arbitrary t > 0. Then,
Ep1...pK [Var(eq1...qKp )] = t2

6

∑K
i=1

w2
i

q2i
.

Proof.

Ep1...pK [Var(ep)]

=
1

2t

∫ t

−t

1

2t

∫ t

−t
. . .

1

2t

∫ t

−t
Var

(
K∑
i=1

wiQqi(pi)− p

)
dp1dp2 . . . dpK

=
1

t

∫ t

0

1

t

∫ t

0

. . .
1

t

∫ t

0

Var

(
K∑
i=1

wiQqi(pi)− p

)
dp1dp2 . . . dpK symmetry of Qqi(pi)

w.r.t. negation

=
1

tn

∫ t

0

∫ t

0

. . .

∫ t

0

K∑
i=1

w2
iVar

(
Qqi(pi)

)
dp1dp2 . . . dpK mutual independence of

Qqi(pi) ∀i

=
1

tn

K∑
i=1

∫ t

0

∫ t

0

. . .

∫ t

0

w2
iVar

(
Qqi(pi)

)
dp1dp2 . . . dpK exchangeability of finite

sums and integrals

=
1

tn

K∑
i=1

tn−1
∫ t

0

w2
iVar

(
Qqi(pi)

)
dpi

=
1

t

K∑
i=1

w2
i

∫ t

0

Var
(
Qqi(pi)

)
dpi

=
1

t

K∑
i=1

w2
i

∫ t

0

uibi dpi Lemma 2

=
1

t

K∑
i=1

w2
i qi

∫ si

0

uibi dpi si-periodicity of ui and bi

=
1

t

K∑
i=1

w2
i qi

∫ si

0

(si − pi) pi dpi

=
1

6t

K∑
i=1

w2
i qis

3
i

=
t2

6

K∑
i=1

w2
i

q2i
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Lemma 4. Let Q be a fixed-point quantizer. Assume that parameters p1 . . . pK are sampled from U[−t, t] for arbitrary

t > 0. Then, minq1...qK Ep1...pK [Var(eq1...qKp )] subject to Q =
∑K
i=1 qi is minimized by qi = Q

w
2/3
i∑K

k=1 w
2/3
k

.

Proof. Define

f(q) = Ep1...pK [Var(eq1...qKp )]

g(q) =

(
n∑
i=1

qi

)
L(q) = f(q)− λg(q) (Lagrangian)

Any (local) minimum q̂ satisfies

∇L(q̂) = 0

⇐⇒ ∇ t
2

6

K∑
i=1

w2
i

q2i
− λ∇

K∑
i=1

qi = 0 ∧
K∑
i=1

qi = Q Lemma 3

⇐⇒ ∀i = 1 . . . n.
t2

−3
w2
i

q3i
= λ ∧

K∑
i=1

qi = Q

⇐⇒ ∀i = 1 . . . n. qi =
3

√
t2

−3λ
w2
i ∧

K∑
i=1

qi = Q

=⇒ ∀i = 1 . . . n. qi = Q
w

2/3
i∑K

j=1 w
2/3
j

B.1. Proof of Theorem 1

Proof. Using Lemma 4, it is straightforward to show that for any V , minq1...qK
∑K
i=1 qi subject to

Ep1...pK [Var(eq1...qKp )] = V is minimized by qi = Cw
2/3
i for the unique C ∈ R>0 that satisfies Ep1...pK [Var(eq1...qKp )] =

V .

Then, taking V = Ep1...pK [Var(eqp)] and C =
√

a
b (see Theorem 1), we do indeed get

Ep1...pK [Var(eq1...qKp )]

=
t2

6

K∑
i=1

w2
i

(Cw
2/3
i )

2 Lemma 3

=
1

C2

t2

6

K∑
i=1

wi
2/3

=

∑K
j=1

w2
j

q2∑K
j=1 w

2/3
j

t2

6

K∑
i=1

wi
2/3

=
t2

6

K∑
j=1

w2
j

q2

= Ep1...pK [Var(eqp)] lemma 3


