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Abstract

In this paper, we generalize the concept of heavy-
tailed multi-armed bandits to adversarial environ-
ments, and develop robust best-of-both-worlds
algorithms for heavy-tailed multi-armed bandits
(MAB), where losses have α-th (1 < α ≤ 2) mo-
ments bounded by σα, while the variances may
not exist. Specifically, we design an algorithm
HTINF, when the heavy-tail parameters α and σ
are known to the agent, HTINF simultaneously
achieves the optimal regret for both stochastic and
adversarial environments, without knowing the
actual environment type a-priori. When α, σ are
unknown, HTINF achieves a log T -style instance-
dependent regret in stochastic cases and o(T ) no-
regret guarantee in adversarial cases. We fur-
ther develop an algorithm AdaTINF, achieving
O(σK1−1/αT 1/α) minimax optimal regret even
in adversarial settings, without prior knowledge
on α and σ. This result matches the known re-
gret lower-bound (Bubeck et al., 2013), which
assumed a stochastic environment and α and σ
are both known. To our knowledge, the proposed
HTINF algorithm is the first to enjoy a best-of-
both-worlds regret guarantee, and AdaTINF is
the first algorithm that can adapt to both α and σ
to achieve optimal gap-indepedent regret bound
in classical heavy-tailed stochastic MAB setting
and our novel adversarial formulation.

1. Introduction
In this paper, we focus on the multi-armed bandit problem
with heavy-tailed losses. Specifically, in our setting, there is
an agent facing K feasible actions (called bandit arms) to
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sequentially make decisions on. For each time step t ∈ [T ],1

each arm i ∈ [K] is associated with a loss distribution νt,i
which is unknown to the agent. The only constraint on νt,i
is that the α-th moment (α ∈ (1, 2]) is bounded by some
constant σα, i.e., E`∼νt,i [|`|α] ≤ σα for all t ∈ [T ] and
i ∈ [K]. However, neither α nor σ is known to the agent.

At each step t, the agent picks an arm it and observes a loss
`t,it drawn from the distribution νt,it , which is independent
to all previous steps. The goal of the agent is to minimize
the pseudo-regret, which is defined by the expected differ-
ence between the loss he suffered and the loss of always
pulling the best arm in hindsight (formally defined in Defi-
nition 3.2), where the expectation is taken with respect to
the randomness both in the algorithm and the environment.

Prior MAB literature mostly studies settings where the loss
distributions are supported on a bounded interval I (e.g.,
I = [0, 1]) known to the agent before-hand, which is a spe-
cial case of our setting where all νt,i’s are Dirac measures
centered within I (Seldin & Slivkins, 2014; Zimmert &
Seldin, 2019). By constrast, there is another common ex-
isting MAB setting called scale-free MAB (De Rooij et al.,
2014; Orabona & Pál, 2018), where the range of losses are
not known. In this case, the loss range itself can even depend
on other scale parameter of the problem instance (e.g., T and
K) rather than being a constant. Our heavy-tailed setting
can be seen as an intermediate setting between bounded-
loss MAB and scale-free MAB, where loss feedback can
be indefinitely large, but not in a completely arbitrary man-
ner. This setting naturally extends classical MAB settings,
including bounded-loss MAB and sub-Gaussian-loss MAB.

Following the convention of prior MAB literature, we fur-
ther distinguish the environment into two typical types.
Environment of the first type consists with time homo-
geneous distributions, i.e., for each i ∈ [K], νt,i = ν1,i

holds for all t ∈ [T ]. We call them stochastic environ-
ments. Bubeck et al. (2013) proved that, for heavy-tailed
stochastic bandits, even when α and σ are both known to the
agent, an Ω(σK1−1/αT 1/α) instance-independent regret and

Ω(σ
α
α−1

∑
i 6=i∗ log T∆

− 1
α−1

i ) instance-dependent regret is

1Throughout the paper, we use [n] to denote the set
{1, 2, . . . , n}.
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unavoidable, where i∗ denotes the optimal arm in hindsight,
and ∆i , E`∼ν1,i [`]− E`∼ν1,i∗ [`] is the sub-optimally gap
between i and i∗. They also designed an algorithm that
matches these lower-bounds up to logarithmic factors when
both α and σ are known.

In the second type of environments, loss distributions can be
time inhomogeneous, and we call them adversarial environ-
ments. To our knowledge, no previous work studied similar
adversarial heavy-tailed MAB problems. It can be seen that
the instance-independent lower-bound Ω(σK1−1/αT 1/α) for
stochastic heavy-tailed MAB proved by Bubeck et al. (2013)
is also a lower-bound for this adversarial extension.

In this paper, we develop algorithms for heavy-tailed bandits
in both stochastic and adversarial cases. In contrast to exist-
ing (stochastic) heavy-tailed MAB algorithms (Bubeck et al.,
2013; Lee et al., 2020) that heavily use well-designed mean
estimators for heavy-tailed distributions, our algorithms
are mainly designed based on the Follow-the-Regularized-
Leader (FTRL) framework, which has been applied in a
number of adversarial MAB works (Zimmert & Seldin,
2019; Seldin & Lugosi, 2017). Our proposed algorithms
enjoy optimal or near-optimal regret guarantees and require
much less prior knowledge compared to prior works. When
σ, α are known before-hand, our algorithm matches existing
gap dependent and independent regret lower-bounds, while
previous algorithms suffer extra log-factors (check Table 1
for a comparison). Finally, we propose an algorithm with
O(σK1−1/αT 1/α) regret even when σ, α are both unknown,
which shows the existing Ω(σK1−1/αT 1/α) lower-bound is
tight even when all prior knowledge on σ, α is absent.

1.1. Our Contributions

We first introduce a novel adversarial MAB setting where
losses are heavy-tailed, which generalizes the existing
heavy-tailed stochastic MAB setting and scalar-loss adver-
sarial MAB setting. Three novel algorithms are proposed.
HTINF enjoys an optimal best-of-both-worlds regret guar-
antee when α, σ are known. Without the knowledge of α, σ,
OptTINF guarantees o(T ) adversarial regret (a.k.a. “no-
regret guarantee”) and O(log T ) gap-dependent bound for
stochastically constrained environments. AdaTINF guaran-
tees minimax optimal O(σK1−1/αT 1/α) adversarial regret.

1.1.1. KNOWN α, σ CASE

When α, σ are both known to the agent, we provide a
novel algorithm called Heavy-Tail Tsallis-INF (HTINF,
Algorithm 1), based on the Follow-the-Regularized-Leader
(FTRL) framework. In HTINF, We introduce a novel skip-
ping technique equipped with an action-dependent skipping
threshold (rt in Algorithm 1) to handle the heavy-tailed
losses, which can be of independent interest.

HTINF enjoys the so-called best-of-both-worlds
property (Bubeck & Slivkins, 2012) to achieve
O
(
σK1−1/αT 1/α

)
regret in adversarial settings and

O
(
σ

α
α−1

∑
i6=i∗ ∆

− 1
α−1

i log T

)
regret in stochastically

constrained adversarial settings (which contains stochastic
cases; see Section 3 for definition) simultaneously, without
knowing the actual environment type a-priori. The claimed
regret bounds both match the corresponding lower-bounds
by Bubeck et al. (2013), showing that these bounds are
indeed tight even for our adversarial setting.

1.1.2. UNKNOWN α, σ CASE

When the agent does not access to α and σ, running HTINF
optimistically with α = 2 and σ = 1 (named OptTINF;
Algorithm 2) also gives non-trivial regret guarantees. Specif-
ically, we showed that it enjoys a near-optimal regret of
O
(∑

i 6=i∗(
σ2α

∆3−α
i

)
1

α−1 log T
)

in stochastically constrained

adversarial environments and O
(
σαK

α−1
2 T

3−α
2

)
regret in

adversarial cases, which is still o(T ).

We further present another novel algorithm called Adaptive
Tsallis-INF (AdaTINF, Algorithm 3) for heavy-tailed ban-
dits. Without knowing the heavy-tail parameters α and
σ before-hand, AdaTINF is capable of guaranteeing an
O
(
σK1−1/αT 1/α

)
regret in the adversarial setting, match-

ing the regret lower-bound from Bubeck et al. (2013).

To the best of our knowledge, all prior algorithms for MAB
with heavy-tailed losses need to know α before-hand. The
proposed two algorithms, OptTINF and AdaTINF, are
the first algorithms to have the adaptivity for both unknown
heavy-tail parameters α and σ, while achieving near-optimal
regrets in stochastic or adversarial settings.

1.2. Related Work

Heavy-tailed losses: The heavy-tailed (stochastic) ban-
dit model was first introduced by Bubeck et al. (2013),
where instance-dependent and independent lower-bounds
were given. They designed an algorithm nearly matching
these lower-bounds (with an extra log T factor in the gap-
independent regret), when σ, α are both known to the agent.
Vakili et al. (2013) derived a tighter upper-bound with α, σ
and min ∆i all presented to the agent. Kagrecha et al. (2019)
gave an algorithm adaptive to σ in a pure exploration setting.
Lee et al. (2020) got rid of the requirement of σ, yield-
ing near-optimal regret bounds with a prior knowledge on
α only. Moreover, all above algorithms built on the UCB
framework, which does not directly apply to adversarial
environments. One can refer to Table 1 for a comparison.

Other variations with heavy-tailed losses are also studied
in the literature, e.g., linear bandits (Medina & Yang, 2016;
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Table 1. An overview of the proposed algorithms and related works.

Algorithm Loss Type Prior Knowledge Total Regret

Lower-bounds
(Bubeck et al., 2013) Stochastica α, σ

Ω

(
σ

α
α−1

∑
i 6=i∗ ∆

− 1
α−1

i log T

)
Ω
(
σK1−1/αT 1/α

)
RobustUCB

(Bubeck et al., 2013) Stochastic α, σ

O
(∑

i 6=i∗(
σα

∆i
)

1
α−1 log T

)
(optimal)

O
(
σ(K log T )1−1/αT 1/α

)
(sub-optimal for log T factors)

Lee et al. (2020) Stochastic α; require µi ∈ [0, 1]
O
(
K1−1/αT 1/α logK

)
b

(sub-optimal for logK factors)

1/2-Tsallis-INF
(Zimmert & Seldin, 2019)

SCA-uniquec

require α = 2 and
[0, 1]-bounded losses

O

(∑
i 6=i∗

1
∆i

log T

)
(optimal for α = 2, σ = 1 case)

Adversarial O
(√

KT
)

(optimal for α = 2, σ = 1 case)

HTINF (ours)
SCA-unique

α, σ
O

(∑
i 6=i∗

(σ
α

∆i
)

1
α−1 log T

)
(optimal)

Adversarial O
(
σK1−1/αT 1/α

)
(optimal)

Optimistic HTINF (ours)
SCA-unique

None
O
(∑

i6=i∗

(
σ2α

∆3−α
i

) 1
α−1

log T

)
Adversarial O(σαK

α−1
2 T

3−α
2 )

AdaTINF (ours) Adversarial Noned O
(
σK1−1/αT 1/α

)
(optimal)

aAs discussed in Section 3, the instance-independent lower bounds automatically apply to adversarial settings, and the main result of
this paper shows that it is indeed tight even for adversarial settings.

bLee et al. (2020) regarded σ as a constant when stating their regret bounds. By designing different estimators, they also gave various
instance-dependent bounds, each with (log T )

α
α−1 (sub-optimal) dependency on T . One can check Table 1 in their paper for more details.

cAbbreviation for stochastically constrained adversarial settings with a unique optimal arm.
dThough the time horizon T is assumed to be known in Algorithm 3, it is in fact non-essential for AdaTINF. The removal of T , via a

usual doubling trick, will not cause extra factors. Check Appendix D for more discussions.

Xue et al., 2021), contextual bandits (Shao et al., 2018) and
Lipschitz bandits (Lu et al., 2019). However, none of above
algorithms removes the dependency on α.

Best-of-both-worlds: This concept of designing a single
algorithm to yield near-optimal regret in both stochastic and
adversarial environments was first proposed by Bubeck &
Slivkins (2012). Bubeck & Slivkins (2012); Auer & Chiang
(2016); Besson & Kaufmann (2018) designed algorithms
that initially run a policy for stochastic settings, and may
permanently switch to a policy for adversarial settings dur-
ing execution. Seldin & Slivkins (2014); Seldin & Lugosi
(2017); Wei & Luo (2018); Zimmert & Seldin (2019) de-
signed algorithm using the Online Mirror Descent (OMD)
or Follow the Regularized Leader (FTRL) framework. Our

work falls into the second category.

Adaptive algorithms: There is a rich literature in deriving
algorithms adaptive to the loss sequences, for either full
information setting (Luo & Schapire, 2015; Orabona &
Pal, 2016), stochastic bandits (Garivier & Cappé, 2011;
Lattimore, 2015) or adversarial bandits (Wei & Luo, 2018;
Bubeck et al., 2019). There are also many algorithms that is
adaptive to the loss range, so-called ‘scale-free’ algorithms
(De Rooij et al., 2014; Orabona & Pál, 2018; Hadiji & Stoltz,
2020). However, as mentioned above, to our knowledge,
our work is the first to adapt to heavy-tail parameters.
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2. Notations
We use [N ] to denote the integer set {1, 2, · · · , N}. Let
f be any strictly convex function defined on a convex set
Ω ⊆ RK . For x, y ∈ Ω, if ∇f(x) exists, we denote the
Bregman divergence induced by f as

Df (y, x) , f(y)− f(x)− 〈∇f(x), y − x〉.

We use f∗(y) , supx∈RK{〈y, x〉 − f(x)} to denote the
Fenchel conjugate of f . Denote the K − 1-dimensional
probability simplex by4[K] = {x ∈ RK+ | x1 + x2 + · · ·+
xK = 1}. We use ei ∈ 4[K] to denote the vector whose
i-th coordinate is 1 and others are 0.

Let f denote the restriction of f on4[K], i.e.,

f(x) =

{
f(x), x ∈ 4[K]

∞, x /∈ 4[K]

.

Let E be a random event, we use 1[E ] to denote the indicator
of E , which equals 1 if E happens, and 0 otherwise.

3. Problem Setting
We now introduce our formulation of the heavy-tailed MAB
problem. Formally speaking, there are K ≥ 2 available
arms indexed from 1 to K, and T ≥ 1 time slots for the
agent to make decisions sequentially. {νt,i}t∈[T ],i∈[K] are
T ×K probability distributions over real numbers, which
are fixed before the game starts and unknown to the agent
(i.e., obliviously adversely chosen). Instead of the usual
assumption of bounded variance or even bounded range, we
only assume that they are heavy-tailed, as follows.
Assumption 3.1 (Heavy-tailed Losses Assumption). The
α-th moment of all loss distributions {νt,i} are bounded by
σα for some constants 1 < α ≤ 2 and σ > 0, i.e.,

E
`∼νt,i

[|`|α] ≤ σα, ∀t ∈ [T ], i ∈ [K].

In this paper, we will discuss how to design algorithms
for two different cases: α and σ are known before-hand or
oblivious (i.e., fixed before-hand but unknown to the agent).
We denote by µt,i , Ex∼νt,i [x] the individual mean loss
for each arm and µt , (µt,1, µt,2, . . . , µt,K) the mean loss
vector at time t, respectively.

At the beginning of each time slot t, the agent needs to
choose an action it ∈ [K]. At the end of time slot t, the
agent will receive and suffer a loss `t,it , which is guar-
anteed to be an independent sample from the distribution
νt,it . The agent is allowed to make the decision it based
on all history actions i1, . . . , it−1, all history feedback
`1,i1 , . . . , `t−1,it−1 , and any amount of private randomness
of the agent.

The objective of the agent is to minimize the total loss.
Equivalently, the agent aims to minimize the following
pseudo-regret defined by Bubeck & Slivkins (2012) (also
referred to as the regret in this paper for simplicity):

Definition 3.2 (Pseudo-regret). We define

RT , max
i∈[K]

E

[
T∑
t=1

`t,it −
T∑
t=1

`t,i

]

= max
i∈[K]

E

[
T∑
t=1

µt,it −
T∑
t=1

µt,i

]
(1)

to be the pseudo-regret of an MAB algorithm, where the
expectation is taken with respect to randomness from both
the algorithm and the environment.

In the remaining of this paper, we will use Ft ,
σ(i1, · · · , it, `1,i1 , · · · , `t,it) to denote the natural filtration
of an MAB algorithm execution.

3.1. Stochastically Constrained Environments

Definition 3.3 (Stochastic Environments). If, for each arm
i ∈ [K], all T loss distributions ν1,i, ν2,i, . . . , νT,i are iden-
tical, we call such environment a stochastic environment.

A more general setting is called stochastically constrained
adversarial setting (Wei & Luo, 2018), defined as follows.

Definition 3.4 (Stochastically Constrained Adversarial En-
vironments). If, there exists an optimal arm i∗ ∈ [K] and
mean gaps ∆i ≥ 0 such that for all t ∈ [T ], we have
µt,i − µt,i∗ ≥ ∆i for all i 6= i∗, we call such environment a
stochastically constrained adversarial environment.

It can be seen that stochastic problem instances are special
cases of stochastically constrained adversarial instances.
Hence, in this paper, we study this more general setting
instead of stochastic cases. As in Zimmert & Seldin (2019),
we make the following assumption.

Assumption 3.5 (Unique Optimal Arm Assumption). In
stochastically constrained adversarial environments, i∗ is
the unique best arm throughout the process, i.e.,

∆i > 0, ∀i 6= i∗.

Remark. The existence of a unique optimal arm is a com-
mon assumption in MAB and RL literature leveraging FTRL
with Tsallis entropy regularizers (Zimmert & Seldin, 2019;
Erez & Koren, 2021; Jin & Luo, 2020; Jin et al., 2021).
Recently, Ito (2021) gave a new analysis of Tsallis-INF’s
logarithmic regret on stochastic MAB instances without this
assumption. It is an interesting future work to figure out
whether it is doable in our heavy-tailed losses setting.
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3.2. Adversarial Environments

In contrast, an environment without any extra requirement
is called an adversarial environment. We denote the best
arm(s) in hindsight by i∗, i.e., the i ∈ [K] that makes the
expectation in Eq. (1) maximum. We make the following
assumption on the losses of arm i∗.
Assumption 3.6 (Truncated Non-nagative Losses Assump-
tion). There exists an optimal arm i∗ such that `t,i∗ is trun-
cated non-negative for all t ∈ [T ].

In the assumption, the truncated non-negative property is
defined as follows.
Definition 3.7 (Truncated Non-negativity). A random vari-
able X is truncated non-negative, if for any M ≥ 0,

E [X · 1[|X| > M ]] ≥ 0.

Remark. This truncated non-negative requirement is
strictly weaker than the common non-negative losses as-
sumption in MAB literature, especially works fitting in the
FTRL framework (Auer et al., 2002; Zimmert & Seldin,
2019). Intuitively, truncated non-negativity forbids the ran-
dom variable to hold too much mass on its negative part, but
it can still have negative outcomes.

4. Static Algorithm: HTINF
In this section, we first present an algorithm achieving op-
timal regrets when α, σ are both known before-hand, and
then extend it to the unknown α, σ case.

4.1. Known α, σ Case

For the case where both α and σ are known a-priori, we
present a FTRL algorithm with the 1

α -Tsallis entropy func-
tion Ψ(x) = −α

∑K
i=1 x

1/α
i (Tsallis, 1988; Abernethy et al.,

2015; Zimmert & Seldin, 2019) as the regularizer. We pick
η = t−1/α as the learning rate of the FTRL algorithm. Im-
portance sampling is used to construct estimates ˆ̀

t of the
true loss feedback vector `t.

In this algorithm, to handle the heavy-tailed losses, we de-
signed a novel skipping technique with action-dependent
threshold rt ∝ η−1

t x
1/α
t,it

at time slot t, i.e., the agent simply
discards those time slots with the absolute value of the loss
feedback more than rt. Note that this skipping criterion with
dependency on it is properly defined, for it is checked after
deciding the arm it and receiving the feedback. To decide
xt, the probability to pull each arm in a new time step, we
pick the best mixed action x against the sum of all non-
skipped estimated loss ˆ̀

t’s, in a regularized manner. The
pseudo-code of the algorithm is presented in Algorithm 1.

The performance of Algorithm 1 is presented in the follow-
ing Theorem 4.1. The proof is sketched in Section 5. For a

Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)
Input: Number of arms K, heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α; Pick
the regularizer Ψ(x) = −α

∑K
i=1 x

1/α
i :

xt ← argmin
x∈4[K]

(
ηt

t−1∑
s=1

〈ˆ̀s, x〉+ Ψ(x)

)

3: Sample new action it ∼ xt.
4: Calculate the skipping threshold rt ← Θαη

−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback `t,it .
6: if |`t,it | > rt then
7: ˆ̀

t ← 0.
8: else
9: Construct weighted importance sampling loss esti-

mator ˆ̀
t,i ← `t,i

xt,i
1[i = it], ∀i ∈ [K].

10: end if
11: end for

detailed formal proof, see Appendix A.

Theorem 4.1 (Performance of HTINF). If Assumptions 3.1
and 3.6 hold, we have the following best-of-both-worlds
style regret guarantees.

1. When the environment is adversarial, Algorithm 1 en-
sures regret bound

RT ≤ O
(
σK1−1/αT

1/α
)
.

2. If the environment is stochastically constrained ad-
versarial with a unique optimal arm i∗, i.e., Assump-
tion 3.5 holds, then Algorithm 1 ensures

RT ≤ O

σ α
α−1

∑
i 6=i∗

∆
− 1
α−1

i log T

 2.

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of 1/2-
Tsallis entropy (Zimmert & Seldin, 2019). For α < 2, such
properties of 1/α-Tsallis entropy do not automatically hold,
they are made possible by our novel skipping mechanism
with action-dependent threshold.

2In this big-O notation, we hide an exp(O( 1
α−1

)) factor. Such
factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.
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4.2. Extending to Unknown α, σ Case: OptTINF

The two hyper-parameters σ, α in Algorithm 3 are just set to
the true heavy-tail parameters of the loss distributions when
they are known before-hand. When the distributions’ heavy-
tail parameters α, σ are both unknown to the agent, we
can prove that by directly running HTINF with algorithm
hyper-parameters α = 2 and σ = 1 (not necessarily equal
to the true α, σ values) “optimistically” as in Algorithm 2,
one can still achieve O(log T ) regret in stochastic case and
sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)
Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parameters α =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone
the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(
σαK

α−1
2 T

3−α
2 +

√
KT

)
.

2. In stochastically constrained adversarial environments
with a unique optimal arm i∗ (Assumption 3.5), it en-
sures

RT ≤ O

σ 2α
α−1

∑
i 6=i∗

∆
− 3−α
α−1

i log T

 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-
known 1 < α < 2, Algorithm 2 still guarantees O(T

3−α
2 )

“no-regret” performance and O(log T ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF
In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) ,
T∑
t=1

E [〈xt − y, µt〉] (y ∈ 4[K]) (2)

for the one-hot vector y , ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′t,i , E[`t,i1[|`t,i| ≤ rt] | Ft−1, it = i]. For a given y,

we decomposeRT (y) into two parts:

RT (y) = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
+ E

[
T∑
t=1

〈xt − y, µ′t〉

]

= E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
︸ ︷︷ ︸

skipping gap

+E

[
T∑
t=1

〈xt − y, ˆ̀
t〉

]
︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[ˆ̀t | Ft−1] = µ′t. We call the
first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both parts can
be controlled and transformed into expressions similar to
the bounds with self-bounding properties in (Zimmert &
Seldin, 2019), guaranteeing best-of-both-worlds style regret
upper-bounds. Therefore, the design of HTINF and our new
analysis generalizes the self-bounding property of (Zimmert
& Seldin, 2019) from 1/2-Tsallis entropy regularizer to
general α-Tsallis entropy regularizers where 1/2 ≤ α < 1.

5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′t,i = E [|`t,i|1[|`t,i| > rt] | Ft−1, it = i]

≤ E
[
|`t,i|αr1−α

t | Ft−1, it = i
]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′t,i∗ ≥ 0 a.s. Summing over i and t gives

T∑
t=1

〈xt − ei∗ , µt − µ′t〉 ≤ Θ1−α
α σ

T∑
t=1

∑
i6=i∗

t
1/α−1x

1/α
t,i

≤ 5σ

T∑
t=1

∑
i 6=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in ˆ̀

t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[ˆ̀t] = µ′t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.
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Lemma 5.1 (FTRL Regret Decomposition).
T∑
t=1

〈xt − y, ˆ̀
t〉 ≤

T∑
t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))︸ ︷︷ ︸
Part (A)

+

T∑
t=1

η−1
t DΨ(xt, zt)︸ ︷︷ ︸

Part (B)

where

zt , ∇Ψ∗
(
∇Ψ(xt)− ηt1[|`t,it | ≤ rt](ˆ̀

t − `t,it1)
)
.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) ˆ̀′

t , ˆ̀
t −

`t,it1. Intuitively, one can see that feeding ˆ̀′
t into a FTRL

framework will produce exactly the same action sequence
as ˆ̀

t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K
i=1 x

1/α
i . Hence, each summand in part (A) becomes

(
η−1
t − η−1

t−1

)(
−α+ α

K∑
i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑
i 6=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T∑
t=1

2σt
1/α−1

∑
i 6=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑
i6=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in Theo-
rem 4.1, it suffices to plug in the bounds for the terms in Eq.
(3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regretRT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-
ment 2 in Theorem 4.1): To obtain an instance-
dependent bound forRT , we leverage the arm-pulling prob-
ability {xt} dependent bounds (6) and (8) for the FTRL part
ofRT . After plugging them together with (4) into (3), we
see that

RT ≤ E
[ T∑
t=1

∑
i 6=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i︸ ︷︷ ︸

,st,i

]
. (10)

We further apply the inequality of arithmetic and geometric
means (AM-GM inequality) to st,i, as

st,i =

(
α∆i

2
xt,i

) 1
α

[(
α∆i

2

)− 1
α−1

(
30σ

α

) α
α−1 1

t

]α−1
α

≤ ∆i

2
xt,i +

α− 1

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i

1

t
.

By noticing the fact that
∑
t∈[T ]

∑
i 6=i∗ ∆i E[xt,i] ≤ RT

(Lemma E.7), Eq. (10) solves to

RT ≤
2α− 2

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

·
∑
i 6=i∗

∆
− 1
α−1

i ln (T + 1)

= exp

(
O
(

1

α− 1

))
σ

α
α−1

∑
i 6=i∗

∆
− 1
α−1

i ln (T + 1) .

6. Adaptive Algorithm: AdaTINF
In this section, our main goal is to achieve minimax optimal
regret bounds for adversarial settings, without any knowl-
edge about α, σ. Instead of estimating α and σ explicitly,
which can be challenging, our key idea is to leverage a trade-
off relationship between Part (A) and Part (B) in the FTRL
error part (defined in Lemma 5.1), to balance the two parts
dynamically.
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To achieve a balance, we use a doubling trick to tune the
learning rates and skipping thresholds, which has been
adopted in the literature to design adaptive algorithms
(see, e.g., Wei & Luo (2018)). The formal procedure of
AdaTINF is given in Algorithm 3, with the crucial differ-
ences between Algorithm 1 highlighted in blue texts.

It can be seen as HTINF equipped with a multiplier to
both learning rates and skipping thresholds, maintained at
running time, as

η−1
t = λt

√
t, rt = λtΘ2

√
t
√
xt,it , ∀1 ≤ t ≤ T,

where λt is the doubling magnitude for the t-th time slot.

Algorithm 3 Adaptive Tsallis-INF (AdaTINF)
Input: Number of arms K, time horizon T
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Initialize J ← 0, S0 ← 0
2: for t = 1, 2, · · · do
3: λt ← 2J

4: Calculate policy with learning rate η−1
t = λt

√
t and

regularizar Ψ(x) = −2
∑K
i=1 x

1/2
i :

xt ← argmin
x∈4[K]

(
ηt

t−1∑
s=1

〈ˆ̀s, x〉+ Ψ(x)

)

5: Decide action it ∼ xt, calculate rt ← λt(1 −
2−1/3)

√
t
√
xt,it .

6: Play according to it and observe loss feedback `t,it .
7: if |`t,it | > rt then
8: ˆ̀

t ← 0
9: ct ← `t,it

10: else
11: Construct weighted importance sampling loss esti-

mator ˆ̀
t,i =

`t,i
xt,i

1[i = it], ∀i ∈ [K].

12: ct ← 2ηtx
−1/2
t,it

`2t,it
13: end if
14: SJ ← SJ + ct
15: if 2J

√
K(T + 1) < SJ then

16: J ← max{J + 1, dlog2(ct/
√
K(T + 1))e+ 1}

17: SJ ← ct
18: end if
19: end for

We briefly explain our design. Suppose, initially, all λt’s
are set to a same number λ > 1 instead of 1. Then, part (A)
will become approximately λ times bigger than that under
HTINF, while the expected value of part (B) will be scaled
by a factor λ1−α < 1. In other words, increasing λ enlarges
part (A) but makes part (B) smaller. Therefore, if we can
estimate parts (A) and (B), we can keep them of roughly
the same magnitude, by doubling λ whenever (A) becomes
smaller than (B).

As Eq. (4) and (5) are similar to Eq. (8) and (9), the
skipping gap can be treated similarly to (B). Therefore,
we also take it into consideration in the doubling-balance
mechanism. Due to the future-dependent Eq. (6) is hard
to estimate, we use the looser Eq. (7) to represent part
(A). This stops Algorithm 3 from enjoying an O(log T )-
style gap-dependent regret. However, it can still guarantee
a minimax optimal regret in general case, as described in
Theorem 6.1.
Theorem 6.1 (Performance of AdaTINF). If Assumptions
3.1 and 3.6 hold, Algorithm 3 ensures a regret of

RT ≤ O(σK1−1/αT
1/α +

√
KT ),

which is minimax optimal.

The proof is sketched in Section 7, while the formal version
is deferred to Appendix C.

Remark. Though T is assumed to be known in Algorithm 3,
the assumption can be removed via another doubling trick
without effect to the order of the total regret. Check Ap-
pendix D for more details.

7. Analysis of AdaTINF
Since the crucial learning rate multiplier λt is maintained
by an adaptive doubling trick, in the analysis, we will group
time slots with equal λt’s into epochs. For j ≥ 0, Tj ,
{t ∈ [T ] | λt = 2j} are the indices of time slots belonging
to epoch j. Further denote the first step in epoch j by
γj , min{t ∈ Tj} and the last one by τj , max{t ∈ Tj}.
Without loss of generality, assume no doubling happened at
slot T , then the final value of J in Algorithm 3 is just the
index of the last non-empty epoch.

We will first show

RT ≤ O
(
E[2J ]

√
KT

)
.

As defined in the pseudo-code, let

ct , 2ηtx
−1/2
t,it

`2t,it1[|`t,it | ≤ rt] + `t,it1[|`t,it | > rt].

According to the condition to enter a new epoch (Line 15 in
Algorithm 3), for all 0 ≤ j < J , if Tj is non-empty, τj will
cause Sj > 2j

√
K(T + 1). Hence, we have the following

conditions:

1[γj > 1]cγj−1 +
∑

t∈Tj\{τj}

ct ≤ 2j
√
K(T + 1), (11)

∑
t∈Tj

ct > 2j−1
√
K(T + 1). (12)

For j = J , as no doubling has happened after that, we have

1[γJ > 1]cγJ−1 +
∑
t∈TJ

ct ≤ 2J
√
K(T + 1). (13)
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Similar to Eq. (3) used in Section 5, we begin with the
following decomposition ofRT (y) for y = ei∗ :

RT (y) = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
︸ ︷︷ ︸

RsT

+E

[
T∑
t=1

〈xt − y, ˆ̀
t〉

]
︸ ︷︷ ︸

RfT
(14)

where µ′t,i , E[`t,i1[|`t,i| ≤ rt] | Ft−1, it = i]. We still
callRsT the skipping gap andRfT the FTRL error.

According to Lemma 5.1, we have

RfT ≤ E
[
ηT max

x∈∆[K]

Ψ(x)︸ ︷︷ ︸
Part (A)

]
+ E

[ T∑
t=1

η−1
t DΨ(xt, zt)︸ ︷︷ ︸

Part (B)

]

≤ E[2J ]
√
K(T + 1) + E

[
T∑
t=1

η−1
t DΨ(xt, zt)

]
(15)

Similar to Algorithm 1, we can show DΨ(xt, zt) ≤
2ηtx

−1/2
t,it

`2t,it1[|`t,it | ≤ rt] for all t ∈ [T ]. Moreover, by
Assumption 3.6,RsT ≤ E[

∑T
t=1 `t,it1[|`t,it | > rt]]. There-

fore, with the help of Eq. (11) and (13), we have

RsT + E[Part (B)]

≤ E

[
T∑
t=1

ct

]
≤ E

[
2J+1

√
K(T + 1)

]
. (16)

Combining Eq. (14), (15) and (16) gives

RT ≤ E[2J ] · 3
√
K(T + 1),

Therefore, it remains to bound E[2J ]. When J = 0, there
is nothing to do. Otherwise, consider the second to last
non-empty epoch, TJ′ . The condition to enter a new epoch
also guarantees that 2J

√
K(T + 1) ≤ 2J

′+1
√
K(T + 1)+

4cτJ′ . Applying Eq. (12) to J ′ < J , we obtain

1[J ≥ 1](2J
′
)α
√
K(T + 1) ≤ (2J

′
)α−12

∑
t∈TJ′

ct, (17)

After appropriate relaxing the RHS of Eq. (17) and taking
expectation of both sides, it solves to the following upper-
bound for E[1[J ≥ 1]2J

′
]:

Lemma 7.1. Algorithm 3 guarantees that

E[1[J ≥ 1]2J
′
] ≤ 28σK

1/2−1/α(T + 1)
1/α−1/2.

Moreover, we can obtain a bound for E[cτJ′ ] stated as fol-
lows:

Lemma 7.2. Algorithm 3 guarantees that

E[1[J ≥ 1]cτJ′ ]

≤ 0.1E[1[J ≥ 1]2J
′√
T ] + 4E

[
max
t∈[T ]
|`t,it |

]
.

Using the fact that E[maxt∈[T ]|`t,it |] ≤ σT 1/α

(Lemma E.3), we conclude that Algorithm 3 has the regret
guarantee of

RT ≤ 3E[2J
√
K(T + 1)]

≤ 3
√
K(T + 1) + 204σK1−1/α(T + 1)

1/α + 12σT
1/α.

8. Conclusion
We propose HTINF, a novel algorithm achieving the optimal
instance-dependent regret bound for the stochastic heavy-
tailed MAB problem, and the optimal instance-independent
regret bound for a more general adversarial setting, with-
out extra logarithmic factors. We also propose AdaTINF,
which can achieve the same optimal instance-independent
regret even when prior knowledge on heavy-tailed param-
eters α, σ are absent. Our work shows that the FTRL (or
OMD) technique can be a powerful tool for designing heavy-
tailed MAB algorithm, leading to novel theoretical results
that have not been achieved by UCB algorithms.

It is an interesting future work to figure out whether it is
possible to design a best-of-both-worlds algorithm without
knowning the actual heavy-tail distribution parameters α
and σ.
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A. Formal Analysis of HTINF (Algorithm 1)
A.1. Main Theorem

In this section, we present a formal proof of Theorem 4.1. For the sake of accuracy, we state the regret guarantees without
using any big-Oh notations, as follows (which directly implies Theorem 4.1).

Theorem A.1 (Regret Guarantee of Algorithm 1). If Assumptions 3.1 and 3.6 hold, i.e., the environment is heavy-tailed with
parameters α and σ, and there is an optimal arm whose all losses are truncated non-negative. Then Algorithm 1 guarantees:

1. The regret is no more than

RT ≤ 30σK1−1/α(T + 1)
1/α,

no matter the environment is stochastic or adversarial.

2. Furthermore, if the environment is stochastically constrained with a unique best arm i∗, i.e., Assumption 3.5 holds,
then it, in addition, enjoys a regret bound of

RT ≤
2α− 2

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1 ∑

i 6=i∗
∆
− 1
α−1

i ln (T + 1) .
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Proof. Define µ′t,i , E[`t,i1[|`t,i| ≤ rt] | Ft−1, it = i]. For the given y = ei∗ ∈ 4[K], consider the regret of the algorithm
with respect to policy y, defined and decomposed as

RT (y) ,
T∑
t=1

E[〈xt − y, µt〉] = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
+ E

[
T∑
t=1

〈xt − y, µ′t〉

]
, RsT (y) +RfT (y),

which we called the skipped part and FTRL part. For simplicity, we abbreviate the parameter (y) forRsT andRfT .

As defined in Algorithm 1, ˆ̀
t is set to 0 when |`t,it | > rt. Hence, by the property of weighted importance sampling estimator

(Lemma E.8; note that it is applied to the truncated loss with mean µ′t,i), E[ˆ̀t,i | Ft−1] = µ′t,i

RfT = E

[
T∑
t=1

〈xt − y, ˆ̀
t〉

]
.

For the first term,RsT , we can bound it using the following two lemmas, whose proof are propounded to next subsection.

Lemma A.2. For any 1 ≤ t ≤ T and i ∈ [K], we have

µt,i − µ′t,i ≤ Θ1−α
α σt

1/α−1x
1/α−1
t,i ,

where Θα is a constant used in Algorithm 1 that only depends on α.

Lemma A.3. If i∗ is an optimal arm whose loss feedback are all truncated non-negative, then for y = ei∗ , we have

RsT (y) ≤ E

 T∑
t=1

∑
i 6=i∗

xt,i(µt,i − µ′t,i)

 .
Therefore, for y = ei∗ we have

RsT ≤ E

 T∑
t=1

∑
i 6=i∗

Θ1−α
α σt

1/α−1x
1/α
t,i


(a)

≤ E

5

T∑
t=1

∑
i 6=i∗

σt
1/α−1x

1/α
t,i

 (18)

(b)
≤ 5ασK1−1/α(T + 1)

1/α, (19)

where step (a) is due to Θ1−α
α ≤ Θ−1

2 ≤ 5 and (b) applies Lemma E.4 and Lemma E.5.

Now consider the second term, RfT . Consider the vector ˆ̀′
t , 1[|`t,it | ≤ rt](ˆ̀

t − `t,it1). Note that 〈ˆ̀′t, x〉 = 〈ˆ̀t, x〉 −
1[|`t,it | ≤ rt]`t,it for any vector x ∈ 4[K], so a FTRL algorithm fed with loss vector ˆ̀′

t with produce exactly the same
action sequence as another instance fed with ˆ̀

t (as constant terms will never affect the choice of the argmax operator over
the simplex). Therefore, we can apply Lemma E.9 with loss vectors as ˆ̀′

t, yielding

T∑
t=1

〈xt − y, ˆ̀
t〉 =

T∑
t=1

〈xt − y, ˆ̀′
t〉 ≤

T∑
t=1

(
η−1
t − η−1

t−1

)
(Ψ(y)−Ψ(xt))︸ ︷︷ ︸

Part (A)

+

T∑
t=1

η−1
t DΨ(xt, zt)︸ ︷︷ ︸

Part (B)

(20)

where zt , ∇Ψ∗(∇Ψ(xt)− ηt ˆ̀′t) = ∇Ψ∗
(
∇Ψ(xt)− ηt1[|`t,it | ≤ rt](ˆ̀

t − `t,it1)
)

.

Now consider the first term
∑T
t=1(η−1

t − η−1
t−1)(Ψ(y)−Ψ(xt)), which is denoted by (A) for simplicity. We have
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Lemma A.4. For part (A), Algorithm 1 ensures the following inequality for any one-hot vector y ∈ 4[K]:

E[(A)] = E

[
T∑
t=1

E
[
(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) | Ft−1

]]
≤ E

 T∑
t=1

2σt
1/α−1

∑
i 6=i∗

x
1/α
t,i

 , (21)

which further implies

E[(A)] ≤
T∑
t=1

2σt
1/α−1K1−1/α. (22)

For the second term, denoted by (B), we have

Lemma A.5 (Restatement of Lemma 5.2). For Part (B), Algorithm 1 ensures

E[(B)] = E

[
T∑
t=1

E[η−1
t DΨ(xt, zt) | Ft−1]

]
≤ E

 T∑
t=1

8σt
1/α−1

∑
i 6=i∗

x
1/α
t,i

 , (23)

which further implies

E[(B)] ≤
T∑
t=1

8σt
1/α−1K1−1/α. (24)

Hence, for general cases, due to Equations (22) and (24) we have

RfT = E[(A)] + E[(B)] ≤
T∑
t=1

10σK1−1/α
T∑
t=1

t
1/α−1 ≤ 10ασK1−1/α(T + 1)

1/α,

where the last inequality comes from Lemma E.5. Therefore, taking (18) into consideration, we have:

RT = RsT +RfT ≤ 15ασK1−1/α(T + 1)
1/α ≤ 30σK1−1/α(T + 1)

1/α.

Now, for stochastically constrained adversarial case with unique best arm i∗ throughout the process, due to Equations (18)
(21) and (23), we have

RT = RsT + E[(A)] + E[(B)] ≤ E

 T∑
t=1

∑
i 6=i∗

15σt
1/α−1x

1/α
t,i︸ ︷︷ ︸

,st,i

 .
We can then write

st,i =
(α

2
∆ixt,i

)1/α
[(α

2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i

1

t

]α−1
α

≤ ∆i

2
xt,i +

α− 1

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i

1

t

where the last step uses the inequality of arithmetic and geometric means a1/αb1−1/α ≤ 1
αa+

(
1− 1

α

)
b. Therefore

RT ≤ E

 T∑
t=1

∑
i 6=i∗

∆i

2
xt,i

+

T∑
t=1

∑
i6=i∗

α− 1

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i

1

t
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≤ 1

2
RT +

∑
i 6=i∗

α− 1

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i ln(T + 1) (25)

where the last step uses Lemma E.7. Equation (25) then solves to

RT ≤
∑
i 6=i∗

2α− 2

α

(α
2

)− 1
α−1

(
30σ

α

) α
α−1

∆
− 1
α−1

i ln(T + 1),

as claimed.

Proof of Theorem 4.1. It is a direct consequence of the theorem above.

A.2. Proof when BoundingRsT (the skipped part)

Proof of Lemma A.2. Starting from the definition of µ′t,i and µt,i, we can write

µt,i − µ′t,i = E [`t,it | Ft−1, it = i]− E [`t,it · 1[|`t,it | ≤ rt] | Ft−1, it = i]

= E [`t,it · 1[|`t,it | > rt] | Ft−1, it = i]

≤ E [|`t,it | · 1[|`t,it | > rt] | Ft−1, it = i]

≤ E
[
|`t,it |αr1−α

t · 1[|`t,it | > rt] | Ft−1, it = i
]

≤ E
[
|`t,it |αr1−α

t | Ft−1, it = i
]

(a)
= E

[
|`t,i|αΘ1−α

α σ1−αt
1−α
α x

1−α
α

t,i | Ft−1

]
≤ σΘ1−α

α t
1−α
α x

1−α
α

t,i

where in step (a) we plug in rt = Θαη
−1
t x

1/α
t,it

.

Proof of Lemma A.3. Recall that µt,i−µ′t,i = E [`t,i · 1[|`t,i| > rt] | Ft−1, it = i], hence according to our assumption that
`t,i∗ is truncated non-negative (Assumption 3.6), we have µt,i∗ − µ′t,i∗ ≥ 0 a.s., thus when y = ei∗ ,

(xt,i∗ − y) · (µt,i − µt,i∗) = (xt,i∗ − 1) · (µt,i − µt,i∗) ≤ 0.

Therefore

RsT (y) = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]

≤ E

 T∑
t=1

∑
i 6=i∗

(xt,i − yi) ·
(
µt,i − µ′t,i

)
= E

 T∑
t=1

∑
i 6=i∗

xt,i
(
µt,i − µ′t,i

) ,
as claimed.

A.3. Proof when BoundingRfT (the FTRL part)

For our purpose, we need a technical lemma stating that the components of zt are at most a constant times larger than xt’s
components.
Lemma A.6. For any t ∈ [T ] and i ∈ [K], Algorithm 1 guarantees that

zt,i ≤ 2
α

2α−1xt,i

where zt , ∇Ψ∗(∇Ψ(xt)− ηt1[|`t,it | ≤ rt](ˆ̀
t − `t,it1)).
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Proof. If |`t,it | > rt, then xt = zt. Otherwise, we denote ∇Ψ(xt) by x∗t , and denote ∇Ψ(zt) by z∗t , then we have
−x∗t,i = x−

α−1
α and

z∗t,i = x∗t,i − ηt ˆ̀t,i + ηt`t,it

=

{
x∗t,i − ηt

`t,i
xt,i

+ ηt`t,i i = it

xt,i∗ + ηt`t,it i 6= it.

If i = it, we have

−z∗t,i ≥ −x∗t,i − ηt
|`t,i|
xt,i

= x
−α−1

α
t,i − ηt

|`t,i|
xt,i

≥ x−
α−1
α

t,i −Θαx
1−α
α

t,i ,

where the last step is due to |`t,it | ≤ rt and our choice of rt in Algorithm 1. Thus

zt,i = (−z∗t,i)−
α
α−1 ≤ xt,i(1−Θα)−

α
α−1 ≤ 2

α
2α−1xt,i

where the last step is because Θα ≤ 1− 2−
α−1
2α−1 .

If i 6= it, we have −z∗t,i ≥ −x∗t,i −Θαx
1/α
t,it
≥ x−

α−1
α

t,i −Θα, thus

zt,i = (−z∗t,i)−
α
α−1 ≤ xt,i(1−Θαx

α−1
α

t,i )−
α
α−1 ≤ xt,i(1−Θα)−

α
α−1 ≤ 2

α
2α−1xt,i.

Combining two cases together gives our conclusion.

Proof of Lemma A.4. By definition, for any t ∈ [T ], one-hot y ∈ 4[K] and xt ∈ 4[K], we have

η−1
t − η−1

t−1 = σ
(
t
1/α − (t− 1)

1/α
) (a)
≤ σ 1

α
(t− 1)

1/α−1
(b)
≤ 2σ

1

α
t
1/α−1,

where (a) comes from Lemma E.6 and (b) comes from the fact that t ≥ 1 and 1
α − 1 ≥ − 1

2 . Moreover, by definition of
Ψ(x) = −α

∑K
i=1 x

1/α
i , we have

Ψ(y)−Ψ(x) = α

K∑
i=1

x
1/α
i − α

K∑
i=1

y
1/α
i = α

K∑
i=1

x
1/α
i − α ≤ α

∑
i 6=i∗

x
1/α
t,i

from the assumption that y is an one-hot vector. Therefore, we have

E[(A)] =

T∑
t=1

[(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) | Ft−1] ≤ E

 T∑
t=1

∑
i 6=i∗

2σt
1/α−1x

1/α
t,i

 ,
which further implies (by Lemma E.4)

E[(A)] =

T∑
t=1

[(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) | Ft−1] ≤
T∑
t=1

2σt
1/α−1K1−1/α.

Proof of Lemma A.5 (and also Lemma 5.2). Consider a summand before taking expectation, i.e., η−1
t DΨ(xt, zt). Let

f(x) = −αx1/α, we then have

η−1
t DΨ(xt, zt)

(a)
= η−1

t DΨ∗(∇Ψ(zt),∇Ψ(xt))
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= Ψ∗(∇Ψ(zt))−Ψ∗(∇Ψ(xt))− 〈xt,∇Ψ(zt)−∇Ψ(xt)〉
(b)
≤ η−1

t

K∑
i=1

1

2
max{f ′′(xt,i)−1, f ′′(zt,i)

−1} · η2
t (ˆ̀

t,i − `t,it)2

≤ η−1
t

K∑
i=1

α

2(α− 1)
max{xt,i, zt,i}2−

1/αη2
t (ˆ̀

t,i − `t,it)2

≤ η−1
t

K∑
i=1

α

2(α− 1)
(2

α
2α−1 )2−1/αx

2−1/α
t,i η2

t (ˆ̀
t,i − `t,it)2

=
α

α− 1
ηt

K∑
i=1

x
2−1/α
t,i (ˆ̀

t,i − `t,it)2

=
α

α− 1
ηt`

2
t,it

K∑
i=1

x
2−1/α
t,i

(
1− 1[it = i]

xt,it

)2

≤ α

α− 1
ηtr

2−α
t |`t,it |α

K∑
i=1

x
2−1/α
t,i

(
1− 1[it = i]

xt,it

)2

(c)
≤ α

α− 1
t
1/α−1σ1−αΘ2−α

α |`t,it |αx
2/α−1
t,it

K∑
i=1

x
2−1/α
t,i

(
1− 1[it = i]

xt,it

)2

(d)

≤ 2t
1/α−1σ1−α|`t,it |αx

2/α−1
t,it

K∑
i=1

x
2−1/α
t,i

(
1− 1[it = i]

xt,it

)2

where step (a) is due to the duality property of Bregman divergences, step (b) regards DΨ∗(·, ·) as a second-order Lagrange
remainder. step (c) plugs in η−1

t = σt1/α and rt = Θαη
−1
t x

1/α
t,it

, thus ηtr2−α
t = t1/α−1σ1−αΘ2−α

α x
2/α−1
t,it

. Step (d) uses

Θα ≤ (2− 2
α )

1
2−α and thus Θ2−α

α ≤ 2 · α−1
α .

After taking expectations, we get

E
[
η−1
t DΨ(xt, zt) | Ft−1

]
≤ 2t

1/α−1σ

K∑
i=1

x
2/α
t,i


K∑
j=1

x
2−1/α
t,j︸ ︷︷ ︸

≤1≤x−
1/α

t,i

−2x
1−1/α
t,i + x

−1/α
t,i


≤ 2σt

1/α−1 · 2

[
−

K∑
i=1

x
1+1/α
t,i +

K∑
i=1

x
1/α
t,i

]

= 4σt
1/α−1

K∑
i=1

x
1/α
t,i (1− xt,i)

≤ 8σt
1/α−1

∑
i6=i∗

x
1/α
t,i ,

where the last step is due to the fact that 1 − xt,i∗ =
∑
i 6=i∗ xt,i ≤

∑
i 6=i∗ x

1/α
t,i and 1 − xt,i ≤ 1 for any i 6= i∗. After

applying Lemma E.4, we get
E
[
η−1
t DΨ(xt, zt) | Ft−1

]
≤ 8σt

1/α−1K1−1/α.

Hence, we have

E

[
T∑
t=1

η−1
t DΨ(xt, zt)

]
=

T∑
t=1

E
[
η−1
t DΨ(xt, zt) | Ft−1

]
≤ E

 T∑
t=1

∑
i6=i∗

8σt
1/α−1x

1/α
t,i


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≤
T∑
t=1

8σt
1/α−1K1−1/α.

B. Formal Analysis of OptTINF (Algorithm 2)
B.1. Main Theorem

In this section, we present a formal proof of Theorem 4.2. We still state a regret guarantee without any big-Oh notation first.

Theorem B.1 (Regret Guarantee of Algorithm 2). If Assumptions 3.1 and 3.6 hold, Algorithm 2 enjoys:

1. For adversarial environments, the regret is bounded by

RT ≤ 26σαK
α−1
2 (T + 1)

3−α
2 + 4

√
K(T + 1).

2. Moreover, if the environment is stochastically constrained with a unique best arm i∗ (Assumption 3.5), then Algorithm 2
enjoys

RT ≤ 2× 4
3−α
α−1 5

2
α−1σ

2α
α−1

∑
i 6=i∗

∆
α−3
α−1

i ln(T + 1)

+
32σ

α− 1

∑
i 6=i∗

∆−1
i ln(T + 1)

+ 2× 8
2

α−1 4
3−α
α−1σ

2α
α−1

∑
i 6=i∗

∆
α−3
α−1

i ln(T + 1).

Proof. In Algorithm 2, when the parameters are set as α = 2 and σ = 1, we have η−1
t =

√
t and rt = Θ2

√
t
√
xt,it where

Θ2 = 1 − 2−1/3 is an absolute constant. From now on, to avoid confusion, we use α, σ only to denote the real (hidden)
parameters of the environment, instead of the parameters of the algorithm.

Following the proof of Theorem 4.1 in Appendix A, we still decomposeRT (y) for y = ei∗ intoRsT andRfT , as follows.

RT (y) ,
T∑
t=1

E[〈xt − y, µt〉] = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
+ E

[
T∑
t=1

〈xt − y, µ′t〉

]
, RsT +RfT .

Following the analysis of Algorithm 1, we have the following lemma.

Lemma B.2. For the given y = ei∗ ∈ 4[K], Algorithm 2 ensures

RsT ≤ E

5σα
T∑
t=1

∑
i6=i∗

t
1/2−α/2x

(3−α)/2
t,i

 ,
which further implies

RsT ≤ 5σα
T∑
t=1

t
1−α
2 K

α−1
2 .

We continue our analysis by bounding the FTRL part,RfT . As in Appendix A, we also decompose it into two parts from
Lemma E.9:

T∑
t=1

〈xt − y, ˆ̀
t〉 ≤

T∑
t=1

(
η−1
t − η−1

t−1

)
(Ψ(y)−Ψ(xt))︸ ︷︷ ︸

Part (A)

+

T∑
t=1

η−1
t DΨ(xt, zt)︸ ︷︷ ︸

Part (B)

,
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where zt , ∇Ψ∗(∇Ψ(xt)− ηt1[|`t,it | ≤ rt](ˆ̀
t − `t,it1)). For Part (A), from Lemma A.4, we have (recall that Ψ is now

1
2 -Tsallis entropy)

Lemma B.3. For part (A), for any one-hot vector y ∈ 4[K], Algorithm 2 ensures

E[(A)] = E

[
T∑
t=1

E[(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) | Ft−1]

]
≤ E

 T∑
t=1

2t−
1/2
∑
i6=i∗

x
1/2
t,i

 ,
which further implies

E[(A)] = E

[
T∑
t=1

E[(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) | Ft−1]

]
≤

T∑
t=1

2t−
1/2K

1/2.

For part (B), we have

Lemma B.4. For part (B), Algorithm 2 ensures

E[(B)] = E

[
T∑
t=1

E[η−1
t DΨ(xt, zt) | Ft−1]

]
≤ E

 T∑
t=1

∑
i6=i∗

8Θ2−α
2 σαt

1−α
2 x

(3−α)/2
t,i

 ,
which further implies

E[(B)] = E

[
T∑
t=1

E[η−1
t DΨ(xt, zt) | Ft−1]

]
≤

T∑
t=1

8Θ2−α
2 σαt

1−α
2 K

α−1
2 .

Therefore, for adversarial case (i.e., the first statement), we have

RT = RsT +RfT ≤ R
s
T + E[(A)] + E[(B)]

≤ 13σα
T∑
t=1

t
1−α
2 K

α−1
2 + 2

T∑
t=1

t−
1/2K

1/2

≤ 26σαK
α−1
2 (T + 1)

3−α
2 + 4

√
K(T + 1),

where the last step uses Lemma E.5.

Moreover, for the stochastically constrained case with a unique best arm i∗ ∈ [K], with the help of AM-GM inequality, we
bound each ofRsT , E[(A)] and E[(B)] by

RsT ≤ E

 T∑
t=1

∑
i6=i∗

(
5

2
α−1σ

2α
α−1

(
∆i

4

)− 3−α
α−1 1

t

)α−1
2 (

∆i

4
xt,i

) 3−α
2


≤ α− 1

2
4

3−α
α−1 5

2
α−1σ

2α
α−1

∑
i 6=i∗

∆
α−3
α−1

i ln(T + 1) +
3− α

2

RT
4
,

E[(A)] ≤ E

 T∑
t=1

∑
i6=i∗

(
4σ

(
∆i

4

)−1
1

t

)1/2(
∆i

4
xt,i

)1/2


≤ 1

2
· 16σ

∑
i6=i∗

∆−1
i ln(T + 1) +

1

2

RT
4
,

E[(B)] ≤ E

 T∑
t=1

∑
i6=i∗

(
8

2
α−1σ

2α
α−1

(
∆i

4

)− 3−α
α−1 1

t

)α−1
2 (

∆i

4
xt,i

) 3−α
2


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≤ α− 1

2
8

2
α−1 4

3−α
α−1σ

2α
α−1

∑
i 6=i∗

∆
α−3
α−1

i ln(T + 1) +
3− α

2

RT
4
.

Therefore, we have

(1− (2− α) + 1 + (3− α)

2

1

4
)RT =

α− 1

4
RT ≤

α− 1

2
4

3−α
α−1 5

2
α−1σ

2α
α−1

∑
i 6=i∗

∆
α−3
α−1

i ln(T + 1)

+
1

2
· 16σ

∑
i 6=i∗

∆−1
i ln(T + 1)

+
α− 1

2
8

2
α−1 4

3−α
α−1σ

2α
α−1

∑
i6=i∗

∆
α−3
α−1

i ln(T + 1),

which gives our result.

Proof of Theorem 4.2. It is a direct consequence of the theorem above.

B.2. Proof when BoundingRsT (the skipped part)

Proof of Lemma B.2. For any t ∈ [T ] and i ∈ [K], we can bound between the difference between the loss mean, µt,i, and
the truncated loss mean, µ′t,i, as

µt,i − µ′t,i = E[`t,i1[|`t,i > rt|] | Ft−1, it = i] ≤ E[|`t,i|αr1−α
t · 1[|`t,i| > rt] | Ft−1, it = i]

≤ E[|`t,i|αr1−α
t | Ft−1, it = i] ≤ σαΘ1−α

2 t
1−α
2 x

1−α
2

t,i .

Hence, we have

RsT =

T∑
t=1

E [〈xt − y, µt − µ′t〉] ≤ E

σαΘ1−α
2

T∑
t=1

∑
i 6=i∗

t
1/2−α/2x

1/2−α/2
t,i · xt,i


≤ E

5σα
T∑
t=1

∑
i 6=i∗

t
1/2−α/2x

3/2−α/2
t,i

 ,
where the last step uses Θ1−α

2 ≤ Θ−1
2 ≤ 5. It further gives, by Lemma E.4, that

RsT ≤ 5σα
T∑
t=1

t
1/2−α/2K

α/2−1/2.

B.3. Proof when BoundingRfT (the FTRL part)

Proof of Lemma B.3. This is just a restatement of Lemma A.4.

Proof of Lemma B.4. We simply follow the proof of Lemma A.5, except for some slight modifications (instead of the
previous lemma, we cannot directly modify all α’s to 2, as the second moment of `t,it may not exist). The first few steps are
exactly the same, giving

η−1
t DΨ(xt, zt) ≤

2

2− 1
ηtr

2−α
t |`t,it |α

K∑
i=1

x
2−1/2
t,i

(
1− 1[it = i]

xt,it

)2

≤ 2
(
t
1/2
)−1

Θ2−α
2

(
t
1/2
)2−α

x
2−α
2

t,it
|`t,it |α

K∑
i=1

x
2−1/2
t,i

(
1− 1[it = i]

xt,it

)2
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= 2Θ2−α
2 |`t,it |αt

1−α
2 x

2−α
2

t,it

K∑
i=1

x
2−1/2
t,i

(
1− 1[it = i]

xt,it

)2

.

After taking expectations, we have

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 2Θ2−α

2 σαt
1−α
2

K∑
i=1

x
2−α/2
t,i


K∑
j=1

x
3/2
t,j︸ ︷︷ ︸

≤1≤x−
1/2

t,i

−2x
1/2
t,i + x

−1/2
t,i


≤ 4Θ2−α

2 σαt
1−α
2

[
K∑
i=1

x
3/2−α/2
t,i −

K∑
i=1

x
5/2−α/2
t,i

]

= 4Θ2−α
2 σαt

1−α
2

[
K∑
i=1

x
3/2−α/2
t,i (1− xt,i)

]
≤ 8Θ2−α

2 σαt
1−α
2

∑
i 6=i∗

x
3/2−α/2
t,i

Therefore, we have

E

[
T∑
t=1

η−1
t DΨ(xt, zt)

]
≤ E

 T∑
t=1

∑
i 6=i∗

8Θ2−α
2 σαt

1−α
2 x

(3−α)/2
t,i

 ,
which further gives

E

[
T∑
t=1

η−1
t DΨ(xt, zt)

]
≤

T∑
t=1

8Θ2−α
2 σαt

1−α
2 K

α−1
2

by Lemma E.4.

C. Formal Analysis of AdaTINF (Algorithm 3)
C.1. Main Theorem

We again begin with a regret guarantee without any big-Oh notations.

Theorem C.1 (Regret Guarantee of Algorithm 3). If Assumptions 3.1 and 3.6 hold, Algorithm 3 ensures

RT ≤ 3
√
K(T + 1) + 204σK1−1/α(T + 1)

1/α + 12σT
1/α.

Proof. As defined in the text, we group time slots with equal λt’s into epochs, as

Tj , {t ∈ [T ] | λt = 2j}, ∀j ≥ 0.

For any non-empty Tj’s, denote the first and last time slot of Tj by

γj , min{t ∈ Tj}, τj , max{t ∈ Tj}.

Then, without loss of generality, assume that no doubling has happened for time slot T . Otherwise, one can always add
a virtual time slot t = T + 1 with `t,i = 0 for all i . Therefore, we have TJ 6= ∅ where J is the final value of variable J
defined in the code.

We adopt the notation of ct as defined in Algorithm 3:

ct = 2ηtx
−1/2
t,it

`t,i2t1[|`t,it | ≤ rt] + `t,it1[|`t,it | > rt].
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Moreover, from the doubling criterion of Algorithm 3, for each non-empty epoch, we have the following lemma.

Lemma C.2. For any 0 ≤ j < J such that Tj 6= ∅, we have

1[γj > 1]cγj−1 +
∑

t∈Tj\{τj}

ct ≤ 2j
√
K(T + 1), (26)

∑
t∈Tj

ct > 2j−1
√
K(T + 1), (27)

Moreover, for j = J (recall that TJ 6= ∅), we have

1[γj > 1]cγj−1 +
∑
t∈Tj

ct ≤ 2J
√
K(T + 1). (28)

Similar to previous analysis, we define µ′t,i = E[`t,i1[|`t,i| ≤ rt] | Ft−1, it = i] and decompose the regret RT (y) as
follows

RT (y) = E

[
T∑
t=1

〈xt − y, µt − µ′t〉

]
+ E

[
T∑
t=1

〈xt − y, ˆ̀
t〉

]
, RsT +RfT .

According to Lemma A.3, we have

RsT ≤ E

[
T∑
t=1

K∑
i=1

xt,i(µt,i − µ′t,i)

]

= E

[
T∑
t=1

K∑
i=1

`t,it · 1[|`t,it | > rt]

]
. (29)

Furthermore, due to the properties of weighted importance sampling estimator (as in Appendix A, E[ˆ̀t,i | Ft−1] = µ′t,i), we
have

RfT = E

[
T∑
t=1

〈xt − y, ˆ̀
t〉

]
.

We can then apply Lemma E.9 toRfT , giving

T∑
t=1

〈xt − y, ˆ̀
t〉 ≤ ηT max

x∈4[K]

Ψ(x) +

T∑
t=1

η−1
t DΨ(xt, zt)

where zt , ∇Ψ∗(∇Ψ(xt)− ηt ˆ̀t). The first term is simply within 2J
√
KT . For the second term, we have the following

property similar to Lemma A.5:

Lemma C.3. Algorithm 3 guarantees that for any t ∈ [T ],

η−1
t DΨ(xt, zt) ≤ 2ηtx

3/2
t,it

ˆ̀2
t,it

where zt , ∇Ψ∗(∇Ψ(xt)− ηt ˆ̀t).

Thus we have

RfT ≤ E[2J ]
√
KT + E

[
T∑
t=1

2ηtx
3/2
t,it

ˆ̀2
t,it

]

= E[2J ]
√
KT + E

[
T∑
t=1

2ηtx
−1/2
t,it

`2t,it · 1[|`t,it | ≤ rt]

]
. (30)
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Combining Eq. (30) and (30), we can see

RT ≤ E[2J ]
√
KT + E

[
T∑
t=1

(
`t,it · 1[|`t,it | > rt] + 2ηtx

−1/2
t,it

`2t,it · 1[|`t,it | ≤ rt]
)]

= E[2J ]
√
KT + E

[
T∑
t=1

ct

]
.

Summing up Equation (26) for all non-empty epoch j < J and Equation (28), we get

T∑
t=1

ct =

J∑
j=0

∑
t∈Tj

ct ≤
J∑
j=0

2J
√
K(T + 1) ≤ 2J+1

√
K(T + 1),

and we can conclude
RT ≤ E[2J ] · 3

√
K(T + 1).

It remains to bound E[2J ]. When J ≥ 1, there are at least two non-empty epochs. Let J ′ be the index of the second last
epoch. The doubling condition of Algorithm 3 further reduce the task to bound 2J into bounding 2J

′
and cτJ′ , as the

following lemma states.

Lemma C.4. Algorithm 3 guarantees that, when J ≥ 1, we have

2J
√
K(T + 1) ≤ 2J

′+1
√
K(T + 1) + 4cτJ′ . (31)

We can derive the following expectation bound for both 2J
′

and cτJ′ :

Lemma C.5 (Restatement of Lemma 7.1). Algorithm 3 guarantees that

E[1[J ≥ 1]2J
′
] ≤ 28σK

1/2−1/α(T + 1)
1/α−1/2. (32)

Lemma C.6 (Restatement of Lemma 7.2). Algorithm 3 guarantees that

E[1[J ≥ 1]cτJ′ ] ≤ 0.1E[1[J ≥ 1]2J
′√
T ] + E

[
max
t∈[T ]
|`t,it |

]
. (33)

Applying Lemma E.3 and Equation (32) to Eqation (33), we get

E[1[J ≥ 1]cτJ′ ] ≤ 3σK
1/2−1/α(T + 1)

1/α + σT
1/α.

Plugging this into Equation (31), we get

E
[
1[J ≥ 1]2J

√
K(T + 1)

]
≤ 68σK1−1/α(T + 1)

1/α + 4σT
1/α,

and thus
E
[
2J
√
K(T + 1)

]
≤ 68σK1−1/α(T + 1)

1/α + 4σT
1/α +

√
K(T + 1),

RT ≤ 3E
[
2J
√
K(T + 1)

]
≤ 204σK1−1/α(T + 1)

1/α + 12σT
1/α + 3

√
K(T + 1).

Proof of Theorem 6.1. It is a direct consequence of the theorem above.
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C.2. Proof when ReducingRT to E[2J ]

Proof of Lemma C.2. It suffices to notice that in Algorithm 3, during a particular epoch j, when the doubling condition at
Line 15 evaluates to true, the current value of the variable Sj is 1[γj > 1]cγj−1 +

∑
t∈Tj ct, thus

1[γj > 1]cγj−1 +
∑
t∈Tj

ct > 2j
√
K(T + 1).

When γj = 1 (or equivalently, j = 0), Equation (27) automatically holds. Otherwise Line 16 guarantees that j ≥
dlog2(cτγj−1

/
√
K(T + 1))e+ 1, hence 2j−1

√
K(T + 1) ≥ cτγj−1

. We will have

2j−1
√
K(T + 1) +

∑
t∈Tj

ct > 2j
√
K(T + 1),

which also solves to Equation (27).

When the doubling condition at Line 15 evaluates to false for the last time, the value of Sj is 1[γj > 1]cγj−1 +
∑
t∈Tj\{τj} ct.

At this time we have Sj ≤ 2j
√
K(T + 1), hence Equation (26) and (28) hold.

Proof of Lemma C.3. It is exactly the same calculation we did in Lemma A.5, the only difference is that ˆ̀
t does not come

with a −`t,it drift.

C.3. Proof when Bounding E[2J ]

Proof of Lemma C.4. According to Line 16 of Algorithm 3, J, J ′ and cτJ′ satisfy

J = max
{
J ′ + 1, dlog2(cτJ′/

√
K(T + 1))e+ 1

}
,

thus
2J ≤ max

{
2 · 2J

′
, 4 · cτJ′/

√
K(T + 1)

}
and

2J
√
K(T + 1) ≤ max

{
2 · 2J

′√
K(T + 1), 4 · cτJ′

}
≤ 2 · 2J

′√
K(T + 1) + 4 · cτJ′ .

Proof of Lemma C.5. Applying Eq. (27) to j = J ′ < J , we get

1[J ≥ 1](2J
′
)α
√
K(T + 1) ≤ (2J

′
)α−12

∑
t∈TJ′

ct (34)

We further upper-bound the RHS of (34) by enlarging the summation range to [T ]. Specifically, let η̃t = 2−J
′
t−1/2,

r̃t = 2J
′
Θ2
√
txt,it . Define the summands by

c̃t , 2η̃tx
−1/2
t,it

`2t,it1[|`t,it | ≤ r̃t] + `t,it1[|`t,it | > r̃t] (35)

≤ 2η̃tx
−1/2
t,it
|`t,it |αr̃2−α

t + |`t,it |αr̃1−α
t

≤ (2η̃tr̃
2−α
t x

−1/2
t,it

+ r̃1−α
t ) · |`t,it |α

= (2Θ2−α
2 + Θ1−α

2 ) · 2(1−α)J′t
1−α
2 x

1−α
2

t,it
|`t,it |α

≤ (2 + Θ−1
2 ) · 2(1−α)J′t

1−α
2 x

1−α
2

t,it
|`t,it |α

≤ 7 · 2(1−α)J′t
1−α
2 x

1−α
2

t,it
|`t,it |α.
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We see that the definition in Eq. (35) coincides with ct for t ∈ TJ′ . Thus, the RHS of (34) is no more than

14

T∑
t=1

t
1−α
2 x

1−α
2

t,it
|`t,it |α

Taking expectation on both sides of (34), we get

E
[
1[J ≥ 1](2J

′
)α
]√

K(T + 1) ≤ 28σαK
α−1
2 (T + 1)

3−α
2 ,

which gives E[1[J ≥ 1](2J
′
)α] ≤ 28σαKα/2−1(T + 1)1−α/2. By Jensen’s inequality,

E
[
1[J ≥ 1]2J

′
]
≤
(
E
[
1[J ≥ 1]α

(
2J
′
)α])1/α

≤ 28σK
1/2−1/α(T + 1)

1/α−1/2.

Proof of Lemma C.6. We can do the calculation

cτJ′ = 2ητJ′x
−1/2
τJ′ ,iτJ′

`2τJ′ ,iτJ′
1[|`τJ′ ,iτJ′ | ≤ rτJ′ ] + `τJ′ ,iτJ′

1[|`τJ′ ,iτJ′ | > rτJ′ ]

≤ 2ητJ′x
−1/2
τJ′ ,iτJ′

r2
τJ′

+ max
t∈[T ]
|`t,it |

= 2J
′
· 2Θ2

2

√
τJ′x

1/2
τJ′ ,iτJ′

+ max
t∈[T ]
|`t,it |

≤ 0.1 · 2J
′√
T + max

t∈[T ]
|`t,it |.

D. Removing Dependency on Time Horizon T in Algorithm 3
To remove the dependency of T , we leverage the following doubling trick, which is commonly used for unknown T ’s (Auer
et al., 1995; Besson & Kaufmann, 2018). This gives our More Adaptive AdaTINF algorithm, which we called Ada2TINF.

Algorithm 4 More Adaptive AdaTINF (Ada2TINF)
Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Initialize T0 ← 1, S ← 0
2: for t = 1, 2, · · · do
3: if t ≥ S then
4: T0 ← 2T0, S ← S + T0 − 1
5: Initialize a new AdaTINF instance (Algorithm 3) with parameters K and T0 − 1
6: end if
7: Run current AdaTINF instance for one time slot, act what it acts and feed it with the feedback `t,it
8: end for

Theorem D.1 (Regret Guarantee of Algorithm 4). Under the same assumptions of Theorem 6.1, i.e., Assumptions 3.1 and
3.6 hold, Ada2TINF (Algorithm 4) ensures

RT ≤ 600σK1−1/α(T + 1)
1/α.

Proof. We divide the time horizon T into several super-epochs, each with length T0 − 1 = 21 − 1, 22 − 1, 23 − 1, · · · .
For each of the super-epoch, as we restarted the whole process, we can regard each of them as a independent execution of
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AdaTINF. Therefore, by Theorem 6.1, for an super-epoch from t0 to t0 + T0 − 2, we have

E

[
t0+T0−2∑
t=t0

〈xt − ei∗ , µt〉

]
= RT0−1 ≤ 300σK1−1/αT

1/α
0 .

Therefore, the total regret is bounded by

RT ≤
∑

T0=21−1,22−1,··· ,2dlog2(T+1)e−1

300σK1−1/α(T0 + 1)
1/α ≤ 600σK1−1/αT

1/α,

as desired.

E. Auxiliary Lemmas
E.1. Probability Lemmas

Lemma E.1. For a non-negative random variable X whose α-th moment exists and a constant c > 0, we have

Pr{X ≥ c} ≤ E[Xα]

cα

Proof. As both X, c are non-negative, Pr{X ≥ c} = Pr{Xα ≥ cα} ≤ E[Xα]
cα by Markov’s inequality.

Lemma E.2. For a random variable Y with q-th moment E[|Y |q] bounded by σq (where q ∈ [1, 2]), its p-th moment E[|Y |p]
is also bounded by σp if 1 ≤ p ≤ q.

Proof. As the function f : x 7→ xα is convex for any α ≥ 1, by Jensen’s inequality, we have f(E[X]) ≤ E[f(X)] for any
random variable X . Hence, by picking X = |Y |p and α = q

p , we have (E[|Y |p])q/p ≤ E[(|Y |p)q/p] = E[|Y |q] ≤ σq, so
E[|Y |p] ≤ σp for any 1 ≤ p ≤ q.

Lemma E.3. For n independent random variables X1, X2, · · · , Xn, each with α-th moment (1 < α ≤ 2) bounded by σα,
i.e., Exi∼Xi [|xi|α] ≤ σα for all 1 ≤ i ≤ n, we have

E
x1∼X1,x2∼X2,··· ,xn∼Xn

[
max

1≤i≤n
|xi|
]
≤ σn1/α.

Proof. By Jensen’s inequality, we have (here, x ∼ X denotes x1 ∼ X1, x2 ∼ X2, · · · , xn ∼ Xn)(
E

x∼X

[
max

1≤i≤n
|xi|
])α

≤ E
x∼X

[(
max

1≤i≤n
|xi|
)α]

= E
x∼X

[
max

1≤i≤n
|xi|α

]
≤ E

x∼X

[
n∑
i=1

|xi|α
]

=

n∑
i=1

E
xi∼Xi

[|xi|α] ≤ nσα,

which gives Ex∼X [max1≤i≤n|xi|] ≤ σn1/α.

E.2. Arithmetic Lemmas

Lemma E.4. For any x ∈ 4[K] (i.e.,
∑K
i=1 xi = 1), we have

K∑
i=1

xti ≤ K1−t

for 1
2 ≤ t < 1.

Proof. By Hölder’s inequality ‖fg‖1 ≤ ‖f‖p‖g‖q, we have
∑K
i=1 x

t
i ≤ (

∑K
i=1(xti)

1/t)t(
∑K
i=1 1q)1/q = K1−t by picking

p = 1
t and q = 1

1−t .
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Lemma E.5. For any positive integer n, we have

n∑
i=1

1

i
≤ ln(n+ 1).

Moreover, for any −1 < t < 0, we have
n∑
i=1

it ≤ (n+ 1)t+1

t+ 1
.

Proof. If t = −1, we have
∑n
i=1 i

t ≤
∫ (

1
n+ 1)dx

x = lnn. If t > −1, we have
∑n
i=1 i

t ≤
∫ n+1

0
xt dx = (n+1)t+1

t+1 .

Lemma E.6. For any x ≥ 1 and q ∈ (0, 1), we have

xq − (x− 1)q ≤ q(x− 1)q−1.

Proof. Consider the function f defined by x 7→ xq . We have f ′′(x) = q(q − 1)xq−2 ≤ 0 for x ≥ 0 and q ∈ (0, 1). Hence,
f(x) is concave for x ≥ 0 and q ∈ (0, 1). Therefore, by properties of concave functions, we have f(x) ≤ f(x−1)+f ′(x−
1)(x− (x− 1)) = f(x− 1) + q(x− 1)q−1 for any x ≥ 1 and q ∈ (0, 1), which gives xq − xq−1 ≤ q(x− 1)q−1.

E.3. Lemmas on the FTRL Framework for MAB Algorithm Design

Lemma E.7. For any algorithm that plays action it ∼ xt where {xt}Tt=1 can be regarded as a stochastic process adapted
to the natural filtration {Ft}Tt=0, its regret, in a stochastically constrained adversarial environment with unique best arm
i∗ ∈ [K], is lower-bounded by

RT ≥
∑
t∈[T ]

∑
i 6=i∗

∆i E[xt,i | Ft−1].

Proof. By definition ofRT and ∆i, we have

RT = E

[
T∑
t=1

〈xt − ei∗ , µt〉

]
= E

 T∑
t=1

∑
i 6=i∗

xt,iµt,i − (1− xt,i∗)µt,i∗

 =

T∑
t=1

E

∑
i 6=i∗

xt,i(µt,i − µt,i∗)

 ,
which is exactly

∑
t∈[T ]

∑
i 6=i∗ ∆i E[xt,i | Ft−1].

Lemma E.8 (Property of Weighted Importance Sampling Estimator). For any distribution x ∈ 4[K] and loss vector
` ∈ RK sampled from a distribution ν ∈ 4Rk , if we pulled an arm i according to x, then the weighted importance sampler
˜̀(j) , `(j)

xj
1[i = j] gives an unbiased estimate of E[`], i.e.,

E
i∼x

[
˜̀(j)

]
= E[`(j)], ∀1 ≤ j ≤ K.

Proof. As the adversary is oblivious (or even stochastic),

E
i∼x

[
˜̀(j)

]
=

K∑
i=1

E[`(j)]

xj
1i=j · Pr{1i} = Pr{i = j}E[`(j)]

xj
= E[`(j)],

for any 1 ≤ j ≤ K.

Lemma E.9 (FTRL Regret Decomposition). For any FTRL algorithm, i.e., the action xt for any t ∈ [T ] is decided by
argminx∈4[K]

(ηt
∑

1≤s≤t〈ˆ̀s, x〉+ Ψ(x)), where ηt is the learning rate, ˆ̀
s is some arbitrary vector and Ψ(x) is a convex

regularizer, we have

T∑
t=1

〈xt − y, ˆ̀
t〉 ≤

T∑
t=1

(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt)) +

T∑
t=1

η−1
t DΨ(xt, zt)
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for any y ∈ 4[K], where zt , ∇Ψ∗(∇Ψ(xt)− ηt ˆ̀t).

Proof. Let L̂t ,
∑t
s=1

ˆ̀
s, we then have

T∑
t=1

〈xt − y, ˆ̀
t〉 =

T∑
t=1

−η−1
t 〈xt,−ηt ˆ̀t〉+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t

[
Ψ
∗
(−ηtL̂t)−Ψ

∗
(−ηtL̂t−1)− 〈xt,−ηt ˆ̀t〉

]
+

T∑
t=1

[
η−1
t Ψ

∗
(−ηtL̂t−1)− η−1

t Ψ
∗
(−ηtL̂t)

]
+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t DΨ

∗(−ηtL̂t,−ηtL̂t−1) +

T∑
t=1

[
η−1
t Ψ

∗
(−ηtL̂t−1)− η−1

t Ψ
∗
(−ηtL̂t)

]
+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t DΨ(xt,∇Ψ

∗
(−ηtL̂t)) +

T∑
t=1

[
η−1
t Ψ

∗
(−ηtL̂t−1)− η−1

t Ψ
∗
(−ηtL̂t)

]
+ 〈y,−L̂T 〉

(a)
≤

T∑
t=1

η−1
t DΨ(xt,∇Ψ∗(−ηtL̂t)) +

T∑
t=1

[
η−1
t Ψ

∗
(−ηtL̂t−1)− η−1

t Ψ
∗
(−ηtL̂t)

]
+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t DΨ(xt, zt) +

T∑
t=1

[
η−1
t Ψ

∗
(−ηtL̂t−1)− η−1

t Ψ
∗
(−ηtL̂t)

]
+ 〈y,−L̂T 〉

(b)
=

T∑
t=1

η−1
t DΨ(xt, zt) +

T−1∑
t=1

[
〈xt,−L̂t−1〉 − η−1

t Ψ(xt)− sup
x∈∆[K]

{
〈x,−L̂t〉 − η−1

t Ψ(x)
}]

+ 〈xT ,−L̂T−1〉 − η−1
T Ψ(xT )− sup

x∈∆[K]

{
〈x,−L̂T 〉 − η−1

T Ψ(x)
}

+ 〈y,−L̂T 〉

≤
T∑
t=1

η−1
t DΨ(xt, zt) +

T−1∑
t=1

[
〈xt,−L̂t−1〉 − η−1

t Ψ(xt)− 〈xt+1,−L̂t〉+ η−1
t Ψ(xt+1)

]
+ 〈xT ,−L̂T−1〉 − η−1

T Ψ(xT )− sup
x∈∆[K]

{
〈x,−L̂T 〉 − η−1

T Ψ(x)
}

+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t DΨ(xt, zt) +

T∑
t=1

(η−1
t−1 − η

−1
t )Ψ(xt)− sup

x∈∆[K]

{
〈x,−L̂T 〉 − η−1

T Ψ(x)
}

+ 〈y,−L̂T 〉

=

T∑
t=1

η−1
t DΨ(xt, zt) +

T∑
t=1

(η−1
t−1 − η

−1
t )Ψ(xt)

− sup
x∈∆[K]

{
〈x,−L̂T 〉 − η−1

T Ψ(x)
}

+ 〈y,−L̂T 〉 − η−1
T Ψ(y) + η−1

T Ψ(y)

≤
T∑
t=1

η−1
t DΨ(xt, zt) +

T∑
t=1

(η−1
t−1 − η

−1
t )Ψ(xt) + η−1

T Ψ(y)

=

T∑
t=1

η−1
t DΨ(xt, zt) +

T∑
t=1

(η−1
t − η−1

t−1)(Ψ(y)−Ψ(xt))

where step (a) is due to the Pythagoras property of Bregman divergences, and in step (b) we just plugged in the definition of
Ψ
∗

in Ψ.
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