
LeNSE: Learning To Navigate Subgraph Embeddings
for Large-Scale Combinatorial Optimisation

David Ireland 1 Giovanni Montana 2 1

Abstract

Combinatorial Optimisation problems arise in sev-
eral application domains and are often formu-
lated in terms of graphs. Many of these problems
are NP-hard, but exact solutions are not always
needed. Several heuristics have been developed
to provide near-optimal solutions; however, they
do not typically scale well with the size of the
graph. We propose a low-complexity approach for
identifying a (possibly much smaller) subgraph
of the original graph where the heuristics can be
run in reasonable time and with a high likelihood
of finding a global near-optimal solution. The
core component of our approach is LeNSE, a re-
inforcement learning algorithm that learns how
to navigate the space of possible subgraphs using
an Euclidean subgraph embedding as its map. To
solve CO problems, LeNSE is provided with a
discriminative embedding trained using any exist-
ing heuristics using only on a small portion of the
original graph. When tested on three problems
(vertex cover, max-cut and influence maximisa-
tion) using real graphs with up to 10 million edges,
LeNSE identifies small subgraphs yielding solu-
tions comparable to those found by running the
heuristics on the entire graph, but at a fraction of
the total run time. Code for the experiments is
available in the public GitHub repo at https:
//github.com/davidireland3/LeNSE.

1. Introduction
Combinatorial optimisation (CO) problems involve the
search for maxima or minima of an objective function whose
domain is a discrete but large configuration space (Wolsey

1Warwick Manufacturing Group, University of Warwick,
Coventry, United Kingdom 2Department of Statistics, University
of Warwick, Coventry, United Kingdom. Correspondence to: Gio-
vanni Montana <g.montana@warwick.ac.uk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

& Nemhauser, 1999; Korte et al., 2011; Grötschel et al.,
2012). Most CO problems can be formulated naturally in
terms of graphs (Avis et al., 2005; Arumugam et al., 2016;
Vesselinova et al., 2020), and an optimal solution typically
consists of a set of vertices that optimises the objective
function. Some well-known examples are the Vertex Cover
Problem (VCP) (Dinur & Safra, 2005), i.e. the problem
of finding a set of vertices that includes at least one end-
point of every edge of the graph, and the Max-Cut (MC)
problem (Goemans & Williamson, 1995), i.e. finding a cut
whose size is at least the size of any other cut. Many CO
problems have a wide range of real-world applications, e.g.
in biology (Wilder et al., 2018; Reis et al., 2019), social
networks (Brown & Reingen, 1987; Valente, 1996; Rogers,
2010; Chaoji et al., 2012), circuit design (Barahona et al.,
1988) and auctions (Kempe et al., 2010; Dobzinski et al.,
2011; Amanatidis et al., 2017).

Finding the optimal solution to a CO problem requires an
exhaustive search of the solution space; with many canoni-
cal CO problems being NP-hard (Karp, 1972), this usually
means that they are unsolvable in practice. However, exact
optimal solutions are often not required, and many heuris-
tic approaches have been developed to obtain near-optimal
solutions in some reasonable time (Hochbaum, 1982; Goe-
mans & Williamson, 1995; Applegate et al., 2001; Kempe
et al., 2003; Karakostas, 2005; Ausiello et al., 2012). More
frequently, the practical application of these algorithms in-
volves very large graphs. This significantly increases the
run time of the heuristics and, in some case, may preclude
the use of such algorithms altogether, e.g. due to memory
constraints.

For instance, the Influence Maximization (IM) problem
consists of finding a seed set composed of vertices that max-
imize their influence spread over a social network, which
may have millions of vertices and/or edges. A greedy algo-
rithm proposed by Kempe et al. (2003) requires the objective
function to be evaluated at every vertex in the graph; this
is expensive as the expected spread of a vertex is #P-hard
to evaluate (Kempe et al., 2003; Chen et al., 2010). Conse-
quently, a large body of work has been carried out to develop
more scalable algorithms (Goyal et al., 2011; Cheng et al.,
2013; 2014; Cohen et al., 2014; Borgs et al., 2014; Tang

https://github.com/davidireland3/LeNSE
https://github.com/davidireland3/LeNSE

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

et al., 2014; 2015). The current state of the art algorithm for
solving IM, the Influence Maximization Martingale (IMM)
algorithm (Tang et al., 2015), is also known to scale poorly
to large graph instances due to its memory requirements
(Arora et al., 2017).

In this work we present a general framework, based on super-
vised and reinforcement learning, for leveraging heuristics
which have been crafted with extensive domain knowledge
but may not scale well to large problem instances. Our pro-
posed algorithm, LeNSE (Learning to Navigate Subgraph
Embeddings), learns how to prune a graph, significantly
reducing the size of the problem by removing vertices and
edges so that the heuristic can find a nearly-optimal solution
at a fraction of the time that would have been taken when
using the entire graph. The motivation for our approach
comes from the fact that a subgraph is an easier target to
identify, compared to the exact solution; instead of finding a
needle in a haystack, we instead learn how to remove parts
of the haystack where the needle is unlikely to be.

The graph pruning process is framed as a sequential de-
cision making problem, which is solved using Q-learning
(Watkins & Dayan, 1992). Starting with any randomly cho-
sen subgraph of fixed size, LeNSE sequentially modifies
the current subgraph to a slightly altered one, and repeats
this process until the current subgraph is deemed highly
likely to contain a nearly-optimal solution. To efficiently
navigate the space of possible subgraphs so that the high-
est quality one is reached in the fewest number of steps,
LeNSE relies on a discriminative subgraph embedding as
its navigation map. To learn this embedding, we make use
of recent advances in geometric deep learning, and specifi-
cally graph neural networks (GNNs) with graph coarsening
layers (Ying et al., 2018; Cangea et al., 2018; Lee et al.,
2019; Liang et al., 2020). By construction, the position of
an embedded subgraph reflects its predicted quality. LeNSE
makes use of these quality estimates to learn optimal graph
modifications that progressively move the subgraph towards
more promising regions.

Experimentally we test LeNSE on three well-know CO
problems using established heuristics. Our extensive ex-
perimental results demonstrate that LeNSE is capable of
removing large parts of the graph, in terms of both vertices
and edges, without any significant degradation to the perfor-
mance compared to performing no pruning at all, but at a
fraction of the overall run time. We also compare LeNSE
to two baselines, a GNN vertex classifier and a recently
introduced pruning approach (Manchanda et al., 2020). Re-
markably, we show that all training can be done on some
small, random sample of the problem graph whilst being
able to scale up to the larger test graph at inference time.
This means that all expensive computations needed to train
LeNSE, such as running the heuristic to obtain a solution,

are only ever done on small graphs. We also show that using
LeNSE for the IM problem on a large graph give speed ups
of more than 140 times compared to not doing any pruning.

2. Related work
In recent years, many machine learning based solutions have
been investigated to solve CO problems (Bengio et al., 2020;
Vesselinova et al., 2020; Mazyavkina et al., 2021). Recent
contributions in the field have started to leverage techniques
from geometric deep learning, which is concerned with the
application of neural network techniques to non-Euclidean
domains (Bronstein et al., 2017; Battaglia et al., 2018; Wu
et al., 2020; Zhou et al., 2020). These developments have
started to play an important role in learning based CO al-
gorithms as they capture and exploit the graphical nature
of problems. Many methods learn vertex/edge embeddings
(Kipf & Welling, 2016; Hamilton et al., 2017; Gilmer et al.,
2017; Veličković et al., 2017; 2018; Brody et al., 2021),
whilst more recently methods have been explored to obtain
graph level embeddings (Ying et al., 2018; Cangea et al.,
2018; Lee et al., 2019; Liang et al., 2020). We now briefly
review related work relying on both supervised and rein-
forcement learning.

Supervised learning: Attempts have been made to train
a classifier to predict whether a vertex in a graph can be
removed from consideration without effecting the quality
of the solution found by a heuristic. For instance, the clas-
sifier can be used to prune the graph in one attempt (Sun
et al., 2019; 2021) or in a multi-stage approach where the
graph is repeatedly pruned (Grassia et al., 2019; Lauri et al.,
2020). These methods, however, rely on hand crafted fea-
tures that are typically specific to the problems they are
trying to solve, whereas LeNSE works with multiple budget-
constrained problems. Several other methods look to use
datasets labelled by heuristics to learn solutions directly
(Vinyals et al., 2015; Khalil et al., 2016; Joshi et al., 2019;
Gasse et al., 2019; Liu et al., 2021); in contrast, our graph
pruning approach consists of several incremental steps. A
non-parametric graph pruning method is described by Man-
chanda et al. (2020); they use a ranking rule learnt from
solutions provided by a heuristic.

Reinforcement learning: Finding sub-optimal solutions to
a CO problem can be formulated as a sequential decision
problem, which is typically modelled as a Markov Decision
Process. Bello et al. (2016) was the first attempt to use
a policy gradient algorithm and pointer networks (Vinyals
et al., 2015) to solve the Travelling Salesman Problem (TSP).
Further improvements geared towards modelling the rela-
tional structure of the problem are found in Dai et al. (2017),
which used a Q-function with a GNN (Dai et al., 2016).
The algorithm learns the value of adding a vertex at a time
and uses these values to sequentially build a solution. A

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

number of other sequential approaches have also appeared
in the literature (Kool et al., 2018; Ma et al., 2019; Li et al.,
2019; Almasan et al., 2019; Bai et al., 2021). In particular,
the Ranked Reward algorithm (Laterre et al., 2018) framed
a CO problem as a single player game that can be solved
through self-play. There has also been work that start with
a solution and make perturbations to it until some termina-
tion criteria is met (Barrett et al., 2020; Yao et al., 2021).
Recently, Wang et al. (2021) proposed an algorithm that
learns to edit graphs by the removal/addition/modification
of edges where the reward is driven by a heuristic deployed
on the modified graph. The algorithm starts with the entire
graph and looks to sequentially remove edges, requiring
multiple forward passes of a GNN to embed the entire graph
at each step of an episode; the computational overheads be-
come prohibitive when using large graphs. In our work, we
also use GNNs to learn graph embeddings; however, these
embeddings only involve subgraphs that are significantly
smaller than the original graph.

3. Methodology
Problem formulation

We are given a CO problem defined over a graph G =
(V,E), where V is the vertex set and E is the edge set. In
this work we are concerned with budget-constrained prob-
lems, and rely on existing heuristic algorithms that can find
near-optimal solutions. An optimal solution is defined as a
subset of vertices X∗ ∈ X = {X : X ⊂ V, |X| = b} that
maximises the objective function f(·), i.e.

X∗ = argmax
X∈X

f(X) ;

where X is the space of feasible solutions and b is the avail-
able budget. The problem we set out to address consists of
finding an optimal subgraph of G which contains the opti-
mal b vertices, but has much fewer vertices than G. More
precisely, if we letH(·) denote the heuristic solver taking a
graph G as input and returning an optimal solution X∗, we
are interested in finding a subgraph S = (VS , ES) contain-
ing M vertices, with b < M << |V | and such that

f (H(S)) /f (X∗) = 1 . (1)

In practice, this often yields |ES | << |E|.

Learning a discriminative subgraph representation

Our initial objective is to learn a Euclidean subgraph em-
bedding for all subgraphs of G with the required num-
ber of vertices, which will later be used as a navigation
map for LeNSE. For this purpose, we introduce an encoder
ψ : G → Rd to map such subgraphs onto a d-dimensional
space, where G is the set of subgraphs of G. An essential

property we require is that the coordinates of the embedded
subgraph are informative about the subgraph’s likelihood of
containing a nearly-optimal solution.

To achieve this, we frame the problem as one of subgraph
classification, and we assume that every subgraph S can
be assigned a label from the set {1, 2, ...,K}. The labels
correspond to rankings, where the highest rank indicates
that S is very likely to contain the best possible solution
whilst lower ranks are associated with subgraphs expected
to lead to worse solutions.

In order to train the encoder, we use only a randomly se-
lected and small portion of the entire graph, GT ⊂ G, for
which an optimal solution X∗ can be readily obtained. A
training dataset is then generated by randomly sampling N
subgraphs of GT with the required size M , using Equation
(1) as a proxy to determine their label (see Appendix A).
This labelling mechanism ensures that only the relative qual-
ity of a subgraph compared to other ones is used to drive the
learning process. This process is heuristic-agnostic hence
can be flexibly deployed for other CO problems and/or
heuristics.

To facilitate the process of learning a navigation policy, the
encoder should learn a representation such that subgraphs
sharing the same label are clustered together, forming ap-
proximately uni-modal point clouds, whilst also maintaining
a strictly monotonic ordering across clusters. With these
requirements in mind, we parameterise ψ as a GNN that
consists of convolutional and differentiable coarsening lay-
ers, whose weights are learned by minimizing the InfoNCE
loss (Oord et al., 2018; Chen et al., 2020; He et al., 2020):

L(S) = − log

 exp(x · x+/τ)

exp(x · x+/τ) +
k∑

i=0

exp(x · x(i)− /τ))


where S is the input subgraph, x = ψ(S) is its en-
coded representation, x+ = ψ(S+) is the embedding of
a subgraph sharing the same label as S (positive sam-
ple), {x(0)− , ..., x

(k)
− } is the set of subgraph embeddings (i.e.

x
(i)
− = ψ(S

(i)
−)) for subgraphs belonging to different classes

(negative samples), and τ is a temperature hyper-parameter.

The InfoNCE loss is a contrastive predictive coding (CPC)
based function which maximises the mutual information
between the query subgraph and a positive sample, whilst
using negative samples as anchors to prevent a collapse
of the embedding space. We have found that minimising
the InfoNCE, in comparison to other losses such as ordi-
nal and cross entropy, provides a good trade-off between
maintaining the geometric structure of the embedded space
that we require whilst also achieving good classification
performance (see also Appendix F for an ablation study).

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

CPC-based approaches have also been shown to have su-
perior performance in downstream tasks compared to other
losses (Song & Ermon, 2020).

Subgraph navigation as a Markov Decision Process

The process of incrementally exploring subgraphs, starting
from a randomly chosen one, is delegated to an agent that
follows an optimal policy. To learn such a policy, we con-
sider the traditional Markov Decision Process (MDP) setting
(Bellman, 1957). We are given a graph G and a subgraph
mapping function ξ : Λ → G, where Λ is the power set
of V and G is the set of subgraphs of G. In principle ξ(·)
can be any function which returns a subgraph given a set of
nodes, but we give the precise definition used in this work
in the subsequent section. The MDP is defined by a tuple
(S,A, T ,R, ρ0, γ) whose elements are introduced below.

The state space, S , consists of the set of subgraphs induced
by ξ for vertex sets of fixed size M ∈ N, i.e. S = {ξ(X) :
X ∈ Λ, |X| = M} ⊂ G; we say that st = ξ(Xt) is
the state(/subgraph) induced by selected vertices Xt. The
action space includes a subgraph updating operation; taking
an action at ∈ A modifies the current subgraph st ∈ S into
a new subgraph st+1 ∈ S. There is flexibility in how this
modification operation can be defined, and in the subsequent
section we discuss the specific operation used in this work.
The transition function T : S × A → S is a deterministic
function that, given the current subgraph and action, returns
the next subgraph. Specifically, to obtain st+1 from st, the
agent first modifies Xt into Xt+1, and then the transition
function uses the subgraph mapping function ξ to obtain the
subgraph st+1 = ξ(Xt+1).

The reward functionR : S ×A → R measures the distance
between the current state (i.e. subgraph) and the region con-
taining the highest quality subgraphs, and is evaluated using
the embedding space, as follows. We let {S(1), ..., S(n)}
be the set of subgraphs belonging to class 1 in the training
dataset, and define g∗ to be the centroid of {ψ(S(i))}ni=1.
Throughout we will refer to g∗ as the goal. The reward is
then defined as

R(st, at) = rt+1 = −β × ∥g∗ − st+1∥2 ; (2)

where β ∈ (0,∞) is a scaling parameter. The desired policy
π : S → [0, 1] maps a state on to a state-conditioned distri-
bution over actions and maximises the expected (discounted)
rewards

Eτ∼ρ0,π

[∞∑
t=0

γtrt+1

]
;

where τ = (s0, a1, ..., aT−1, sT) is the trajectory generated
by the initial state distribution ρ0 and the policy π, and γ ∈
[0, 1) is a discount factor. This means that, in relation to the
navigation task, the agent should move incrementally closer

v

v1

v2 v3

u

u1

u2

Figure 1. Illustration of the subgraph modification operation. The
current state is given by ξ(Xt), where Xt = {u, v} (blue vertices).
For each vertex in Xt, a neighbour is sampled to form the action
tuples. The chosen vertices are highlighted in green whilst the
vertices considered, but not chosen, are highlighted in red. For
instance, for vertex v, v1 is sampled from its one-hop neighbours,
{v1, v2, v3}, uniformly at random. The action space is thus At =
{a(v, v1), a(u, u2)}.

to the goal when following a trained policy. Figure 2 shows
a real trajectory followed by the agent in a 2-dimensional
embedding space (A) and the corresponding distance from
the goal averaged over ten episodes (B).

Subgraph updating operation

In the design of the subgraph updating operation, we faced
the challenge of keeping the action space small whilst be-
ing able to change the connectivity structure of the current
subgraph. Our proposed solution is to allow the agent’s
action to update Xt by replacing a single vertex at a time.
For each vertex v ∈ Xt, a candidate vertex u is randomly
sampled from the one-hop neighbourhood of v, and the
agent can then decide to swap v with u; this is indicated
by a(v, u). Since |Xt| =M , there are M possible actions;
see Figure 1. Once Xt+1 is obtained, the new subgraph
S = (VS , ES) ∈ G is determined by ξ(·), as follows:

VS =
⋃

v∈Xt+1

({v} ∪ N (v)) ;

ES = {(u, v) ∈ E : u ∈ Xt+1 ∨ v ∈ Xt+1} .

As can be seen here, despite replacing only a single vertex
in Xt per time step, a substantial topological change can be
achieved due to the change of neighbourhood of the updated
vertex set. This allows LeNSE to learn how to move around
the embedded space efficiently.

Q-Learning with guided exploration

To learn a subgraph navigation policy, we use Q-learning
(Watkins & Dayan, 1992). Specifically, given the complex-
ity of the problem, we implement a Deep Q-Network (DQN)
algorithm (Mnih et al., 2015) whose network weights are pa-
rameterised by θ. Typically, an ϵ-greedy exploration policy
is employed in Q-learning, where the policy takes a greedy

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

action with probability 1− ϵ and acts randomly with prob-
ability ϵ. As we are training LeNSE on a small portion of
the graph, we can take advantage of the fact that, during the
initial phase of learning a subgraph embedding, we run the
heuristic on the entire training graph, hence we know what
the optimal b vertices are a-priori. We propose to inject this
prior knowledge into the exploration strategy by forcing the
agent to select one of these optimal vertices when possible,
thus guiding the agent towards the goal.

If we let B be the set of b solution vertices, then when the
vertex tuples {a(vi, ui)}Mi=1 are sampled to add to the action
space, we can check to see if any of the vertices ui are in B.
If ui is in B then the action tuple a(vi, ui) can additionally
be added to a set Bt. If Bt is non-empty, instead of choosing
a completely random action from At, the agent randomly
selects an action from Bt. This will add one of the b solution
vertices to the subgraph and will move the agent in the right
direction towards the goal g∗. Under the proposed guided
exploration policy, an action is selected according to

at =


U(At) , w.p. ϵ× (1− α) ;
U(Bt) , w.p. ϵ× α ;

argmax
a∈At

Q(st, a; θ) , otherwise .

The parameter α controls the level of guidance and ensure
that there is still sufficient exploration of the environment.
Setting α = 0 results in the standard ϵ-greedy exploration
policy. Note that this exploration policy can only be used at
training time, as at test time it is assumed that the optimal
b vertices are unknown. The full LeNSE algorithm with
guided exploration is detailed in Algorithm 1.

4. Experimental studies
Setup

We extensively test the performance of LeNSE on the fol-
lowing three budget constrained problems:

Max Vertex Cover (MVC): Given a graphG = (V,E) and
a budget b, find a set X∗ of b vertices such that the coverage
of X∗ is maximised, i.e.

X∗ = argmax
X⊂V :|X|=b

f(X) ;

where f(X) = |Y |
|E| with Y = {(u, v) ∈ E : u ∈ X, v ∈

V }.

Budgeted Max Cut (BMC): Given a graph G = (V,E)
and a budget b, find a set X∗ of b vertices such that the cut
set induced by X∗ is maximised, i.e.

X∗ = argmax
X⊂V :|X|=b

f(X) ;

Algorithm 1 LeNSE with Guided Exploration

Require: Train graph GT = (VT , ET), Subgraph mapping
function ξ(·), Subgraph size M , Set of b solution ver-
tices B, Replay memoryM = ∅, Number of episodes
N ′, Episode length T , Initial network parameters θ,
Update frequency c

1: for episode in 1, 2, ..., N ′ do
2: X0 ∼ U(V) such that |X0| =M
3: Receive initial state s0 = ξ(X0)
4: for each t in 1, ..., T do
5: At = ∅, Bt = ∅
6: for v ∈ Xt do
7: u ∼ U(N (v) \Xt)
8: At = At ∪ {a(v, u)}
9: if u in B then

10: Bt = Bt ∪ {a(v, u)}
11: end if
12: end for
13: Choose action at according to guided exploration

policy, receive reward rt, update set of selected ver-
tices Xt+1 and observe new state st+1 = ξ(Xt+1)

14: Add tuple (st, at, rt, st+1) toM
15: if t ≡ 0 mod c then
16: Sample random batch R ∼ U(M) and update

θ by SGD for R
17: end if
18: end for
19: end for

where f(X) = |{(u, v) ∈ E : v ∈ X,u ∈ V \X}|.

Influence Maximisation (IM): Given a directed weighted
graph G = (V,E), a budget b, and an information diffusion
model D, we are to select a set X∗ of b vertices such that
the expected spread of influence under D is maximised, i.e.

X∗ = argmax
X⊂V :|X|=b

ED [f(X)] ;

where f(X) denotes the spread of a set of vertices X . We
consider the spread of influence under the Independent Cas-
cade diffusion model introduced by Kempe et al. (2003).

Each problem is tested using eight real-world graphs ob-
tained from the Snap-Stanford repository (Leskovec &
Krevl, 2014). For each graph, we randomly sample a per-
centage of the graphs’ edges to form a training graph, with
testing then done on the graph formed from the held out
edges; the datasets used are summarised in Appendix B.
All training and test episodes start from different random
initial subgraphs. In all experiments, the encoder is trained
to identify optimal subgraphs using a budget of b = 100.
Network architectures and hyper-parameters are detailed in
Appendix C.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Figure 2. (A): An example of trajectory realised by the agent taken throughout a test episode. The goal for the agent is to reach the green
region, i.e. the region of optimal subgraphs. The purple circle denotes the agents start position whilst the purple square denotes the
agents final position. We used an autoencoder to map from the original embedding space to the 2-dimensional space in the Figure. (B):
Time-series plots of how the distance from the optimal region (green in the plot on the left) changes over time. The red line is the mean
distance (of 10 random episodes) per episode time step, with the shaded area corresponding to the 95% confidence interval. Here the
distance is computed in the original space (i.e. without using the autoencoder for dimensionality reduction) and is scaled using β from
Equation (2)

.

For our experiments we use K = 4 classes. The label
mapping function g(x) assigns label 1 if x ∈ (0.95,∞)
(i.e. if the subgraph is optimal), 2 if x ∈ (0.8, 0.95], 3
if x ∈ (0.6, 0.8] and 4 if x ∈ [0, 0.6]; this is done for
all graphs with the exception of the Facebook-IM/MVC
problem where we only use classes 1-3. We choose a cut-off
of 0.95 for the optimal subgraph in LeNSE to allow for
some error when using stochastic solvers.

Competing methods

We compare LeNSE to a GNN vertex classifier and the
pruning method described in GCOMB (Manchanda et al.,
2020) which we denote as GCOMB-P (see Appendix E
for a more detailed overview). The GNN classifier uses
the same architecture as LeNSE’s encoder except with no
coarsening layers. The classifier is trained to predict the
probability that a vertex is one of the b solution vertices.
At each epoch, we randomly sample b vertices that are not
solution vertices, and evaluate the loss on these sampled
vertices and the b sampled vertices; this avoids the loss
being dominated by the non-solution vertices. Using the
trained classifier, we used the predicted probabilities to rank
the vertices. We choose two different thresholds using the
predicted probabilities. GNN-R: assuming that the subgraph
returned by LeNSE has k vertices, we prune from the graph
the bottom |V | − k ranked vertices; GNN-T: we remove all
vertices with predicted probability less than 0.5.

Experimental results

We look to assess LeNSE’s ability to prune a graph, and the
quality of solution that can be found on the pruned graph.

To that end, we report 2 main metrics: 1) the number of ver-
tices/edges in the final subgraph; 2) the final ratio achieved,
i.e. Equation (1). Note that when reporting Equation (1), the
setX∗ found by the heuristic on the test graph is used. In Ta-
ble 1 we report these metrics for LeNSE and the competing
methods.

We can see that for each problem and dataset LeNSE is able
to find an optimal subgraph (i.e. ratio greater than 0.95).
Interestingly, we see that for Wiki-MVC the heuristic was
able to find a better solution on the subgraph than it did on
the original graph. Note that this is possible because the
greedy heuristic used for MVC has a 60% approximation
ratio, and so with less noise the heuristic is able to find a
better solution than on the entire graph.

In terms of the amount of pruning done, we see that LeNSE
is consistently able to prune large amounts of edges from the
graphs. In most instances we also see that LeNSE prunes
large portions of vertices from the graph; in particular we
note that for the 3 larger graphs we are able to prune 70+%
in all 3 of the problems. However, as the complexity of
many heuristics rely on the number of edges as well as
vertices – as is the case with IMM and the MIP formulation
of BMC – pruning edges is equally important as pruning
vertices for reducing the run time of heuristics.

For the competing methods, we can see that whilst GCOMB-
P performs well at achieving a close-to optimal ratio for IM
and MVC, it performs worse in the BMC problem. This
suggests that a hand-crafted pruning method may not be as
effective at generalising to multiple problems compared to
one which is learnt, such as in LeNSE. Further, GCOMB-P
prunes very little of the graphs in the MVC problem which

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Graph
LeNSE GNN-R GNN-T GCOMB-P

Ratio PV PE Ratio PV PE Ratio PV PE Ratio PV PE

Max Vertex Cover
Facebook 0.968 (0.009) 7% 73% 0.998 6% 2% 0.607 87% 77% 0.927 7% 1%

Wiki 1.094 (0.000) 34% 51% 1.003 34% 5% 0.371 93% 83% 0.990 3% 3%
Deezer 0.979 (0.002) 75% 94% 0.944 75% 66% 0.768 99% 99% 0.994 13% 3%

Slashdot 0.979 (0.001) 69% 83% 0.944 66% 30% 0.410 99% 95% 1.000 2% 10%
Twitter 0.989 (0.001) 33% 78% 0.985 32% 11% 0.229 99% 99% 0.997 17% 2%
DBLP 0.990 (0.001) 90% 96% 0.812 90% 80% 0.764 99% 99% 0.999 3% 1%

YouTube 0.982 (0.002) 79% 85% 0.417 78% 75% 0.317 99% 99% 0.998 7% 3%
Skitter 0.976 (0.002) 70% 84% 0.494 70% 69% 0.424 99% 99% 0.999 10% 2%

Budgeted Max-Cut
Facebook 0.960 (0.004) 7% 67% 0.999 8% 3% 0.873 89% 70% 0.813 95% 89%

Wiki 0.981 (0.001) 39% 63% 0.997 30% 12% 0.877 97% 96% 0.920 96% 91%
Deezer 0.975 (0.002) 74% 94% 0.990 68% 55% 0.938 94% 92% 0.850 99% 99%

Slashdot 0.990 (0.001) 62% 79% 0.998 58% 28% 0.561 99% 98% 0.632 99% 99%
Twitter 0.987 (0.001) 48% 87% 0.991 44% 25% 0.820 99% 99% 0.628 99% 99%
DBLP 0.993 (0.000) 92% 97% 0.875 92% 81% 0.656 99% 98% 0.646 99% 98%

YouTube 0.987 (0.001) 79% 84% 0.613 74% 74% 0.753 99% 99% 0.536 99% 97%
Skitter 0.974 (0.004) 71% 83% 0.502 71% 60% 0.407 99% 99% 0.427 99% 99%

Influence Maximisation
Facebook 0.979 (0.002) 9% 70% 1.006 9% 6% 0.886 91% 88% 0.951 73% 63%

Wiki 0.960 (0.002) 51% 71% 0.964 49% 78% 0.973 96% 95% 0.969 90% 81%
Deezer 0.972 (0.003) 76% 94% 0.935 76% 86% 0.775 98% 99% 0.805 95% 97%

Slashdot 0.966 (0.003) 77% 90% 0.966 74% 71% 0.951 98% 95% 0.966 98% 93%
Twitter 0.966 (0.001) 40% 88% 0.988 26% 12% 0.921 98% 97% 0.920 98% 97%
DBLP 0.969 (0.002) 89% 96% 0.935 89% 88% 0.844 99% 98% 0.863 99% 99%

YouTube 0.971 (0.001) 75% 81% 0.918 75% 75% 0.806 94% 99% 0.933 99% 99%
Skitter 0.983 (0.002) 78% 85% 0.919 69% 58% 0.883 99% 99% 0.883 99% 99%

Table 1. Results for LeNSE, GNN-R, GNN-T and GCOMB-P. The ratio reported is the ratio from Equation (1) and PV , PE denote
the percentage of vertices and edges, respectively, pruned from the graph. The results for LeNSE are averaged over 10 random initial
subgraphs with the standard errors for the ratio given in the brackets.

is likely why the ratios are consistently close to optimal. The
converse can be said for GCOMB-P in the BMC problems,
where it prunes too much of the graphs and hence gives
lower ratios.

The GNN-R method obtains similar ratios to LeNSE for
the smaller datasets, but on the larger datasets (e.g. DBLP,
YouTube, Skitter) the performance starts to degenerate, sug-
gesting that the GNN classifier is unable to generalise when
the test graph is much larger than the training graph. Further,
we note that with the exception of Wiki-IM this approach
never prunes as many edges as LeNSE. The GNN-T ap-
proach achieves a poor ratio across all MVC and BMC
datasets due to the over-pruning of the graphs. The perfor-
mance is improved somewhat in the IM problem, but it still
does not achieve ratios close to that obtained by LeNSE.

Further to these results, in Figure 2 we provide a visual
demonstration of the policy learnt by LeNSE for the Wiki-
BMC graph. In plot (A) we provide an example trajectory

taken by the agent. The agent starts in a region close to the
worst class of subgraphs and sequentially makes progress
by moving closer to the optimal subgraphs after each action.
In plot (B) we show the (scaled) distance per episode time
step of the subgraph from the goal. The distance is averaged
over 10 randomly initialised episodes, and we can see that
the mean distance tends towards 0 as the episode goes on,
with the confidence interval becoming tighter.

Scalability study

In Figure 3 we demonstrate the performance of LeNSE
on the large Talk graph which has 2.3m vertices and 4.8m
edges. In particular, we show how the performance varies
as we increase the percentage of the test graph’s edges used.
We report the relative speed-up of using LeNSE vs. using
the heuristic on the entire graph, the run time of LeNSE and
the number of vertices/edges in the subgraphs returned by
LeNSE – these are all averaged over 10 random episodes.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Figure 3. (A): The relative speed-up of using LeNSE vs. using the heuristic on the entire graph. (B): The time taken, in minutes, for
LeNSE to run. We have broken down the run time to demonstrate the time taken for LeNSE to find a subgraph (red bars) and the time
taken to run the heuristic on the subgraphs (blue bars). (C): The number of vertices/edges in the final subgraphs returned by LeNSE. In
each plot we vary the percentage of the test graph used to demonstrate how the performance of LeNSE changes as the size of the graph
increases. These experiments were all performed on the Talk-IM graph.

The experiments were carried out for the IM problem and
we note that all the heuristic achieved a ratio greater than
0.95 on all of the subgraphs.

We can see from the Figure that despite the test graph size
increasing, the time required by LeNSE to find a subgraph
remains almost constant. This is due to the fact that the
amount of pruning done by LeNSE increases as the size of
the graph increases, and so the subgraph size passed through
the encoder does not increase linearly with the size of the
test graph. Importantly, we show that using LeNSE leads
to more than a 140 time speed-up as opposed to using the
heuristic on the full graph.

Multi-budget scores

We assess whether heuristics can also obtain (close-to) opti-
mal results for budgets lower than that which the encoder
is trained for in the pre-processing phase. As mentioned, in
our experiments the encoder is trained to identify an optimal
subgraph for a budget of 100. We now test whether the
subgraphs returned by LeNSE can also be used to obtain an
optimal score for various budgets lower than 100. Specif-
ically, we report the ratio achieved when looking to find a
solution for the following budgets: 1, 10, 25, 50 and 75.

The results for the three problems can be found in Table 4 in
Appendix D. In the majority of cases the subgraphs provided
by LeNSE are also optimal subgraphs for budgets lower than
that which LeNSE was trained for. The exceptions are the
Facebook-IM, DBLP-IM and Skitter-IM/MVC graphs for
a budget of one. Despite these four instances, the evidence
would suggests that a viable training option for LeNSE is to
train for the largest budget that will ever be required, and it
should follow that a heuristic can be used to find an optimal
solution for all smaller budgets.

5. Conclusion
We have introduced LeNSE, a novel graph pruning algo-
rithm that finds an optimal subgraph containing the solution
of a CO problem. Rather than being a single algorithm,
LeNSE is a general framework that can be used in combi-
nation with any existing heuristic of choice for large-scale
problems. In all the settings that we have investigated using
real-world graph datasets, we found that training could be
done on some small percentage of the graph, being able to
scale up to the held out portion of the graph without any
performance degradation. We also found that the subgraphs
found by LeNSE were substantially smaller than the original
graph, with more than 90% of the graphs vertices and edges
being removed in the best case.

Further to this, we also demonstrated that the subgraphs
found by LeNSE were, in most cases, optimal subgraphs for
budgets lower than that which the encoder was trained to
recognise. We compared LeNSE to two baseline methods
where we found that LeNSE was able to either provide a
(much) better ratio than the comparisons, or prune a signifi-
cant amount more of the graph whilst still finding an optimal
subgraph. As well as this, LeNSE was able to consistently
perform well across all problems. Finally, we demonstrated
the benefits of using LeNSE on a graph with nearly 5 mil-
lion edges, showing that LeNSE achieved speed up of more
than 140 times compared to not doing any pruning.

Potential avenues for future work include alternative graph
modification operations, as in this work we only consider
the replacement of a vertex with one of its neighbours and
include all of the one-hop neighbours of some vertex sub-
set in the subgraph. We also plan to further investigate
LeNSE’s performance on other CO problems besides the
budget-constrained versions presented here.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

References
Almasan, P., Suárez-Varela, J., Badia-Sampera, A., Rusek,

K., Barlet-Ros, P., and Cabellos-Aparicio, A. Deep re-
inforcement learning meets graph neural networks: Ex-
ploring a routing optimization use case. arXiv preprint
arXiv:1910.07421, 2019.

Amanatidis, G., Birmpas, G., and Markakis, E. On budget-
feasible mechanism design for symmetric submodular
objectives. In International Conference on Web and In-
ternet Economics, pp. 1–15. Springer, 2017.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. Tsp
cuts which do not conform to the template paradigm. In
Computational combinatorial optimization, pp. 261–303.
Springer, 2001.

Arora, A., Galhotra, S., and Ranu, S. Debunking the myths
of influence maximization: An in-depth benchmarking
study. In Proceedings of the 2017 ACM international
conference on management of data, pp. 651–666, 2017.

Arumugam, S., Brandstädt, A., Nishizeki, T., and Thulasira-
man, K. Handbook of graph theory, combinatorial opti-
mization, and algorithms, volume 34. CRC Press, 2016.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A., and Protasi, M. Complexity
and approximation: Combinatorial optimization prob-
lems and their approximability properties. Springer Sci-
ence & Business Media, 2012.

Avis, D., Hertz, A., and Marcotte, O. Graph theory and
combinatorial optimization, volume 8. Springer Science
& Business Media, 2005.

Bai, Y., Xu, D., Sun, Y., and Wang, W. Glsearch: Maximum
common subgraph detection via learning to search. In
International Conference on Machine Learning, pp. 588–
598. PMLR, 2021.

Barahona, F., Grötschel, M., Jünger, M., and Reinelt, G. An
application of combinatorial optimization to statistical
physics and circuit layout design. Operations Research,
36(3):493–513, 1988.

Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. Ex-
ploratory combinatorial optimization with reinforcement
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3243–3250, 2020.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bellman, R. A markovian decision process. Journal of
mathematics and mechanics, 6(5):679–684, 1957.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
2020.

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. Maximiz-
ing social influence in nearly optimal time. In Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pp. 946–957. SIAM, 2014.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? arXiv preprint arXiv:2105.14491,
2021.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Brown, J. J. and Reingen, P. H. Social ties and word-of-
mouth referral behavior. Journal of Consumer research,
14(3):350–362, 1987.

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., and Liò,
P. Towards sparse hierarchical graph classifiers. arXiv
preprint arXiv:1811.01287, 2018.

Chaoji, V., Ranu, S., Rastogi, R., and Bhatt, R. Recom-
mendations to boost content spread in social networks.
In Proceedings of the 21st international conference on
World Wide Web, pp. 529–538, 2012.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, W., Wang, C., and Wang, Y. Scalable influence maxi-
mization for prevalent viral marketing in large-scale so-
cial networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 1029–1038, 2010.

Cheng, J., Wang, Z., and Pollastri, G. A neural network
approach to ordinal regression. In 2008 IEEE interna-
tional joint conference on neural networks (IEEE world
congress on computational intelligence), pp. 1279–1284.
IEEE, 2008.

Cheng, S., Shen, H., Huang, J., Zhang, G., and Cheng, X.
Staticgreedy: solving the scalability-accuracy dilemma in

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

influence maximization. In Proceedings of the 22nd ACM
international conference on Information & Knowledge
Management, pp. 509–518, 2013.

Cheng, S., Shen, H., Huang, J., Chen, W., and Cheng, X. Im-
rank: influence maximization via finding self-consistent
ranking. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in infor-
mation retrieval, pp. 475–484, 2014.

Cohen, E., Delling, D., Pajor, T., and Werneck, R. F. Sketch-
based influence maximization and computation: Scaling
up with guarantees. In Proceedings of the 23rd ACM
International Conference on Conference on Information
and Knowledge Management, pp. 629–638, 2014.

Dai, H., Dai, B., and Song, L. Discriminative embeddings of
latent variable models for structured data. In International
conference on machine learning, pp. 2702–2711. PMLR,
2016.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. arXiv preprint arXiv:1704.01665, 2017.

Dinur, I. and Safra, S. On the hardness of approximating
minimum vertex cover. Annals of mathematics, pp. 439–
485, 2005.

Dobzinski, S., Papadimitriou, C. H., and Singer, Y. Mecha-
nisms for complement-free procurement. In Proceedings
of the 12th ACM conference on Electronic commerce, pp.
273–282, 2011.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. arXiv preprint arXiv:1906.01629,
2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. A data-based
approach to social influence maximization. arXiv preprint
arXiv:1109.6886, 2011.

Grassia, M., Lauri, J., Dutta, S., and Ajwani, D. Learning
multi-stage sparsification for maximum clique enumera-
tion. arXiv preprint arXiv:1910.00517, 2019.

Grötschel, M., Lovász, L., and Schrijver, A. Geometric
algorithms and combinatorial optimization, volume 2.
Springer Science & Business Media, 2012.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. arXiv preprint
arXiv:1706.02216, 2017.

Hassin, R. and Rubinstein, S. Approximation algorithms for
maximum linear arrangement. In Scandinavian Workshop
on Algorithm Theory, pp. 231–236. Springer, 2000.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–
9738, 2020.

Hochbaum, D. S. Approximation algorithms for the set
covering and vertex cover problems. SIAM Journal on
computing, 11(3):555–556, 1982.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Karakostas, G. A better approximation ratio for the vertex
cover problem. In International Colloquium on Automata,
Languages, and Programming, pp. 1043–1050. Springer,
2005.

Karp, R. M. Reducibility among combinatorial problems.
In Complexity of computer computations, pp. 85–103.
Springer, 1972.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146,
2003.

Kempe, D., Salek, M., and Moore, C. Frugal and truthful
auctions for vertex covers, flows and cuts. In 2010 IEEE
51st Annual Symposium on Foundations of Computer
Science, pp. 745–754. IEEE, 2010.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-
ina, B. Learning to branch in mixed integer programming.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 30, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Korte, B. H., Vygen, J., Korte, B., and Vygen, J. Combina-
torial optimization, volume 1. Springer, 2011.

Laterre, A., Fu, Y., Jabri, M. K., Cohen, A.-S., Kas, D., Haj-
jar, K., Dahl, T. S., Kerkeni, A., and Beguir, K. Ranked re-
ward: Enabling self-play reinforcement learning for com-
binatorial optimization. arXiv preprint arXiv:1807.01672,
2018.

Lauri, J., Dutta, S., Grassia, M., and Ajwani, D. Learning
fine-grained search space pruning and heuristics for com-
binatorial optimization. arXiv preprint arXiv:2001.01230,
2020.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling.
In International Conference on Machine Learning, pp.
3734–3743. PMLR, 2019.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Li, H., Xu, M., Bhowmick, S. S., Sun, C., Jiang, Z., and Cui,
J. Disco: influence maximization meets network embed-
ding and deep learning. arXiv preprint arXiv:1906.07378,
2019.

Liang, Y., Zhang, Y., Gao, D., and Xu, Q. Mxpool: Multi-
plex pooling for hierarchical graph representation learn-
ing. arXiv preprint arXiv:2004.06846, 2020.

Liu, D., Lodi, A., and Tanneau, M. Learning chordal exten-
sions. Journal of Global Optimization, pp. 1–20, 2021.

Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. Com-
binatorial optimization by graph pointer networks and
hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Manchanda, S., MITTAL, A., Dhawan, A., Medya,
S., Ranu, S., and Singh, A. Gcomb: Learning
budget-constrained combinatorial algorithms over
billion-sized graphs. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 20000–20011. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
e7532dbeff7ef901f2e70daacb3f452d-Paper.
pdf.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E.
Reinforcement learning for combinatorial optimization:
A survey. Computers & Operations Research, pp. 105400,
2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Newman, M. E. The mathematics of networks. The new pal-
grave encyclopedia of economics, 2(2008):1–12, 2008.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Reis, A. C., Halper, S. M., Vezeau, G. E., Cetnar, D. P.,
Hossain, A., Clauer, P. R., and Salis, H. M. Simultaneous
repression of multiple bacterial genes using nonrepetitive
extra-long sgrna arrays. Nature biotechnology, 37(11):
1294–1301, 2019.

Rogers, E. M. Diffusion of innovations. Simon and Schuster,
2010.

Song, J. and Ermon, S. Multi-label contrastive predictive
coding. arXiv preprint arXiv:2007.09852, 2020.

Sun, Y., Li, X., and Ernst, A. Using statistical measures and
machine learning for graph reduction to solve maximum
weight clique problems. IEEE transactions on pattern
analysis and machine intelligence, 2019.

Sun, Y., Ernst, A., Li, X., and Weiner, J. Generalization
of machine learning for problem reduction: a case study
on travelling salesman problems. OR Spectrum, 43(3):
607–633, 2021.

Tang, Y., Xiao, X., and Shi, Y. Influence maximization:
Near-optimal time complexity meets practical efficiency.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 75–86, 2014.

Tang, Y., Shi, Y., and Xiao, X. Influence maximization in
near-linear time: A martingale approach. In Proceedings
of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1539–1554, 2015.

Valente, T. W. Social network thresholds in the diffusion of
innovations. Social networks, 18(1):69–89, 1996.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. arXiv preprint
arXiv:1809.10341, 2018.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Bo-
man, M. Learning combinatorial optimization on graphs:
A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://proceedings.neurips.cc/paper/2020/file/e7532dbeff7ef901f2e70daacb3f452d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e7532dbeff7ef901f2e70daacb3f452d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e7532dbeff7ef901f2e70daacb3f452d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e7532dbeff7ef901f2e70daacb3f452d-Paper.pdf

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
arXiv preprint arXiv:1506.03134, 2015.

Wang, R., Hua, Z., Liu, G., Zhang, J., Yan, J., Qi, F., Yang,
S., Zhou, J., and Yang, X. A bi-level framework for
learning to solve combinatorial optimization on graphs.
arXiv preprint arXiv:2106.04927, 2021.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Wilder, B., Ou, H.-C., de la Haye, K., and Tambe, M. Op-
timizing network structure for preventative health. In
AAMAS, pp. 841–849, 2018.

Wolsey, L. A. and Nemhauser, G. L. Integer and combi-
natorial optimization, volume 55. John Wiley & Sons,
1999.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Yao, F., Cai, R., and Wang, H. Reversible action design for
combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:2102.07210, 2021.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L.,
and Leskovec, J. Hierarchical graph representation
learning with differentiable pooling. arXiv preprint
arXiv:1806.08804, 2018.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Graph Name
Train Size Test Size

Vertices Edges Vertices Edges
Facebook 3,822 26,470 (30%) 3,998 61,764

Wiki 4,895 31,106 (30%) 6,349 72,583
Deezer 48,775 149,460 (30%) 53,555 348,742

Slashdot (U) 47,558 140,566 (30%) 67,677 327,988
Slashdot (D) 48,976 154,972 (30%) 68,292 361,603
Twitter (U) 55,911 134,231 (10%) 80,779 1,208,079
Twitter (D) 58,981 176,814 (10%) 80,776 1,591,335

DBLP 36,889 42,467 (04%) 314,818 1,007,399
YouTube 125,607 185,566 (06%) 1,094,439 2,802,058
Skitter 77,179 115,170 (01%) 1,694,024 10,980,128
Talk 120,443 181,843 (04%) 2,329,147 4,839,567

Table 2. The real-world graphs used to perform our experiments. For each graph, we provide the corresponding size of the training and
testing sets; in brackets we indicate the percentage of edges taken from the original graph for training purposes with the remaining edges
being used to form the test graph. For Slashdot and Twitter, the size of the original graph varied when we treated it as undirected/directed,
so (U) refers to undirected graphs and (D) denotes the directed one. All datasets can be found at http://snap.stanford.edu/
data/index.html.

A. Dataset generation
Algorithm 2 describes the procedure used to generate the dataset consisting of labelled subgraphs which are used to learn a
discriminative subgraph embedding. Here, we recall that GT represents the train graph, and so the generated dataset will
consist of subgraphs of the smaller train graph. To generate the training dataset, we sample random subgraphs and compute
the corresponding label, which are assigned using a function g(·). We ensure a balanced dataset (i.e. an equal number of
subgraphs for each one of the K classes); this is achieved by ensuring that some fraction of the b solution vertices, which we
assume to be known on the train-graph, are present in the subgraph so that we achieve the desired score.

Algorithm 2 Dataset generation

Require: Train graph GT = (VT , ET), Heuristic Solver H, Heuristic score f(H(G)), Dataset size N , label mapping
function g(·), Fixed vertex size M

1: D ← ∅
2: for i in 1, 2, ..., N do
3: X ∼ U(V) such that |X| =M
4: S = ξ(X)
5: Compute ratio r = f(H(S))/f(H(G))
6: Assign label y = g(r)
7: D ← D ∪ (S, y)
8: end for

B. Dataset information
In Table 2 we list the graphs used in our experiments and the size of the respective training and testing splits. In addition to
the number of edges used for training, we also indicate what percentage of the original graphs edges were used. Note that
encoder training and DQN training are all carried out on the train graph, and then tested on the held out test graph.

C. Network architectures and hyper-parameters
The encoder must be able to provide meaningful graph level embeddings, as opposed to vertex/edge embeddings. Therefore
we combine convolutional layers with graph coarsening layers. The convolutional layer learns vertex features which are
then used by the coarsening layer to reduce the size of the graph. Repeatedly applying such layers leads to a single vectorial
representation of the input graph. In particular, our encoder architecture consists of GraphSAGE layers (Hamilton et al.,
2017) to learn the vertex features and k-pooling layers (Cangea et al., 2018) to coarsen the graph.

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Our encoder architecture has 3 layers, each one consisting of a GraphSAGE layer with ReLU activation followed immediately
by a k-pooling layer. The output is a single vector representation of the input subgraph which is then passed through a
fully connected linear layer to map to the desired dimension – the full architecture is summarised in Figure 1 of Cangea
et al. (2018). For the MVC and BMC problem we use as raw vertex features the number of neighbours and the eigenvector
centrality (Newman, 2008), and for the IM problem we additionally use the sum of the outgoing edge-weights of a vertex –
note these are all computed relative to the original graph, not the subgraphs. Note that we normalise the number of vertices
and the outgoing edge weights by min-max.

Unlike the more commonly used DQN architecture which takes in the state and outputs a Q-value for each possible action,
our DQN will take in the state and action being considered and output a single Q-value. This is necessary as our action space
changes at each step of an episode based on which action tuples are in At. The DQN architecture consists of 3 independent
fully connected layers where the output of each is concatenated into a single vector before being passed through 3 further
linear layers. The number of hidden units in all fully connected layers is 128 and all have ReLU activations, except for the
final layer which is linear as we want to map to R for the Q-Value. Formally, our DQN is a functionQ : Rd×Rd′×Rd′ → R
where d is the subgraph embedding dimensionality and d′ is the dimensionality of the vertex embeddings from the first
GraphSAGE layer in the encoder. We use this first GraphSAGE layer (i.e. before any pooling) to obtain vertex embeddings
when passing the actions (vertices) through the DQN.

The weights of both the encoder and the DQN are optimised with the Adam optimiser (Kingma & Ba, 2014) and both have
a learning rate of 0.001. The encoder batch size and experience replay batch size are both 128. We use a pooling ratio
of k = 0.8 and temperature hyper-parameter of τ = 0.1 in the encoder. Finally, when training the DQN we initialise the
exploration parameter ϵ to be equal to one and decay it after each random action at a rate of 0.9995 down to a minimum
value of 0.01. We also have a max replay memory size of 25,000, a discount factor of 0.995 and a target network which is
updated after each experience replay update using polyak averaging with a parameter of 0.0025. Note that during training
we use a different episode length than at test time, both of which we report, along with the remaining hyper-parameters
that vary per dataset, in Table 3. Note that we only report parameters for the Talk-IM graph as we do not perform any
experiments using the Talk-BMC/MVC graphs.

D. Multi budget test results
Table 4 contains the results for the multi budget test results referenced in the main paper. We can see that all the ratios, except
for Facebook-IM, DBLP-IM and Skitter-MVC/IM, are ratios we would expect from an optimal subgraph. In particular, the
ratios for the deterministic solvers in MVC and BMC are all close to 1.

E. GCOMB-based graph pruning
The methodology presented in Manchanda et al. (2020) can be broken down into two parts – a pruning phase and a Q-learning
phase. The pruning is based on a vertex ranking approach. For a train graph G = (V,E) and budget of b, the vertices are
initially sorted into descending order based on the outgoing edge-weight (or degree in an unweighted graph) and rank(v)
denotes the position of vertex v in this ordered list. A stochastic solver is used L times to obtain L (different) solution
sets {A(i)}Li=1 of size b. If we define A(i)

:k to be the first k vertices added to solution set A(i), then for all budgets b′ ≤ b
we define rb′ = max

v∈∪iA
(i)
:k

rank(v) to be the highest rank of all vertices amongst the first b′ vertices in each of the L

solution sets. A linear interpolator is then used to fit these (b′, rb′) pairs. Now, for a budget b̃, the test graph is pruned by
using the linear interpolator to predict a rank r̂b̃ and remove all vertices in the test graph with rank greater than r̂b̃, where
the rankings of the test graph and calculated in the same way as for the train graph. Note that when training the linear
interpolator the rankings and budgets are normalised by the proportion of vertices in the graph to enable generalisation to
different graphs. In our experiments, the stochastic solvers that we use for the 3 problems are IMM (Tang et al., 2015) for
IM, the heuristic introduced in Hassin & Rubinstein (2000) for BMC and for MVC we use the probabilistic-greedy that was
introduced in the GCOMB paper. For the Q-learning phase of GCOMB, a simple Q-learning algorithm is deployed on the
pruned graph. This is in contrast to LeNSE, where we use an existing heuristic.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Graph
M n d′ d Ttrain N ′ α c β Ttest

MVC
Facebook 300 100 30 10 2,000 10 0 20 50 2,000

Wiki 300 100 75 25 2,000 10 0.1 20 3 300
Deezer 500 200 50 10 2,000 10 0 20 15 300

Slashdot 500 200 30 15 2,000 10 0.1 20 20 300
Twitter 1,000 100 40 10 1,500 10 0.1 2 20 750
DBLP 1,000 100 40 10 1,500 10 0.1 2 20 1,000

Youtube 1,250 100 75 25 1,500 10 0.1 2 30 500
Skitter 750 250 75 20 1,000 10 0.05 2 30 500

Budgeted Max-Cut
Facebook 300 250 40 10 2,000 10 0.05 20 20 2,000

Wiki 300 250 30 10 2,000 10 0.05 20 25 100
Deezer 500 250 30 10 2,000 10 0.05 20 50 300

Slashdot 500 250 30 15 2,000 10 0.05 20 50 300
Twitter 1,000 100 40 10 2,000 10 0.5 2 20 250
DBLP 1,000 100 30 10 2,000 10 0.5 2 50 1,000

Youtube 1,000 200 75 25 1,500 10 0.5 2 5 400
Skitter 750 500 75 25 1,000 10 0.05 2 30 500

Influence Maximisation
Facebook 300 100 30 10 5,000 10 0 20 50 5,000

Wiki 300 100 50 15 2,000 10 0 20 50 200
Deezer 500 100 30 10 2,000 10 0 20 15 1,500

Slashdot 500 100 50 10 2,000 10 0 20 15 300
Twitter 1,000 100 40 10 1,500 10 0.5 2 20 400
DBLP 1,000 100 40 10 1,500 10 0.5 2 20 1,000

Youtube 750 100 75 25 1,500 10 0.1 2 20 500
Skitter 750 250 75 20 500 25 0.05 2 10 500
Talk 750 400 75 25 500 25 0.1 2 10 100

Table 3. The hyperparameters used when training LeNSE. M denotes the size of the vertex subset we use to induce the subgraphs
throughout training, n denotes the number of samples per class in the subgraph dataset, N ′ is the number of training episodes, d′

corresponds to the dimensionality of the vertex embeddings for the GraphSAGE layers in the encoder whilst d is the final embedding
dimension of the encoder, c denotes the frequency with which we perform SGD on the parameters of the DQN as per Algorithm 1, β is
the scaling factor in the rewards and Ttrain, Ttest denote the length of the train and test episodes, respectively.

F. Loss Comparisons

Graph
Loss

InfoNCE Cross-Entropy Ordinal
Max Vertex Cover

Facebook 0.968 0.907 0.880
Wiki 1.094 0.899 0.931

Budgeted Max-Cut
Facebook 0.960 0.647 0.650

Wiki 0.981 0.391 0.603
Influence Maximisation

Facebook 0.979 0.663 0.871
Wiki 0.960 0.895 0.914

Table 5. Comparison of the average ratios from Equation (1) achieved when using the different loss functions.

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

Graph
Budget

1 10 25 50 75 100
Max Vertex Cover

Facebook 1.00 1.00 0.99 0.97 0.97 0.97
Wiki 1.00 1.00 1.00 1.00 1.04 1.09

Deezer 1.00 1.00 1.00 0.99 0.99 0.98
Slashdot 1.00 1.00 1.00 1.00 0.99 0.98
Twitter 1.00 1.00 1.00 1.00 1.00 0.99
DBLP 1.00 1.00 1.00 1.00 0.99 0.99

YouTube 1.00 1.00 1.00 1.00 0.99 0.98
Skitter 0.85 0.98 0.99 0.99 0.99 0.98

Budgeted Max-Cut
Facebook 1.00 1.00 0.99 0.98 0.98 0.96

Wiki 1.00 1.00 1.00 1.00 1.00 0.98
Deezer 1.00 1.00 1.00 0.99 0.99 0.98

Slashdot 1.00 1.00 1.00 1.00 1.00 0.99
Twitter 0.98 1.00 1.00 1.00 0.99 0.99
DBLP 1.00 1.00 1.00 1.00 1.00 0.99

YouTube 1.00 1.00 1.00 1.00 0.99 0.99
Skitter 0.96 1.00 1.00 0.99 0.99 0.97

Influence Maximisation
Facebook 0.86 0.99 0.98 0.99 0.99 0.98

Wiki 1.00 0.98 0.99 1.00 0.98 0.96
Deezer 1.00 0.97 0.97 0.97 0.97 0.97

Slashdot 1.00 0.99 0.99 0.98 0.98 0.98
Twitter 1.00 0.97 0.96 0.96 0.96 0.96
DBLP 0.86 0.96 0.95 0.97 0.96 0.97

YouTube 1.00 0.96 0.98 0.98 0.97 0.97
Skitter 0.77 0.97 0.98 0.98 0.98 0.98

Table 4. Results showing the ratio achieved for the three CO problems, averaged over 10 runs, for budgets lower than that which the
encoder was trained to attain.

We compare the InfoNCE loss to the standard cross entropy loss as well as to an ordinal classification based loss. We choose
to compare to an ordinal based loss function as there is an ordinal structure to the classes. For example, it would be more
acceptable to misclassify a class 4 subgraph as a class 3 subgraph than it would be to classify it as a class 1 subgraph. We
choose the ordinal classification approach introduced in Cheng et al. (2008). With K classes, a subgraph with class i ≤ K
is assigned an ordinal target vector y where yj = 1 for j ≤ i, and 0 otherwise. The output layer uses a sigmoid activation so
that the predicted vector ŷ has individual values in the range (0, 1) and the network is trained to minimise the mean squared
error between the ŷ and y. To make the comparisons fair we use the same encoder (i.e. same architecture) for each loss
function, where the ordinal and cross entropy have the additional layer to map from the embedding space to the prediction
vector as required.

In Figure 4 we present example embeddings using the 3 different loss functions for the Wiki-BMC graph, and in Table 5 we
present the corresponding average ratios obtained by LeNSE when using embeddings trained with the respective losses. We
can see from the table that the variation is much higher when using cross entropy and ordinal trained encoders. This is likely
due to what we see in Figure 4 where the embeddings provided are not as well separated as when using the InfoNCE loss. In
particular, the cross entropy embeddings have no clear structure, with class 3 and 4 subgraphs being embedded in the same
location as class 1 and 2 (hence why they cannot be seen on the Figure) – this is likely the cause for LeNSE achieving a ratio
of just 0.391. Interestingly, the ordinal embeddings in the Figure highlight why the InfoNCE loss is useful as we can see
that for class 1 there are two separate clusters, including some overlap with class 2. This highlights why uni-modality is
useful as LeNSE obtained a ratio of only 0.603 using this embedding. This can be explained by the fact that the goal would
have been at the centre of the two clusters which does not necessarily correspond to a good region of the embedding. In
contrast to this, we see in Figure 5 that all the embeddings provided by the InfoNCE loss have uni-modal clusterings with

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

the monotonic ordering of the classes maintained, with an exception in the Twitter-BMC graph where classes 3 and 4 are
well separated but are approximately a similar distance from the class 1 embeddings.

Figure 4. Example of the embeddings provided for the Wiki-BMC graph by the InfoNCE loss, cross entropy loss and ordinal loss. Note
that autoencoders were used for dimensionality reduction to map from the original embedding space to the plotted 2-dimensional space.

Figure 5. Example of embeddings provided by the InfoNCE loss for various graph/problem combinations. Note that autoencoders were
used for dimensionality reduction to map from the original embedding space to the plotted 2-dimensional space.

