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Abstract

Predictive models are traditionally optimized in-
dependently of their use in downstream decision-
based optimization. The ‘smart, predict then opti-
mize’ (SPO) framework addresses this shortcom-
ing by optimizing predictive models in order to
minimize the final downstream decision loss. To
date, several local first-order methods and con-
vex approximations have been proposed. These
methods have proven to be effective in practice,
however, it remains generally unclear as to how
close these local solutions are to global optimal-
ity. In this paper, we cast the SPO problem as
a bi-level program and apply Symbolic Variable
Elimination (SVE) to analytically solve the lower
optimization. The resulting program can then
be formulated as a mixed-integer linear program
(MILP) which is solved to global optimality using
standard off-the-shelf solvers. To our knowledge,
our framework is the first to provide a globally
optimal solution to the linear SPO problem. Ex-
perimental results comparing with state-of-the-art
local SPO solvers show that the globally optimal
solution obtains up to two orders of magnitude
reduction in decision regret.

1. Introduction

Many problems in engineering and statistics involve both
predictive forecasting and decision-based optimization. A
prototypical ‘predict, then optimize’ framework would first
fit the predictive models (for example by maximum likeli-
hood or least-squares) and then ‘plug-in’ those estimates
to the corresponding decision-based optimization program.
However, an ‘objective mismatch’ (Lambert et al., 2020)
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can occur when the prediction and optimization are treated
separately such that improved prediction accuracy does not
necessarily translate into lower decision error.

Recent work advocates for training prediction models based
on their downstream decision loss (Elmachtoub et al., 2020;
Donti et al., 2017; Mandi & Guns, 2020; Wilder et al., 2019).
In particular, Elmachtoub & Grigas (2017) propose the SPO
(Smart “Predict, then Optimize”) loss, which measures the
decision regret on optimized decisions induced by a particu-
lar prediction model. In this paper, we consider an important
subset of SPO problems, with a linear decision-based opti-
mization program (LP) and a linear predictive model.

Optimizing the SPO loss function directly is difficult as
the SPO loss is non-differentiable and non-convex. Empir-
ical evidence demonstrates the efficacy of surrogate loss
functions (Elmachtoub & Grigas, 2017; Elmachtoub et al.,
2020; Grigas et al., 2021) and local optimization methods
(Mandi & Guns, 2020; Wilder et al., 2019; Tan et al., 2020).
However, in general, there does not exist strong theoretical
justification for the observed performance of these approx-
imate solutions and, to date, a globally optimal solution
and measurement of optimality gap remains unknown. For
example, Figure 1 illustrates the surfaces of the true SPO
loss and the convex surrogate SPO+ loss as introduced in
(Elmachtoub & Grigas, 2017). Note that the surrogate loss
fails to capture the complex piecewise structure of the true
loss. Notably, a slight perturbation of the optimum of the
SPO+ loss can incur a huge increase in the true SPO loss.

In this paper, we present the first global optimization frame-
work for the linear SPO problem, thus providing a bench-
mark and measurement of optimality gap for the aforemen-
tioned approximate techniques. We use the bi-level program
formulation of SPO, with a linear upper-level objective and
multiple LP arg min instances (one per datum) in the lower-
level. We apply the symbolic case calculus (Boutilier et al.,
2001) to analytically solve the lower-level arg min problem
by reformulating the LP in a generic disjoint bilinear pro-
gram form (Konno, 1975). We extend the symbolic arg min
operator (Jeong et al., 2021) to retrieve the solution to the bi-
linear program and demonstrate that the general solution is
a piecewise linear function of the model parameters. Finally,
by substituting the lower-level solution into the upper-level



An Exact MILP Reduction of Linear Smart “Predict, then Optimize”

»

Figure 1. The true SPO loss (left) vs. its convex surrogate SPO+
loss (right) on a 2-D SPO problem from Section 3.1. The piecewise
linear structure of true SPO loss hints at a possible MILP reduction.

objective, we reduce the SPO problem to a mixed-integer
linear program (MILP), which can be solved to global opti-
mality using standard off-the-shelf solvers.

Our contributions are summarized as follows: (i) firstly, we
present a novel symbolic technique that enables optimally
solving the SPO problem. In particular, for the class of lin-
ear prediction models and MILP with binary variables, we
provide the first solution approach to optimally minimizing
the SPO loss; (ii) we demonstrate a novel application of
the symbolic case calculus to transform one optimization
problem (a bi-level form) to another equivalent problem (a
MILP); and (iii) lastly, we benchmark existing approximate
methods to measure their optimality gap in three domains:
noisy shortest path, cost-sensitive classification, and energy
cost aware scheduling. Our experimental results show that
our global solution obtains up to two orders of magnitude
reduction in decision regret in comparison to existing ap-
proximate solutions.

2. Related Work

Recently there has been a growing body of research on data-
driven optimization and the relative merits of decoupled
versus integrated predictive decision-making (see for exam-
ple (Ban & Rudin, 2019; Bertsimas et al., 2019; Bertsimas
& Kallus, 2020; Elmachtoub & Grigas, 2017; Elmachtoub
et al., 2020; Grigas et al., 2021)). Our methodology focuses
on the ‘smart predict, then optimize’ (SPO) framework, pro-
posed by Elmachtoub & Grigas (2017), which minimizes de-
cision error through the custom SPO loss function (defined
later in (2)). The SPO loss is Fisher consistent with least-
squares under mild assumptions and can lead to improved
overall decision accuracy. To date, optimizing the SPO loss
by gradient methods is challenged by non-convexity and the
absence of continuity. Instead the authors propose minimiz-
ing a convex surrogate loss function, SPO+, which provides
an upper bound on the global solution.

Related, Gould et al. (2016) study bi-level optimization

problems in a general setting and provide closed-form ex-
pressions for the gradient and Hessian under various con-
straint assumptions. Since then, a plethora of research and
methodology has been developed that integrates differen-
tiable optimization layers (DOLs) in an end-to-end train-
able neural network (Agrawal et al., 2019; Blondel et al.,
2021). Notably the work of Agrawal et al. (2020) and Amos
& Kolter (2021) provide general frameworks for learning
convex optimization programs and lay the groundwork for
backpropagation by implicit differentiation. Indeed, despite
the local nature of these solutions, recent applications of
DOLs advocate strongly for a fully integrated estimation
approach (see for example (Amos et al., 2019; Butler &
Kwon, 2021a;b; Donti et al., 2017; Uysal et al., 2021)).

Most relevant to our framework, is the work of Wilder et al.
(2019), Mandi & Guns (2020) and Tan et al. (2020) who
consider a bi-level formulation for learning LPs and MILPs
from optimal decisions. In all cases, however, the proposed
solutions are locally optimal and the quality of the local so-
lution with respect to the global solution remains unknown.
Butler & Kwon (2021b) consider a bi-level problem with
lower-level quadratic programs and provide analytical glob-
ally optimal solutions for the unconstrained and equality
constrained cases, whereas the inequality constrained case is
solved by gradient descent. To our knowledge, our symbolic
SPO to MILP reduction framework is the first to provide a
globally optimal solution to the linear bi-level SPO program.

3. Problem Description

We consider mixed-integer programs (Wolsey, 1998):

min c¢'x (1)
S.t. aij < b, Vjied
x > 0; z € {0,1} Vk e K

where J, K are index sets of constraints and binary variables
(respectively), x = (z1,...,%y, ), ¢ € R™, and a; € R™
Vj € J. We denote & as the feasible region of x.

In the SPO framework, some coefficients of ¢ are un-
known (we assume all ¢ are unknown for ease of expo-
sition), and thus they have to be estimated by a linear pre-
diction model parameterized by @ € R™=*? given a dataset
D = {(¢p™,c™)}N_,. That is, given a feature ¢ € RP?,
the model outputs the prediction ¢ = @, such that we can
now solve the above MILP with the cost ¢ rather than c.

Elmachtoub & Grigas (2017) propose the SPO loss that
can directly measure how inferior model predictions are
— in terms of their induced decision costs — compared to
the optimal costs that would be attained had we known the
coefficients. More concretely, the SPO loss lgp, (€, €) is

lspo(€,¢) = cTx*(€) — ¢ x*(c) (2)
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where x*(c) € arg min, .y ¢’ x is an optimal solution to
(1) with the cost ¢ (similarly for x*(¢)).!

With the SPO loss defined as such, we note that the
SPO problem can be written in the following bi-level form:
N

1
moin N ngl |:C(7L)TX* ((—:(n)> _ C(n)TX* (C(n)):| (3)
st. x*(€™) = argmin (0p™)Tx, Vn 4)
xeX S~

c(n)

where we want to find the optimal model parameters 6™
such that ]Ew(n)’c(n))ND[ZSPO(&p("),c(”))] is minimized.
Crucially, the lower-level problem (4) has a generic form
x*(€) = arg mingc €' X, which is a disjoint bilinear pro-
gram (Konno, 1975).2

The non-convexity and non-differentiability of (3) make it
challenging to obtain optimal model parameters 8™ (Fig-
ure 1). That said, we provide the first exact optimal solution
approach by analytically solving the lower optimization
to reduce (3) to a single-level problem. We show that the
lower-level solution is a piecewise linear function of 6;
hence, substituting the solutions to the upper-level reduces
the overall problem to a MILP as hinted at by Figure 1 (left).

3.1. A Worked Example

To foreshadow the general methodology that we explore
in this paper, we first demonstrate a fully detailed worked
example of reducing the SPO problem to a MILP. This
will serve as guidance once we proceed to derive the more
general algorithmic solution in subsequent sections.

Example 3.1. Consider lower-level LP, mingcx € Tx with
feasible region X ={(Z1, T2) :T1+T2 < 2,Z5 < 1,x > 0}
and estimated cost € = (¢1,¢2) | = O¢.

We seek to analytically solve the lower-level problem (4)
by applying symbolic variable elimination (SVE) (Sanner
& Abbasnejad, 2012). Without loss of generality, we ‘min-
out’ T first. Observe that when z; is minimized, ¢ and
Zo are considered free variables, allowing us to treat the
bilinear objective as linear in ;. The minimum, therefore,
must occur at a boundary value of %1, obtained from the
constraints specified in X.

Concretely, we compare the objective values corresponding
to Z; = 7 and Z; = Z}* to determine the minimum w.r.t.

"Note there exists a pathological solution @ = 0 because then
any x € X makes the SPO loss zero. As such, the original SPO
work introduced an unambiguous version to handle this issue and
the non-uniqueness of x*(c) in general. However, other gradient-
based works (Mandi & Guns, 2020; Wilder et al., 2019) often
directly use the lsp, as in (2). See Section 5.2 for our approach.

We write ¢ whenever we want to denote the generic cost coeffi-
cients of the lower optimization, whereas the predicted coefficients
for a specific datum is denoted as (™).

71, where 7 = 0 and 7% = 2 — 7, are obtained from X.
Since Z3 < 1 then (2—Z2) > 0 and we get the following:

mlI)l( C1T1 + CoXa = min (52(22, 51(2—(32) + 52.’2‘2) (5)
T1€

_J(Casel)e; <0
B >0

¢1(2 — Zo) + 2o, (7} = TYP)

(Case2) ¢, Cao, (2 = TP)

Note we have annotated the solution z} associated with each
case. Observe that when we min-out Z; then equation (5)
reduces to a conditional constrained optimization program.

We now proceed to min-out Ty from (5), noting that we can
treat each case as an LP over Ty. Since the case conditionals
(¢4 £ 0and ¢ > 0) in (5) do not constrain Ty, we get
0 < z9 < 1 directly from the domain bounds over Zo in X.

For C'asel, the objective value evaluates to 2¢; if Zo = 0
and ¢; + ¢ if Zo = 1. Therefore, the minimum is obtained
by conditionally comparing the two objectives:

c1 < ¢Cy:

CL>Co:
Conversely, for C'ase2, the objective is ¢z and 0 when Ty =
1 and Z5 = 0, respectively. Hence, we obtain:

o & <0: &, (x5=1)
min coIro =
0<z2<1 co>0: 0, (3?; = 0)

2cq, (.1‘ 0)

min ¢;(2—23)+Caxo =
il ) e+ G, (25 =1)

0<z,<1

Here, note that we are able to determine the optimal solution
x5 for each case as annotations. Combining the results with
the conditions in (5), we get:

(51 < EQ) : 0
(51 >52)/\(52 <0
(51>52)/\(52>0)2 0

(6)

=

For 2 in (5), however, notice that one solution is repre-
sented as a function of T () = 2 — Ts). Substituting the
optimal z3 () values in (6) into ) yields the optimal x7 (¢):

(e <O)A(cr<e—2): 2
@)= @ <0)A(er > —2): 1 @)
Cl>0) 0

Finally, observe that we have obtained an analytical solution
x*(C) as two piecewise linear functions of ¢; and .

Therefore, for each training example in dataset D, the cases
in (6) and (7) reduce the lower-level program to a set of
linear inequality constraints on 8; one for each value of
(™ Tt follows then that the overall bi-level program (3)
reduces to a MILP over model parameters 6. O
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4. Symbolic Case Calculus

We now cover the symbolic case representation and calculus
(Boutilier et al., 2001; Sanner et al., 2011) underpinning our
exact solution to the linear SPO problem that extends the
example of Section 3.1 to the general case in Section 5.

4.1. Case Representation

We represent symbolic functions in case form:
o1 h
TS

Here, ¢; (called a partition) are logical formulae, which
can include arbitrary logical (A,V,—) combinations of
linear inequalities (>, >, <, <) over continuous variables
(called a conditional). We assume that the set of parti-
tions {¢1, . . ., ¢ } disjointly and exhaustively partition the
domain of the variables such that f is well-defined. We
restrict f; (a function value) to be linear or bilinear. When
a function value is bilinear in X and c, it is of the form of
p'c+c’Qx+rx+ s for some coefficients p, Q, r and s.
¢; is dubbed “disjointly linear” if each and every conditional
of it consists only of either ¢ or X. Further, we restrict ¢; to
be disjointly linear if f has bilinear f;.

We refer to functions with linear ¢; and f; as linear piece-
wise linear (LPWL). Functions with disjointly linear ¢; and
bilinear f; are dubbed disjointly linear piecewise bilinear
(LPWB). These specifications and restrictions are critical
in analyzing which case functions are closed under which
operations.

4.2. Case Operators

Unary case operations on f in (8) such as scalar multiplica-
tion v - f (a € R) or negation — f are simply applied to the
function value f; for every partition ¢;. We can also define
binary operations between two case functions by taking the
cross-product of the logical partitions from the two case
statements and performing the operation on the resulting
paired partitions, e.g., the “cross-sum” & of two cases is:

LAY it
{¢15 fi ® {1/)11 g _ JarAYa: fitge
p2: f2 Yo go P2 NP1 fat g
G2 Nbat fatgo

Likewise, we perform & by subtracting function values
per each pair of partitions. Observe that LPWL and LPWB
functions are closed under ¢ and ©.

Next, we define symbolic case min(max) as:

. o1:f1 Jr:ig1 )
ca.semln({@:f2 7{7,02192) =

wherein the resulting partitions also include the comparison
of the associated function values f; and g; to determine
min(f;, g;j) (highlighted in bold). The casemin of more
than two case functions is straightforward since the operator
is associative. Crucially, LPWL functions are closed under
casemin (max), but LPWB functions are not because f; <
g; can introduce bilinear or jointly linear conditionals.

LA VINF1L>g1: 01
AL Af1 < g1 fi
P1 A NP2 AN f1 > g2:92
L AP AN f1 < g2t i

Another important operation is symbolic substitution. This
operation takes a set ¢ of variables and their substitutions,
e.g., 0 = {y/x1,z/(x1 — x2)} where the LHS of ‘/’ rep-
resents the substitution variable and the RHS of ‘/’ is the
expression being substituted in. Then, we write the substi-
tution operation on f; with ¢ as f;o. All substitutions in
this paper will remain closed-form since we substitute lin-
ear expressions of {Z; };», variables into Z;, which clearly
preserves the LPWL and LPWB properties. Infeasible parti-
tions resulting from case operators may be removed.

4.3. The Lower-level Problem in Case Form

We now show the case perspective of the reduction of the
lower-level SPO problem to a set of LPWL functions cor-
responding to an arg min solution x*(¢(™). In fact, this
procedure can be performed independently of the dataset
such that we need only solve the lower-level problem once
to get a generic arg min solution denoted by x*(¢).

First, we need to represent the lower optimization in case
form. We define an LPWB function fj,,, (€, X) as below,

_ L _To
Frow(€,%) = {i;i °x ©)

Then, the min problem in the lower-level (4) is equivalent
to ming fiou (€, X) up to a well-defined symbolic min op-
erator, which we discuss in detail in the following section.
Note that the non-empty feasible set X is encoded as one
partition, whose value corresponds to the objective; we use
oo to indicate infeasibility because all feasible partitions
should have finite values as we are minimizing fj,.,.

5. Exact MILP Reduction of the Linear SPO

5.1. The Exact Lower-level arg min Solution

Similar to the procedure described in Example 3.1, the
lower-level symbolic arg min solution can be obtained from
the annotations of the variables, which are generated during
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the symbolic min operation on fj,,(C,X). Although pre-
vious work has introduced the symbolic min and arg min
operator for LPWL functions (Zamani et al., 2012; Jeong
et al., 2021), their results do not extend to an LPWB func-
tion in (9). We fill this gap by generalizing min and arg min
to work with LPWB functions. Specifically, we show that
an LPWB function remains closed-form under the min op-
erator, allowing us to retain both annotations and the final
arg min solution in an LPWL form.

As mentioned in Section 3.1, we view the symbolic min
operation from the perspective of SVE, where we ‘min-
out’ one variable at a time. That is, ming fjo (€, X) is
equivalent to ming,, --- ming, fiow(€,X). Thus, we treat
¢ and Xo.,, (i.e., {X\Z1}) as symbolic free variables when
Z1 is minimized out, making ¢ x linear in ;.

Now, mingz, fiow(C,X) proceeds by observing the follow-
ing: (i) the minimum occurs at lower or upper bounds of
Z1 due to the linearity. (ii) The partition X € & defines the
bounds of z;, which are LPWL functions of Xs.,,_ . For in-
stance, if [T1 + T2 < 2] A[0 < Z1] A [Z1 < 2], then 7 =0
T2 020
To > 0:2— 9

To determine at which bound &' % attains the minimum, we
substitute the bounds (Z}* and 7/?) to ¢ "% and compare the
resulting values. We formally summarize this process by

and 7% = casemin(2 — Z»,2) =

min fio, (€, X) = casemin(c ' x 0¥, €' x o), (10)
z1

where o = {z,/7}*} and o{* = {Z,/z!"} define the
corresponding substitution operations.

Since fiow (€, X) is an LPWB function, the casemin oper-
ation in (10) requires comparing bilinear function values,
which can lead to jointly linear or bilinear partitions. Fortu-
nately, Lemma 5.1 shows that only disjointly linear condi-
tionals are added after the casemin operation (all proofs are
deferred to Appendix A).

Lemma 5.1. Consider an LPWB function f(y,z) withy €
R™ and z € R™=, which has a single feasible partition:

Hy.z) = 4 PO A py+y Qz+r'z+s
Y otherwise : 00

where p € R™, r € R"s, Q € R™*"= and s € R
are some constant coefficients. Then, min,, f results in an
LPWB function of {y;};+; and z for any i € {1,...,n,}.

As per Lemma 5.1, we obtain an LPWB function with ny
partitions denoted as [, (C, X2, ) ONCe We eliminate T
from 154 (€, X),

¢% ()_(217’%) A 1/)% (E) : f21 (Ev )_(2;7%), a%

flow (67 5(2:77,1.) -

$5% (R2in, ) A 952 (€): 32 (C, X2in,. ), 01

Importantly for our purpose, once we compute
casemin(c'x o}? e¢'x ol?), we can determine which
of 7% or z{* has produced the min for partition 7jy
(j2 € [1,n2]). We then annotate this partition with the
corresponding z; value, denoted as ajf above.?

After annotating each resulting partition with the associ-
ated z;, we can compute the argmin of z; by noting
argming, fiow = arg(ming, fiow). That is, we apply the
arg operator to fio., (€, X2.p,, ) to retrieve the annotations of
Z1 noted during the min operation. Specifically, the arg
operator replaces the function values with their annotations
in all partitions. In other words,

xy = argmin fio, (€, X) = argg, fiow(C, X2m,) (1)
1

$3(Xin,) AU3(€) a3

$5° (Ram, ) N 3°(€) 1 ay®

which is an LPWL function. Furthermore, a]f is an LPWL
case function of X».,,, but not of ¢, since it has been derived
from f,,, (€, X) with disjointly linear partitions in ¢ and X.

It has been straightforward to eliminate ; and obtain its
optimal solution because f,,,(C,X) has a single feasible
partition, unlike foq, (€, X2.5,, ). We now need to solve

H%in flow(é75(2:nz) (12)
2
J2 (o J2(a\ . f£i2(a %
— min Casemin (?252 (X2~’I’LT) A 1/}2 (C) . f2 (C7 X25n:c)
T2 j2=1,..,n2 | otherwise : 00

= casemin min

Je={1,....,n2} T2 _‘¢é2 (X2:n,) V wéz (€): o0
——

(122) (12b)

{¢%2 (Rain, ) AR (€) : f3? (Rain,, €)

where we have used the disjointness of partitions and the
commutative property of min and casemin to get to (12a,b).
Equation (12) shows that we can min-out Z» from each
partition (12b), followed by casemin of the results (12a).

Applying Lemma 5.1 allows us to symbolically compute
the min over one partition in (12b), as was done for Z1,
thus producing an LPWB function. However, it is unclear
whether the result will remain closed-form after the casemin
step in (12a). To answer this question, we first construct the
result that we get an LPWL function of ¢ once we eliminate
all x variables from f,,, (¢, X) in Proposition 5.2. From
this, we deduce Corollary 5.3 that is useful for our purpose.

Proposition 5.2. The min problem, ming fjo,, (€, X), can
be exactly reduced to an LPWL function of € in closed-form.
*Note that annotations themselves can be case functions. How-

ever for simplicity, we treat them as function values in (11), ob-
tained after merging the partitions with those of fiow (€, X2:n,, )-
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Corollary 5.3. Consider the application of the sym-
bolic min operator to fio, (€, X) with the variable order-
ing T1,...,Tn,. Define fion(C,Xit1m,) = ming, - -
ming, fiow(C,X) for ¢ = 1,...,n, — L Then,
frow (€, Xit1:n, ) is an LPWB function of € and X;41.p,,-

Hence, the casemin operation in (12a) leaves an LPWB
form unchanged. Furthermore, the same procedure can be
applied to all remaining variables Z3,...,Z,,. In other
words, an LPWB function is closed under the SVE, which
implies that we can get the solution of Z; Vi in LPWL form
via annotations and their retrieval with the arg operator.
Note that during the casemin operation, annotations should
simply follow their associated function values.

Completing the symbolic arg min procedure requires one
final step, the backward substitution. To see this, observe
(11) where the solution zj depends on Xa.,,, (as is the case
in Example 3.1). Likewise, the solutions z for i € [1,n,)
are functions of X;;1.,, and ¢.* As such, we need to be
rid of the remaining X;11.,, from 2} in order to obtain
the optimal solution z}(€) that is a function of ¢ only.
To this end, we first substitute the solution z;, (¢) into
xy, _y forall occasions of T, : i.e., z}, _1(C) =), _j0n,
with o,, = {Z,,/x; (¢)}. We then proceed to sub-
stitute «; (¢) and z;; _,(C) into 2], _,, and we repeat
this process all the way back to the solution z}. We call
the proposed overall symbolic arg min solution algorithm
SymArgMin (summarized in Algorithm 2 in the Appendix).

Proposition 5.4 provides important properties regarding the
symbolic solution we obtain, which leads to the exact closed-
form MILP reduction of the SPO problem (Corollary 5.5).

Proposition 54. Ler X = {x :a/x < bj, j =1,...}
denote a non-empty feasible set over X. Then, SymArgMin
(Algorithm 2) outputs x*(€) € arg ming¢ y fiow(C, X) that
is a set of LPWL functions of €. Assume (i) € # 0 and (ii)
there does not exist k # 0 such that ¢ = ka; Vj. Then, the
solution is the unique solution of the lower-level problem.

Corollary 5.5. The SPO problem in (3) reduces to a MILP
over variable 6.

Throughout the derivation, we have used the generic coeffi-
cients ¢ for a model prediction, which allows us to solve the
lower-level only once. Now given a dataset D, we instanti-
ate the predictions from c¢ by substituting in the data in its
place. For example, we get ¢(™) = 0" for a feature (™);
thus x*(¢(™) = x*(¢)o™ with 0™ = {c/0p(™}. Since
each solution for a sample is essentially a piecewise linear
function of 8, we see the SPO problem is a MILP (Corollary
5.5), which can be solved using off-the-shelf modern MILP
solvers such as Gurobi (Gurobi Optimization, LLC, 2021).

*Naturally, 7, (C) only contains € since all Z variables have

already been eliminated at this point, so we say x;,_(€) = zr,,, (€).

Furthermore, when the mild assumptions of Proposition 5.4
hold, we can guarantee that we can optimally solve the SPO
problem. As discussed in Section 3, & = 0 (hence, ¢ = 0)
is a pathological solution which trivially optimizes the SPO
loss. Elmachtoub & Grigas (2017) get around this issue
by proposing a worst-case based SPO loss, lsp0(€, €) =
maXy-¢c x+(c) € X*(€)—c'x*(c) where X*(c) is the set of
optimal solutions to the lower-level problem. Other gradient-
based works (Mandi & Guns, 2020; Wilder et al., 2019) have
simply ignored this issue, since they are only guaranteed to
find a local optimum, and it is unlikely that the final 0 they
obtain falls exactly at O given random initialization.

In our case, we first note that the optimal solution x* (c(™))
of the lower-level LP is invariant to positive scaling (o >
0) of cm, Hence, regardless of how we scale c(”), we
get the same set of solutions.” Thus, we can enforce a
constraint of the form [>_, ; 01| = « to effectively remove
the pathological solution from the feasible set of 8. Potential
complications of this approach are (a) that there can still
exist a non-trivial optimal solution that satisfies 3 _; , 6, =
0 with 8;;, # 0 and (b) that ¢(”) = 0 can happen despite
6 # 0. However, it is very unlikely that a non-zero € would
be able to satisfy ¢(™) = 0 for all n. Alternatively, we
can enforce the bias values of @ to be set fixed at some
constants, e.g., at the average of a given dataset, which
can be a reasonable option especially if we normalize the
dataset to have zero mean. In our experiments, we find both
approaches work well and result in small decision regret.
Future work can examine the impacts of these additional
constraints more carefully.

Finally, notice that ¢ appears only in the conditionals of
x*(C) but not in its function values. Since the annotations
and the solution are originated from bound analysis over a
series of LPWB functions fjy (€, X;:n,, ), it is impossible
for ¢ to end up in a bound expression of Z; Vi. From a
structural point of view, since the lower-level problem is
a MILP, we need to have x*(¢(™) € V(Conv(X)) where
V(Conv(X)) is the set of vertices of the convex hull of X.
In other words, the generic arg min solution x*(¢) encodes
a subset of vertices of V' (Conv(X')); upon instantiation
of the coefficient ¢ = 0<p(”), the vertex that is located
the furthest from the direction of ¢ is then selected for
x*(c(™). As Conv(X) does not depend on ¢, neither do
the function values of x*(¢) and x* (c(™)).

5.2. Building the MILP Model for Optimally Solving
the SPO Problem

In this section, we discuss how we can efficiently substitute
data into the closed-form solution x*(¢€) and subsequently
build a MILP model over 6.

5The second assumption of Proposition 5.4 guarantees that we
get a unique solution.
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To this end, first note that in practice, maintaining case
representations with explicit partitions can be prohibitively
expensive. Hence, we use a more compact representation
known as Extended Algebraic Decision Diagrams (XADD)
(Sanner et al., 2011). Due to space constraints, we defer
the detailed discussion to Appendix B. However, we remark
that an XADD is a directed acyclic graph (DAG), which
can be exponentially more compact than an equivalent case
or tree data structure. When it comes to representing an
LPWL function with an XADD, it suffices to restrict de-
cision nodes to have linear inequalities and leaf values to
linear expressions.

To help understand the model formulation procedure, recall
the arg min solution (7) of 27 (¢) we have obtained in Ex-
ample 3.1. We need to substitute the solution into the term
c127(€™) in the upper-level objective. Here for simplic-
ity, assume gp(”) = 1 and hence ¢ = (01,62). Then, we
need two binary variables (1, 82 which encode the logical
relationships. For example, 31 = 0 (or 1) = ¢ < 0 (or
¢1>0)and By =0(orl)= ¢ < é —2(orc, > éy — 2).
Similarly, the function values are modeled as following

b1=0=z]=y1, /H1=1=2]=0
Po=0=y1 =2, fo=1=y =1

where we have defined y; which is associated with the
conditional ¢; < ¢3 — 2. These constraints (called indicator
constraints) can be effectively handled by modern MILP
solvers like Gurobi (Gurobi Optimization, LLC, 2021).

Algorithm 1 summarizes our approach to optimally solving
the linear SPO problem. We first get the generic analytic so-
lution of the lower-level problem of SPO as a set of LPWL
functions of ¢ (SymArgMin in Algorithm 2, Appendix).
This step involves representing the optimization problem
as a case function, followed by SVE of the decision vari-
ables while annotating the solutions along the way. Then,
we apply the arg operator to retrieve these annotated so-
lutions. Finally, we perform the backward substitution to
eliminate all X;1.,, variables existing in the solution 27,
giving us x*, a set of LPWL functions of c. Subsequently,
we substitute the data into the symbolic solution and build
the corresponding MILP model. In the end, we have a single
MILP model over € which is equivalent to the SPO problem,
which we solve to obtain the optimal model parameters 8™.

6. Empirical Evaluation

Given our novel globally optimal EMSPO (Exact MILP
Reduction of SPO) solution, we can now use it to evalu-
ate the quality of existing SOTA approximate SPO solvers
on some predict-then-optimize problems to address two
key research questions: (RQ1) How does the level of non-
linearity in the data (i.e., model misspecification w.r.t. a
linear predictive model) affect the decision quality of ap-

Algorithm 1 EMSPO: Exact MILP Reduction of SPO

Input: X, D = {(p™, (™)},
Output: The optimal 6*
Initialize symbolic variables x, ¢
r7(€), ...,z (€) < SymArgMin(&X, x,c)
for: = 1t0n; do

{2{™*}N_| + BuildMILPfromCase(z} (), N)
end for
forn =1to N do

Add a constraint ¢;(n) = (8¢™);
end for
Set objective as SN S x,gn)* : cz(")
Optimize the model to get 8*

proximate solvers? (RQ2) How does decision quality of
approximate solvers vary with the size of a dataset? The
baseline models we compare with are the TwoStage model
(i.e., simple least squares), SPO+ (Elmachtoub & Gri-
gas, 2017), IntOpt (Mandi & Guns, 2020), and QPTL
(Wilder et al., 2019). The last two methods were devel-
oped for use within an end-to-end deep learning frame-
work, but they can be easily ported to the linear setting. We
followed the original implementations given in Mandi &
Guns (2020). Our code is available at https://github.
com/jihwan-jeong/xaddpy.

In the evaluation, we compare the true decision loss com-
puted during training based on (2). For baselines, we use
the grid search to tune hyperparameters such as the learning
rate (Appendix C). All experiments are done for 5 random
seeds. For EMSPO, we show the costs of MILP solutions
obtained by Gurobi with a time limit of 420 minutes to reach
an optimality gap of 5%. Below, we describe the domains
we have used for evaluation, with more detailed descriptions
provided in Appendix C.

Noisy shortest path Similar to Elmachtoub et al. (2020),
we consider a shortest path problem on a 3 x 3 grid network
consisting of 12 edges directing towards either north or east.
The travel times of the edges are unknown, and they are es-
timated using 5-dimensional features. We follow the same
data generation procedure given in Elmachtoub et al. (2020),
in which we can control the level of noise (€) and nonlinear-
ity (deg) of the generated datasets. We consider the datasets
of sizes 50, 100, and 200; the polynomial nonlinearity of 1,
2, 5, and 10; and the noise level of 0 and 0.25.

Energy cost aware scheduling We consider a reduced
version of the resource-constrained day-ahead job schedul-
ing problem presented in Mandi & Guns (2020). In this
problem, a machine has a resource capacity constraint, and
there are multiple tasks, each of which is specified with time
and resource constraints. We must schedule the tasks with-
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out knowing day-ahead energy prices to minimize energy
consumption cost; prices are predicted by a linear model.

Cost-sensitive multi-class classification The cost-
sensitive classification problem is introduced in Liu &
Grigas (2021), wherein the feasible region is the unit
simplex X = {x € R® : x > 0,57, #; = 1}. Unlike a
typical classification task where incorrect prediction incurs
the same error loss regardless of what the estimated label
is, different costs are incurred by differently estimated
labels. Specifically, a predicted label ¢ incurs the cost
¢; = |t —labl for i = 1,...,5 when lab is the true label.
This cost function is unknown and has to be estimated
based on features. We follow Liu & Grigas (2021) for data
generation to control the noise (€) and nonlinearity (deg) of
the dataset. We use datasets of size 50, 100, and 200.

RQ1: Does increased nonlinearity in the dataset affect
decision performance and optimality gap? Figure 2
shows the decision regret compared to our optimal EMSPO
with varying data nonlinearity. We controlled the nonlin-
earity parameter deg in (left, middle). We generated a syn-
thetic dataset using a linear model for the energy scheduling
problem (right); the real dataset is expected to have higher
nonlinearity. In the shortest path problem, we clearly see
that as the nonlinearity increases, the approximate methods
have increasingly higher and more variable regret values.

When the nonlinearity deg = 10, we observe large opti-
mality gaps from the baselines compared to our optimal
solution. Although SPO+ achieved the best regret, it is far
from optimal. In energy scheduling, we observe that approx-
imate solvers tend to achieve much better regret with the
synthetic linear data than with the original data. However,
the optimality gap has increased because now EMSPO can
attain even lower regret value. This pattern is not as evident
in the classification example. However, unlike other approx-
imate approaches, we observe that our method constantly
achieves near-zero regrets that are possible in the linear case
(recall that our Gurobi MILP solver settings allow up to a
bounded 5% optimality gap).

RQ2: How does dataset size impact performance? Fig-
ure 3 shows the impact of the dataset size on the SPO loss.
In the shortest path problem, we observe that all approxi-
mate methods suffer from large optimality gaps for a sparse
dataset of size 50. As more data become available, the per-
formances of approximate solvers tend to increase across
the domains. The best approximate solver is SPO+, which
works well across different dataset sizes and approaches
optimality as the sizes increase. Regardless of a dataset size,
TwoStage appears to have solved the classification problem
with small regrets, potentially suggesting the simplicity of
the underlying decision problem. As more data become
available, the optimal cost that can be achieved with a linear
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model tends to increase, narrowing the gap between the best
approximate and optimal solutions.

Noticeably, reformulating the linear SPO problem to a MILP
provides another significant advantage; that is, we can ob-
tain the lower bound of the SPO loss by a MILP solver,
which gives some sense of how good the current incumbent
solution is. Further, we remark that it is also possible to
combine neural network based approaches such as IntOpt
or QPTL with EMSPO. That is, we can pretrain a neural
network, after which its internal parameters will be set fixed.
Then, we can optimize for only the parameters in the last
layer using EMSPO. This may help reduce the decision loss
when the dataset contains a high level of nonlinearity, which
we leave as future work.

In Figure 2 and Figure 3, we see that more recent approaches
(QPTL and IntOpt) consistently perform worse than the
convex surrogate approach (SPO+). This suggests that SPO+
works robustly across the board. For SPO+, the decision
regrets decrease for larger datasets, which is conforming
with the Fisher consistent property of the method. On the
other hand, the poor performance of QPTL and IntOpt may
be attributed to the small sizes of the datasets we have used
as well as the low complexity of these datasets.

Overall, our experimental results show that our global so-
lution obtains up to two orders of magnitude reduction in
decision regret in comparison to existing approximate solu-
tions and yields best performance in the sparse data regime.

7. Conclusion

We propose the first globally optimal solution approach to
the linear SPO problem by symbolically eliminating the
lower level of its bi-level optimization formulation using
novel closed-form bilinear generalizations of Symbolic Vari-
able Elimination. This analytical solution yields a piecewise
linear case structure that can then be reduced to a MILP
and solved to (bounded) global optimality with off-the-shelf
solvers. We evaluated on three predict-then-optimize prob-
lems and showed that our globally optimal solution obtains
up to two orders of magnitude reduction in decision regret
compared to existing approximate solutions when there is
sparse data or high model misspecification due to nonlinear-
ity in the underlying data. We observe that SPO+ routinely
performs among the best approximate methods when bench-
marked according to our global MILP-based solutions, but
the large optimality gap in some cases suggests the need for
continued research on tractable SPO approximations. Fi-
nally, we stress that our work can lead to interesting future
analysis on the generalization of SPO solvers since now we
can obtain the model parameters that exactly minimize the
SPO loss in the train set.
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Appendix
A. Proofs

In this section, we prove the lemmas and propositions provided in the main text.

Firstly, we restate Lemma 5.1 below for convenience.

Lemma A.1. Consider an LPWB function f(y,z) withy € R"™ and z € R"™=, which has a single feasible partition:

otherwise : 00

. T T T 5
f(y,Z)={¢(Y)A¢(Z)' P y+y'Qz+r'z+

where p € R™, r € R", ) € R™*"=, and s € R are some constant coefficients. Then, min,,, f(y,z) results in an LPWB
function of {y;}j2i and z for any i € {1,...,n,}.

Proof of Lemma A.1. Without loss of generality, we prove the case for ¢ = 1. As stated in equation (10), min,, f(y,z) can
be computed by casemin(f(y,z)o'®, f(y,z)o"?), where o'® = {y; /4'*} and c** = {y; /y¥*®} define the operations that
substitute the lower and upper bound (respectively) of 7, into ¥ in the function value p'y +y ' Qz + r 'z 4 s. The bound
values are computed from the partition ¢(y ), and let us denote the lower bound as [(y2.,, ) and the upper bound as u(y2.y,,, ).
Observe that these bounds are LPWL functions of yo, . .. , yn,, variables.

To compute the casemin, define a case function i : R =DX"= s R as h(ya.,,,2) == f(y,z)0"’ — f(y,z)o". Then,
we note that for cases when h > 0, the value from f(y,z)o'” is selected, whereas the upper bound substitution is chosen
when h < 0. In other words, the casemin can be written as follows:

h‘(YQ:nyvz) > 0: f(Y7 Z)Ulb
h(Yan,.2) <0: f(y,z)o"

Let J, K be the index sets associated with the partitions of [ (ygmy) and U(yg;ny), respectively. We now consider any
pair of indices from the two sets: (j, k) Vj € J,Vk € K. The function values of A(y2.,,,2) can then be seen as
fly,z)or — f(y,z)o; with o, = {y1/ux} and o; = {y1/1;}. We then note that the substitution operation does not affect
terms that do not include y; such that they cancel out from the function values when we subtract f(y,z)o; from f(y,z)o.
Hence, we can factorize the function value of h(ygmy ,z) derived from [; and uy, as follows:

casemin(f(y,z)o', f(y,z)o"?) = { (13)

hj,k(y2:nyvz) = (uk - l]) l:pl + Z ZTQ7',1:| >0 (14)
r=1

Here, the second factor is derived from the terms multiplied to y; in the original function value of f(y,z). Then, we can
write the bilinear conditional [h(y2.n,,2) > 0] as [p1 + Z:};l zrQr.1 > 0] given that the upper bound uy, of y; should be
greater than or equal to its lower bound [; Vj, k. Then, we can see that for this (j, k) pair, we can express the casemin with
disjointly linear conditions and bilinear function values, or an LPWB function. As any pairs of j € J and k € K give the
same result, we can conclude that we get an LPWB function from min,, f(y,z). O

Now, we prove Proposition 5.2 which is restated below for convenience.

Proposition A.2. The min problem, ming fo., (€, X), can be exactly reduced to an LPWL function of € in closed-form.

Proof of Proposition 5.2. The proof relies on inductive reasoning as we show how each z; can be eliminated in turn from
fiow(€,X), yielding an LPWB closed-form (intermidiately) and a final LPWL form (ultimately) once all X have been
eliminated.

Firstly, remember we have already established that we get an LPWB function fj., (€, X2.,,, ) after minimizing out z;. Thus,
we can start analysis from (12), which is restated below:

{Qﬁéz (XQ:nm) A 1/1%2 (é) : ng (5(227% ) é) (15)

ﬁ(bj2‘2 ()_(Z:nz) V w%z (é) 00

(12b)

mMin fi(€,X) = min - - - min fj5y (€, X2, ) = min - - - l casemin min
% z To z J2={1,....,n2} T2

ng Tng
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where we have noted in the brackets that we can eliminate Z5 from a partition jo and combine the results from all partitions
(j2 =1,...,n2) via casemin. Lemma A.1 shows that the minz, part will output an LPWB function. Denote this resulting
LPWB function from partition j> as gj, (¢, Xs.n, ). Then, we again use the commutative property of min and casemin
operators to obtain the following:

min fio,(C,X) = casemin [ min (mingjz(é,igmz))} (16)
X Z3

j2={1,...7n2} Zinw,..47:v4

At this point, we can observe the repeating pattern: that is, we eliminate a variable (Z3 in this case) from an LPWB function
(94,), which is decomposed into minz, and the casemin. At each step of the min operation, Lemma A.1 assures that we get
an LPWB function as an output. We then change the order of the min and casemin operators and proceed to Z4.

Finally, at the last iteration when we eliminate Z,,, we note that the bounds of Z,,, can be determined as a case function
whose function values are all scalar. This is because (i) we have maintained the disjointness between ¢ and X variables in the
partitions and (ii) none other Z variables are left at this stage. This leaves us to compute the expanded casemin operations
stacked from Zo, . . . ,. As all operands of the casemin operation are LPWL functions of ¢, we get an LPWL function of ¢ as
the final outcome (note that the closedness of the casemin operator with respect to LPWL functions has been exploited
elsewhere, e.g., in Sanner et al. (2011)). O]

Based on Proposition 5.2, we can deduce Corollary 5.3. Note that Proposition 5.2 uses the commutative property of the min
and casemin operators and Lemma A.1 to conclude that the final output of SVE on f,,, (€, X) is an LPWL function. On
the other hand, Corollary 5.3 asserts that all the intermediate case functions retain the LPWB form. As discussed in the
main text, this allows us to keep track of annotations of each symbolic variable, being eliminated at each iteration, since the
LPWB operand of the min operator guarantees that the annotations are LPWL functions.

Corollary A.3 (Corollary 5.3 restated). Consider the application of the symbolic min operator to fi,.,(C,X) with the
variable ordering T1,...,Ty,. Define fion(C,Xit1:m,) := ming, -+ Mming, fiow(C,X) fori = 1,...,n, — 1. Then,
fiow(€,Xiq1:m, ) is an LPWB function of € and X; 41,

Proof sketch of Corollary 5.3. The proof is by contradiction. We first assume that there exists an intermediate case function
which does not have the LPWB form. This means that the case function has conditionals that are jointly linear, bilinear, or
generally nonlinear, or it has function values other than linear or bilinear form. Then, as we proceed to compute mingz,, .. .,
more and more nonlinear expressions will appear in the intermediate results and in the final reduced function of c. We can
then immediately see that this violates Proposition 5.2 which states that we have to get an LPWL function once we eliminate
all x variables from fj,,(C, X).

O

For clarity, we include Proposition 5.4 here.

Proposition A4. Let X = {x : ajTic < b;, j = 1,...} denote a non-empty feasible set over X. Then, SymArgMin
(Algorithm 2) outputs x*(€) € argmingc x fiow (€, X) that is a set of LPWL functions of €. Assume (i) € # 0 and (ii) there
does not exist k # 0 such that ¢ = ka; Vj. Then, the solution is the unique solution of the lower-level problem.

Proof of Proposition 5.4. The first part is evident as Algorithm 2 surely returns one symbolic solution of X given non-empty
X.

To see how the additional assumptions provide the uniqueness of the solution, we first consider an LP formulated as
min,ey c'x with X = {x: aij <b;, 1 <j<m} a; € R", and b; € R. Then, we know that there exists one and
only solution if none of the coefficient vectors a; is parallel to the cost vector c for ¢ # 0 (n.b. the reverse does not have
to hold). That is, if there is no £ # 0 such that a; = k c Vj, then we have a unique solution to this problem. Moving on
to our problem setting, the cost vector of the lower-level problem is ¢ = (™) for the nth sample. Hence for k # 0, if
0™ + ka; Vj, n, then there is only one solution to the problem. Therefore, the one we obtain by Algorithm 2 should be
the unique solution. O
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Algorithm 2 SymArgMin: Symbolic arg min

Input: non-empty feasible set X', symbolic X and ¢
Output: symbolic arg min solution x*(¢)

Decide the variable ordering i = 1,...,n,

fl(oll::lm) < initialize the case function as per (9)

ny 1

for z( :11 t()) ng do
i+1:n,
low S0

forj_:lton,; do _
FOTEm) ing, £9m) (12b)

J low,j
i+1:in, . i+1:n, i+1:ny
l(;w ne) o casemin( l(;w " ),f;z " )) (12a)
end for '
x} « arg fl(;:;hn”) as per (11)
N1 < # of partitions in l(;;_h"’)
end for
Ty T
for:=1ton, —1do
Ty Ty
for j =0to:— 1do
zy iy, 05 withoy ={Z,,—j/z}, _;}
end for
end for

B. Symbolic Argmin Computation via Compact Decision Diagram Representation of Case
Functions

As stated in Section 5.2, maintaining case representations with explicit partitions can be prohibitively expensive in practice.
Hence, we use a more compact representation known as Extended Algebraic Decision Diagrams (XADD) (Sanner et al.,
2011).

An XADD is similar to an algebraic decision diagram (ADD) (Bahar et al., 1993), except that (a) decision nodes can have
arbitrary inequalities (one per node) and (b) leaf nodes can represent arbitrary functions (Sanner & Abbasnejad, 2012).
Every leaf of an XADD corresponds to a function value of a case function, and a path from the root to this leaf is uniquely
associated with one partition. Note that there can be multiple paths from the root to a leaf when different partitions share the
same function value. Notably, an XADD is a directed acyclic graph (DAG), which can be exponentially more compact than
an equivalent case or tree data structure (Sanner & Abbasnejad, 2012). When it comes to representing an LPWL function
with an XADD, it suffices to restrict decision nodes to have linear inequalities and leaf values to linear expressions. For
evaluation, we ported the original XADD implementation in Java® to our own implementation in Python.

Given this representation, Algorithm 2 summarizes our symbolic arg min workflow. We first define a case function that
corresponds to a given MILP. Then, we iterate through each and every decision variable for variable elimination (i.e.,
symbolic minimization). This can be done by eliminating a variable from each partition and taking the casemin for these
results. We annotate the solution during this process and retrieve the solution once each variable is eliminated. Once all
variables are eliminated, we are left with foT which is a case function of ¢. We start the backward substitution step to
restrict the values of x;1 variables occurring in the expressions of .

C. Details of Empirical Evaluation

Here, we describe the domains we have used in the evaluation in more detail. Then, we discuss the hyperparameter tuning
for the baselines, followed by an additional set of experiments varying the noise level in data generating processes.

Shttps://github.com/ssanner/xadd-inference
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Figure 4. The decision regret subject to different levels of noise (Shortest path - Classification). Notice the log scale on the left figure.

Noisy shortest path  Similar to Elmachtoub & Grigas (2017), we consider a shortest path problem on a 3 x 3 grid network
consisting of 12 edges directing towards either north or east. The travel times of the edges (edge costs) are unknown,
and they are estimated using p-dimensional features with p = 5. The cost vector of the shortest path problem has the
dimensionality of n,, = 12, since each edge of the network has an edge cost.

We first generate the parameters of the true model using a random matrix ©* € R"=*P_  sampled from the Bernoulli
distribution with probability 0.5. Next for the ith sample, we generate the feature vector ; € R? using a multivariate
Gaussian distribution with i.i.d. standard normal entries, i.e., ¢; ~ N(0, I,). With these features, we then generate

deg .
the associated cost vector ¢; according to {(\}5(@* %‘)j + 3) + 1] . c{ for j = 1,...,n,, where ¢;; denotes the jth

component of ¢; and (©*¢;); is the jth component of ©* ;. Here, deg is a fixed positive integer parameter that controls the
level of nonlinearity in the generated dataset. €] is a multiplicative noise term which we sample independently at random
from the uniform distribution on [1 — €, 1 + €] for some parameter € > 0.

Energy-cost aware scheduling The energy cost-aware scheduling problem was proposed in Simonis et al., where the
energy price data were obtained from the Irish Single Electricity Market Operator (SEMO) (Ifrim et al., 2012). The price
dataset consists of historical energy price data at 30-minute intervals. To reduce the problem size in our evaluation, we
instead used 2-hour intervals. This brings down the discretized timeslots within the day from 48 to 12. The price dataset
is available for 789 days, while we used a fifth of it for each instance of training. See Simonis et al. for more detailed
description.

Cost-sensitive multi-class classification The synthetic dataset for the cost-sensitive multi-class classification problem
was generated following Liu & Grigas (2021). In this experiment, the number of classes n is 5 and the feature dimension
p is 5. First, we generate a weight vector b € RP, whose jth entry is sampled from the Bernoulli distribution with the
probability P(b; = 1) = L. Then, we proceed to generate the training dataset {(¢("™), (™)}, by sequentially going
through the following steps: (a) From the standard multivariate normal distribution, we generate a feature vector (™ € R?.
(b) Using the feature vector we generate the score s(™) = o ((bT p(™))de . sign(b” (™)) -€), where o (-) is the logistic function
and therefore s € (0, 1). Here, the multiplicative noise term e is sampled from a uniform distribution [1 — &, 1 4 & with
€ > 0. (c) Ultimately, we generate the true class label lab™ = [55(")] € {1,...,5}, which in turn is utilized to generate

4

the true cost vector ¢ = (c{™, ... ) using cg-") =|j—lab™|forj=1,...,5.

C.1. Hyperparameter Selection of Baselines

We experimented with 4 baselines in the main paper: TwoStage, SPO+, QPTL, and IntOpt. Each method was tuned for its
hyperparameters for the decision regret value in the train set. We ran each method for 300 epochs and recorded the best
result obtained for each experiment configuration. For details about the hyperparameters other than the learning rate, we
refer readers to the original papers (Mandi & Guns, 2020; Wilder et al., 2019).
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Problem  Value | TwoStage  SPO+ IntOpt QPTL
1 Ir(0.1)  Ir(0.001) Ir(0.001); d (10-%); A (0.1)  Ir (0.01); 7 (100)
. 2 | 1r@©.01) 1r0.01)  1r(0.001);d(10~%); X (0.1)  1Ir(0.001); 7 (10)
Nonlinearity r(0.1)  Ir(0.1)  1r(0.001);d (10~%); A (0.1)  1Ir(0.01) 7 (100)
10 | 1r(0.01) Ir(0.01) Ir(0.001); d (10~%); X (0.001) Ir (0.001); 7 (100)
50 | 1r0.01)  Ir(0.1)  Ir(0.1);d(10-5); A (0.001)  Ir(0.001); 7 (10)
Datasige 100 | @01 (00D Ir(0.001):d(10-%; A(0.1)  Ir (0.001); T (10)
200 | Ir(0.01) 1r(0.01)  1Ir(0.1);d (10-5); A (0.001)  1Ir(0.1); 7 (10)
Noise 00 | Ir@©.01) Ir@©.1)  Ir(0.1);d(0.001); A (0.01)  Ir(0.001) 7 (10)
0.25 | 1r(0.01) Ir(0.1)  Ir(0.1); d (10~%); X (0.001)  Ir (0.001); 7 (10)

Table 1. Hyperparameters selected for baseline algorithms for the classification problem.

Problem Value ‘ TwoStage SPO+ IntOpt QPTL

1 | 1r@©.01) 1r(0.001) Ir(0.01);d(0.001); A (0.1)  Ir(0.01); 7 (10)

L 2 Ir(0.1)  Ir(0.01)  Ir(0.001);d(10-5); A (0.1)  Ir(0.01); 7 (10)

Nonlinearity ¢ k0.1  Ir©.1)  Ir0.01);d (10~%): A (0.1) Ir (0.01) 7 (10)
10 | r©1) 101  Ir0.01);d107%; A (0.01)  Ir(0.001); 7 (10)

50 | Ir(0.1)  Ir(0.1)  Ir(0.01):d (1076); A (0.01)  Ir(0.01); 7 (10)
Datasipe 100 | @D Ir@©1)  Ir(0.001); d (0.0001); A (0.1) Ir(0.001); 7 (100)
200 | Ir(0.1)  Ir(0.1) Ir(0.001);d (0.01); A (0.001) Ir (0.001); 7 (10)
Noise 00 | Ir(.1)  Ir@©.1) Ir(0.001); d(0.0001); A (0.1) 1Ir (0.001) 7 (100)
025 | Ir(0.1)  Ir(0.1) Ir(0.001); d (0.0001); A (0.1) Ir (0.001); 7 (100)

Table 2. Hyperparameters selected for baseline algorithms for the shortest path problem.

Problem Value | TwoStage ~ SPO+ IntOpt QPTL
20 Ir (0.001) 1r(0.01) Ir (0.001); d (0.001); A (0.001) 1r (0.01); 7 (100000)
Size (Days) 50 Ir (0.001) 1r (0.01) Ir (0.1); d (0.001); A (0.001) Ir (0.1); 7 (10000)

100 Ir (0.001) Ir (0.1) Ir (0.1); d (0.001); A (0.001) Ir (0.1) 7 (100000)
Linear Ir (0.001) Ir(0.001)  1r(0.1); d (0.001); A (0.001) Ir (0.1); 7 (10000)
Data Type  Nonlinear | Ir (0.001) 1r(0.001)  1r (0.1); d (0.001); A (0.001) Ir (0.1); 7 (10000)

Table 3. Hyperparameters selected for baseline algorithms for the energy-cost aware scheduling problem.

C.2. Additional Empirical Evaluations

In this part, we present some additional experimental results. Specifically, Figure 4 shows the decision regret and optimality
gap subject to two different noise levels in the datasets. For this, we used the shortest path and the cost-sensitive classification
datasets, which allows us to control the noise level by varying the noise parameter €. Hyperparameters were selected
based on grid-search and were evaluated with the decision regret on the training data after 300 epochs of training. The
best-recorded hyperparameters are shown in Table 1.



