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Abstract

We investigate approximation guarantees pro-
vided by logistic regression for the fundamental
problem of agnostic learning of homogeneous
halfspaces. Previously, for a certain broad class
of “well-behaved” distributions on the examples,
Diakonikolas et al. (2020d) proved an Ω̃(OPT)
lower bound, while Frei et al. (2021b) proved an
Õ
(√

OPT
)

upper bound, where OPT denotes
the best zero-one/misclassification risk of a ho-
mogeneous halfspace. In this paper, we close this
gap by constructing a well-behaved distribution
such that the global minimizer of the logistic risk
over this distribution only achieves Ω

(√
OPT

)
misclassification risk, matching the upper bound
in (Frei et al., 2021b). On the other hand, we also
show that if we impose a radial-Lipschitzness con-
dition in addition to well-behaved-ness on the dis-
tribution, logistic regression on a ball of bounded
radius reaches Õ(OPT) misclassification risk.
Our techniques also show for any well-behaved
distribution, regardless of radial Lipschitzness, we
can overcome the Ω

(√
OPT

)
lower bound for lo-

gistic loss simply at the cost of one additional
convex optimization step involving the hinge loss
and attain Õ(OPT) misclassification risk. This
two-step convex optimization algorithm is simpler
than previous methods obtaining this guarantee,
all of which require solving O

(
log(1/OPT)

)
minimization problems.
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1. Introduction
In this paper, we consider the fundamental problem of
agnostically learning homogeneous halfspaces. Specifi-
cally, we assume there is an unknown distribution P over
Rd × {−1,+1} to which we have access in the form of
independent and identically distributed samples drawn from
P . A sample from P consists of an input feature vector
x ∈ Rd, and a binary label y ∈ {−1,+1}. Our goal is to
compete with a homogeneous linear classifier ū (i.e. one
that predicts the label sign(〈ū, x〉) for input x) that achieves
the optimal zero-one risk of OPT > 0 over P ; formally,
this means Pr(x,y)∼P

(
sign(〈ū, x〉) 6= y

)
= OPT. Alterna-

tively, we can think that the labels of the examples are first
generated by ū, and then an OPT fraction of the labels are
adversarially corrupted.

There have been many algorithmic and hardness results on
this topic, see Section 1.1 for a discussion. A very natural
heuristic for solving the problem is to use logistic regression.
However, the analysis of logistic regression for this problem
is still largely incomplete, even though it is one of the most
fundamental algorithms in machine learning. One reason for
this is that it can return extremely poor solutions in the worst
case: Ben-David et al. (2012) showed that the minimizer
of the logistic risk may attain a zero-one risk as bad as
1−OPT on an adversarially-constructed distribution.

As a result, much attention has been devoted to certain “well-
behaved” distributions, for which much better results can be
obtained. However, even when the marginal distribution on
the feature space, Px, is assumed to be isotropic log-concave,
in a recent work, Diakonikolas et al. (2020d) proved an
Ω̃
(
OPT

)
lower bound on the zero-one risk for any convex

surrogate, including the logistic loss. On the positive side, in
another recent work, Frei et al. (2021b) proved that vanilla
gradient descent on the logistic loss can attain a zero-one risk
of Õ

(√
OPT

)
, as long as Px satisfies some well-behaved-

ness conditions. (See Sections 1.1 and 3 for precise details.)

The above results still leave a big gap between the upper
and the lower bounds, raising the question of identifying the
fundamental limits of logistic regression for this problem. In
this work, we study this question and develop the following
set of results.
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A matching Ω
(√

OPT
)

lower bound. In Section 2, we
construct a distribution Q over R2 × {−1, 1}, and prove a
lower bound for logistic regression that matches the upper
bound in (Frei et al., 2021b), thereby closing the gap in
recent works (Diakonikolas et al., 2020d; Frei et al., 2021b).
Specifically, the marginal distribution Qx is isotropic and
bounded, and satisfies all the well-behaved-ness conditions
from the aforementioned papers, but the global minimizer
of the logistic risk on Q only attains Ω

(√
OPT

)
zero-one

risk on Q.

An Õ(OPT) upper bound for radially Lipschitz den-
sities. The lower bound mentioned above shows that
one needs to make additional assumptions to prove bet-
ter bounds. In Section 3, we show that by making a radial
Lipschitzness assumption in addition to well-behaved-ness,
it is indeed possible to achieve the near-optimal Õ(OPT)
zero-one risk via logistic regression. In particular, our upper
bound result holds if the projection of Px onto any two-
dimensional subspace has Lipschitz continuous densities.
Moreover, our upper bound analysis is versatile: it can re-
cover the Õ

(√
OPT

)
guarantee for general well-behaved

distributions shown by Frei et al. (2021b), and it also works
for the hinge loss, which motivates a simple and efficient
two-phase algorithm, as we describe next.

An Õ(OPT) upper bound for general well-behaved dis-
tributions with a two-phase algorithm. Motivated by
our analysis, in Section 4, we describe a simple two-phase
algorithm that achieves Õ

(
OPT

)
risk for general well-

behaved distributions, without assuming radial Lipschitz-
ness. Thus, we show that the cost of avoiding the radial
Lipschitzness condition is simply an additional convex loss
minimization. Our two-phase algorithm involves logistic
regression followed by stochastic gradient descent with the
hinge loss (i.e., the perceptron algorithm) with a restricted
domain and a warm start. For general well-behaved dis-
tributions, the first phase can only achieve an Õ

(√
OPT

)
guarantee, however we show that the second phase can boost
the upper bound to Õ(OPT).

Previously, for any given ε > 0, Diakonikolas et al. (2020d)
designed a nonconvex optimization algorithm that can
achieve an O(OPT + ε) risk using Õ(d/ε4) samples. Their
algorithm requires guessing OPT within a constant multi-
plicative factor via a binary search and running a noncon-
vex SGD using each guess as an input. Similarly, prior
algorithms achieving an O(OPT + ε) risk involve solv-
ing multiple rounds of convex loss minimization (Awasthi
et al., 2014; Daniely, 2015). In contrast, our two-phase
algorithm is a simple logistic regression followed by a per-
ceptron algorithm, and the output is guaranteed to have
an O

(
OPT · ln(1/OPT) + ε

)
zero-one risk using only

Õ(d/ε2) samples.

1.1. Related work

The problem of agnostic learning of halfspaces has a long
and rich history (Kearns et al., 1994). Here we survey the
results most relevant to our work. It is well known that
in the distribution independent setting, even weak agnostic
learning is computationally hard (Feldman et al., 2006; Gu-
ruswami & Raghavendra, 2009; Daniely, 2016). As a result,
most algorithmic results have been obtained under assump-
tions on the marginal distribution Px over the examples.

The work of Kalai et al. (2008) designed algorithms that
achieve OPT + ε error for any ε > 0 in time dpoly( 1

ε ) for
isotropic log-concave densities and for the uniform distri-
bution over the hypercube. There is also a recent evidence
that removing the exponential dependence on 1/ε, even
for Gaussian marginals is computationally hard (Klivans &
Kothari, 2014; Diakonikolas et al., 2020a; Goel et al., 2020).

As a result, another line of work aims to design algorithms
with polynomial running time and sample complexity (in
d and 1

ε ) and achieve an error of g(OPT) + ε, for g be-
ing a simple function. Along these lines, Klivans et al.
(2009) designed a polynomial-time algorithm that attains
Õ(OPT1/3) + ε zero-one risk for isotropic log-concave
distributions. Awasthi et al. (2014) improved the upper
bound to O(OPT) + ε, using a localization-based algo-
rithm. Balcan & Zhang (2017) further extended the algo-
rithm to more general s-concave distributions. The work of
Daniely (2015) further provided a PTAS guarantee: an error
of (1 + η)OPT + ε for any desired constant η > 0 via an
improper learner.

In a recent work, Diakonikolas et al. (2020d) studied the
problem for distributions satisfying certain “well-behaved-
ness” conditions which include isotropy and certain regular-
ity conditions on the projection of Px on any 2-dimensional
subspace (see Assumption 3.2 for a subset of these con-
ditions). This class of distributions include any isotropic
log-concave distributions such as standard Gaussian. In
addition to their nonconvex optimization method discussed
above, for any convex, nonincreasing, and nonconstant loss
function, they also showed an Ω

(
OPT ln(1/OPT)

)
lower

bound for log-concave marginals and an Ω
(
OPT1−1/s

)
lower bound for s-heavy-tailed marginals.

In another recent work, Frei et al. (2021b) assumed Px
satisfies a “soft-margin” condition: for anti-concentrated
marginals such as isotropic log-concave marginals, this as-
sumes Pr

(∣∣〈ū, x〉∣∣ ≤ γ) = O(γ) for any γ > 0. For sub-
exponential distributions with soft-margins, they proved an
Õ
(√

OPT
)

upper bound for gradient descent on the logis-
tic loss, which can be improved to O

(√
OPT

)
for bounded

distributions. Note that these upper bounds and the lower
bounds in (Diakonikolas et al., 2020d) do not match: if Px
is sub-exponential, then Diakonikolas et al. (2020d) only
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gave an Ω̃(OPT) lower bound, while if Px is s-heavy-tailed,
then the upper bound in (Frei et al., 2021b) becomes worse.

Finally, some prior works on agnostic learning of halfspaces
have considered various extensions of the problem such as
active agnostic learning (Awasthi et al., 2014; Yan & Zhang,
2017), agnostic learning of sparse halfspaces with sample
complexity scaling logarithmically in the ambient dimen-
sionality (Shen & Zhang, 2021), and agnostic learning under
weaker noise models such as the random classification noise
(Blum et al., 1998; Dunagan & Vempala, 2008), Massart’s
noise model (Awasthi et al., 2015; 2016; Zhang et al., 2020;
Diakonikolas et al., 2019; 2020b; 2021; Chen et al., 2020)
and the Tsybakov noise model (Diakonikolas et al., 2020c;
Zhang & Li, 2021). We do not consider these extensions in
our work.

1.2. Notation

Let ‖ · ‖ denote the `2 (Euclidean) norm. Given r > 0, let
B(r) :=

{
x
∣∣‖x‖ ≤ r} denote the Euclidean ball with radius

r. Given two nonzero vectors u and v, let ϕ(u, v) ∈ [0, π]
denote the angle between them.

Given a data distribution P over Rd × {−1,+1}, let Px
denote the marginal distribution of P on the feature space
Rd. We will frequently need the projection of the input
features onto a two-dimensional subspace V ; in such cases,
it will be convenient to use polar coordinates (r, θ) for the
associated calculations, such as parameterizing the density
with respect to the Lebesgue measure as pV (r, θ).

Given a nonincreasing loss function ` : R→ R, we consider
the population risk

R`(w) := E(x,y)∼P
[
`
(
y〈w, x〉

)]
,

and the corresponding empirical risk

R̂`(w) :=
1

n

n∑
i=1

`
(
yi〈w, xi〉

)
,

defined over n i.i.d. samples drawn from P . We will focus
on the logistic loss `log(z) := ln(1 + e−z), and the hinge
loss `h(z) := max{−z, 0}. Let Rlog := R`log for sim-
plicity, and also define R̂log, Rh and R̂h similarly. Let
R0−1(w) := Pr(x,y)∼P

(
y 6= sign

(
〈w, x〉

))
denote the

population zero-one risk.

2. An Ω
(√

OPT
)

lower bound for logistic loss

In this section, we construct a distribution Q over R2 ×
{−1,+1} which satisfies standard regularity conditions in
(Diakonikolas et al., 2020d; Frei et al., 2021a), but the global
minimizer w∗ of the population logistic risk Rlog on Q

only achieves a zero-one risk of Ω
(√

OPT
)
. Our focus

on the global logistic optimizer is motivated by the lower
bounds from (Diakonikolas et al., 2020d); in particular, this
means that the large classification error is not caused by the
sampling error.

The distribution Q has four parts Q1, Q2, Q3, and Q4, as
described below. It can be verified that if OPT ≤ 1/16, the
construction is valid.

1. The feature distribution of Q1 consists of two squares:

one has edge length
√

OPT
2 , center

(√
2

2 ,−
√

2
2

)
and

density 1, with label −1; the other has edge length√
OPT

2 , center
(
−
√

2
2 ,
√

2
2

)
, density 1, with label +1.

2. The feature distribution of Q2 is supported on([
0,
√

OPT
]
× [0, 1]

)
∪
([
−
√

OPT, 0
]
× [−1, 0]

)
with density 1, and the label is given by sign(x1).

3. Let q3 := 2
3

√
OPT(1 − OPT), then Q3 consists of

two squares: one has edge length
√

q3
2 , center (1, 0),

density 1 and label +1, and the other has edge length√
q3
2 , center (−1, 0), density 1 and label −1.

4. The feature distribution of Q4 is the uniform distribu-
tion over the unit ball B(1) :=

{
x
∣∣‖x‖ ≤ 1

}
with den-

sity q4 := 1−OPT−2
√

OPT−q3
π , and the label is given

by sign(x1).

Q2

Q2

Q1

Q1

Q3

Q3

Figure 1. An illustration of Q when OPT = 1/16. Red areas de-
note the +1 label, while blue areas denote the −1 label. The parts
Q1, Q2 and Q3 are marked in the figure, while Q4 is supported
on the unit circle and marked by horizontal lines.

Note that the correct label is given by sign(x1) on Q2, Q3

and Q4; therefore ū := (1, 0) is our ground-truth solution
that is only wrong on the noisy part Q1.

Here is our lower bound result.
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Theorem 2.1. Suppose OPT ≤ 1/100, and let Qx denote
the marginal distribution of Q on the feature space. It
holds that Ex∼Qx [x] = 0, and Ex∼Qx [x1x2] = 0, and
Ex∼Qx [x2

1−x2
2] = 0. Moreover, the population logistic risk

Rlog has a global minimizer w∗, and

R0−1(w∗) = Pr
(
y 6= sign

(
〈w∗, x〉

))
≥
√

OPT

60π
.

Note that we can further normalize Qx to unit variance and
make it isotropic. Then it is easy to check that Qx satisfies
the “well-behaved-ness” conditions in (Diakonikolas et al.,
2020d), and the “soft-margin” and “sub-exponential” condi-
tions in (Frei et al., 2021b). In particular, our lower bound
matches the upper bound in (Frei et al., 2021b).

2.1. Proof of Theorem 2.1

Here is a proof sketch of Theorem 2.1; the full proof is given
in Appendix B.

First, basic calculation shows that Qx is isotropic up to
a constant multiplicative factor. Specifically, Q1, Q2 and
Q4 are constructed to make the risk lower bound proof
work, while Q3 is included to make Q isotropic. It turns
out that Q3 does not change the risk lower bound proof
too much: the reason is that we will prove Theorem 2.1
by contradiction, and show that if its conclusion does not
hold, then ∇Rlog(w∗) 6= 0. We show this mainly using
Q1, Q2 and Q4, but Q3 does not significantly change the
argument either, since it is highly aligned with the ground-
truth solution ū := (1, 0). As a result, if we assume the
conclusion of Theorem 2.1 does not hold, which means Q3

is also aligned with w∗, then `′
(
y〈w∗, x〉

)
will be close to

0 on Q3, and we can still obtain a nonzero∇Rlog(w∗) and
derive a contradiction.

Next we consider the risk lower bound. We only need
to show that ϕ(ū, w∗), the angle between ū and w∗, is
Ω
(√

OPT
)
, since it then follows that w∗ is wrong on an

Ω
(√

OPT
)

fraction of Q4, which is enough since Q4 ac-
counts for more than a half of the distribution Q.

Note that the minimizer of the logistic risk on Q4 by itself is
infinitely far in the direction of ū. However, this will incur a
large risk onQ1. By balancing these two parts, we can show
that by moving along the direction of ū by a distance of
Θ
(

1√
OPT

)
, we can achieve a logistic risk of O

(√
OPT

)
.

Lemma 2.2. Suppose OPT ≤ 1/100, let w̄ := (r̄, 0)
where r̄ = 3√

OPT
, thenRlog(w̄) ≤ 5

√
OPT.

Next we consider the global minimizer w∗ ofRlog, which
exists since Rlog has bounded sub-level sets. Let (r∗, θ∗)
denote the polar coordinates of w∗. We will assume θ∗ ∈[
−
√

OPT
30 ,

√
OPT
30

]
, and derive a contradiction.

In our construction, Q3 and Q4 are symmetric with respect
to the horizontal axis, and they will induce the ground-truth
solution. However, Q1 and Q2 are skew, and they will
pull w∗ above, meaning we actually have θ∗ ∈

[
0,
√

OPT
30

]
.

The first observation is an upper bound on r∗: if r∗ is too
large, then the risk of w∗ overQ1 will already be larger than
Rlog(w̄) for w̄ constructed in Lemma 2.2, a contradiction.

Lemma 2.3. Suppose OPT ≤ 1/100 and θ∗ ∈
[
0,
√

OPT
30

]
,

then r∗ ≤ 10√
OPT

.

However, our next lemma shows that under the above con-
ditions, the gradient of Rlog at w∗ does not vanish, which
contradicts the definition of w∗.

Lemma 2.4. Suppose OPT ≤ 1/100, then for any w =

(r, θ) with 0 ≤ r ≤ 10√
OPT

and 0 ≤ θ ≤
√

OPT
30 , it holds

that ∇Rlog(w) 6= 0.

To prove Lemma 2.4, let us consider an arbitrary w =
(r, θ) under the conditions of Lemma 2.4. For simplic-
ity, let us first look at the case θ = 0. In this case, note
that y〈w, x〉 ≤

√
OPT · 10√

OPT
= 10 on Q2, therefore

`′
(
y〈w, x〉

)
is bounded away from 0 on Q2. We can then

show that Q2 induces a component of length C1√
OPT

in the
gradient ∇Rlog(w) along the direction of −e2 = (0,−1),
where C1 is some universal constant. Moreover, Q1 also
induces a component in the gradient along −e2, while
Q3 and Q4 induce a zero component along e2. As a re-
sult,

〈
∇Rlog(w), e2

〉
< 0, and thus ∇Rlog(w) is nonzero.

Now if 0 ≤ θ ≤ C2

√
OPT for some small enough con-

stant C2 (1/30 in our case), we can show that Q3 and
Q4 cannot cancel the effect of Q2, and it still holds that〈
∇Rlog(w), e2

〉
< 0.

3. An Õ(OPT) upper bound for logistic loss
with radial Lipschitzness

The Ω
(√

OPT
)

lower bound construction in Section 2
shows that further assumptions on the distribution are nec-
essary in order to improve the upper bound on the zero-one
risk of the logistic regression solution. In particular, we
note that the distribution Q constructed in Section 2 has a
discontinuous density. In this section, we show that if we
simply add a very mild Lipschitz continuity condition on the
density, then we can achieve Õ(OPT) zero-one risk using
logistic regression.

First, we formally provide the standard assumptions from
prior work. Because of the lower bound for s-heavy-tailed
distributions from (Diakonikolas et al., 2020d) (cf. Sec-
tion 1.1), to get an Õ(OPT) zero-one risk, we need to
assume Px has a light tail. Following (Frei et al., 2021b),
we will either consider a bounded distribution, or assume Px



Agnostic Learnability of Halfspaces via Logistic Loss

is sub-exponential as defined below (cf. (Vershynin, 2018,
Proposition 2.7.1 and Section 3.4.4)).

Definition 3.1. We say Px is (α1, α2) sub-exponential for
constants α1, α2 > 0, if for any unit vector v and any t > 0,

Prx∼Px

(∣∣〈v, x〉∣∣ ≥ t) ≤ α1 exp
(
−t/α2

)
.

We also need the next assumption, which is part of the
“well-behaved-ness” conditions from (Diakonikolas et al.,
2020d).

Assumption 3.2. There exist constants U,R > 0 and a
function σ : R+ → R+, such that if we project Px onto an
arbitrary two-dimensional subspace V , the corresponding
density pV satisfies pV (r, θ) ≥ 1/U for all r ≤ R, and
pV (r, θ) ≤ σ(r) for all r ≥ 0, and

∫∞
0
σ(r) dr ≤ U , and∫∞

0
rσ(r) dr ≤ U .

While Assumption 3.2 may look a bit technically involved,
it basically consists of some mild concentration and anti-
concentration conditions. In particular, for a broad class of
distributions including isotropic log-concave distributions,
the sub-exponential condition and Assumption 3.2 hold with
α1, α2, U,R all being universal constants.

Finally, as discussed earlier, the previous conditions are also
satisfied by Q from Section 2, and thus to get the improved
Õ(OPT) risk bound, we need the following radial Lipschitz
continuity assumption.

Assumption 3.3. There exists a measurable function κ :
R+ → R+ such that for any two-dimensional subspace V ,∣∣pV (r, θ)− pV (r, θ′)

∣∣ ≤ κ(r)|θ − θ′|.

We will see Assumption 3.3 is crucial for the upper bound
analysis in Lemma 3.13. For some concrete examples, note
that if Px is radially symmetric (e.g., standard Gaussian),
then its projection onto any two-dimensional subspace V
is also radially symmetric, therefore we can let κ(r) = 0.
On the other hand, if pV is λ-Lipschitz continuous on R2

under `2 (e.g., general Gaussian), then it implies |pV (r, θ)−
pV (r, θ′)| ≤ λr|θ − θ′|, therefore we can let κ(r) = λr.

Now we can state our main results. In the following, we
denote the unit linear classifier with the optimal zero-one
risk by ū, with R0−1(ū) = OPT ∈ (0, 1/e). Our first
result shows that, with Assumption 3.3, minimizing the
logistic risk yields a solution with Õ(OPT) zero-one risk.

Theorem 3.4. Under Assumptions 3.2 and 3.3, let w∗ de-
note the global minimizer ofRlog.

1. If ‖x‖ ≤ B almost surely, then

R0−1(w∗) = O
(
(1 + Cκ)OPT

)
,

where Cκ :=
∫ B

0
κ(r) dr.

2. If Px is (α1, α2)-sub-exponential, then

R0−1(w∗) = O
(
(1 + Cκ)OPT · ln(1/OPT)

)
,

where Cκ :=
∫ 3α2 ln(1/OPT)

0
κ(r) dr.

Remark 3.5. Given Theorem 3.4, we only need to esti-
mate Cκ to get a concrete bound. First, for radially sym-
metric distributions, since κ(r) = 0, we have Cκ = 0.
On the other hand, if pV is λ-Lipschitz continuous on
R2, then we can let κ(r) = λr, and then by definition,
we can show Cκ ≤ λB2/2 in the bounded case, and
Cκ ≤ 9λα2

2 ln(1/OPT)2/2 in the sub-exponential case.

Theorem 3.4 shows that with radial Lipschitzness, the global
minimizer can attain Õ(OPT) zero-one risk; next we also
give an algorithmic result. Given a target error ε ∈ (0, 1),
we consider projected gradient descent on the empirical risk
with a norm bound of 1/

√
ε: let w0 := 0, and

wt+1 := ΠB(1/
√
ε)

[
wt − η∇R̂log(wt)

]
. (1)

Our next result shows that projected gradient descent can
also give an Õ(OPT) risk. Note that for the two cases
discussed below (bounded or sub-exponential), we use the
corresponding Cκ defined in Theorem 3.4.
Theorem 3.6. Suppose Assumptions 3.2 and 3.3 hold.

1. If ‖x‖ ≤ B almost surely, then with η = 4/B2, and

O
(

ln(1/δ)
ε4

)
samples and O

(
1
ε5/2

)
iterations, with

probability 1− δ, projected gradient descent outputs
wt satisfying

R0−1(wt) = O
(
(1 + Cκ)(OPT + ε)

)
.

2. On the other hand, if Px is (α1, α2)-sub-exponential,

then with η = Θ̃(1/d), using Õ
(
d ln(1/δ)3

ε4

)
samples

and Õ
(
d ln(1/δ)2

ε5/2

)
iterations, with probability 1 − δ,

projected gradient descent outputs wt with

R0−1(wt) = O
(
(1 + Cκ)(OPT · ln(1/OPT) + ε)

)
.

Next we give proof outlines of our results; the full proofs
are given in Appendix C. For simplicity, here we focus only
on the bounded case, while the sub-exponential case will
be handled in Appendix C. Although the proofs of the two
cases share some similarity, we want to emphasize that the
sub-exponential case does not follow by simply truncating
the distribution to a certain radius and thus reducing to
the bounded case. The reason is that the truncation radius
can be as large as

√
d, while for the bounded case in our

results, B is considered a constant independent of d and
hidden in the O notation; therefore this truncation argument
will introduce a poly(d) dependency in the final bound. By
contrast, our zero-one risk upper bounds for sub-exponential
distributinos only depend on α1, α2, U and R, but do not
depend on d.
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3.1. Proof of Theorems 3.4 and 3.6

Theorems 3.4 and 3.6 rely on the following key lemma
which provides a zero-one risk bound on near optimal so-
lutions to the logistic regression problem. It basically says
that a near optimal solution with reasonably large norm also
attains a good zero-one risk.

Lemma 3.7. Under Assumptions 3.2 and 3.3, suppose ŵ
satisfiesRlog(ŵ) ≤ Rlog(‖ŵ‖ū) + ε` for some ε` ∈ [0, 1).
If ‖x‖ ≤ B almost surely, then

R0−1(ŵ) = O

(
max

{
OPT,

√
ε`
‖ŵ‖ ,

Cκ
‖ŵ‖2

})
.

In this subsection, we will sketch the proofs of Theo-
rems 3.4 and 3.6 using Lemma 3.7; the details are given
in Appendix C.1. In the next subsection, we will prove
Lemma 3.7.

We first prove Theorem 3.4. Note that by Lemma 3.7, it
suffices to show that ‖w∗‖ = Ω

(
1√

OPT

)
(since ε` = 0 in

this case), which is true due to the next result.

Lemma 3.8. Under Assumption 3.2, if ‖x‖ ≤ B almost

surely and OPT < R4

200U3B , then ‖w∗‖ = Ω
(

1√
OPT

)
.

Next we prove Theorem 3.6. Once again motivated by
Lemma 3.7, we need to show that projected gradient descent
can achieve a near optimal logistic risk and a large norm.
Recall that given the target (zero-one) error ε ∈ (0, 1), we
run projected gradient descent on a Euclidean ball with
radius 1/

√
ε (cf. Equation (1)). Using standard optimization

and generalization analyses, we can prove the following
guarantee onRlog(wt).

Lemma 3.9. Let the target optimization error ε` ∈ (0, 1)
and the failure probability δ ∈ (0, 1/e) be given. If
‖x‖ ≤ B almost surely, then with η = 4/B2, using

O
(

(B+1)2 ln(1/δ)
εε2`

)
samples and O

(
B2

εε`

)
iterations, with

probability 1 − δ, projected gradient descent outputs wt
satisfying

Rlog(wt) ≤ Rlog

(
‖wt‖ū

)
+ ε`. (2)

We also need the following lower bounds on ‖wt‖.
Lemma 3.10. Under Assumption 3.2, suppose

ε < min

{
R4

36U2
,
R4

722U4

}
and ε` ≤

√
ε,

and that Equation (2) holds. If ‖x‖ ≤ B almost surely and

OPT < R4

500U3B , then ‖wt‖ = Ω
(

min
{

1√
ε
, 1√

OPT

})
.

Now to prove Theorem 3.6, we simply need to combine
Lemmas 3.7, 3.9 and 3.10 with ε` = ε3/2.

3.2. Proof of Lemma 3.7

Here we give a proof sketch of Lemma 3.7; the details are
given in Appendix C.2. As mentioned before, here we focus
on the bounded setting; in the appendix, we also prove a
version of Lemma 3.7 for the sub-exponential setting (cf.
Lemma C.4). One remark is that some of the lemmas in
the proof are also true for the hinge loss, and this fact will
be crucial in the later discussion regarding our two-phase
algorithm (cf. Section 4).

Let w̄ := ‖ŵ‖ū, and consider ` ∈ {`log, `h}. The first step
is to expressR`(ŵ)−R`(w̄) as the sum of three terms, and
then bound them separately. The first term is given by

R`(ŵ)−R`(w̄)−

E
[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈w̄, x〉

)
〈w̄, x〉

)]
,

(3)

the second term is given by

E
[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)]
,

(4)

and the third term is given by

E
[
`
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈w̄, x〉

)
〈w̄, x〉

)]
,

(5)

where the expectations are taken over Px.

We first bound term (3), which is the approximation error of
replacing the true label y with the label given by ū. Since
`(−z) − `(z) = z for the logistic loss and hinge loss, we
have the following equality:

term (3) = E
[
1y 6=sign(〈w̄,x〉) · y〈w̄ − ŵ, x〉

]
.

The approximation error can be bounded as below, using
the tail bound on Px and the factR0−1(w̄) = OPT.
Lemma 3.11. For ` ∈ {`log, `h}, if ‖x‖ ≤ B almost surely,

|term (3)| ≤ B‖w̄ − ŵ‖ ·OPT.

Next we bound term (4). Note that we only need to consider
the case where 〈w̄, x〉 and 〈ŵ, x〉 have different signs; in
this case, we can use the property `(−z)− `(z) = z again
and show the next result.
Lemma 3.12. Under Assumption 3.2, for ` ∈ {`log, `h},

term (4) ≥ 4R3

3Uπ2
‖ŵ‖ϕ(ŵ, w̄)2.

Lastly, we consider term (5). Note that it is 0 for the hinge
loss `h, because `h(z) = 0 when z ≥ 0. For the logistic
loss, term (5) is also 0 if Px is radially symmetric; in general,
we will bound it using Assumption 3.3.
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Lemma 3.13. For ` = `h, term (5) is 0. For ` = `log, under
Assumption 3.3, if ‖x‖ ≤ B almost surely, then

|term (5)| ≤ 12Cκ · ϕ(ŵ, w̄)/‖ŵ‖,

where Cκ :=
∫ B

0
κ(r) dr.

Now we are ready to prove Lemma 3.7. For simplicity,
here we let ϕ denote ϕ(ŵ, w̄). For bounded distributions,
Lemmas 3.11 to 3.13 imply

C1‖ŵ‖ϕ2 ≤ ε` +B‖w̄ − ŵ‖ ·OPT + C2Cκ · ϕ/‖ŵ‖
≤ ε` +B‖ŵ‖ϕ ·OPT + C2Cκ · ϕ/‖ŵ‖,

where C1 = 4R3/(3Uπ2) and C2 = 12. It follows that at
least one of the following three cases is true:

1. C1‖ŵ‖ϕ2 ≤ 3ε`, which implies ϕ = O
(√

ε`/‖ŵ‖
)
;

2. C1‖ŵ‖ϕ2 ≤ 3B‖ŵ‖ϕ ·OPT, and it follows that ϕ =
O(OPT);

3. C1‖ŵ‖ϕ2 ≤ 3C2Cκ · ϕ/‖ŵ‖, and it follows that ϕ =
O
(
Cκ/‖ŵ‖2

)
.

Therefore we can show a bound on the angle between w̄
and ŵ, which further implies a zero-one risk bound for ŵ,
in light of (Diakonikolas et al., 2020d, Claim 3.4) which is
stated below.

Lemma 3.14. Under Assumption 3.2,

R0−1(ŵ)−R0−1(w̄)

≤ Pr
(

sign
(
〈ŵ, x〉

)
6= sign

(
〈w̄, x〉

))
≤ 2Uϕ(ŵ, w̄).

3.3. Recovering the general
√

OPT bound

Frei et al. (2021b) showed an Õ
(√

OPT
)

upper bound
under the “soft-margin” and “sub-exponential” conditions.
Here we give an alternative proof of this result using our
proof technique. The result in this section will later serve
as a guarantee of the first phase of our two-phase algorithm
(cf. Section 4) that achieves Õ(OPT) risk.

Recall that the only place we need Assumption 3.3 is in
the proof of Lemma 3.13. However, even without Assump-
tion 3.3, we can still prove the following general bound
which only needs Assumption 3.2.

Lemma 3.15. Under Assumption 3.2, for ` = `log,

|term (5)| ≤ 12U

‖ŵ‖
.

Now with Lemma 3.15, we can prove a weaker but more
general version of Lemma 3.7 (cf. Theorem C.15). Further

invoking Lemmas 3.9 and 3.10 (cf. Lemmas C.6 and C.7 for
the corresponding sub-exponential results), and let ε` =

√
ε,

we can show the next result. We present the bound in terms
of the angle instead of zero-one risk for later applications in
Section 4.

Lemma 3.16. Given the target error ε ∈ (0, 1) and the
failure probability δ ∈ (0, 1/e), consider projected gradient
descent (1). If ‖x‖ ≤ B almost surely, then with η = 4/B2,

using O
(

(B+1)2 ln(1/δ)
ε2

)
samples and O

(
B2

ε3/2

)
iterations,

with probability 1− δ, projected gradient descent outputs
wt with

ϕ(wt, ū) = O
(√

OPT + ε
)
.

On the other hand, if Px is (α1, α2)-sub-exponential, then

with η = Θ̃(1/d), using Õ
(
d ln(1/δ)3

ε2

)
samples and

Õ
(
d ln(1/δ)2

ε3/2

)
iterations, with probability 1− δ, projected

gradient descent outputs wt with

ϕ(wt, ū) = O
(√

OPT · ln(1/OPT) + ε
)
.

The proofs of the results above are given in Appendix C.3.

4. An Õ(OPT) upper bound with hinge loss
We now show how to avoid Assumption 3.3 and achieve an
Õ(OPT) zero-one risk bound using an extra step of hinge
loss minimization. The key observation here is that the
only place where Assumption 3.3 is used is in Lemma 3.13
for bounding term (5) for logistic loss. However, as noted
in Lemma 3.13, for hinge loss, term (5) is conveniently 0.
So a version of Lemma 3.7 holds for hinge loss, without
using Assumption 3.3, and dropping the third term of Cκ

‖ŵ‖2

in the max. Thus, to get an Õ(OPT) upper bound, it is
enough to minimize the hinge loss to find a solution ŵ such
that ‖ŵ‖ = Ω(1) and Rh(ŵ) ≤ Rh(‖ŵ‖ū) + ε` for some
ε` = Õ((OPT + ε)2). However, there is still one remaining
challenge: note that the global minimizer of Rh is given
by 0, while if we add the explicit requirement ‖ŵ‖ = Ω(1),
the problem becomes nonconvex.

Fortunately, we can bypass having to solve this nonconvex
problem by leveraging the solution of the logistic regression
problem, which is guaranteed to make an angle of at most
Õ(
√

OPT + ε) with ū, even without Assumption 3.3, by
Lemma 3.16. This solution, represented by a unit vector v,
gives us a “warm start” for hinge loss minimization. Specifi-
cally, suppose we optimize the hinge loss over the halfspace

D :=
{
w ∈ Rd

∣∣∣〈w, v〉 ≥ 1
}
, (6)

then any solution we find must have norm at least 1. Fur-
thermore, using the fact that ϕ(v, ū) ≤ Õ(

√
OPT + ε)
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and the positive homogeneity of the hinge loss, we can
also conclude that the optimizer of the hinge loss satisfies
Rh(ŵ) ≤ Rh(‖ŵ‖ū) + ε`, giving us the desired solution.

While the above analysis does yield a simple two-phase
polynomial time algorithm for getting an Õ(OPT) zero-
one risk bound, closer analysis reveals a sample complexity
requirement of Õ(1/ε4). We can improve the sample com-
plexity requirement to Õ(1/ε2) by doing a custom analysis
of SGD on the hinge loss (i.e., perceptron, (Novikoff, 1963))
inspired by the above considerations. Thus we get the fol-
lowing two-phase algorithm1:

1. Run projected gradient descent under the settings
of Lemma 3.16, and find a unit vector v such that
ϕ(v, ū) is O

(√
OPT + ε

)
for bounded distributions,

or O
(√

OPT · ln(1/OPT) + ε
)

for sub-exponential
distributions.

2. Run projected SGD over the domainD defined in Equa-
tion (6) starting from w0 := v: at step t, we sample
(xt, yt) ∼ P , and let

wt+1 := ΠD

[
wt − η`′h

(
yt〈wt, xt〉

)
ytxt

]
. (7)

Here, we set the convention that `′h(0) = −1.

Below, we present the results regarding the expected zero-
one risk for simplicity; we note that the results can be turned
into high-probability bounds using the repeated probability
amplification technique.

Theorem 4.1. Given the target error ε ∈ (0, 1/e), suppose
Assumption 3.2 holds.

1. First, for bounded distributions, with η = Θ(ε), for all
T = Ω(1/ε2),

E
[

min
0≤t<T

R0−1(wt)

]
= O(OPT + ε).

2. On the other hand, for sub-exponential distributions,
with η = Θ

(
ε

d ln(d/ε)2

)
, for all T = Ω

(
d ln(d/ε)2

ε2

)
,

E
[

min
0≤t<T

R0−1(wt)

]
= O(OPT · ln(1/OPT) + ε).

4.1. Proof of Theorem 4.1

Here we give a proof sketch of Theorem 4.1, and again, we
focus on bounded distributions for simplicity. The full proof
is given in Appendix D.

1Note that the parameters η, T , etc. in this section are all
chosen for the second phase.

Let r̄ := 1/〈v, ū〉, and thus r̄ū ∈ D; we will treat r̄ū as a
reference solution in the proof. At step t, we have

‖wt+1 − r̄ū‖2

≤ ‖wt − r̄ū‖2 − 2η
〈
`′h
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
+ η2`′h

(
yt〈wt, xt〉

)2 ‖xt‖2.
(8)

Define

M(w) := E(x,y)∼P

[
−`′h

(
y〈w, x〉

)]
= R0−1(w).

Taking expectation of Equation (8) w.r.t. (xt, yt), and note
that ‖x‖ ≤ B almost surely and (`′h)2 = −`′h, we have

E
[
‖wt+1 − r̄ū‖2

]
− ‖wt − r̄ū‖2

≤ − 2η
〈
∇Rh(wt), wt − r̄ū

〉
+ η2B2M(wt)

≤ − 2η
(
Rh(wt)−Rh(r̄ū)

)
+ η2B2M(wt). (9)

To continue, we note the following lemma, which follows
from Lemmas 3.11 to 3.13, and the homogeneity of the
hinge loss `h.

Lemma 4.2. Suppose Assumption 3.2 holds. Consider an
arbitrary w ∈ D, and let ϕ denote ϕ(w, ū). If ‖x‖ ≤ B
almost surely, then

Rh(r̄ū) ≤ Rh(‖w‖ū) +O
(
(OPT + ε)2

)
and

Rh(w)−Rh(‖w‖ū) ≥ 4R3

3Uπ2
‖w‖ϕ2 −B‖w‖ϕ ·OPT.

The remaining steps of the proof proceed as follows. We
will prove the following: for ϕt := ϕ(wt, ū),

E
[

min
0≤t≤T

ϕt

]
= O(OPT + ε). (10)

First, note that we can assume

2R3

3Uπ2
ϕt ≥ B ·OPT (11)

for all t, since otherwise Equation (10) holds vacuously. It
then follows from Equation (11) and Lemma 4.2 that for
C1 = 2R3/(3Uπ2),

Rh(wt)−Rh(‖wt‖ū) ≥ C1‖wt‖ϕ2
t ≥ C1ϕ

2
t ,

where we also use the fact that ‖w‖ ≥ 1 for all w ∈ D.

Next, note thatM(wt) = O(ϕt), due to Equation (11) and
Lemma 3.14. If ϕt ≤ ε, then Equation (10) also holds,
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otherwise we can assume ε ≤ ϕt, and let η = C2ε for some
small enough constant C2, such that

ηB2M(wt) ≤ C1εϕt ≤ C1ϕ
2
t .

Now Equation (9) and Lemma 4.2 imply

E
[
‖wt+1 − r̄ū‖2

]
− ‖wt − r̄ū‖2

≤ − 2ηC1ϕ
2
t + η ·O

(
(OPT + ε)2

)
+ ηC1ϕ

2
t

= − ηC1ϕ
2
t + η ·O

(
(OPT + ε)2

)
.

Taking the total expectation and telescoping the above in-
equality for all t, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ ‖w0 − r̄ū‖2

ηC1T
+O

(
(OPT + ε)2

)
.

Recall that

‖w0 − r̄ū‖ = ‖v − r̄ū‖ = O
(√

OPT + ε
)

due to the first phase of the algorithm. Since η = C2ε, we
can further let T = Ω(1/ε2) and finish the proof.

5. Open problems
We conclude our paper with some open questions.
First, as shown by Theorem 4.1, we can achieve an
O
(
OPT · ln(1/OPT) + ε

)
zero-one risk using the two-

phase algorithm. However, previous algorithms attain an
O(OPT + ε) bound (Awasthi et al., 2014; Diakonikolas
et al., 2020d). Is it possible to develop an algorithm that
relies on solving a (small) constant number of convex prob-
lems and achieves an O(OPT + ε) risk?

Next, it would be also interesting to extend our results to
more practical neural network settings. On one hand, Frei
et al. (2021a) showed that stochastic gradient descent on a
two-layer leaky ReLU network of any width achieves an
Õ
(√

OPT
)

zero-one risk, where OPT still denotes the best
zero-one risk of a linear classifier. On the other hand, Ji
et al. (2021) showed that a wide two-layer ReLU network
can achieve the optimal Bayes risk; however, their results
require the width of the network to depend on a complexity
measure that could be exponentially large in the worst case.
Can a neural network with a reasonable width reach a zero-
one risk of O(OPT)?
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A. Technical lemmas
Here are some technical results we will need in our analysis.

Lemma A.1. Let r, ρ > 0 be given, then

2

ρ
(1− e−rρ) ≤

∫ 2π

0

`log

(
rρ
∣∣cos(θ)

∣∣) r dθ ≤ 8
√

2

ρ
.

Proof. First note that by symmetry,∫ 2π

0

`log

(
rρ
∣∣cos(θ)

∣∣) r dθ = 4

∫ π
2

0

`log

(
rρ cos(θ)

)
r dθ.

On the upper bound, note that `log

(
rρ cos(θ)

)
is increasing as θ goes from 0 to π

2 , and moreover sin(θ) ≥
√

2
2 for

θ ∈
(
π
4 ,

π
2

)
, therefore

4

∫ π
2

0

`log

(
rρ cos(θ)

)
r dθ ≤ 8

∫ π
2

π
4

`log

(
rρ cos(θ)

)
r dθ ≤ 8

√
2

ρ

∫ π
2

π
4

`log

(
rρ cos(θ)

)
rρ sin(θ) dθ.

Also because `log(z) ≤ exp(−z),∫ 2π

0

`log

(
rρ
∣∣cos(θ)

∣∣) r dθ ≤ 8
√

2

ρ

∫ π
2

π
4

exp
(
−rρ cos(θ)

)
rρ sin(θ) dθ

=
8
√

2

ρ

1− exp

(
−
√

2rρ

2

)
≤ 8
√

2

ρ
.

On the lower bound, note that `log(z) ≥ 1
2 exp(−z) for z ≥ 0, therefore∫ 2π

0

`log

(
rρ
∣∣cos(θ)

∣∣) r dθ = 4

∫ π
2

0

`log

(
rρ cos(θ)

)
r dθ ≥ 2

∫ π
2

0

exp
(
−rρ cos(θ)

)
r dθ

≥ 2

ρ

∫ π
2

0

exp
(
−rρ cos(θ)

)
rρ sin(θ) dθ

=
2

ρ

(
1− e−rρ

)
.

Lemma A.2. Given w,w′ ∈ Rd, suppose Pr(x,y)∼P

(
y 6= sign

(
〈w, x〉

))
= OPT. If ‖x‖ ≤ B almost surely, then

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ B‖w′‖ ·OPT.

If Px is (α1, α2)-sub-exponential, and OPT ≤ 1
e , then

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ (1 + 2α1)α2‖w′‖ ·OPT · ln
(

1

OPT

)
.

Proof. If ‖x‖ ≤ B almost surely, then

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ B‖w′‖E(x,y)∼P

[
1y 6=sign(〈w,x〉)

]
= B‖w′‖ ·OPT.
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Below we assume Px is (α1, α2)-sub-exponential.

Let νx := 〈w′, x〉; we first give some tail bounds for νx. Since Px is (α1, α2)-sub-exponential, for any t > 0, we have

Pr

∣∣∣∣∣
〈

w′

‖w′‖
, x

〉∣∣∣∣∣ ≥ t
 ≤ α1 exp

(
− t

α2

)
, equivalently Pr

(
|νx| ≥ t

)
≤ α1 exp

(
− t

α2‖w′‖

)
.

Let µ(t) := Pr
(
|νx| ≥ t

)
. Given any threshold τ > 0, integration by parts gives

E
[
1|νx|≥τ |νx|

]
=

∫ ∞
τ

t ·
(
−dµ(t)

)
= τµ(τ) +

∫ ∞
τ

µ(t) dt ≤ α1

(
α2‖w′‖+ τ

)
exp

(
− τ

α2‖w′‖

)
. (12)

Now let τ := α2‖w′‖ ln
(

1
OPT

)
. Note that

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] = E(x,y)∼P

[
1|νx|≤τ1y 6=sign(〈w,x〉)|νx|

]
+ E(x,y)∼P

[
1|νx|≥τ1y 6=sign(〈w,x〉)|νx|

]
.

We bound the two parts separately. When |νx| ≤ τ , we have

E
[
1|νx|≤τ1y 6=sign(〈w,x〉)|νx|

]
≤ τE

[
1y 6=sign(〈w,x〉)

]
= τ ·OPT = α2‖w′‖ ·OPT · ln

(
1

OPT

)
.

On the other hand, when |νx| ≥ τ , Equation (12) gives

E(x,y)∼P

[
1|νx|≥τ1y 6=sign(〈w,x〉)|νx|

]
≤ E

[
1|νx|≥τ |νx|

]
≤ α1α2‖w′‖

(
1 + ln

(
1

OPT

))
OPT

≤ 2α1α2‖w′‖ ·OPT · ln
(

1

OPT

)
,

where we also use OPT ≤ 1
e . To sum up,

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ (1 + 2α1)α2‖w′‖ ·OPT · ln
(

1

OPT

)
.

B. Omitted proofs from Section 2
In this section, we will prove Theorem 2.1. First, we bound the density and support of Qx.

Lemma B.1. If OPT ≤ 1
100 , then it holds that q3 ≤ 1

15 , and 1
2π ≤ q4 ≤ 1

π . As a result, Qx is supported on B(2) :={
x
∣∣‖x‖ ≤ 2

}
with its density bounded by 2.

Proof. For q3, we have

q3 =
2

3

√
OPT(1−OPT) ≤ 2

3

√
OPT ≤ 2

3

1

10
=

1

15
.

For Q4, its total measure can be bounded as below:

1−OPT− 2
√

OPT− q3 ≥ 1− 1

100
− 2

10
− 1

15
≥ 1

2
,

therefore q4 ≥ 1
2π . The upper bound q4 ≤ 1

π is trivial.
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On the support of Qx, note that for Q1, the largest `2 norm is given by

1 +

√
2

2

√
OPT

2
≤ 1 +

1

20
≤ 2.

For Q2, the largest `2 norm can be bounded by

1 +
√

OPT ≤ 1 +
1

10
≤ 2.

For Q3, the largest `2 norm can be bounded by

1 +

√
2

2

√
q3

2
≤ 1 +

1

2

√
1

15
≤ 2.

Finally, it is easy to verify that if OPT ≤ 1
100 , then Q1, Q2 and Q3 do not overlap, therefore the density of Q is bounded by

1 + 1
π ≤ 2.

Next we verify that Qx is isotropic up to a multiplicative factor. We first note the following fact; its proof is straightforward
and omitted.

Lemma B.2. It holds that∫ a+ δ
2

a− δ2

∫ b+ δ
2

b− δ2
xy dy dx = abδ2, and

∫ a+ δ
2

a− δ2

∫ b+ δ
2

b− δ2
(x2 − y2) dy dx = (a2 − b2)δ2.

Then we can prove the following result.

Lemma B.3. It holds that Ex∼Qx [x] = 0, and Ex∼Qx [x1x2] = 0, and Ex∼Qx
[
x2

1 − x2
2

]
= 0.

Proof. It follows from the symmetry of Q that Ex∼Qx [x] = 0.

To verify Ex∼Qx [x1x2] = 0, note that the expectation of x1x2 is 0 on Q3 and Q4, and thus we only need to check Q1 and
Q2. First, due to Lemma B.2, we have

E(x,y)∼Q1
[x1x2] = −OPT

2
.

Additionally,

E(x,y)∼Q2
[x1x2] = 2

∫ √OPT

0

∫ 1

0

x1x2 dx2 dx1 =
OPT

2
.

Therefore Ex∼Qx [x1x2] = 0.

Finally, note that the expectation of x2
1 − x2

2 is 0 on Q1 due to Lemma B.2, and also 0 on Q4 due to symmetry; therefore we
only need to consider Q2 and Q3. We have

E(x,y)∼Q2

[
x2

1 − x2
2

]
= 2

∫ √OPT

0

∫ 1

0

(
x2

1 − x2
2

)
dx2 dx1 =

2

3
OPT3/2 − 2

3

√
OPT = −q3.

Since E(x,y)∼Q3

[
x2

1 − x2
2

]
= q3 by Lemma B.2, it follows that Ex∼Qx

[
x2

1 − x2
2

]
= 0.

Next, we give a proof of the risk lower bound of Theorem 2.1. For simplicity, in this section we will let R denote Rlog.
For i = 1, 2, 3, 4, we also let Ri(w) := E(x,y)∼Qi

[
`log

(
y〈w, x〉

)]
; therefore R(w) :=

∑4
i=1Ri(w). We first prove

Lemma 2.2, showing that there exists a solution w̄ with ‖w̄‖ = Θ
(

1√
OPT

)
andR(w̄) = O

(√
OPT

)
.

Proof of Lemma 2.2. We considerR1,R2,R3 andR4 respectively.
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1. For Q1, note that the minimum of y〈w̄, x〉 is

−

(√
2

2
+

1

2

√
OPT

2

)
r̄ = −3

√
2

2

1√
OPT

− 3
√

2

4
.

Because `log(z) ≤ −z + 1 when z ≤ 0, and OPT ≤ 1
100 , we have

R1(w̄) ≤ `log

(
−3
√

2

2

1√
OPT

− 3
√

2

4

)
·OPT ≤ 3

√
2

2

√
OPT +

(
3
√

2

4
+ 1

)
OPT

≤ 3
√

2

2

√
OPT +

(
3
√

2

4
+ 1

)
1

10

√
OPT

≤ 5
√

OPT

2
.

2. For Q2, we have

R2(w̄) = 2

∫ √OPT

0

∫ 1

0

`log(x1r̄) dx2 dx1 = 2

∫ √OPT

0

`log(x1r̄) dx1

≤ 2

∫ √OPT

0

exp(−x1r̄) dx1

=
2

r̄

(
1− exp

(
−r̄
√

OPT
))
≤ 2

r̄
,

where we use `log(z) ≤ exp(−z).

3. For Q3, the minimum of y〈w̄, x〉 is (
1− 1

2

√
q3

2

)
r̄ ≥ 2r̄

3
,

where we use q3 ≤ 1
15 by Lemma B.1. Further note that `log(z) ≤ 1/z when z > 0, we have

R3(w̄) ≤ q3`log

(
2r̄

3

)
≤ 1/15

2r̄/3
≤ 1

10r̄
.

4. For Q4,

R4(w̄) =

∫ 1

0

∫ 2π

0

`log

(
rr̄
∣∣cos(θ)

∣∣) q4r dθ dr ≤ 1

π

∫ 1

0

∫ 2π

0

`log

(
rr̄
∣∣cos(θ)

∣∣) r dθ dr,

where we use q4 ≤ 1
π from Lemma B.1. Lemma A.1 then implies

R4(w̄) ≤ 1

π

∫ 1

0

8
√

2

r̄
dr =

8
√

2

πr̄
.

Putting everything together, we have

R(w̄) = R1(w̄) +R2(w̄) +R3(w̄) +R4(w̄)

≤ 5
√

OPT

2
+

2

r̄
+

1

10r̄
+

8
√

2

πr̄

≤ 5
√

OPT

2
+

6

r̄
≤ 5
√

OPT.
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Next we prove Lemma 2.3, the upper bound on ‖w∗‖.

Proof of Lemma 2.3. Let

u :=

(√
2

2
,−
√

2

2

)
, and v :=

(√
2

2
− 1

2

√
OPT

2
,−
√

2

2
− 1

2

√
OPT

2

)
.

Let φ denote the angle between u and v, then

φ ≤ tan(φ) =

√
2

2

√
OPT

2
=

√
OPT

2
≤ 1

20
≤ π

24
,

and it follows that the angle between v and w∗ is bounded by

π

24
+
π

4
+

√
OPT

30
≤ π

24
+
π

4
+

π

24
=
π

3
.

Moreover, note that the maximum of y〈w∗, x〉 on Q1 is given by

−〈w∗, v〉 ≤ −r∗‖v‖ cos

(
π

3

)
≤ −r∗ cos

(
π

3

)
= −r

∗

2
.

Additionally because `log(z) > −z, we have

R(w∗) ≥ R1(w∗) ≥ `log

(
−r
∗

2

)
·OPT >

r∗

2
·OPT.

If r∗ > 10√
OPT

, then R(w∗) > 5
√

OPT, which contradicts the definition of w∗ in light of Lemma 2.2. Therefore
r∗ ≤ 10√

OPT
.

Next we prove Lemma 2.4.

Proof of Lemma 2.4. Let w = (r, θ), where 0 ≤ r ≤ 10√
OPT

and 0 ≤ θ ≤
√

OPT
30 . We will consider the projection of

∇R(w) onto the direction e2 := (0, 1), and show that this projection cannot be zero.

1. For Q1, the gradient of this part has a negative inner product with e2, due to the construction of Q1 and the fact
`′log < 0.

2. For Q2, the inner product between e2 and the gradient of this part is given by

2

∫ √OPT

0

∫ 1

0

`′log(x1w1 + x2w2)x2 dx2 dx1. (13)

Note that x1w1 ≤ rx1, while

x2w2 = x2r sin (θ) ≤ rθ ≤ 10√
OPT

√
OPT

30
=

1

3
,

and that `′log is increasing, therefore

`′log(x1w1 + x2w2) ≤ `′log

(
rx1 +

1

3

)
.
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We can then upper bound Equation (13) as follows:

Equation (13) ≤ 2

∫ √OPT

0

∫ 1

0

`′log

(
rx1 +

1

3

)
x2 dx2 dx1

=

∫ √OPT

0

`′log

(
rx1 +

1

3

)
dx1

=
1

r

(
`log

(
1

3
+ r
√

OPT

)
− `log

(
1

3

))
.

Now we consider two cases. If r
√

OPT ≤ 2, then it follows from the convexity of `log that

Equation (13) ≤ 1

r
`′log

(
1

3
+ r
√

OPT

)
r
√

OPT ≤ `′log(3)
√

OPT ≤ −
√

OPT

30
.

On the other hand, if r
√

OPT ≥ 2, then

Equation (13) ≤ 1

r

(
`log

(
7

3

)
− `log

(
1

3

))
≤
√

OPT

10

(
`log

(
7

3

)
− `log

(
1

3

))
≤ −
√

OPT

30
.

Therefore, it always holds that Equation (13) ≤ −
√

OPT
30 .

3. For Q3, the gradient of this part can have a positive inner product with e2. For simplicity, let ρ := 1
2

√
q3
2 . To upper

bound this inner product, it is enough to consider the region given by(
[1− ρ, 1 + ρ]× [−ρ, 0]

)
∪
(
[−1− ρ,−1 + ρ]× [0, ρ]

)
.

Moreover, note that y〈w, x〉 ≥ 0 on Q3, therefore `′log

(
y〈w, x〉

)
≥ − 1

2 . Therefore the inner product between e2 and
the gradient of Q3 can be upper bounded by (note that x2 ≤ 0 in the integral)

2

∫ 1+ρ

1−ρ

∫ 0

−ρ
−1

2
x2 dx2 dx1 = ρ3 =

√
q3

16
√

2
q3 ≤

√
1/15

16
√

2

2

3

√
OPT <

√
OPT

60
.

where we use q3 ≤ 1
15 by Lemma B.1 and q3 ≤ 2

3

√
OPT by its definition.

4. For Q4, we further consider two cases.

(a) Consider the part of Q4 with polar angles in (−π2 + 2θ, π2 )∪ (π2 + 2θ, 3π
2 ). By symmetry, the gradient of this part

is along the direction with polar angle π + θ, and it has a negative inner product with e2.
(b) Consider the part of Q4 with polar angles in (−π2 ,−

π
2 + 2θ) ∪ (π2 ,

π
2 + 2θ). We can verify that the gradient of

this part has a positive inner product with e2; moreover, since −1 < `′log < 0, this inner product can be upper
bounded by

2

∫ 1

0

∫ 2θ

0

r′ cos(θ′)q4r
′ dθ′ dr′ = 2q4 ·

1

3
· sin(2θ) ≤ 4θ

3π
≤ 4

3π

√
OPT

30
<

√
OPT

60
,

where we also use q4 ≤ 1
π and sin(z) ≤ z for z ≥ 0.

As a result, item 3 and item 4(b) cannot cancel item 2, and thus∇R(w) cannot be 0.

Now we are ready to prove the risk lower bound of Theorem 2.1.

Proof of Theorem 2.1 risk lower bound. It is clear that R has bounded sub-level sets, and therefore can be globally
minimized. Let the polar coordinates of the global minimizer be given by (r∗, θ∗), where |θ∗| ≤ π. Assume that
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θ∗ ∈
[
−
√

OPT
30 ,

√
OPT
30

]
; due to Q1 and Q2, it actually follows that θ∗ ∈

[
0,
√

OPT
30

]
. Lemma 2.3 then implies r∗ ≤ 10√

OPT
,

and then Lemma 2.4 implies∇R(w∗) 6= 0, a contradiction.

It then follows that w∗ is wrong on a θ∗

π portion of Q4. Since the total measure of Q4 is more than half due to Lemma B.1,
we have

R0−1(w∗) ≥ 1

2

θ∗

π
≥
√

OPT

60π
.

C. Omitted proofs from Section 3
In this section, we provide omitted proofs from Section 3. First, we prove some general results that will be used later.

Lemma C.1. Under Assumption 3.2, for any w ∈ Rd,

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ 12U

‖w‖
.

Proof. Let v denote an arbitrary vector orthogonal to w, and let p denote the density of the projection of Px onto the space
spanned by w and v. Then we have

E
[
`log

(∣∣〈w, x〉∣∣)] =

∫ ∞
0

∫ 2π

0

`log

(
r‖w‖

∣∣cos(θ)
∣∣) p(r, θ)r dθ dr.

Invoking Assumption 3.2, we have

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ ∫ ∞
0

σ(r)

(∫ 2π

0

`log

(
r‖w‖

∣∣cos(θ)
∣∣) r dθ

)
dr.

Lemma A.1 then implies

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ ∫ ∞
0

σ(r)
8
√

2

‖w‖
dr.

Then it follows from Assumption 3.2 that

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ 8
√

2U

‖w‖
≤ 12U

‖w‖
.

Next, we note that following the direction of the ground-truth solution ū can achieve Õ
(√

OPT
)

logistic risk.

Lemma C.2. Given ρ > 0, under Assumption 3.2, if ‖x‖ ≤ B almost surely, then

Rlog(ρū) ≤ 12U

ρ
+ ρB ·OPT, with inf

ρ>0
Rlog(ρū) ≤

√
50UB ·OPT,

while if Px is (α1, α2)-sub-exponential, then

Rlog(ρū) ≤ 12U

ρ
+ (1 + 2α1)α2ρ ·OPT · ln

(
1

OPT

)
,

with

inf
ρ>0
Rlog(ρū) ≤

√
50(1 + 2α1)α2U ·OPT · ln

(
1

OPT

)
.
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Proof. Note that

Rlog(ρū) = E(x,y)∼P

[
`log

(
y〈ρū, x〉

)]
= Ex∼Px

[
`log

(∣∣〈ρū, x〉∣∣)]+ E(x,y)∼P

[
`log

(
y〈ρū, x〉

)
− `log

(∣∣〈ρū, x〉∣∣)] .
Since `log(−z)− `log(z) = z, and also invoking Lemma C.1, we have

Rlog(ρū) = Ex∼Px
[
`log

(∣∣〈ρū, x〉∣∣)]+ E(x,y)∼P

[
1y 6=sign(〈ū,x〉) · (−y)〈ρū, x〉

]
≤ 12U

ρ
+ E(x,y)∼P

[
1y 6=sign(〈ū,x〉) · (−y)〈ρū, x〉

]
.

If ‖x‖ ≤ B almost surely, then Lemma A.2 further implies

Rlog(ρū) ≤ 12U

ρ
+ ρB ·OPT,

and thus

inf
ρ>0
Rlog(ρū) ≤ 2

√
12UB ·OPT ≤

√
50UB ·OPT.

If Px is (α1, α2)-sub-exponential, then Lemma A.2 further implies

Rlog(ρū) ≤ 12U

ρ
+ (1 + 2α1)α2ρ ·OPT · ln

(
1

OPT

)
,

and therefore

inf
ρ>0
Rlog(ρū) ≤ 2

√
12(1 + 2α1)α2U ·OPT · ln

(
1

OPT

)
≤

√
50(1 + 2α1)α2U ·OPT · ln

(
1

OPT

)
.

Next we prove a risk lower bound, that will later be used to prove lower bounds on ‖w∗‖ and ‖wt‖.
Lemma C.3. Under Assumption 3.2, given w ∈ Rd, if R‖w‖ ≤ 2, then

Rlog(w) ≥ R2

2U
,

while if R‖w‖ ≥ 2, then

Rlog(w) ≥ R

U‖w‖
.

Proof. First, since `log(z) ≥ `log

(
|z|
)
,

Rlog(w) = E(x,y)∼P

[
`log

(
y〈w, x〉

)]
≥ Ex∼Px

[
`log

(∣∣〈w, x〉∣∣)] . (14)

Let v denote an arbitrary vector that is orthogonal to w, and let p denote the density of the projection of Px onto the space
spanned by w and v. Without loss of generality, we can assume w has polar angle 0. Then Equation (14) becomes

Rlog(w) ≥
∫ ∞

0

∫ 2π

0

`log

(
r‖w‖

∣∣cos(θ)
∣∣) p(r, θ)r dθ dr.
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Assumption 3.2 and Lemma A.1 then imply

Rlog(w) ≥ 1

U

∫ R

0

∫ 2π

0

`log

(
r‖w‖

∣∣cos(θ)
∣∣) r dθ dr

≥ 1

U

2

‖w‖

∫ R

0

(
1− e−r‖w‖

)
dr

=
2

U

1

‖w‖2
(
e−R‖w‖ − 1 +R‖w‖

)
.

If R‖w‖ ≤ 2, then because e−z − 1 + z ≥ z2

4 when 0 ≤ z ≤ 2, we have

Rlog(w) ≥ 2

U

1

‖w‖2
R2‖w‖2

4
=
R2

2U
.

Otherwise if R‖w‖ ≥ 2, then because e−z − 1 + z ≥ z
2 when z ≥ 2, we have

Rlog(w) ≥ 2

U

1

‖w‖2
R‖w‖

2
=

R

U‖w‖
.

C.1. Omitted proofs from Section 3.1

In this section, we prove Theorems 3.4 and 3.6. First, we state the following general version of Lemma 3.7, which also
handles sub-exponential distributions; it will be proved in Appendix C.2.

Lemma C.4 (Lemma 3.7, including the sub-exponential case). Under Assumptions 3.2 and 3.3, suppose ŵ satisfies
Rlog(ŵ) ≤ Rlog(‖ŵ‖ū) + ε` for some ε` ∈ [0, 1).

1. If ‖x‖ ≤ B almost surely, then

R0−1(ŵ) = O

(
max

{
OPT,

√
ε`
‖ŵ‖ ,

Cκ
‖ŵ‖2

})
.

2. If Px is (α1, α2)-sub-exponential and ‖ŵ‖ = Ω(1), then

R0−1(ŵ) =

O

(
max

{
OPT · ln(1/OPT),

√
ε`
‖ŵ‖ ,

Cκ
‖ŵ‖2

})
.

Next, we prove the following norm lower bound on ‖w∗‖, which covers Lemma 3.8 and also the sub-exponential case.

Lemma C.5 (Lemma 3.8, including the sub-exponential case). Under Assumption 3.2, if ‖x‖ ≤ B almost surely and

OPT < R4

200U3B , then ‖w∗‖ = Ω
(

1√
OPT

)
; if Px is (α1, α2)-sub-exponential and OPT · ln(1/OPT) < R4

200(1+2α1)α2U3 ,

then ‖w∗‖ = Ω
(

1√
OPT·ln(1/OPT)

)
.

Proof. Suppose ‖x‖ ≤ B almost surely. Since OPT < R4

200U3B , Lemma C.2 implies

Rlog(w∗) ≤ inf
ρ>0
Rlog(ρū) ≤

√
50UB ·OPT <

√
50UB · R4

200U3B
=
R2

2U
.

Therefore it follows from Lemma C.3 that R‖w∗‖ ≥ 2, and

R

U‖w∗‖
≤ Rlog(w∗) ≤ inf

ρ>0
Rlog(ρū) ≤

√
50UB ·OPT,
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which implies

‖w∗‖ ≥ R

U
√

50UB
· 1√

OPT
.

Now suppose Px is (α1, α2)-sub-exponential. Since OPT · ln
(

1
OPT

)
< R4

200(1+2α1)α2U3 , Lemma C.2 implies

inf
ρ>0
Rlog(ρū) ≤

√
50(1 + 2α1)α2U ·OPT · ln

(
1

OPT

)
<

√
50(1 + 2α1)α2U ·

R4

200(1 + 2α1)α2U3
=
R2

2U
.

Therefore it follows from Lemma C.3 that R‖w∗‖ ≥ 2, and

R

U‖w∗‖
≤ Rlog(w∗) ≤ inf

ρ>0
Rlog(ρū) ≤

√
50(1 + 2α1)α2U ·OPT · ln

(
1

OPT

)
which implies

‖w∗‖ ≥ R

U
√

50(1 + 2α1)α2U

1√
OPT · ln(1/OPT)

.

Now we can prove Theorem 3.4.

Proof of Theorem 3.4. If ‖x‖ ≤ B almost surely, Lemma C.4 implies

R0−1(w∗) = O

(
max

{
OPT,

Cκ
‖w∗‖2

})
.

If OPT ≥ R4

200U3B , then Theorem 3.4 holds vacuously; otherwise Lemma C.5 ensures ‖w∗‖ = Ω
(

1√
OPT

)
, and thus

R0−1(w∗) = O
(
max {OPT, Cκ ·OPT}

)
= O

(
(1 + Cκ)OPT

)
.

The proof of the sub-exponential case is similar.

Next, we analyze project gradient descent. First we restate Lemmas 3.9 and 3.10, and also handle sub-exponential
distributions.
Lemma C.6 (Lemma 3.9, including the sub-exponential case). Let the target optimization error ε` ∈ (0, 1) and the

failure probability δ ∈ (0, 1/e) be given. If ‖x‖ ≤ B almost surely, then with η = 4/B2, using O
(

(B+1)2 ln(1/δ)
εε2`

)
samples

and O
(
B2

εε`

)
iterations, with probability 1− δ, projected gradient descent outputs wt satisfying

Rlog(wt) ≤ min
0≤ρ≤1/

√
ε
Rlog(ρū) + ε`. (15)

If Px is (α1, α2)-sub-exponential, then with η = Θ̃(1/d), using Õ
(
d ln(1/δ)3

εε2`

)
samples and Õ

(
d ln(1/δ)2

εε`

)
iterations, with

probability 1− δ, projected gradient descent outputs wt satisfying Equation (15).
Lemma C.7 (Lemma 3.10, including the sub-exponential case). Under Assumption 3.2, suppose

ε < min

{
R4

36U2
,
R4

722U4

}
and ε` ≤

√
ε,

and that Equation (15) holds. If ‖x‖ ≤ B almost surely and OPT < R4

500U3B , then ‖wt‖ = Ω
(

min
{

1√
ε
, 1√

OPT

})
.

On the other hand, if Px is (α1, α2)-sub-exponential, and OPT · ln(1/OPT) < R4

500U3(1+2α1)α2
, then it holds that

‖wt‖ = Ω
(

min
{

1√
ε
, 1√

OPT·ln(1/OPT)

})
.
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Next we prove Lemmas C.6 and C.7. We first consider bounded distributions, and then handle sub-exponential distributions.
For simplicity, in the rest of this subsection we will useR and R̂ to denoteRlog and R̂log, respectively.

Bounded distributions. First, here are some standard optimization and generalization results for projected gradient
descent.

Lemma C.8. If ‖xi‖ ≤ B for all 1 ≤ i ≤ n, then R̂ is B2

4 -smooth. Moreover, if w0 := 0 and η ≤ 4
B2 , then for all t ≥ 1,

R̂(wt) ≤ min
w∈B(1/

√
ε)
R̂(w) +

1

2ηεt
.

Proof. Note that `log is 1
4 -smooth. To show R̂ is B2

4 -smooth, note that given any w,w′ ∈ Rd,

∥∥∥∇R̂(w)−∇R̂(w′)
∥∥∥ =

∥∥∥∥∥∥ 1

n

n∑
i=1

(
`′log

(
yi〈w, xi〉

)
− `′log

(
yi〈w′, xi〉

))
yixi

∥∥∥∥∥∥
≤ 1

n

n∑
i=1

∣∣∣`′log

(
yi〈w, xi〉

)
− `′log

(
yi〈w′, xi〉

)∣∣∣B
≤ B

4n

n∑
i=1

∣∣yi〈w, xi〉 − yi〈w′, xi〉∣∣
≤ B

4n

n∑
i=1

‖w − w′‖B =
B2

4
‖w − w′‖.

The following analysis basically comes from the proof of (Bubeck, 2014, Theorem 6.3); we include it for completeness, and
also handle the last iterate. Let w∗ := arg minw∈B(1/

√
ε) R̂(w). Convexity gives

R̂(wt)− R̂(w∗) ≤
〈
∇R̂(wt), wt − w∗

〉
=
〈
∇R̂(wt), wt − wt+1

〉
+
〈
∇R̂(wt), wt+1 − w∗

〉
.

Smoothness implies

〈
∇R̂(wt), wt − wt+1

〉
≤ R̂(wt)− R̂(wt+1) +

B2/4

2
‖wt − wt+1‖2

≤ R̂(wt)− R̂(wt+1) +
1

2η
‖wt − wt+1‖2.

On the other hand, the projection step ensures〈
∇R̂(wt), wt+1 − w∗

〉
≤ 1

η
〈wt − wt+1, wt+1 − w∗〉

=
1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 − ‖wt − wt+1‖2

)
.

Therefore

R̂(wt)− R̂(w∗) ≤ R̂(wt)− R̂(wt+1) +
1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
,

which implies

R̂(wt+1)− R̂(w∗) ≤ 1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
. (16)
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Next we show that R̂(wt+1) ≤ R̂(wt). Smoothness implies

R̂(wt+1)− R̂(wt) ≤
〈
∇R̂(wt), wt+1 − wt

〉
+
B2/4

2
‖wt+1 − wt‖2

≤ −1

η
‖wt − wt+1‖2 +

B2/4

2
‖wt+1 − wt‖2

≤ −1

η
‖wt − wt+1‖2 +

1

2η
‖wt+1 − wt‖2

= − 1

2η
‖wt+1 − wt‖2,

where we also use the property of the projection step on the second line.

It now follow from Equation (16) and R̂(wt+1) ≤ R̂(wt) that for t ≥ 1,

R̂(wt) ≤ R̂(w∗) +
‖w0 − w∗‖2

2ηt
≤ R̂(w∗) +

1

2ηεt
.

Lemma C.9. If ‖x‖ ≤ B almost surely, then with probability 1− δ, for all w ∈ B
(

1√
ε

)
,

∣∣∣R(w)− R̂(w)
∣∣∣ ≤ 2B√

εn
+ 3

(
B√
ε

+ 1

)√
ln(4/δ)

2n
.

Proof. Note that `log(z) ≤ |z|+ 1, therefore

`log

(
y〈w, x〉

)
≤ ‖w‖‖x‖+ 1 ≤ B√

ε
+ 1.

Since `log is 1-Lipschitz continuous, (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5, Lemma 26.9, Lemma 26.10)

imply that with probability 1− δ, for all w ∈ B
(

1√
ε

)
,

R(w)− R̂(w) ≤ 2B√
εn

+ 3

(
B√
ε

+ 1

)√
ln(2/δ)

2n
.

Next we can just apply the same technique and get a uniform deviation bound on R̂(w)−R(w).

We can now prove Lemma C.6.

Proof of Lemma C.6 for bounded distributions. Lemma C.8 implies that

R̂(wt)− min
0≤ρ≤1/

√
ε
R(ρū) ≤ 1

2ηεt
=
B2

8εt
.

Moreover, Lemma C.9 ensures with probability 1− δ, for all w ∈ B2

(
1√
ε

)
,

∣∣∣R̂(w)−R(w)
∣∣∣ ≤ 2B√

εn
+ 3

(
B√
ε

+ 1

)√
ln(4/δ)

2n
= O

(
(B + 1)

√
ln(1/δ)

εn

)
.

Therefore, to ensureR(wt)−min0≤ρ≤1/
√
εR(ρū) ≤ ε`, we only need

O

(
B2

εε`

)
steps, and O

(
(B + 1)2 ln(1/δ)

εε2`

)
samples.



Agnostic Learnability of Halfspaces via Logistic Loss

Next we prove the norm lower bound on ‖wt‖.

Proof of Lemma C.7. First, we consider the case ‖x‖ ≤ B almost surely. It follows from Lemma C.2 that

R(ρū) ≤ 12U

ρ
+ ρB ·OPT. (17)

Let ρ̄ :=
√

12U
B·OPT . We consider two cases below, ρ̄ ≤ 1√

ε
or ρ̄ ≥ 1√

ε
.

First, we assume ρ̄ ≤ 1√
ε
. Then by the conditions of Lemma C.7 and Equation (17), we have

R(wt) ≤ R(ρ̄ū) + ε` ≤ 2
√

12UB ·OPT +
√
ε

< 2

√
12UB · R4

500U3B
+

√
R4

36U2

< 2
R2

6U
+
R2

6U
=
R2

2U
.

It then follows from Lemma C.3 that R‖wt‖ ≥ 2, and

R

U‖wt‖
≤ R(wt) ≤ R(ρ̄ū) + ε` ≤ 2

√
12UB ·OPT +

√
ε.

since ρ̄ ≤ 1√
ε
,

√
ε ≤ 1

ρ̄
=

√
B ·OPT

12U
.

As a result, R
U‖wt‖ = O

(√
OPT

)
, which implies ‖wt‖ = Ω

(
1√

OPT

)
.

Next, assume ρ̄ ≥ 1√
ε
, which implies that

B ·OPT

12U
≤ ε, and B ·OPT ≤ 12Uε.

Moreover, Equation (17) implies

R
(

1√
ε
ū

)
≤ 12U

√
ε+

1√
ε
B ·OPT ≤ 12U

√
ε+

1√
ε
12Uε = 24U

√
ε.

Then because

R(wt) ≤ R
(

1√
ε
ū

)
+ ε` ≤ 24U

√
ε+
√
ε < 24U

√
R4

722U4
+

√
R4

36U2
=
R2

2U
,

it further follows from Lemma C.3 that R‖wt‖ ≥ 2, and

R

U‖wt‖
≤ R

(
1√
ε
ū

)
+ ε` ≤ 24U

√
ε+
√
ε,

therefore ‖wt‖ = Ω
(

1√
ε

)
.

Now assume Px is (α1, α2)-sub-exponential. Lemma C.2 implies

R(ρū) ≤ 12U

ρ
+ (1 + 2α1)α2ρ ·OPT · ln

(
1

OPT

)
.

Let

ρ̄ :=

√
12U

(1 + 2α1)α2 ·OPT · ln(1/OPT)
,

and similarly consider the two cases ρ̄ ≤ 1√
ε

and ρ̄ ≥ 1√
ε
, we can finish the proof.
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Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6 for bounded distributions. First, note that if ε or OPT does not satisfy the conditions of Lemma C.7,
then Theorem 3.6 holds vacuously. Under the conditions of Lemmas C.6 and C.7, let ε` := ε3/2, we have that projected
gradient descent can find wt satisfying

Rlog(wt) ≤ min
0≤ρ≤1/

√
ε
Rlog(ρū) + ε3/2 ≤ Rlog

(
‖wt‖ū

)
+ ε3/2,

and

‖wt‖ = Ω

(
min

{
1√
ε
,

1√
OPT

})
.

Now we just need to invoke Lemma C.4. If ε ≤ OPT, then ‖wt‖ = Ω
(

1√
OPT

)
, and Lemma C.4 implies

R0−1(wt)

= O

(
max

{
OPT,

√
ε3/2
√

OPT, Cκ ·OPT

})
= O

(
(1 + Cκ)OPT

)
.

If ε ≥ OPT, then ‖wt‖ = Ω
(

1√
ε

)
, and similarly we can show

R0−1(wt)

= O

(
max

{
OPT,

√
ε3/2
√
ε, Cκε

})
= O

(
(1 + Cκ)(OPT + ε)

)
.

The sample and iteration complexity follow from Lemma C.6 and that ε` = ε3/2.

Sub-exponential distributions. Next we handle (α1, α2)-sub-exponential distributions. We will prove Lemma C.6 for
sub-exponential distributions; the rest of the proof is similar to the bounded case and thus omitted.

Let the target zero-one error ε, the target optimization error ε`, and failure probability δ be given. Given r > 0, we overload
the notation a little bit and let

δ(r) := dα1 exp

(
− r

α2

√
d

)
.

In particular, note that

Prx∼Px
(
‖x‖ ≥ r

)
≤

d∑
j=1

Pr

(
|xj | ≥

r√
d

)
≤ dα1 exp

(
− r√

dα2

)
= δ(r).

Let B > 1 be large enough such that(
1− δ(B)

)100(B+1)2 ln(4/δ)/(εε2`) ≥ 1− δ, and α1(α2 +B) exp

(
− B
α2

)
≤ ε`
√
ε. (18)

We have the following bound on B.

Lemma C.10. To satisfy Equation (18), it is enough to let

B = Ω

(
√
d ln

(
d

εε`δ

))
.
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Proof. First, we let B ≥ α2

√
d ln(2dα1) to ensure δ(B) ≤ 1/2. Since for 0 ≤ z ≤ 1/2, we have e−z ≥ 1− z ≥ e−2z , to

satisfy the first condition of Equation (18), it is enough to ensure

e−δ(B)·200(B+1)2 ln(4/δ)/(εε2`) ≥ e−δ, equivalently δ(B) ≤ δεε2`
200(B + 1)2 ln(4/δ)

.

Invoking the definition of δ(B), we only need

B ≥ α2

√
d ln

(
200(B + 1)2dα1 ln(4/δ)

δεε2`

)
.

In other words, it is enough if B = Ω

(√
d ln

(
d
εε`δ

))
.

Similarly, to satisfy the second condition of Equation (18), we only need

B ≥ α2 ln

(
α1(α2 +B)

ε`
√
ε

)
,

and it is enough if B = Ω

(√
d ln

(
d
εε`δ

))
.

Now we define a truncated logistic loss `◦log as following:

`◦log(z) :=


`log

(
− B√

ε

)
if z ≤ − B√

ε
,

`log(z) if z ≥ − B√
ε
.

We also letR◦(w) and R̂◦(w) denote the population and empirical risk with the truncated logistic loss. We have the next
result.

Lemma C.11. Suppose B > 1 is chosen according to Equation (18). Using a constant step size 4/B2, and

100(B + 1)2 ln(4/δ)

εε2`
samples, and

B2

4εε`
steps,

with probability 1− 2δ, projected gradient descent can ensure

R◦(wt) ≤ min
0≤ρ≤1/

√
ε
R(ρū) + ε`.

Proof. It follows from Equation (18) that with probability 1− δ, it holds that ‖xi‖ ≤ B for all training examples. Therefore
Lemma C.8 implies that

R̂(wt) ≤ min
0≤ρ≤1/

√
ε
R̂(ρū) +

B2

8εt
.

Since ‖xi‖ ≤ B, and the domain is B(1/
√
ε), it follows that

R̂◦(wt) ≤ min
0≤ρ≤1/

√
ε
R̂◦(ρū) +

B2

8εt
.

Letting t = B2

4εε`
, we get

R̂◦(wt) ≤ min
0≤ρ≤1/

√
ε
R̂◦(ρū) +

ε`
2
. (19)
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Note that by the construction of the truncated logistic loss, it holds that

`◦log(z) ≤ B√
ε

+ 1.

Then by invoking the standard Rademacher complexity results (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5, Lemma
26.9, Lemma 26.10), and recall that we work under the event ‖xi‖ ≤ B for all training examples, we can show with
probability 1− 2δ that for all w ∈ B(1/

√
ε),

∣∣∣R◦(w)− R̂◦(w)
∣∣∣ ≤ 2B√

εn
+ 3

(
B√
ε

+ 1

)√
ln(4/δ)

2n

≤ 2(B + 1)√
ε

√
ln(4/δ)

n
+

3(B + 1)√
ε

√
ln(4/δ)

2n

≤ 5(B + 1)

√
ln(4/δ)

εn
.

Letting n = 100(B+1)2 ln(4/δ)
εε2`

, we have ∣∣∣R◦(w)− R̂◦(w)
∣∣∣ ≤ ε`

2
. (20)

It then follows from Equations (19) and (20) that with probability 1− 2δ,

R◦(wt) ≤ min
0≤ρ≤1/

√
ε
R◦(ρū) + ε` ≤ min

0≤ρ≤1/
√
ε
R(ρū) + ε`,

where we use `◦log ≤ `log in the last inequality.

Finally, we show thatR◦(wt) is close toR(wt).

Lemma C.12. For all w ∈ B(1/
√
ε), it holds thatR◦(w) ≥ R(w)− ε`.

Proof. Note that if `log

(
y〈w, x〉

)
6= `◦log

(
y〈w, x〉

)
, then y〈w, x〉 ≤ −B/

√
ε, which implies

∣∣〈w, x〉∣∣ ≥ B/√ε. Moreover,
in this case

`log

(
y〈w, x〉

)
− `◦log

(
y〈w, x〉

)
≤ `log

(
y〈w, x〉

)
− `log(0) ≤

∣∣〈w, x〉∣∣ .
Therefore

R(w)−R◦(w) = Ex∼Px
[
`log

(
y〈w, x〉

)
− `◦log

(
y〈w, x〉

)]
≤ Ex∼Px

[∣∣〈w, x〉∣∣1|〈w,x〉|≥B/√ε] .
We can then invoke Equation (12) and get

R(w)−R◦(w) ≤ α1

(
α2‖w‖+

B√
ε

)
exp

(
− B

α2‖w‖
√
ε

)
. (21)

Note that the right hand side of Equation (21) is increasing with ‖w‖, therefore we can let ‖w‖ be 1/
√
ε and get

R(w)−R◦(w) ≤ α1
α2 +B√

ε
exp

(
− B
α2

)
≤ ε`,

where we use Equation (18) in the last inequality.

Now putting everything together, under the conditions of Lemma C.11, with probability 1− 2δ, projected gradient descent
ensuresR(wt) ≤ min0≤ρ≤1/

√
εR(ρū) + 2ε`. Moreover, by applying Lemma C.10 to Lemma C.11, we can see the sample

complexity is Õ
(
d ln(1/δ)3/(εε2`)

)
, and the iteration complexity is Õ

(
d ln(1/δ)2/(εε`)

)
.
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C.2. Omitted proofs from Section 3.2

In this section, we prove Lemma C.4. We first prove the following approximation bound after we replace the true label with
the label given by the ground-truth solution, which covers Lemma 3.11 and sub-exponential distributions.

Lemma C.13 (Lemma 3.11, including the sub-exponential case). For ` ∈ {`log, `h}, if ‖x‖ ≤ B almost surely,

|term (3)| ≤ B‖w̄ − ŵ‖ ·OPT.

If Px is (α1, α2)-sub-exponential, then

|term (3)| ≤ (1 + 2α1)α2‖w̄ − ŵ‖ ·OPT · ln(1/OPT).

Proof. Note that for both the logistic loss and the hinge loss, it holds that `(−z)− `(z) = z, therefore

term (3) = E(x,y)∼P

[
1y 6=sign(〈w̄,x〉) · y〈w̄ − ŵ, x〉

]
, (22)

It then follows from the triangle inequality that

|term (3)| ≤ E(x,y)∼P

[
1y 6=sign(〈w̄,x〉)

∣∣〈w̄ − ŵ, x〉∣∣]
Now we can invoke Lemma A.2 with w = w̄ and w′ = w̄ − ŵ to prove Lemma C.13.

Next we prove the lower bound on term (4).

Proof of Lemma 3.12. Note that in term (4), we only care about 〈ŵ, x〉 and 〈w̄, x〉, therefore we can focus on the two-
dimensional space spanned by w̄ and ŵ. Let ϕ denote the angle between w̄ and ŵ. Without loss of generality, we can
consider the following graph, where we put w̄ at angle 0, and ŵ at angle ϕ.

w̄

ŵ

ϕ

We divide the graph into four parts given by different polar angles: (i) (−π2 ,−
π
2 + ϕ), (ii) (−π2 + ϕ, π2 ), (iii) (π2 ,

π
2 + ϕ),

and (iv) (π2 + ϕ, 3π
2 ). Note that term (4) is 0 on parts (ii) and (iv), therefore we only need to consider parts (i) and (iii):

term (4) = E(i) and (iii)

[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)]
= E(i) and (iii)

[
−sign

(
〈w̄, x〉

)
〈ŵ, x〉

]
.

Here we use the fact that `(−z)− `(z) = z for both the logistic loss and the hinge loss.
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For simplicity, let p denote the density of the projection of Px onto the space spanned by ŵ and w̄. Under Assumption 3.2,
we have

term (4) = E(i) and (iii)

[
−sign

(
〈w̄, x〉

)
〈ŵ, x〉

]
=

∫ ∞
0

∫ −π2 +ϕ

−π2
−r‖ŵ‖ cos(ϕ− θ)p(r, θ)r dθ dr +

∫ ∞
0

∫ π
2 +ϕ

π
2

r‖ŵ‖ cos(θ − ϕ)p(r, θ)r dθ dr

≥ 2

U

∫ R

0

∫ ϕ

0

r‖ŵ‖ sin(θ)r dθ dr

=
2R3‖ŵ‖

(
1− cos(ϕ)

)
3U

≥ 4R3‖ŵ‖ϕ2

3Uπ2
,

where we use the fact that 1− cos(ϕ) ≥ 2ϕ2

π2 for all ϕ ∈ [0, π].

Next, we prove the following upper bound on term (5), covering Lemma 3.13 and the sub-exponential case.

Lemma C.14 (Lemma 3.13, including the sub-exponential case). For ` = `h, term (5) is 0. For ` = `log, under
Assumption 3.3, if ‖x‖ ≤ B almost surely, then

|term (5)| ≤ 12Cκ ·
ϕ(ŵ, w̄)

‖ŵ‖
,

where Cκ :=
∫ B

0
κ(r) dr, while if Px is (α1, α2)-sub-exponential, then

|term (5)| ≤ 2α1OPT2 + 12Cκ ·
ϕ(ŵ, w̄)

‖ŵ‖
,

where Cκ :=
∫ 3α2 ln(1/OPT)

0
κ(r) dr.

Proof. For the hinge loss, term (5) is 0 simply because `h(z) = 0 when z ≥ 0. Next we consider the logistic loss.

Note that term (5) only depends on 〈ŵ, x〉 and 〈w̄, x〉, therefore we can focus on the subspace spanned by ŵ and w̄. For
simplicity, let p denote the density function of the projection of Px onto the space spanned by ŵ and w̄. Moreover, without
loss of generality we can assume w̄ has polar angle 0 while ŵ has polar angle ϕ, where we let ϕ denote ϕ(ŵ, w̄) for
simplicity. It then follows that

term (5) =

∫ ∞
0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ − ϕ)
∣∣) p(r, θ)r dθ dr −

∫ ∞
0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣) p(r, θ)r dθ dr

=

∫ ∞
0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣) (p(r, θ + ϕ)− p(r, θ)

)
r dθ dr.

First, if ‖x‖ ≤ B almost surely, then

|term (5)| ≤
∫ B

0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣)∣∣p(r, θ + ϕ)− p(r, θ)

∣∣ r dθ dr

≤
∫ B

0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣) · κ(r)ϕ · r dθ dr

= ϕ

∫ B

0

κ(r)

(∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣) r dθ

)
dr.

Then Lemma A.1 implies

|term (5)| ≤ ϕ
∫ B

0

κ(r)
8
√

2

‖ŵ‖
dr = 8

√
2Cκ ·

ϕ

‖ŵ‖
≤ 12Cκ ·

ϕ

‖ŵ‖
.
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Next, assume Px is (α1, α2)-sub-exponential. For a 2-dimensional random vector x sampled according to pV , note that

Pr
(
‖x‖ ≥ B

)
≤ Pr

(
|x1| ≥

√
2B

2

)
+ Pr

(
|x2| ≥

√
2B

2

)
≤ 2α1 exp

(
−
√

2B

2α2

)
.

Letting B := 2
√

2α2 ln
(

1
OPT

)
, we get Pr

(
‖x‖ ≥ B

)
≤ 2α1OPT2. Since `log(z) ≤ 1 when z ≥ 0, we have

term (5) ≤ 2α1OPT2

+

∫ B

0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ − ϕ)
∣∣) p(r, θ)r dθ dr −

∫ B

0

∫ 2π

0

`log

(
r‖ŵ‖

∣∣cos(θ)
∣∣) p(r, θ)r dθ dr.

Invoking the previous bound for bounded distributions, we get

term (5) ≤ 2α1OPT2 + 12 · ϕ

‖ŵ‖
·
∫ 2
√

2α2 ln( 1
OPT )

0

κ(r) dr ≤ 2α1OPT2 + 12Cκ ·
ϕ

‖ŵ‖
,

where Cκ :=
∫ 3α2 ln( 1

OPT )
0 κ(r) dr. Similarly, we can show

−term (5) ≤ 2α1OPT2 + 12Cκ ·
ϕ

‖ŵ‖
.

Next we prove Lemma 3.14, which is basically (Diakonikolas et al., 2020d, Claim 3.4).

Proof of Lemma 3.14. Under Assumption 3.2, we have

Pr
(

sign
(
〈ŵ, x〉

)
6= sign

(
〈w̄, x〉

))
≤ 2ϕ(ŵ, w̄)

∫ ∞
0

σ(r)r dr ≤ 2Uϕ(ŵ, w̄).

Lastly, we prove Lemma C.4 for sub-exponential distributions.

Proof of Lemma C.4, sub-exponential distributions. For simplicity, let ϕ denotes ϕ(ŵ, w̄). Lemmas 3.12, C.13 and C.14
imply

C1‖ŵ‖ϕ2 ≤ ε` + C2‖w̄ − ŵ‖ ·OPT · ln
(

1

OPT

)
+ C3OPT2 + C4Cκ ·

ϕ

‖ŵ‖

≤ ε` + C2‖ŵ‖ϕ ·OPT · ln
(

1

OPT

)
+ C3OPT2 + C4Cκ ·

ϕ

‖ŵ‖
,

where C1 = 4R3

3Uπ2 , and C2 = (1 + 2α1)α2, and C3 = 2α1, and C4 = 12. It follows that at least one of the following four
cases is true:

1. C1‖ŵ‖ϕ2 ≤ 4ε`, which implies ϕ = O
(√

ε`/‖ŵ‖
)
.

2. C1‖ŵ‖ϕ2 ≤ 4C2‖ŵ‖ϕ ·OPT · ln
(

1
OPT

)
, which implies ϕ = O

(
OPT ln

(
1

OPT

))
.

3. C1‖ŵ‖ϕ2 ≤ 4C3OPT2, which implies ϕ = O(OPT) since ‖ŵ‖ = Ω(1).

4. Lastly,

C1‖ŵ‖ϕ2 ≤ 4C2Cκ ·
ϕ

‖ŵ‖
, which implies ϕ = O

(
Cκ
‖ŵ‖2

)
. (23)

Finally, we just need to invoke Lemma 3.14 to finish the proof.
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C.3. Omitted proofs from Section 3.3

We first prove the upper bound of term (5) under Assumption 3.2, without assuming the radially Lipschitz condition.

Proof of Lemma 3.15. Note that

term (5) ≤ E
[
`log

(
sign

(
〈ŵ, x〉

)
〈ŵ, x〉

)]
= E

[
`log

(∣∣〈ŵ, x〉∣∣)] ≤ 12U

‖ŵ‖
,

where we invoke Lemma C.1 at the end. Similarly, we can show

−term (5) ≤ 12U

‖w̄‖
=

12U

‖ŵ‖

Next we prove a general result similar to Lemma C.4.

Theorem C.15. Under Assumption 3.2, suppose ŵ satisfiesRlog(ŵ) ≤ Rlog(‖ŵ‖ū) + ε` for some ε` ∈ [0, 1). If ‖x‖ ≤ B
almost surely, then

ϕ(ŵ, ū) = O

(
max

{
OPT,

√
ε`
‖ŵ‖

,
1

‖ŵ‖

})
.

If Px is (α1, α2)-sub-exponential and ‖ŵ‖ = Ω(1), then

ϕ(ŵ, ū) = O

(
max

{
OPT · ln

(
1

OPT

)
,

√
ε`
‖ŵ‖

,
1

‖ŵ‖

})
.

Proof. For simplicity, let ϕ denote ϕ(ŵ, ū). Consider the case ‖x‖ ≤ B almost surely. The condition Rlog(ŵ) ≤
Rlog(‖ŵ‖ū) + ε`, and Lemmas 3.12, 3.15 and C.13 imply

C1‖ŵ‖ϕ2 ≤ ε` +B‖w̄ − ŵ‖ ·OPT +
C2

‖ŵ‖

≤ ε` +B‖ŵ‖ϕ ·OPT +
C2

‖ŵ‖
,

where C1 = 4R3/(3Uπ2) and C2 = 12U . Now at least one of the following three cases is true:

1. C1‖ŵ‖ϕ2 ≤ 3ε`, which implies ϕ = O
(√

ε`/‖ŵ‖
)
;

2. C1‖ŵ‖ϕ2 ≤ 3B‖ŵ‖ϕ ·OPT, which implies ϕ = O(OPT);

3. C1‖ŵ‖ϕ2 ≤ 3C1/‖ŵ‖, which implies ϕ = O(1/‖ŵ‖).

The proof of the sub-exponential case is similar.

Now we prove Lemma 3.16.

Proof of Lemma 3.16. First, if ε or OPT does not satisfy the conditions of Lemma C.7, then Lemma 3.16 holds vacuously;
therefore in the following we consider the settings of Lemmas C.6 and C.7 with ε` =

√
ε.

First, if ‖x‖ ≤ B almost surely, Equation (15) and Theorem C.15 imply

ϕ(wt, ū) = O

(
max

{
OPT,

√
ε`
‖wt‖

,
1

‖wt‖

})
,
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and moreover Lemma C.7 implies

‖wt‖ = Ω

(
min

{
1√
ε
,

1√
OPT

})
.

If ε ≤ OPT, then ‖wt‖ = Ω
(

1√
OPT

)
, and

ϕ(wt, ū) = O

(
max

{
OPT,

√
ε`
√

OPT,
√

OPT

})
= O

(
max

{
OPT,

√√
ε
√

OPT,
√

OPT

})
= O

(
max

{
OPT,

√√
OPT

√
OPT,

√
OPT

})
= O

(√
OPT

)
.

If ε ≥ OPT, then ‖wt‖ = Ω
(

1√
ε

)
, and

ϕ(wt, ū) = O

(
max

{
OPT,

√
ε`
√
ε,
√
ε

})
= O

(
max

{
OPT,

√√
ε
√
ε,
√
ε

})
= O

(√
OPT + ε

)
.

The proof for the sub-exponential case is similar.

D. Omitted proofs from Section 4
In this section, we prove Theorem 4.1. We first prove a bound onRh(ū).

Lemma D.1. If ‖x‖ ≤ B almost surely, thenRh(ū) ≤ B ·OPT, while if Px is (α1, α2)-sub-exponential, thenRh(ū) ≤
(1 + 2α1)α2 ·OPT · ln(1/OPT).

Proof. Note that

Rh(ū) = E(x,y)∼P

[
`h
(
y〈ū, x〉

)]
= E(x,y)∼P

[
1sign(〈ū,x〉6=y)

∣∣〈ū, x〉∣∣] .
It then follows from Lemma A.2 that if ‖x‖ ≤ B almost surely, then

Rh(ū) ≤ B ·OPT,

while if Px is (α1, α2)-sub-exponential, then

Rh(ū) ≤ (1 + 2α1)α2 ·OPT · ln
(

1

OPT

)
.

Next we prove the following result, which covers Lemma 4.2 but also handles sub-exponential distributions.

Lemma D.2 (Lemma 4.2, including the sub-exponential case). Suppose Assumption 3.2 holds. Consider an arbitrary
w ∈ D, and let ϕ denote ϕ(w, ū). If ‖x‖ ≤ B almost surely, then

Rh(r̄ū) ≤ Rh(‖w‖ū) +O
(
(OPT + ε)2

)
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and

Rh(w)−Rh(‖w‖ū) ≥ 4R3

3Uπ2
‖w‖ϕ2 −B‖w‖ϕ ·OPT.

If Px is (α1, α2)-sub-exponential, then

Rh(r̄ū) ≤ Rh(‖w‖ū) +O
((

OPT · ln(1/OPT) + ε
)2)

and

Rh(w)−Rh(‖w‖ū) ≥ 4R3

3Uπ2
‖w‖ϕ2

− (1 + 2α1)α2‖w‖ϕ ·OPT · ln(1/OPT).

Proof. First assume ‖x‖ ≤ B almost surely. Note that `h is positive homogeneous, and thus for any positive constant c, we
haveRh(cw) = cRh(w). Therefore, if r̄ ≤ ‖w‖, then

Rh(r̄ū) =
r̄

‖w‖
Rh(‖w‖ū) ≤ Rh(‖w‖ū).

If r̄ ≥ ‖w‖, then

Rh(r̄ū) = Rh
(
‖w‖ū

)
+Rh(ū)

(
r̄ − ‖w‖

)
≤ Rh

(
‖w‖ū

)
+Rh(ū) (r̄ − 1) ,

since ‖w‖ ≥ 1 for all w ∈ D. Recall that

r̄ :=
1

〈v, ū〉
=

1

cos
(
ϕ(v, ū)

) ≤ 1

1− ϕ(v, ū)2/2
,

and therefore the first-phase of algorithm ensures r̄ = 1 + O(OPT + ε) for bounded distributions, and r̄ =
1 +O

(
OPT · ln(1/OPT) + ε

)
for sub-exponential distributions. It then follows that for bounded distributions,

Rh(r̄ū) ≤ Rh
(
‖wt‖ū

)
+Rh(ū) ·O(OPT + ε)

≤ Rh
(
‖wt‖ū

)
+B ·OPT ·O(OPT + ε)

= Rh
(
‖wt‖ū

)
+O

(
(OPT + ε)2

)
,

where we apply Lemma D.1 at the end. It also follows directly from Lemmas 3.12, C.13 and C.14 that

Rh(w)−Rh(‖w‖ū) ≥ 4R3

3Uπ2
‖w‖ϕ2 −B

∥∥w − ‖w‖ū∥∥ ·OPT

≥ 4R3

3Uπ2
‖w‖ϕ2 −B‖w‖ϕ ·OPT.

The proof for the sub-exponential case is similar.

Next we prove Theorem 4.1. We first consider the bounded case.

Proof of Theorem 4.1, bounded distribution. Here we assume ‖x‖ ≤ B almost surely. We will show that under the
conditions of Theorem 4.1, then

E
[

min
0≤t<T

ϕt

]
= O(OPT + ε), where ϕt := ϕ(wt, ū). (24)

Further invoking Lemma 3.14 finishes the proof.
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Recall that at step t, after taking the expectation with respect to (xt, yt), we have

E
[
‖wt+1 − r̄ū‖2

]
≤ ‖wt − r̄ū‖2 − 2η

〈
∇Rh(wt), wt − r̄ū

〉
+ η2B2M(wt)

≤ ‖wt − r̄ū‖2 − 2η
(
Rh(wt)−Rh(r̄ū)

)
+ η2B2M(wt). (25)

First, Lemma D.2 implies

Rh(wt)−Rh(r̄ū) ≥ Rh(wt)−Rh(‖wt‖ū)−O
(
(OPT + ε)2

)
≥ 2C1‖wt‖ϕ2

t −B‖wt‖ϕt ·OPT−O
(
(OPT + ε)2

)
,

where C1 := 2R3/(3Uπ2). Note that if ϕt ≤ B ·OPT/C1, then Equation (24) holds; therefore in the following we assume

ϕt ≥
B

C1
·OPT, (26)

which implies

Rh(wt)−Rh(r̄ū) ≥ C1‖wt‖ϕ2
t −O

(
(OPT + ε)2

)
≥ C1ϕ

2
t −O

(
(OPT + ε)2

)
, (27)

since ‖w‖ ≥ 1 for all w ∈ D.

On the other hand, Equation (26) and Lemma 3.14 imply

M(wt) = R0−1(wt) ≤ OPT + 2Uϕt ≤
(
C1

B
+ 2U

)
ϕt.

Let

C2 :=
C1(

C1

B + 2U
)
B2

.

Note that if ϕt ≤ ε, then Equation (24) is true; otherwise we can assume ε ≤ ϕt, and let η = C2ε, we have

ηB2M(wt) ≤ C2εB
2

(
C1

B
+ 2U

)
ϕt = C1εϕt ≤ C1ϕ

2
t . (28)

Now Equations (25), (27) and (28) imply

E
[
‖wt+1 − r̄ū‖2

]
≤ ‖wt − r̄ū‖2 − 2ηC1ϕ

2
t + ηC1ϕ

2
t + η ·O

(
(OPT + ε)2

)
= ‖wt − r̄ū‖2 − ηC1ϕ

2
t + η ·O

(
(OPT + ε)2

)
.

Taking the expectation and average, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ ‖w0 − r̄ū‖2

ηC1T
+
O
(
(OPT + ε)2

)
C1

.

Note that

‖w0 − r̄ū‖ = tan(ϕ0) = O
(√

OPT + ε
)
,

and also recall η = C2ε, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O(OPT + ε)

C1C2εT
+
O
(
(OPT + ε)2

)
C1

.

Letting T = Ω(1/ε2), we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O ((OPT + ε)ε
)

+O
(
(OPT + ε)2

)
= O

(
(OPT + ε)2

)
,

and thus Equation (24) holds.
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Next we consider sub-exponential distributions. We first prove the following bound on the square of norm.

Lemma D.3. Suppose Px is (α1, α2)-sub-exponential. Given any threshold τ > 0, it holds that

E
[
‖x‖21‖x‖≥τ

]
≤ dα1

(
τ2 + 2

√
dα2τ + 2dα2

2

)
exp

(
− τ√

dα2

)
.

Proof. First recall that

Pr
(
‖x‖ ≥ τ

)
≤

d∑
j=1

Pr

(
|xj | ≥

τ√
d

)
≤ dα1 exp

(
− τ√

dα2

)
=: δ(τ).

Let µ(τ) := Pr
(
‖x‖ ≥ τ

)
. Integration by parts gives

E
[
‖x‖21‖x‖≥τ

]
=

∫ ∞
τ

r2 · (−dµ(r)) = τ2µ(τ) +

∫ ∞
τ

2rµ(r) dr ≤ τ2δ(τ) +

∫ ∞
τ

2rδ(r) dr.

Calculation gives

E
[
‖x‖21‖x‖≥τ

]
≤ dα1

(
τ2 + 2

√
dα2τ + 2dα2

2

)
exp

(
− τ√

dα2

)
.

Now we are ready to prove Theorem 4.1 for sub-exponential distributions.

Proof of Theorem 4.1, sub-exponential distributions. At step t, we have

‖wt+1 − r̄ū‖2 ≤ ‖wt − r̄ū‖2 − 2η
〈
`′h
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
+ η2`′h

(
yt〈wt, xt〉

)2 ‖xt‖2
= ‖wt − r̄ū‖2 − 2η

〈
`′h
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
− η2`′h

(
yt〈wt, xt〉

)
‖xt‖2, (29)

where we use (`′h)2 = −`′h. Next we bound E(xt,yt)

[
−`′h

(
yt〈wt, xt〉

)
‖xt‖2

]
. Let τ :=

√
dα2 ln(d/ε). When ‖xt‖ ≤ τ ,

we have

E
[
−`′h

(
yt〈wt, xt〉

)
‖xt‖21‖xt‖≤τ

]
≤ τ2M(wt) ≤ dα2

2M(wt) · ln(d/ε)2.

On the other hand, when ‖xt‖ ≥ τ , Lemma D.3 implies

E
[
−`′h

(
yt〈wt, xt〉

)
‖xt‖21‖xt‖≥τ

]
≤ E

[
‖xt‖21‖xt‖≥τ

]
≤ dα1 ·O

(
d ln(d/ε)2

)
· ε
d

= O
(
dε ln(d/ε)2

)
,

where we also use ln(1/ε) > 1, since ε < 1/e. To sum up,

E(xt,yt)

[
−`′h

(
yt〈wt, xt〉

)
‖xt‖2

]
≤ Cd

(
M(wt) + ε

)
· ln(d/ε)2

for some constant C.

Now taking the expectation with respect to (xt, yt) on both sides of Equation (29), we have

E
[
‖wt+1 − r̄ū‖2

]
≤ ‖wt − r̄ū‖2 − 2η

(
Rh(wt)−Rh(r̄ū)

)
+ η2Cd

(
M(wt) + ε

)
· ln(d/ε)2. (30)

Similarly to the bounded case, we will show that

E
[

min
0≤t<T

ϕt

]
= O

(
OPT · ln(1/OPT) + ε

)
, where ϕt := ϕ(wt, ū). (31)
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First, Lemma D.2 implies

Rh(wt)−Rh(r̄ū) ≥ Rh(wt)−Rh(‖wt‖ū)−O
((

OPT · ln(1/OPT) + ε
)2)

≥ 2C1‖wt‖ϕ2
t − C2‖wt‖ϕt ·OPT · ln(1/OPT)−O

((
OPT · ln(1/OPT) + ε

)2)
,

where C1 := 2R3/(3Uπ2) and C2 = (1 + 2α1)α2. Note that if ϕt ≤ C2 · OPT · ln(1/OPT)/C1, then Equation (31)
holds; therefore in the following we assume

ϕt ≥
C2

C1
·OPT · ln(1/OPT), (32)

which implies

Rh(wt)−Rh(r̄ū) ≥ C1‖wt‖ϕ2
t −O

((
OPT · (1/OPT) + ε

)2)
≥ C1ϕ

2
t −O

((
OPT · ln(1/OPT) + ε

)2)
, (33)

since ‖w‖ ≥ 1 for all w ∈ D.

On the other hand, for OPT ≤ 1/e, Equation (32) and Lemma 3.14 imply

M(wt) = R0−1(wt) ≤ OPT + 2Uϕt ≤
(
C1

C2
+ 2U

)
ϕt.

Let

C2 :=
C1(

C1

C2
+ 2U

)
C
.

Note that if ϕt ≤ ε, then Equation (31) is true; otherwise we can assume ε ≤ ϕt, and let η = C2ε
d ln(d/ε)2 , we have

ηCd
(
M(wt) + ε

)
ln(d/ε)2 =

C2ε

d ln(d/ε)2
CdM(wt) · ln(d/ε)2 +

C2ε

d ln(d/ε)2
Cdε · ln(d/ε)2

≤ C2εC

(
C1

C2
+ 2U

)
ϕt + C2Cε

2

= C1εϕt +O
((

OPT · ln(1/OPT) + ε
)2)

≤ C1ϕ
2
t +O

((
OPT · ln(1/OPT) + ε

)2)
. (34)

Now Equations (30), (33) and (34) imply

E
[
‖wt+1 − r̄ū‖2

]
≤ ‖wt − r̄ū‖2 − 2ηC1ϕ

2
t + ηC1ϕ

2
t + η ·O

((
OPT · ln(1/OPT) + ε

)2)
= ‖wt − r̄ū‖2 − ηC1ϕ

2
t + η ·O

((
OPT · ln(1/OPT) + ε

)2)
.

Taking the expectation and average, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ ‖w0 − r̄ū‖2

ηC1T
+
O
((

OPT · ln(1/OPT) + ε
)2)

C1
.

Note that

‖w0 − r̄ū‖ = tan(ϕ0) = O
(√

OPT · ln(1/OPT) + ε
)
,
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and also recall η = C2ε
d ln(d/ε)2 , we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O
(
OPT · ln(1/OPT) + ε

)
d ln(d/ε)2

C1C2εT
+
O
((

OPT · ln(1/OPT) + ε
)2)

C1
.

Letting T = Ω
(
d ln(d/ε)2

ε2

)
, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O (OPT · ln(1/OPT) + ε
)
· ε+O

((
OPT · ln(1/OPT) + ε

)2)
= O

((
OPT · ln(1/OPT) + ε

)2)
,

and thus Equation (31) holds.


