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Abstract
Meta-learning aims to extract meta-knowledge
from historical tasks to accelerate learning on
new tasks. Typical meta-learning algorithms like
MAML learn a globally-shared meta-model for all
tasks. However, when the task environments are
complex, task model parameters are diverse and a
common meta-model is insufficient to capture all
the meta-knowledge. To address this challenge, in
this paper, task model parameters are structured
into multiple subspaces, and each subspace repre-
sents one type of meta-knowledge. We propose
an algorithm to learn the meta-parameters (i.e.,
subspace bases). We theoretically study the gener-
alization properties of the learned subspaces. Ex-
periments on regression and classification meta-
learning datasets verify the effectiveness of the
proposed algorithm.

1. Introduction
Humans are capable of learning new tasks from few trials
by taking advantage of prior experiences. However, the
state-of-the-art performance of deep networks heavily re-
lies on the availability of large amounts of labeled samples.
To improve data efficiency, meta-learning (or learning-to-
learn) (Bengio et al., 1991; Thrun & Pratt, 1998) seeks to
design algorithms that extract meta-knowledge from his-
torical tasks to accelerate learning on unseen tasks. Meta-
learning has been widely used for few-shot learning (Finn
et al., 2017; Wang et al., 2020b), neural architecture search
(Zoph & Le, 2017; Liu et al., 2018), hyperparameter opti-
mization (Maclaurin et al., 2015; Franceschi et al., 2018),
reinforcement learning (Nagabandi et al., 2018; Rakelly
et al., 2019), and natural language processing (Gu et al.,
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2018; Obamuyide & Vlachos, 2019).

Typical meta-learning algorithms (Finn et al., 2017; Denevi
et al., 2019; Rajeswaran et al., 2019; Zhou et al., 2019) learn
a globally-shared meta-model for all tasks. For example, the
Model-Agnostic Meta-Learning (MAML) algorithm (Finn
et al., 2017) learns a meta-initialization such that a good
model for an unseen task can be fine-tuned from limited
samples by a few gradient updates. However, when the task
environments are heterogeneous, task model parameters are
diverse and a single meta-model may not be sufficient to
capture all the meta-knowledge.

To tackle this issue, a variety of methods have been proposed
to learn structured meta-knowledge by exploring the task
structure (Jerfel et al., 2019; Yao et al., 2019; 2020; Wang
et al., 2020a; Zhou et al., 2021a; Kong et al., 2020; Tripura-
neni et al., 2021). For example, Jerfel et al. (2019) formulate
the task distribution as a mixture of hierarchical Bayesian
models, and update the components (i.e., initializations) us-
ing an Expectation Maximization procedure. TSA-MAML
(Zhou et al., 2021a) first trains task models using vanilla
MAML. Tasks are grouped into clusters by k-means cluster-
ing, and cluster centroids form group-specific initializations.

Alternatively, task model parameters can be formulated into
a subspace. In the linear regression setting where task model
vectors are sampled from a low-dimensional subspace, re-
cent attempts (Kong et al., 2020; Tripuraneni et al., 2021)
use a moment-based estimator to recover the subspace based
on the property that the column space of the sample covari-
ance matrix recovers the underlying subspace. However, for
nonlinear models such as deep networks, this nice property
no longer holds and the moment-based methods cannot be
generalized.

In this paper, we propose a model-agnostic algorithm called
MUSML (MUltiple Subspaces for Meta-Learning). Each
subspace represents one type of meta-knowledge, and sub-
space bases are treated as meta-parameters. For each task,
the base learner builds a task model from each subspace.
The meta-learner then updates the subspace bases by mini-
mizing a weighted validation loss of the task models. We
theoretically establish upper bounds on the population risk,
empirical risk and generalization gap. All these bounds
depend on the complexity of the subspace mixture (number
of component subspaces and subspace dimensionality). Ex-
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periments on various datasets verify the effectiveness of the
proposed MUSML.

Our major contributions are four-fold: (i) We formulate
task model parameters into a subspace mixture and propose
a novel algorithm to learn the subspace bases. (ii) The
proposed MUSML is model-agnostic, and can be used
on linear and nonlinear models. (iii) We theoretically
study the generalization properties of the learned subspaces.
(iv) We perform extensive experiments on synthetic and
real-world datasets. Results on the synthetic dataset con-
firm that MUSML is able to discover the underlying sub-
spaces of task model parameters. Results on the real–
world datasets demonstrate superiority of MUSML over
the state-of-the-arts.

Notations. Vectors (e.g., x) and matrices (e.g., X) are de-
noted by lowercase and uppercase boldface letters, respec-
tively. For a vector x, its `2-norm is ‖x‖. For a matrix X, its
spectral norm is ‖X‖ and its Frobenius norm is ‖X‖F. Sub-
spaces (e.g., S) are denoted by blackboard boldface letters.
U(a, b) is the uniform distribution over the interval [a, b].
N (µ;σ2) is the univariate normal distribution with mean µ
and variance σ2, while N (µ; Σ) is a multivariate normal
distribution with mean vector µ and covariance matrix Σ.
σmin(X) is the smallest singular value of matrix X.

2. Related Work
Meta-Learning. Popular meta-learning algorithms can be
roughly divided into three categories: metric-based (Vinyals
et al., 2016; Snell et al., 2017; Bertinetto et al., 2018; Ore-
shkin et al., 2018; Lee et al., 2019), memory-based (Santoro
et al., 2016; Munkhdalai & Yu, 2017), and optimization-
based. In this paper, we focus on the last category. Repre-
sentative algorithms like MAML (Finn et al., 2017) and its
variants (such as REPTILE (Nichol et al., 2018), ANIL
(Raghu et al., 2020), Proto-MAML (Triantafillou et al.,
2020), and BMG (Flennerhag et al., 2022)) first learn a
meta-initialization from historical tasks. For a new task with
limited examples, a good model is then obtained by a few
gradient updates. Alternatively, other optimization-based al-
gorithms such as iMAML (Rajeswaran et al., 2019), (Denevi
et al., 2018; 2019), Meta-MinibatchProx (Zhou et al., 2019),
and MetaProx (Jiang et al., 2021)) learn a meta-regularizer
to bias risk minimization in the base learners.

Optimization-based meta-learning algorithms are effective
when the task models are close together. However, real-
world environments are complex, and the task model pa-
rameters are usually diverse. A globally-shared meta-model
may not be sufficient for all tasks to achieve fast adaption.

To tackle this challenge, Vuorio et al. (2019) and Yao et al.
(2019; 2020) build task-specific initializations by incorpo-
rating task representation. Denevi et al. (2020) propose to

learn a meta-regularization conditioned on the task’s side
information. Since discriminative task representations and
additional side information may not be easy to obtain, Jer-
fel et al. (2019) and Zhou et al. (2021a) cluster tasks into
multiple groups and learn group-specific initializations. Re-
cently, Kong et al. (2020); Saunshi et al. (2020); Tripuraneni
et al. (2021) structure task model parameters to a subspace.
However, this is limited to the linear regression setting and
cannot be extended to nonlinear models such as deep net-
works.

Learning neural network subspaces. Recent studies (Li
et al., 2018; Izmailov et al., 2020; Gressmann et al., 2020;
Wortsman et al., 2021) show that deep network can be opti-
mized in a low-dimensional parameter subspace. Wortsman
et al. (2021) empirically demonstrates that a learned sub-
space contains diverse solutions that can be ensembled to
boost accuracy. In meta-learning, learning of subspaces is
more challenging since the optimization problem is bilevel
and the learned subspaces need to generalize well on unseen
tasks with limited samples.

3. Methodology
Let p(τ) be a task distribution. Each task τ ∼ p(τ) corre-
sponds to a data distribution over (x, y), with input x and
label y. In practice, this data distribution is only accessible
via a training set Dtrτ = {(xi, yi) : i = 1, . . . , Ntr} and
a validation set Dvlτ = {(xi, yi) : i = 1, . . . , Nvl} of i.i.d.
samples. Let f(·; w) be a model parameterized by w ∈ Rd,
and L(D; w) = 1

|D|
∑

(x,y)∈D `(f(x; w), y) be its loss on
D, where `(·, ·) is a loss function (e.g., cross entropy or
mean squared error). In meta-learning, a collection of tasks
sampled from p(τ) are used to learn the meta-parameter.
The base learner takes a task τ and meta-parameter to con-
struct the model parameter wτ . The meta-learner then min-
imizes the validation loss Eτ∼p(τ)L(Dvlτ ; wτ ) w.r.t. the
meta-parameter. In this paper, the task model parameters
wτ ’s are assumed to form a subspace mixture, and the com-
ponent subspace bases are treated as meta-parameters.

3.1. Linear Regression Tasks

We first focus on the linear setting, where the model is linear
and all task parameters lie in one single (linear) subspace.
The following Proposition shows that the underlying sub-
space can be recovered using a moment-based estimator.

Proposition 3.1. (Kong et al., 2020; Tripuraneni et al.,
2021). Assume that p(τ) is a distribution of linear regres-
sion tasks. Each task τ is associated with a w?

τ ∈ Rd,
and its samples are generated as y = x>w?

τ + ξ, where
x ∼ N (0, I) and ξ ∼ N (0, σ2

ξ ) is the noise. Then,
Eτ∼p(τ)E(x,y)∼τ,(x′,y′)∼τyy

′xx′> = Eτ∼p(τ)w
?
τw

?>
τ .

Proposition 3.1 shows that Ŝ ≡ 1
|B|
∑
τ∈B yτy

′
τxτx

′>
τ is
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an unbiased estimator of Eτ∼p(τ)w
?
τw

?>
τ , where (xτ , yτ )

and (x′τ , y
′
τ ) are two samples drawn from τ , and B is a

collection of tasks. Hence, the column space of Ŝ recovers
the column space of Eτ∼p(τ)w

?
τw

?>
τ (i.e., the underlying

subspace) when the number of tasks is sufficient.

3.2. Proposed Method

While Proposition 3.1 can be used to recover the column
space in a linear meta-learning setting, extension to the non-
linear setting (such as deep networks) is difficult. To address
this problem, we propose a model-agnostic algorithm called
MUSML (MUltiple Subspaces for Meta-Learning). We as-
sume that the model parameters wτ ’s lie in K subspaces
{S1, . . . ,SK}, which can be seen as an approximation to
a nonlinear manifold. For simplicity, we assume that all
K subspaces have the same dimensionality m (this can be
easily extended to the case where the subspaces have dif-
ferent dimensionalities). Let Sk ∈ Rd×m be a basis of Sk.
{S1, . . . ,SK} are then the meta-parameters to be learned.

The proposed procedure is shown in Algorithm 1. Given a
task τ , the base learner searches for the model parameter
wτ over all subspaces with fixed Sk (steps 4-11). In each
subspace Sk, we search for the best linear combination v?τ,k
of the subspace’s basis to form wτ as

v?τ,k = arg min
vτ∈Rm

L(Dtrτ ; Skvτ ). (1)

Skv
?
τ,k is then the task model parameter corresponding

to the kth subspace. When `(f(x; w), y) is convex in w,
it is easy to verify that L(Dtrτ ; Skvτ ) is also convex in
vτ . Hence, problem (1) can be solved as a convex pro-
gram (Boyd & Vandenberghe, 2004). However, for non-
linear models such as deep networks, the loss function in
(1) is nonconvex, and thus finding v?τ,k is computationally
intractable. Instead, we seek an approximate minimizer vτ,k
by performing Tin gradient descent steps from an initial-
ization v

(0)
τ,k, i.e., v

(t′+1)
τ,k = v

(t′)
τ,k −α∇v

(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )

(where α > 0 is the step size), and vτ,k ≡ v
(Tin)
τ,k .

At meta-training, one can assign τ to the subspace with the
best training set performance. However, this is inefficient
for learning meta-parameters since only one subspace is up-
dated at each step. Similar to DARTS (Liu et al., 2018), we
relax the categorical choice to a softmax selection over all
candidate subspaces. The relaxed operation is differentiable
and all subspace bases can then be updated simultaneously,
which accelerates learning. Let oτ,k = L(Dtrτ ; Skvτ,k) be
the training loss for task τ when the kth subspace (where
k = 1, . . . ,K) is used to construct its task model. The meta-
learner updates {S1, . . . ,SK} by performing one gradient

Algorithm 1 MUltiple Subspaces for Meta-Learning
(MUSML).
Require: stepsize α, {ηt}; number of inner gradient

steps Tin, number of subspaces K, subspace dimen-
sion m, temperature {γt}; initialization v(0);

1: for t = 0, 1, . . . , T − 1 do
2: sample a task τ with Dtrτ and Dvlτ ;
3: base learner:
4: for k = 1, . . . ,K do
5: initialize v

(0)
τ,k = v(0);

6: for t′ = 0, 1, . . . , Tin − 1 do
7: v

(t′+1)
τ,k = v

(t′)
τ,k − α∇v

(t′)
τ,k

L(Dtrτ ; Sk,tv
(t′)
τ,k );

8: end for
9: vτ,k ≡ v

(Tin)
τ,k ;

10: oτ,k = L(Dtrτ ; Sk,tvτ,k);
11: end for
12: meta-learner:
13: Lvl =

∑K
k=1

exp(−oτ,k/γt)∑K
k′=1

exp(−oτ,k′/γt)
L(Dvlτ ; Sk,tvτ,k);

14: {S1,t+1, . . . ,Sk,t+1} = {S1,t, . . . ,Sk,t} −
ηt∇{S1,t,...,Sk,t}Lvl;

15: end for
16: Return S1,T , . . . ,SK,T .

update on the weighted validation loss (steps 13-14):

K∑
k=1

exp(−oτ,k/γ)∑K
k′=1 exp(−oτ,k′/γ)

L(Dvlτ ; Skvτ,k), (2)

where γ > 0 is the temperature. When γ is close to 0,
the softmax selection becomes one-hot; whereas when γ
increases to∞, the selection becomes uniform. In practice,
we start at a high temperature and anneal to a small but
nonzero temperature as in (Jang et al., 2016; Chen et al.,
2020; Zhou et al., 2021b). Note that {oτ,k : k = 1, . . . ,K}
depend on the bases and∇{S1,...,Sk}oτ,k can be computed
by auto-differentiation.

At meta-testing, for each testing task τ ′, we assign τ ′ to
the subspace with the lowest training loss, i.e., wτ ′ =
Skτ′ vτ ′,kτ′ , where kτ ′ ≡ arg min1≤k≤K L(Dtrτ ′ ; Skvτ ′,k)
is the chosen subspace index.

3.3. Analysis

In this section, we study the generalization performance
of the learned subspace bases S ≡ {S1, . . . ,SK} at meta-
testing. The following assumptions on smoothness and
compactness are standard in meta-learning (Bao et al., 2021;
Grazzi et al., 2020; Fallah et al., 2020) and bilevel opti-
mization (Franceschi et al., 2018; Bao et al., 2021). The
boundedness assumption on the loss function is widely used
in analyzing meta-learning algorithms (Maurer & Jaakkola,
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2005; Pentina & Lampert, 2014; Amit & Meir, 2018) and
traditional machine learning algorithms (Bousquet & Elisse-
eff, 2002).

Assumption 3.2. (i) `(f(x; w), y) and ∇w`(f(x; w), y)
are %-Lipschitz and β-Lipschitz in w, respectively;1 (ii)
{vτ,k : τ ∼ p(τ), k = 1, . . . ,K} and column vectors of
Sk (k = 1, . . . ,K) are in a compact set, and their `2-norms
are upper bounded by a constant ρ > 0. (iii) `(·, ·) is upper
bounded by a constant ν > 0.

Let R(S) ≡ Eτ ′EDtr
τ′
E(x,y)∼τ ′`(f(x; Skτ′ vτ ′,kτ′ ), y)

be the expected population risk, and R̂(S) ≡
Eτ ′EDtr

τ′
L(Dtrτ ′ ; Skτ′ vτ ′,kτ′ ) be the expected empirical risk

averaged over all tasks. The following Theorem character-
izes the generalization gap, i.e., the gap between the popula-
tion and empirical risks. All proofs are in Appendix B.

Theorem 3.3. With Assumption 3.2, we have

R(S) ≤ R̂(S)+K

√
ν2 + 12%ν(1 +mαδ)Tin

2Ntr
, (3)

where δ = βρ2 > 0.

The proof is based on the connection between generalization
and stability (Bousquet & Elisseeff, 2002). The dependence
on Ntr in (3) agrees with their Theorem 11, as the stability
constant in Algorithm 1 is of the order O(1/Ntr) (Lemma
B.2 in Appendix B). From (3), one can observe that increas-
ing the subspace complexity (i.e., m or K) increases the
upper bound ofR(S)− R̂(S).

Next, we study the expected empirical risk R̂(S), which
requires the following assumption.

Assumption 3.4. (i) ‖∇wL(Dtrτ ′ ; w)‖2 ≥
λ(L(Dtrτ ′ ; w) − L?) ≥ 0 for some λ > 0 and L? ≥ 0.
(ii) min1≤k≤K σmin(Sk) ≥ c1(1 − c2

√
m/d), where

c1, c2 > 0.

The first assumption is called the Polyak-Łojasiewicz condi-
tion (Polyak, 1963; Lojasiewicz, 1963), and has been used in
the non-convex optimization literature (Karimi et al., 2016;
Liu et al., 2022). The second assumption on the smallest
singular value is a property of random matrices with high
probability (Rudelson & Vershynin, 2009).

Theorem 3.5. With Assumptions 3.2 and 3.4, if α <
min( 1

mβρ2 ,
1
λ ,

2
λc21

), we have

R̂(S) ≤
√

4L2
?+2ν2

(
(
√
m−κ1)(

√
m+κ2)φ

)2Tin
+

ν

K + ν
, (4)

1In other words, ‖`(f(x;w), y)−̀ (f(x;w′), y)‖≤%‖w−w′‖,
and ‖∇w`(f(x;w), y)−∇w`(f(x;w

′), y)‖ ≤ β‖w −w′‖.

where κ1 = (
√
d/c2)(

√
2/(c21αλ) + 1), κ2 =

(
√
d/c2)(

√
2/(c21αλ) − 1), and φ = c1c2

√
αλ/(2d) are

all positive.

The above Theorem shows that increasing K reduces the
upper bound of R̂(S). This is intuitive as we choose the
subspace with the lowest training loss during meta-testing.

Combining Theorems 3.3 and 3.5, we obtain the following
Corollary. It indicates that the (upper bound on) population
riskR(S) may not always decrease as K increases, due to
overfitting.
Corollary 3.6. With Assumptions 3.2 and 3.4, if α <
min( 1

mβρ2 ,
1
λ ,

2
λc21

), we have

R(S) ≤ K

√
ν2 + 12%ν(1 +mαδ)Tin

2Ntr
+

ν

K + ν

+

√
4L2

?+2ν2
(
(
√
m−κ1)(

√
m+κ2)φ

)2Tin
. (5)

Let w?
τ ′ ≡ arg minwτ′ E(x,y)∼τ ′`(f(x; wτ ′), y) be

the optimal task model for task τ ′, and R? ≡
Eτ ′E(x,y)∼τ ′`(f(x; w?

τ ′), y) be the minimum expected loss
averaged over all tasks. The following Theorem provides
an upper bound on the expected excess risk (Zhou et al.,
2021a) R(S) − R?, which compares the performance of
the learned task model with that of the optimal model.
Theorem 3.7. With Assumption 3.2, we have

R(S)−R? ≤ ρ
√
m Eτ ′EDtr

τ′
‖vτ ′,kτ′ − v?τ ′,kτ′

‖

+%Eτ ′EDtr
τ′

dist(w?
τ ′ ,Skτ′)+K

√
ν2+12%ν(1+mαδ)Tin

2Ntr
,

where dist(w?
τ ′ ,Skτ′) ≡ minw∈Sk

τ′
‖w − w?

τ ′‖ is the dis-
tance between w?

τ ′ and Skτ′ .

From Theorem 3.7,R(S)−R? is upper-bounded by three
terms: (i) The first term measures the distance between the
approximate minimizer vτ ′,kτ′ and exact minimizer v?τ ′,kτ′

;
(ii) The second term arises from the approximation error
of w?

τ ′ using the learned subspaces; (iii) The third term
depends on the complexity of subspaces (i.e., m and K).
For the centroid-based clustering method in (Zhou et al.,
2021a), the upper bound of its expected excess risk contains
a term Eτ ′EDtr

τ′
‖ωk?

τ′
−w?

τ ′‖2, where ωk?
τ′

is the centroid
of the cluster that τ ′ is assigned to. The distance ‖ωk?

τ′
−

w?
τ ′‖2 plays the same role as the term dist(w?

τ ′ ,Skτ′ ) in
Theorem 3.7, which measures how far the optimal model
w?
τ ′ is away from the subspaces or clusters.

4. Experiments
In this section, we perform extensive regression and clas-
sification experiments to demonstrate effectiveness of the
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proposed method.

4.1. Few-shot Regression on Synthetic Data
In this experiment, we use a synthetic 1-dimensional data
set to examine whether MUSML can discover subspaces
that the task model parameters lie in. We use a 5-shot
regression setting, with 14, 000 meta-training, 2, 000 meta-
validation, and 6, 000 meta-testing tasks. The model for task
τ is f(x; wτ ) = exp(0.1wτ,1x) + wτ,2| sin(x)|, in which
wτ = [wτ,1;wτ,2] is randomly sampled from one of the
two subspaces: (i) Line-A: wτ = S1aτ + 0.1ξτ , where
S1 = [1; 1], aτ ∼ U(1, 5), and ξτ ∼ N (0; I); and (ii) Line-
B: wτ = S2aτ + 0.1ξτ , where S2 = [−1; 1], aτ ∼ U(0, 2),
and ξτ ∼ N (0; I). The samples of task τ are generated
as y = f(x; wτ ) + 0.05ξ, where x ∼ U(−5, 5) and ξ ∼
N (0, 1). The experiment is repeated 10 times with different
seeds. Implementation details are in Appendix A.1.1.

The proposed MUSML (with K = 2,m = 1) is compared
with the following meta-learning baselines: (i) MAML
(Finn et al., 2017), (ii) BMG (Flennerhag et al., 2022),
which uses target bootstrap, and structured meta-learning
algorithms including (iii) Dirichlet process mixture model
(DPMM) (Jerfel et al., 2019), (iv) hierarchically structured
meta-learning (HSML) (Yao et al., 2019), (v) automated
relational meta-learning (ARML) (Yao et al., 2020) using a
graph structure, and (vi) task similarity aware meta-learning
(TSA-MAML) (Zhou et al., 2021a) with different numbers
of clusters. We use these baselines’ official implementations
(except for DPMM and BMG whose implementations are
not publicly available). For performance evaluation, the
mean squared error (MSE) on the meta-testing set is used.

Results. Table 1 shows the meta-testing MSE. As can be
seen, structured meta-learning methods (DPMM, HSML,
ARML, TSA-MAML, and MUSML) are significantly better
than methods with a globally-shared meta-model (MAML
and BMG). In particular, MUSML performs the best. Fur-
thermore, simply increasing the number of clusters in TSA-
MAML fails to beat MUSML.

Table 1. Meta-testing MSE (with standard deviation) of 5-shot
regression on synthetic data. For TSA-MAML, the number in
brackets is the number of clusters used.

MAML (Finn et al., 2017) 0.74± 0.03
BMG (Flennerhag et al., 2022) 0.67± 0.03

DPMM (Jerfel et al., 2019) 0.56± 0.09
HSML (Yao et al., 2019) 0.49± 0.10
ARML (Yao et al., 2020) 0.60± 0.07

TSA-MAML(2) (Zhou et al., 2021a) 0.58± 0.10
TSA-MAML(10) (Zhou et al., 2021a) 0.24± 0.09
TSA-MAML(20) (Zhou et al., 2021a) 0.12± 0.10
TSA-MAML(40) (Zhou et al., 2021a) 0.14± 0.09
TSA-MAML(80) (Zhou et al., 2021a) 0.13± 0.08

MUSML 0.07± 0.01

−2 0 2 4
w1

1

2

3

4

5

w
2

(a) Tasks from Line-A.

−2 −1 0
w1

0.0

0.5

1.0

1.5

2.0

w
2

(b) Tasks from Line-B.
Figure 1. Visualization of task model parameters.

Figure 1 visualizes the task model parameters obtained
by TSA-MAML(2) and MUSML on 100 randomly sam-
pled meta-testing tasks (50 per subspace). As can be seen,
MUSML successfully discovers the underlying subspaces,
while the centroid-based clustering method TSA-MAML
does not. Table 11 of Appendix A.1.2 also shows that
MUSML is more accurate in estimating the task model
parameters.

4.2. Few-shot Regression on Pose Data

While the synthetic data used in the previous experiment is
tailored for the proposed subspace model, in this section,
we perform experiments on a real-world pose prediction
dataset from (Yin et al., 2020). This is created based on the
Pascal 3D data (Xiang et al., 2014). Each object contains
100 samples, where input x is a 128×128 grey-scale image
and output y is its orientation relative to a fixed canonical
pose. Following (Yin et al., 2020), we adopt a 15-shot
regression setting and randomly select 50 objects for meta-
training, 15 for meta-validation, and 15 for meta-testing.
The experiment is repeated 15 times with different seeds.

The MR-MAML regularization (Yin et al., 2020) is used on
all the methods except the vanilla MAML. MUSML uses
the same encoder-decoder network in (Yin et al., 2020) as
the model f(x; w). Hyperparameters K and m, as well as
the number of clusters in TSA-MAML, are chosen from 1 to
5 using the meta-validation set. For performance evaluation,
the MSE on the meta-testing set is used.

Table 2 shows the meta-testing MSE. As can be seen,
MUSML is again better than the other baselines, confirming
the effectiveness of the learned subspaces.

4.3. Few-shot Classification
Setup. In this experiment, we use three meta-datasets:
(i) Meta-Dataset-BTAF, proposed in (Yao et al., 2019),
which consists of four image classification datasets: (a) Bird;
(b) Texture; (c) Aircraft; and (d) Fungi. Sample images
are shown in Figure 2. (ii) Meta-Dataset-ABF, proposed
in (Zhou et al., 2021a), which consists of Aircraft, Bird,



Subspace Learning for Effective Meta-Learning

Table 2. Meta-testing MSE (with standard deviation) of 15-shot
regression on Pose. Results on MAML and MR-MAML are from
(Yin et al., 2020).

MAML (Finn et al., 2017) 5.39± 1.31
MR-MAML (Yin et al., 2020) 2.26± 0.09
BMG (Flennerhag et al., 2022) 2.16± 0.15

DPMM (Jerfel et al., 2019) 1.99± 0.08
HSML (Yao et al., 2019) 2.04± 0.13
ARML (Yao et al., 2020) 2.21± 0.15

TSA-MAML (Zhou et al., 2021a) 1.96± 0.07
MUSML 1.83± 0.05

Figure 2. Some random images from the meta-testing set of Meta-
Dataset-BTAF (Top to bottom: Bird, Texture, Aircraft, and Fungi).

and Fungi. (iii) Meta-Dataset-CIO, which consists of
three widely-used few-shot datasets: CIFAR-FS (Bertinetto
et al., 2018), mini-ImageNet (Vinyals et al., 2016), and Om-
niglot (Lake et al., 2015). We use the meta-training/meta-
validation/meta-testing splits in (Yao et al., 2020; Zhou et al.,
2021a; Lake et al., 2015). A summary of the datasets is in
Table 3.

As for the network architecture, we use the standard Conv4
backbone (Finn et al., 2017; Yao et al., 2020; Zhou et al.,
2021a), and a simple prototype classifier with cosine similar-
ity on top (Snell et al., 2017; Gidaris & Komodakis, 2018)
as f(x; w). Hyperparameters K and m are chosen from 1
to 5 on the meta-validation set. Implementation details are
in Appendix A.2.

MUSML is compared with the following state-of-the-arts in
the 5-way 5-shot and 5-way 1-shot settings: (i) meta-learn-
ing algorithms with a globally-shared meta-model including
MAML, ProtoNet, ANIL (Raghu et al., 2020), and BMG;
(ii) structured meta-learning algorithms including DPMM,
HSML, ARML, TSA-MAML and its variant using ProtoNet
as the base learner (denoted TSA-ProtoNet). The number of
clusters in TSA-MAML and TSA-ProtoNet are tuned from 1
to 5 on the meta-validation set. For performance evaluation,
the classification accuracy on the meta-testing set is used.
The experiment is repeated 5 times with different seeds.

Table 3. Statistics of the datasets.

#classes
(meta-training/meta-validation/meta-testing)

Bird 64/16/20
Texture 30/7/10
Aircraft 64/16/20
Fungi 64/16/20

CIFAR-FS 64/16/20
mini-ImageNet 64/16/20

Omniglot 71/15/16

4.3.1. Meta-Dataset-BTAF

Table 4 shows the 5-shot results. As can be seen, MUSML
is more accurate than both structured and unstructured meta-
learning methods, demonstrating the benefit of structuring
task model parameters into subspaces. Figure 3 shows the
assignment of tasks to the learned subspaces in MUSML. As
can be seen, meta-training tasks from the same dataset are
always assigned to the same subspace, demonstrating that
MUSML can discover the task structure from meta-training
tasks. Though the meta-validation and meta-testing classes
are not seen during meta-training, most of the correspond-
ing tasks are still assigned to the correct subspaces. The
assignment for Texture is slightly worse, as the Texture and
Fungi images are more similar to each other (Figure 2).

Table 5 shows the 1-shot results. MUSML, while still the
best overall, has a smaller improvement than in the 5-shot
setting. This suggests that having more training samples is
beneficial for the base learner to choose a proper subspace.
The assignment of tasks to the learned subspaces is shown
in Figure 9 of Appendix A.3.
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Figure 3. Task assignment to the learned subspaces in 5-way 5-
shot setting on Meta-Dataset-BTAF (the number of subspaces K
selected by the meta-validation set is 4). Darker color indicates
higher percentage.

4.3.2. Meta-Dataset-ABF AND Meta-Dataset-CIO

Tables 6 and 7 show the results on Meta-Dataset-ABF
and Meta-Dataset-CIO, respectively. Here, we only con-
sider the 5-shot setting, which is more useful for subspace
learning. As can be seen, MUSML consistently outper-
forms centroid-based clustering methods (DPMM, TSA-
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Table 4. 5-way 5-shot accuracy (with 95% confidence interval) on Meta-Dataset-BTAF. Results marked with † are from (Yao et al., 2020).

Bird Texture Aircraft Fungi average

MAML† (Finn et al., 2017) 68.52± 0.73 44.56± 0.68 66.18± 0.71 51.85± 0.85 57.78
ProtoNet (Snell et al., 2017) 71.48± 0.72 50.36± 0.67 71.67± 0.69 55.68± 0.82 62.29
ANIL (Raghu et al., 2020) 70.67± 0.72 44.67± 0.95 66.05± 1.07 52.89± 0.30 58.57

BMG (Flennerhag et al., 2022) 71.56± 0.76 49.44± 0.73 66.83± 0.79 52.56± 0.89 60.10

DPMM (Jerfel et al., 2019) 72.22± 0.70 49.32± 0.68 73.55± 0.69 56.82± 0.81 63.00
TSA-MAML (Zhou et al., 2021a) 72.31± 0.71 49.50± 0.68 74.01± 0.70 56.95± 0.80 63.20

HSML† (Yao et al., 2019) 71.68± 0.73 48.08± 0.69 73.49± 0.68 56.32± 0.80 62.39
ARML† (Yao et al., 2020) 73.68± 0.70 49.67± 0.67 74.88± 0.64 57.55± 0.82 63.95

TSA-ProtoNet (Zhou et al., 2021a) 73.70± 0.73 50.91± 0.74 73.55± 0.78 56.11± 0.82 63.57
MUSML 76.79± 0.72 52.41± 0.75 77.76± 0.82 57.74± 0.81 66.18

Table 5. 5-way 1-shot accuracy (with 95% confidence interval) on Meta-Dataset-BTAF. Results marked with † are from (Yao et al., 2020).

Bird Texture Aircraft Fungi average

MAML† (Finn et al., 2017) 53.94± 1.45 31.66± 1.31 51.37± 1.38 42.12± 1.36 44.77
ProtoNet (Snell et al., 2017) 60.37± 1.31 40.57± 0.78 52.83± 0.93 44.10± 1.36 49.50
ANIL (Raghu et al., 2020) 53.36± 1.42 31.91± 1.25 52.87± 1.34 42.30± 1.28 45.11

BMG (Flennerhag et al., 2022) 54.12± 1.46 32.19± 1.21 52.09± 1.35 43.00± 1.37 45.35

DPMM (Jerfel et al., 2019) 61.30± 1.47 35.21± 1.35 57.88± 1.37 43.81± 1.45 49.55
TSA-MAML (Zhou et al., 2021a) 61.37± 1.42 35.41± 1.39 58.78± 1.37 44.17± 1.25 49.93

HSML† (Yao et al., 2019) 60.98± 1.50 35.01± 1.36 57.38± 1.40 44.02± 1.39 49.35
ARML† (Yao et al., 2020) 62.33± 1.47 35.65± 1.40 58.56± 1.41 44.82± 1.38 50.34

TSA-ProtoNet (Zhou et al., 2021a) 60.41± 1.02 40.98± 1.20 53.29± 0.89 43.91± 1.31 49.64
MUSML 60.52± 0.33 41.33± 1.30 54.69± 0.69 45.60± 0.43 50.53
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Figure 4. Task assignment to the learned subspaces in 5-way 5-shot
setting on Meta-Dataset-CIO (K selected by the meta-validation
set is 3). Darker color indicates higher percentage.

MAML, TSA-ProtoNet) and structured meta-learning meth-
ods (HSML, ARML). MUSML again outperforms meth-
ods with a globally-shared meta-model (MAML, ProtoNet,
ANIL, BMG), confirming the effectiveness of using a sub-
space mixture. The performance of MUSML on Omniglot is
slightly worse in Table 7. This may be due to that Omniglot
is a simple dataset and a single meta-model is good enough.
As shown in Figure 4, its meta-validation and meta-testing
tasks are often assigned to the same subspace.

4.3.3. EFFECTS OF K AND m

In this experiment, we study the effects of K and m on
the 5-shot performance of MUSML on Meta-Dataset-BTAF.
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Figure 5. 5-way 5-shot classification accuracy on Meta-Dataset-
BTAF with varying K (m is fixed at 2).

Figure 5(a) shows that the meta-training accuracy increases
with K. However, a large K = 5 is not advantageous at
meta-validation (Figure 5(b)) and meta-testing (Figure 5(c)).

Figures 6(b) and 6(c) show that the meta-validation and
meta-testing accuracies of MUSML increase when m in-
creases from 1 to 2, but larger m’s (m = 3, 4, 5) lead to
worse performance. This is because the obtained task model
parameters (W) lie close to the union of 2-dimensional sub-
spaces2, and so a larger m does not improve performance.

2For example, for the W solution obtained with m = 5
on Meta-Dataset-BTAF (under 5-way 5-shot setting), approxi-
mation by a rank-2 matrix Ŵ leads to a relative error (‖W −
Ŵ‖F/‖W‖F) of only 4.1%.
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Table 6. Accuracy (with 95% confidence interval) of 5-way 5-shot classification on Meta-Dataset-ABF. Results marked with † are from
(Zhou et al., 2021a).

Aircraft Bird Fungi average

MAML† (Finn et al., 2017) 67.82± 0.65 70.55± 0.77 53.20± 0.82 63.86
ProtoNet(Snell et al., 2017) 69.74± 0.64 71.46± 0.69 55.66± 0.68 65.62
ANIL (Raghu et al., 2020) 69.24± 0.87 70.34± 1.20 53.71± 0.67 64.43

BMG (Flennerhag et al., 2022) 69.75± 0.72 73.04± 0.77 54.61± 0.84 65.80

DPMM (Jerfel et al., 2019) 70.22± 0.69 73.28± 1.33 54.28± 1.01 66.26
TSA-MAML† (Zhou et al., 2021a) 72.84± 0.63 74.80± 0.76 56.86± 0.67 68.17

HSML† (Yao et al., 2019) 69.89± 0.90 68.99± 1.01 53.63± 1.03 64.17
ARML (Yao et al., 2020) 70.20± 0.91 69.12± 1.01 54.23± 1.07 64.52

TSA-ProtoNet (Zhou et al., 2021a) 74.42± 0.62 75.11± 0.72 56.77± 0.69 68.77
MUSML 79.88± 0.61 75.63± 0.73 57.80± 0.80 71.10

Table 7. Accuracy (with 95% confidence interval) of 5-way 5-shot classification on Meta-Dataset-CIO.

CIFAR-FS mini-ImageNet Omniglot average

MAML (Finn et al., 2017) 66.28± 1.61 60.20± 1.20 96.91± 0.39 74.46
ProtoNet (Snell et al., 2017) 71.32± 1.54 62.90± 1.07 95.32± 0.25 76.51
ANIL (Raghu et al., 2020) 66.08± 0.90 60.62± 0.94 97.13± 0.13 74.61

BMG (Flennerhag et al., 2022) 70.49± 1.22 63.97± 1.19 97.92± 0.42 77.46

DPMM (Jerfel et al., 2019) 69.84± 1.42 62.92± 1.28 97.14± 0.28 76.63
TSA-MAML (Zhou et al., 2021a) 71.11± 1.55 62.57± 1.31 96.99± 0.31 76.89

HSML (Zhou et al., 2019) 69.24± 1.57 62.28± 1.23 95.10± 0.32 75.54
ARML (Yao et al., 2020) 68.88± 1.91 63.26± 1.33 96.23± 0.31 76.12

TSA-ProtoNet (Zhou et al., 2021a) 72.37± 1.46 63.23± 1.52 96.21± 0.33 77.27
MUSML 73.25± 1.42 65.12± 1.48 95.13± 0.28 77.83
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Figure 6. 5-way 5-shot classification accuracy on Meta-Dataset-
BTAF with varying m (K is fixed at 4).

Figure 7 also shows that for the 4 subspaces, the first 2
singular values of W are dominant.

To demonstrate the theoretical results in Section 3.3, we
further study the effects of K and m on the meta-testing
loss. The average training (resp. testing) loss of meta-testing
tasks is an empirical estimate of R̂(S) (resp. R(S)), while
their gap measures the generalization performance.

Figure 8(a) shows that, for m ≥ 2, increasing K leads
to a reduction in the training loss, which is suggested by
Theorem 3.5. However, the testing loss does not always
decrease when K increases (Figure 8(b)), which also agrees
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Figure 7. Singular values of model parameters of meta-testing
tasks under the 5-way 5-shot setting on Meta-Dataset-BTAF
(K = 4 and m = 5).

with Corollary 3.6. Figure 8(c) shows that a large K or m
may enlarge the generalization gap, which justifies Theo-
rem 3.3. As shown in Figure 8(c), the generalization gap
is approximately linear with K, which agrees with the rela-
tionship between the upper bound ofR(S)− R̂(S) and K
in Theorem 3.3.

4.4. Cross-Domain Few-Shot Classification

We examine the effectiveness of MUSML on cross-domain
few-shot classification, which is more challenging as the
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Figure 8. Effects of K and m on the training loss, testing loss, and generalization gap (with 95% confidence interval) of meta-testing
tasks under the 5-way 5-shot setting on Meta-Dataset-BTAF.

Table 8. Accuracy of cross-domain 5-way 5-shot classification (Meta-Dataset-BTAF→ Meta-Dataset-CIO).

MAML ProtoNet ANIL BMG DPMM TSA-MAML HSML ARML TSA-ProtoNet MUSML

64.25 66.13% 65.19% 66.98% 66.73% 66.85% 65.18% 65.37% 66.92% 67.41%

Table 9. Accuracy of 5-way 5-shot classification on Meta-Dataset-BTAF.

γ 0.0001 0.001 0.01 0.1 1.0 2.0 MUSML

accuracy 51.22% 60.12% 61.15% 63.16% 62.11% 62.02% 66.18%

Table 10. Accuracy of 5-way 5-shot classification on meta-datasets.

Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO

Meta-Curvature (Park & Oliva, 2019) 60.02% 64.51% 76.13%
MUSML-Curvature 66.10% 69.23% 77.96%

Meta-SGD (Li et al., 2017) 58.93% 64.19% 75.95%
MUSML-SGD 65.72% 69.15% 77.48%

testing domain is unseen at meta-training. We perform 5-
way 5-shot classification, where Meta-Dataset-BTAF is used
for meta-training, and Meta-Dataset-CIO for meta-testing.
Table 8 shows the meta-testing accuracy. As can be seen,
MUSML is also effective on unseen domains.

4.5. Effects of Temperature Scaling Schedule

The temperature schedule used is linear annealing as in
DynamicConvolution (Chen et al., 2020) and ProbMask
(Zhou et al., 2021b). We conduct a 5-way 5-shot experiment
on Meta-Dataset-BTAF to evaluate MUSML with a constant
temperature. Table 9 reports the meta-testing accuracy. We
can see that using a constant γ is inferior.

4.6. Improving Existing Meta-Learning Approaches

As the proposed MUSML is general, a subspace mixture
is also useful for other meta-learning approaches. In this
experiment, we combine MUSML with Meta-Curvature
(Park & Oliva, 2019) and Meta-SGD (Li et al., 2017). Table
10 reports 5-way 5-shot accuracies on meta-datasets. As can

be seen, MUSML is beneficial for both Meta-Curvature and
Meta-SGD.

5. Conclusion
In this paper, we formulate task model parameters into a sub-
space mixture and propose a model-agnostic meta-learning
algorithm with subspace learning called MUSML. For each
task, the base learner builds a task model from each sub-
space, while the meta-learner updates the meta-parameters
by minimizing a weighted validation loss. The general-
ization performance is theoretically studied. Experimental
results on benchmark datasets for classification and regres-
sion validate the effectiveness of the proposed MUSML.
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A. Experiment Details and Additional Results
A.1. Few-shot Regression on Synthetic Data

A.1.1. IMPLEMENTATION DETAILS

The subspace bases are trained for T = 30, 000 iterations using the Adam optimizer (Kingma & Ba, 2015). For the
meta-learner, the initial learning rate is 0.001, which is then reduced by half every 5, 000 iterations. The base learner uses
a learning rate of α = 0.05, v(0) = 1

m1, and Tin is 5 (resp. 20) at meta-training (resp. meta-testing). The temperature is
γt = max(10−5, 0.5− t/T ), a linear annealing schedule as in (Chen et al., 2020; Zhou et al., 2021b). To prevent overfitting,
we evaluate the meta-validation performance every 2, 000 iterations, and stop training when the meta-validation accuracy
has no significant improvement for 5 consecutive evaluations.

A.1.2. ADDITIONAL RESULTS

Table 11 shows the average Euclidean distance between the estimated task model parameters and the ground truth. As can
be seen, MUSML is more accurate in estimating the task models, confirming the effectiveness of the learned subspaces.

Table 11. Average Euclidean distance (with standard deviation) between the estimated task model parameters and ground-truth in 5-shot
setting on synthetic data. For TSA-MAML, the number in brackets is the number of clusters used.

MAML (Finn et al., 2017) 1.69± 0.02
BMG (Flennerhag et al., 2022) 1.55± 0.03

DPMM (Jerfel et al., 2019) 0.85± 0.10
HSML (Yao et al., 2019) 0.80± 0.09
ARML (Yao et al., 2020) 0.91± 0.11

TSA-MAML(2) (Zhou et al., 2021a) 0.88± 0.12
TSA-MAML(10) (Zhou et al., 2021a) 0.47± 0.19
TSA-MAML(20) (Zhou et al., 2021a) 0.33± 0.18
TSA-MAML(40) (Zhou et al., 2021a) 0.36± 0.19
TSA-MAML(80) (Zhou et al., 2021a) 0.36± 0.18

MUSML 0.17± 0.01

A.2. Few-shot Classification

We use the cross-entropy loss for `(·, ·). The number of parameters in Conv4 is 113, 088. For the base learner, α = 0.01,
v(0) = 1

m1, and Tin is set to 5 (resp. 15) at meta-training (resp. meta-validation or meta-testing). We train the subspace
bases for T = 100, 000 iterations using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.001,
which is then reduced by half every 5, 000 iterations. The temperature is set to γt = max(10−5, 0.8− t/T ), which is again
a linear annealing schedule (Chen et al., 2020; Zhou et al., 2021b). To prevent overfitting, we evaluate the meta-validation
performance every 2, 000 iterations and stop training when the meta-validation accuracy has no significant improvement for
5 consecutive evaluations. Hyperparameters K and m are chosen from 1 to 5 on the meta-validation set. In practice, as
shown in Section 4.3.3, m can simply be fixed at 2, and K can be chosen from 3 to 4. As the search space of K is small, the
additional cost of tuning K and m is small.

A.3. Results on Meta-Dataset-BTAF

Figure 9 shows the assignment of tasks to the learned subspaces in the 5-way 1-shot setting on Meta-Dataset-BTAF.

B. Proofs
For notation simplicity, throughout this section, we omit the superscript τ ′. Let z ≡ (x, y) be the samples, `(z; w) ≡
`(f(x; w), y), and ∇w`(f(z; Sv)) ≡ ∇w`(f(z; w)) |w=Sv.

We first show the stability constant (in Lemma 9 of (Bousquet & Elisseeff, 2002)) in Algorithm 1 is of the order O(1/Ntr).

Let {z′i : i = 1, . . . , Ntr} be another Ntr samples from τ . Let Dtr(i)τ be another training set which differs from Dtrτ only in
the ith sample (i.e., Dtr(i)τ ≡ (Dtrτ − {zi}) ∪ {z′i}). We let vτ,k,i (resp. vτ,k ) be the task model obtained from the base
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Figure 9. Task assignment to the learned subspaces in 5-way 1-shot on Meta-Dataset-BTAF (K selected by meta-validation set is 2).

learner when using training set Dtr(i)τ (resp. Dtrτ ).
Lemma B.1 (Lemma 9 of (Bousquet & Elisseeff, 2002)). Let D = {z1, . . . , zm} be a dataset containing m samples. For
any learning algorithm A (receives a training set and outputs a learned model) and loss function ` such that 0 ≤ `(·) ≤M ,
we have

ED [Ez`(z;A(D))−R(D;A(D))]
2 ≤ M2

2m
+ 3MED,z′

i
|`(zi;A(D))− `(zi;A(D(i)))| (6)

for any i ∈ {1, . . . ,m}, where D(i) is a dataset obtained by replacing zi with z′i, andR(D;A(D)) is the empirical risk.

Lemma B.2. For the base learner in Algorithm 1, we have EDtrτ Ez′
i∼τ |`(f(xi; Skvτ,k), yi)− `(f(xi; Skvτ,k,i), yi)| ≤

2%(1+αβρ2m)Tin

Ntr
.

Proof. Claim 1: For k ∈ {1, . . . ,K} and i ∈ {1, . . . , Ntr}, it holds that ‖vτ,k − vτ,k,i‖ ≤ 2%(1+α%ρ2m)Tin

ρβ
√
mNtr

.

By the update rule in the base learner, we have ‖v(t′+1)
τ,k − v

(t′+1)
τ,k,i ‖ = ‖v(t′)

τ,k − α∇
v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k ) − v

(t′)
τ,k,i +

α∇
v
(t′)
τ,k,i

L(Dtr(i)τ ; Skv
(t′)
τ,k,i)‖ ≤ ‖v

(t′)
τ,k −v

(t′)
τ,k,i‖+α‖∇

v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )−∇

v
(t′)
τ,k,i

L(Dtr(i)τ ; Skv
(t′)
τ,k,i)‖. For the second

term, by the chain rule, it follows that∥∥∥∥∇v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )−∇

v
(t′)
τ,k,i

L(Dtr(i)τ ; Skv
(t′)
τ,k,i)

∥∥∥∥
=
∥∥∥S>k (∇wL(Dtrτ ; Skv

(t′)
τ,k )−∇wL(Dtr(i)τ ; Skv

(t′)
τ,k,i)

)∥∥∥
≤‖Sk‖F · ‖

1

Ntr

∑
j 6=i

(
∇w`(f(zj ; Skv

(t′)
τ,k ))−∇w`(f(zj ; Skv

(t′)
τ,k,i))

)
+

1

Ntr

(
∇w`(f(zi; Skv

(t′)
τ,k ))−∇w`(f(z′i; Skv

(t′)
τ,k,i))

)
‖ (7)

≤ρ
√
m

(
1

Ntr

∑
j 6=i

∥∥∥∇w`(f(zj ; Skv
(t′)
τ,k ))−∇w`(f(zj ; Skv

(t′)
τ,k,i))

∥∥∥
+

1

Ntr

∥∥∥∇w`(f(zj ; Skv
(t′)
τ,k ))

∥∥∥+
1

Ntr

∥∥∥∇w`(f(z′i; Skv
(t′)
τ,k,i))

∥∥∥) (8)

≤ρ
√
m

 1

Ntr

∑
j 6=i

β‖Skv(t′)
τ,k − Skv

(t′)
τ,k,i‖+

2%

Ntr

 (9)

≤ρ
√
m

(
Ntr − 1

Ntr
β‖Sk‖‖v(t′)

τ,k − v
(t′)
τ,k,i‖+

2%

Ntr

)
(10)

≤mρ2β‖v(t′)
τ,k − v

(t′)
τ,k,i‖+

2%ρ
√
m

Ntr
, (11)

where Eq.(7) uses the norm inequality ‖Ax‖ ≤ ‖A‖‖x‖ and ‖Sk‖ ≤ ‖Sk‖F, Eq.(8) uses the compactness assumption
(thus ‖Sk‖F ≤ ρ

√
m) and the triangle inequality, Eq.(9) uses the Lipschitzness of ∇w`(f(x; w), y), Eq.(10) uses the
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Lipschitzness of `(f(x; w), y), and Eq.(11) uses the boundedness of ‖Sk‖ again. Hence, we obtain a recursive inequality

‖v(t′+1)
τ,k − v

(t′+1)
τ,k,i ‖ ≤ (1 + αmρ2β)‖v(t′)

τ,k − v
(t′)
τ,k,i‖+

2α%ρ
√
m

Ntr
. (12)

By induction, we obtain a bound for v
(Tin)
τ,k − v

(Tin)
τ,k,i :

‖v(Tin)
τ,k − v

(Tin)
τ,k,i ‖ ≤ (1 + αmρ2β)‖v(0)

τ,k − v
(0)
τ,k,i‖+

2α%ρ
√
m

Ntr

Tin−1∑
t′=0

(1 + αβρ2m)t
′
≤ 2%(1 + α%ρ2m)Tin

ρβ
√
mNtr

, (13)

where we have used the fact v
(0)
τ,k = v

(0)
τ,k,i.

Claim 2: The stability constant of the base learner is 2%(1+αβρ2m)Tin

Ntr
.

Next, we analyze the stability constant of the base learner:

EDtrτ Ez′
i∼τ |`(f(xi; Skvτ,k), yi)− `(f(xi; Skvτ,k,i), yi)|

≤βEDtrτ Ez′
i∼τ‖Skvτ,k,i − Skvτ,k‖ (14)

≤βEDtrτ Ez′
i∼τ‖Sk‖F‖vτ,k,i − vτ,k‖ (15)

≤βρ
√
mEDtrτ Ez′

i∼τ‖vτ,k,i − vτ,k‖ (16)

≤βρ
√
m · 2%(1 + αβρ2m)Tin

ρβ
√
mNtr

(17)

=
2%(1 + αβρ2m)Tin

Ntr
, (18)

where Eq.(14) uses the Lipschitz property of `, Eq.(15) uses the norm inequality, Eq.(16) uses the boundedness of ‖Sk‖F,
Eq.(17) uses the inequality (13). The above equality reveals that the stability constant in Theorem 11 of (Bousquet &
Elisseeff, 2002) (β2 there) is 2%(1+αβρ2m)Tin

Ntr
.

B.1. Proof of Theorem 3.3

Proof. The proof is based on the connection between generalization and stability (Bousquet & Elisseeff, 2002).

We adopt the notations used in the proof of Lemma B.2. We apply Lemma B.1 to our algorithm and obtain

EDtrτ
[
Ez∼τ `(f(x; Skvτ,k), y)− L(Dtrτ ; Skvτ,k)

]2
≤ ν2

2Ntr
+ 3νEDtrτ Ez′

i∼τ |`(f(xi; Skvτ,k), yi)− `(f(xi; Skvτ,k,i), yi)|

≤ ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
, (19)

where (19) uses the equality (18) in Lemma B.2. By the Cauchy-Schwarz inequality, we have

EDtrτ
∣∣Ez∼τ `(f(x; Skvτ,k), y)− L(Dtrτ ; Skvτ,k)

∣∣ ≤√ ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
. (20)
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To provide an upper bound ofR(S)− R̂(S), we need to address the randomness in kτ :

R(S)− R̂(S) =EτEDtrτ
[
Ez∼τ `(f(x; Skτvτ,kτ ), y)− L(Dtrτ ; Skτvτ,kτ )

]
=EτEDtrτ

K∑
k=1

I[kτ=k]

[
Ez∼τ `(f(x; Skvτ,k), y)− L(Dtrτ ; Skvτ,k)

]
≤Eτ

K∑
k=1

EDtrτ I[kτ=k]

∣∣Ez∼τ `(f(x; Skvτ,k), y)− L(Dtrτ ; Skvτ,k)
∣∣

≤Eτ
K∑
k=1

EDtrτ
∣∣Ez∼τ `(f(x; Skvτ,k), y)− L(Dtrτ ; Skvτ,k)

∣∣
≤K

√
ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
,

where the first inequality is because the empirical loss can be smaller than the population loss, and the last inequality follows
from the Eq.(20).

B.2. Proof of Theorem 3.5

Proof of Theorem 3.5. We first show that L(D; Skv) satisfies the PL inequality in v. By the chain rule, it follows that

‖∇vL(D; Skv)‖2 = ‖S>∇wL(D; Skv)‖2 = ∇wL(D; Skv)>SS>∇wL(D; Skv)

≥ λmin
(
SS>

)
‖∇wL(D; Skv)‖2

≥ c21
(

1− c2
√
m

d

)2

‖∇wL(D; Skv)‖2 (21)

≥ λc21
(

1− c2
√
m

d

)2

(L(D; Skv)− L?), (22)

where Eq.(21) uses Assumption 3.4(ii), and Eq.(22) uses Assumption 3.4(i).

Then, we show that ∇vL(Dtrτ ; Skv) is (βρ2m)-Lipschitz in v. Using the chain rule, we have

‖∇vL(Dtrτ ; Skv)−∇vL(Dtrτ ; Skv
′)‖ = ‖S>k∇wL(Dtrτ ; Skv)| − S>k∇wL(Dtrτ ; Skv

′)‖
≤ ‖Sk‖‖∇wL(Dtrτ ; Skv)| − ∇wL(Dtrτ ; Skv

′)‖ (23)
≤ β‖Sk‖‖Skv − Skv

′‖ (24)

≤ β‖Sk‖2‖v − v′‖ (25)

≤ βρ2m‖v − v′‖, (26)

where Eqs.(23) and (24) use the norm inequality ‖Ax‖ ≤ ‖A‖‖x‖, Eq.(24) uses the Assumption 3.2(i) on smoothness,
Eq.(24) uses ‖Sk‖2 ≤ ‖Sk‖2F ≤ ρ2m by Assumption 3.2(ii) on compactness.

Using the Taylor expansion, we obtain

L(Dtrτ ; Skv
(t′+1)
τ,k ) = L(Dtrτ ; Skv

(t′)
τ,k ) + (v

(t′+1)
τ,k − v

(t′)
τ,k )>∇

v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )

+
1

2
(v

(t′+1)
τ,k − v

(t′)
τ,k )>∇2

v
(t′)
τ,k

L(Dtrτ ; Skξ
(t′))(v

(t′+1)
τ,k − v

(t′)
τ,k )

≤ L(Dtrτ ; Skv
(t′)
τ,k )− α

∥∥∥∥∇v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )

∥∥∥∥2

+
1

2
α2βρ2m

∥∥∥∥∇v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )

∥∥∥∥2

(27)

≤ L(Dtrτ ; Skv
(t′)
τ,k )− α

2

∥∥∥∥∇v
(t′)
τ,k

L(Dtrτ ; Skv
(t′)
τ,k )

∥∥∥∥2

, (28)
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where ξt′ ∈ [v
(t′)
τ,k ,v

(t′+1)
τ,k ], Eq.(27) uses ‖∇2

vL(Dtrτ ; Skv)‖2 ≤ βρ2m follows from Claim 1, Eq.(28) uses α < 1
βρ2m by

assumption. By Assumption 3.4, it follows that

L(Dtrτ ; Skv
(t′+1)
τ,k )− L? ≤ L(Dtrτ ; Skv

(t′)
τ,k )− L? −

α

2
λc21

(
1− c2

√
m

d

)2

(L(D; Skv)− L?) (29)

≤ (1− ψ)
(
L(Dtrτ ; Skv

(t′)
τ,k )− L?

)
, (30)

where ψ =
αλc21

2

(
1− c2

√
m
d

)2
.

The above recursive inequality implies L(Dtrτ ; Skvτ,k) − L? = L(Dtrτ ; Skv
(Tin)
τ,k ) − L? ≤

(1− ψ)
Tin
(
L(Dtrτ ; Skv

(0))− L?
)
. As `(·, ·) is bounded by ν, L(Dtrτ ; Skv

(0)) = 1
|Dtrτ |

∑
(x,y)∈Dtrτ

`(f(x; Skv
(0)), y) is

also bounded by ν, then we have L(Dtrτ ; Skvτ,k) ≤ L?+L(Dtrτ ; Skv
(Tin)
τ,k ) ≤ L?+ (1− ψ)

Tin
(
L(Dtrτ ; Skv

(0))− L?
)
≤

L? + (1− ψ)
Tin (ν − L?) ≤ L? + (1− ψ)

Tin ν. Let Lk ≡ L(Dtrτ ; Skvτ,k). Next, we consider two
events E ≡ {min1≤k≤K Lk ≥ L? + ν

K+ν } and Ē ≡ {min1≤k≤K Lk < L? + ν
K+ν }. We have

EτEDtrτ min1≤k≤K Lk = EτEE min1≤k≤K Lk + EτEĒ min1≤k≤K Lk ≤ Eτ
(
L? + (1− ψ)

Tin ν
)
P (E) +

Eτ (L? + ν
K+ν )P

(
Ē
)
≤ 2L? + (1− ψ)

Tin ν + ν
K+ν ≤

√
4L2

? + 2ν2 (1− ψ)
2Tin + ν

K+ν , where we

have used the property P(Ē) ≤ 1. As ψ =
αλc21

2

(
1− c2

√
m
d

)2
, it follows that (1 − ψ)2Tin =(

c1c2
√
αλ/(2d)

(√
m− (

√
d/c2)(

√
2/(c21αλ) + 1)

)(√
m+ (

√
d/c2)(

√
2/(c21αλ)− 1)

))2Tin
= ((

√
m −

κ1)(
√
m + κ2)φ)2Tin , where κ1 = (

√
d/c2)(

√
2/(c21αλ) + 1), κ2 = (

√
d/c2)(

√
2/(c21αλ) − 1), and

φ = c1c2
√
αλ/(2d). Note that κ1, κ2, and φ are all positive. Hence, we obtain EτEDtrτ min1≤k≤K Lk ≤√

4L2
? + 2ν2 ((

√
m− κ1)(

√
m+ κ2)φ)

2Tin + ν
K+ν and finish the proof.

B.3. Proof of Theorem 3.7

Proof. By the definition of excess risk, we have

0 ≤ R(S)−R?

= Eτ [EDtrτ Ez∼τ `(f(x; Skτvτ,kτ ), y)− EDtrτ L(Dtrτ ; Skτvτ,kτ ) + EDtrτ L(Dtrτ ; Skτvτ,kτ )− EDtrτ L(Dtrτ ; Skτv
?
τ,kτ )

+ EDtrτ L(Dtrτ ; Skτv
?
τ,kτ )− Ez∼τ `(z; w?

τ )] (31)

= EτEDtrτ
[
Ez∼τ `(f(x; Skτvτ,kτ ), y)− L(Dtrτ ; Skτvτ,kτ )

]
+ EτEDtrτ

[
L(Dtrτ ; Skτvτ,kτ )− L(Dtrτ ; Skτv

?
τ,kτ )

]
+ EτEDtrτ

 1

Ntr

∑
z∈Dtrτ

`(f(x; Skτv
?
τ,kτ ), y)− Ez∼τ `(f(x; w?

τ ), y)


≤ K

√
ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
+ EτEDtrτ

[
L(Dtrτ ; Skτvτ,kτ )− L(Dtrτ ; Skτv

?
τ,kτ )

]
+ EτEDtrτ

[
L(Dtrτ ; Skτv

?
τ,kτ )− L(Dtrτ ; w?

τ, Skτ
)
]

+ EτEDtrτ ‖∇wL(Dtrτ ; ξτ )‖‖w?
τ,S⊥

kτ

‖ (32)

≤ K

√
ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
+ EτEDtrτ

[
L(Dtrτ ; Skτvτ,kτ )− L(Dtrτ ; Skτv

?
τ,kτ )

]
+ %EτEDtrτ dist(w?

τ ,Skτ ),

(33)

where (31) follows by introducing two additional terms (EτEDtrτ L(Dtrτ ; Skτvτ,kτ ) and EτEDtrτ L(Dtrτ ; Skτv
?
τ,kτ

)), Eq.(32)
uses the bound in Theorem 3.3 and the mean value theorem (we decompose w?

τ = w?
τ,Skτ

+w?
τ,S⊥

kτ

and ξτ ∈ [w?
τ,Skτ

,w?
τ ]),

and Eq.(33) follows from the Lipschitzness assumption and EDtrτ
[
L(Dtrτ ; Skτv

?
τ,kτ

)− L(Dtrτ ; w?
τ, Skτ

)
]
≤ 0 as v?τ,kτ is



Subspace Learning for Effective Meta-Learning

an exact solution of the problem minvτ L(Dtrτ ; Skτvτ ). We conclude that

R(S)−R?

≤ K

√
ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
+ EτEDtrτ

[
L(Dtrτ ; Skτvτ,kτ )− L(Dtrτ ; Skτv

?
τ,kτ )

]
+ %EτEDtrτ dist(w?

τ ,Skτ )

≤ K

√
ν2

2Ntr
+

6ν%(1 + αβρ2m)Tin

Ntr
+ ρ
√
m EτEDtrτ ‖vτ,kτ − v?τ,kτ ‖+ %EτEDtrτ dist(w?

τ ,Skτ ),

where the last inequality follows from the Lipschitzness of ` and ‖Skτ ‖ ≤ ‖Skτ ‖F ≤ ρ
√
m.

B.4. Proof of Proposition 3.1

Proof. This proposition is a property of linear regression tasks and has been mentioned in (Kong et al., 2020; Tripuraneni
et al., 2021). We include the proof here for completeness.

By the definition y = x>w + ξ, we have

Eτ∼p(τ)E(x,y)∼τ,(x′,y′)∼τyy
′xx′>

=Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I),ξ∼N (0,σ2
ξ),ξ′∼N (0,σ2

ξ)(x
>w?

τ + ξ)(x′>w?
τ + ξ′)xx′>

=Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I),ξ∼N (0,σ2
ξ),ξ′∼N (0,σ2

ξ)(x
>w?

τx
′>w?

τxx′> + x>w?
τξ
′xx′> + ξx′>w?

τxx′> + ξξ′xx′>)

=Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I)x
>w?

τx
′>w?

τxx′>,

where the last equality follows from the independence of ξ, ξ′,x, and x′. Using the independence of x, and x′,
we obtain Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I)x

>w?
τx
′>w?

τxx′> = Eτ∼p(τ)(Ex∼N (0,I)xx>)w?
τw

?>
τ (Ex′∼N (0,I)x

′x′>) =

Eτ∼p(τ)w
?
τw

?>
τ .
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