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Abstract

Non-asymptotic analysis of quasi-Newton meth-
ods have gained traction recently. In particular,
several works have established a non-asymptotic
superlinear rate of O((1/

√
t)t) for the (classic)

BFGS method by exploiting the fact that its error
of Newton direction approximation approaches
zero. Moreover, a greedy variant of BFGS was
recently proposed which accelerates its conver-
gence by directly approximating the Hessian, in-
stead of the Newton direction, and achieves a fast
local quadratic convergence rate. Alas, the local
quadratic convergence of Greedy-BFGS requires
way more updates compared to the number of iter-
ations that BFGS requires for a local superlinear
rate. This is due to the fact that in Greedy-BFGS
the Hessian is directly approximated and the New-
ton direction approximation may not be as accu-
rate as the one for BFGS. In this paper, we close
this gap and present a novel BFGS method that
has the best of both worlds in that it leverages the
approximation ideas of both BFGS and Greedy-
BFGS to properly approximate the Newton di-
rection and the Hessian matrix simultaneously.
Our theoretical results show that our method out-
performs both BFGS and Greedy-BFGS in terms
of convergence rate, while it reaches its quadratic
convergence rate with fewer steps compared to
Greedy-BFGS. Numerical experiments on various
datasets also confirm our theoretical findings.
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1. Introduction
In this paper, we focus on the use of quasi-Newton methods
to solve the following unconstrained problem

min
x∈Rd

f(x), (1)

where f : Rd → R is strongly convex and its gradient is
Lipschitz continuous; see details in Section 3.2. We denote
the unique optimal solution of (1) by x∗.

First-order algorithms, i.e., gradient-based methods, are
widely used for solving (1), and it is well-known that their
iterates converge to x∗ at a linear rate (i.e., the error de-
cays exponentially fast). A major advantage of first-order
methods is their low computational cost of O(d), where d is
the problem dimension. However, the convergence rate of
these methods depends on the problem curvature and hence
they could be slow in ill-conditioned problems. Second-
order methods that leverage the objective function Hessian
to improve their curvature estimation often arise as a natural
alternative to accelerate convergence in ill-posed problems,
and they achieve fast local convergence rates (Bennett, 1916;
Ortega & Rheinboldt, 1970; Conn et al., 2000; Nesterov &
Polyak, 2006). Specifically, Newton’s method achieves a
local quadratic convergence rate when applied to solve (1)
with the additional assumption that the Hessian is Lipschitz
(Boyd & Vandenberghe, 2004, Chapter 9). A major obstacle
in the implementation of Newton’s method though is its
requirement to solve a linear system at each iteration, which
makes its computational cost O(d3).

Quasi-Newton (QN) methods serve as a middle ground be-
tween first- and second-order methods, as they improve
the linear rate of first-order methods and converge superlin-
eraly, and simultaneously their computation cost is O(d2)
which improves the O(d3) cost of Newton-type methods.
Their main idea is to construct a positive definite matrix
that approximates the Hessian required in Newton’s method.
Since the update of Hessian approximation matrix in QN
methods only requires a set of matrix-vector multiplications,
their computational cost per iteration is O(d2). There are
several types of QN methods that differ in their Hessian ap-
proximation updates, including Symmetric Rank-One (SR1)
method (Conn et al., 1991), the Broyden method (Broy-
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Figure 1. Comparison of BFGS, Greedy-BFGS, and the proposed
Sharpened-BFGS algorithms in terms of Newton direction er-
ror (top) and Hessian approximation error (bottom) for a quadratic
problem with dimension d = 400 and condition number κ = 100.

den, 1965; Broyden et al., 1973; Gay, 1979), the Davidon-
Fletcher-Powell (DFP) method (Davidon, 1959; Fletcher
& Powell, 1963), the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970), the limited-memory BFGS (L-BFGS)
method (Nocedal, 1980; Liu & Nocedal, 1989), and the
Greedy-QN method (Rodomanov & Nesterov, 2021a).

Perhaps the most important property of QN methods is their
local superlinear convergence. Specifically, Rodomanov &
Nesterov (2021a) introduced and analyzed a novel Greedy-
QN method which is based on the classical Broyden class
of QN methods and uses a greedily-selected vector to max-
imize certain measure of progress (see Section 2 for more
details). Greedy-QN achieves a non-asymptotic quadratic
convergence rate of (1−1/dκ)t

2/2(dκ)t, where κ is the prob-
lem condition number. Note that this bound is equivalent
to ((1−1/dκ)t/2(dκ))t which shows that the fast quadratic
convergence starts when t ≥ dκ ln(dκ). It is also worth not-
ing that in comparison with standard QN methods, greedy
QN requires more information, including the diagonal ele-
ments of the Hessian at each iteration. In a follow-up work,
Rodomanov & Nesterov (2021b) proved a non-asymptotic
superlinear convergence rate for standard QN methods in-
cluding the DFP and BFGS methods. They showed that
BFGS and DFP achieve a local superlinear convergence
rate of (dκ/t)t/2 and (dκ2/t)t/2, respectively, under the
assumptions that the objective function is strongly convex,
smooth and strongly self-concordant. Later, Rodomanov &
Nesterov (2021c) improved their results to the convergence
rates of ((d lnκ)/t)t/2 for BFGS and ((dκ lnκ)/t)t/2 for
DFP. As noted in Table 1, the convergence rate of BFGS is
slower than the one for Greedy-BFGS, but the superlinear
rate starts at a smaller time index.

Contributions. As mentioned above, (standard) BFGS
aims at approximating the Newton direction and obtains a
fast convergence rate from the beginning, but it fails to per-
fectly approximate the Hessian. On the other hand, Greedy-
BFGS’s goal is to directly approximate the Hessian matrix
and therefore at first its convergence is slower than BFGS,

but once its Hessian approximation improves it converges
substantially faster than BFGS; see Figure 1. Considering
these points, a natural question that arises is:

Is it possible to achieve the best of two worlds and
develop a QN method that exhibits faster local
convergence by approximating both the Newton
direction and the Hessian matrix?

In this paper, we address this question by proposing a novel
Sharpened-BFGS method which utilizes ideas of the classic
BFGS and Greedy-BFGS. The proposed Sharpened-BFGS
method exploits the initial fast convergence of BFGS by
approximating the Newton direction, while developing an
accurate approximation of the Hessian by following the
Greedy-BFGS idea which allows for a quadratic conver-
gence rate. As stated in Table 1, our method outperforms
both BFGS and Greedy-BFGS in terms of convergence rate,
while it reaches the superlinear convergence rate with fewer
steps compared to the greedy method. We should add that
the computational cost per iteration of Sharpened-BFGS is
the same as its standard and greedy counterparts.

Related Work. Jin & Mokhtari (2020) established a non-
asymptotic superlinear convergence rate of (1/t)t/2 for stan-
dard QN methods under the assumptions that the objective
function is strongly convex, smooth and its Hessian is Lip-
schitz continuous at the optimal solution. They also estab-
lished a similar result for self-concordant functions. Their
local convergence rate does not depend on the problem
parameters such as d or κ, but their results require both
Hessian approximation error and the distance to the optimal
solution to be sufficiently small. Moreover, Ye et al. (2021)
obtained the explicit local superlinear convergence rate of
the SR1 method. Further, Lin et al. (2021a) extended the
non-asymptotic local superlinear convergence rate of the
Broyden family QN methods for solving nonlinear equa-
tions. It is worth noting that recently, Lin et al. (2021b)
proposed a randomized version of Greedy-BFGS which ob-
tains a convergence rate of (dκ(1− 1

d )
t
2 )t. This randomized

technique can be also utilized for our proposed Sharpened
BFGS method to improve its convergence rate dependency
in terms of κ. Due to space limitation, we present and
analyze randomized Sharpened-BFGS in Appendix H.

2. Preliminaries
In this section, we review some basics of QN methods that
we require for developing our method. Consider xt ∈ Rd as
the iterate associated with time index t and ∇f(xt) ∈ Rd as
the objective function gradient evaluated at xt. The general
form of a QN update is given by

xt+1 = xt − ηtG
−1
t ∇f(xt), (2)
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Algorithm Superlinear Rate t0

Standard BFGS (d lnκ
t )

t
2 d lnκ

Greedy-BFGS
(
dκ(1− 1

dκ )
t
2

)t
dκ ln (dκ)

Sharpened-BFGS (1− 1
dκ )

t(t−1)
4 (dκt )

t
2 dκ

Table 1. Convergence rate comparison of different variants of
BFGS, where d is the dimension, κ is the condition number and t0
is the time index at which the superlinear convergence begins.

where ηt > 0 is the step size (learning rate) and Gt ∈ Rd×d

is the matrix approximating the Hessian ∇2f(xt) ∈ Rd×d.
In general, ηt is determined by some line search algorithms
so that the iteration generated converge to the optimal so-
lution globally. In this paper, we focus on the local conver-
gence analysis of QN algorithms, which requires the use of
a unit step size ηt = 1. Hence, in the rest of the paper, we as-
sume that the iterates {xt}∞t=1 stay in a local neighborhood
of x∗ and ηt = 1 is always admissible.

2.1. BFGS Operator and Algorithm

The essence of a QN method is its update for the Hessian ap-
proximation matrixGt. There are various ways for updating
Gt, but in this paper we focus on the BFGS method. Before
stating the BFGS method, we first introduce it as an algo-
rithm for approximating linear operators. This perspective
turns out to be advantageous for unifying it with its greedy
variant. To do so, consider A ∈ Rd×d as a positive defi-
nite linear operator, and suppose G ∈ Rd×d is the operator
that approximates A and is updated according to the BFGS
update. Then, the BFGS update rule for approximating
operator A along the direction u ∈ Rd\{0} is

BFGS(A,G, u) = G+ := G−Guu⊤G

u⊤Gu
+
Auu⊤A

u⊤Au
. (3)

Note that this update tries to move from G to G+ in a way
that operators A and G+ are equal to each other in the
direction of vector u, i.e., Au = G+u.
Remark 2.1. As noted in (2), we need to compute the in-
verse of the Hessian approximation matrix at each step.
Hence, we need a direct update for the Hessian inverse ap-
proximation matrices. By exploiting the Sherman-Morrison-
Woodbury formula, one can show that the Hessian inverse
approximation matrix H = G−1 update can be written as

H+ =

(
I − uu⊤A

u⊤Au

)
H

(
I − Auu⊤

u⊤Au

)
+

uu⊤

u⊤Au
. (4)

Hence, the computational cost of BFGS is O(d2), as it only
requires computation of matrix-vector multiplication.

When we focus on minimizing a function and the ultimate
linear operator that we aim to approximate is its curva-
ture, then we select the direction as u = xt+1 − xt and

the desired operator as the average Hessian A = Jt :=∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ . This way we ensure that

the new Hessian approximation matrix Gt+1 satisfies the
secant condition, i.e.,

Gt+1(xt+1−xt) = Jt(xt+1−xt) = ∇f(xt+1)−∇f(xt),

If we define the variable and gradient differences as

st := xt+1 − xt, yt := ∇f(xt+1)−∇f(xt), (5)

then the classic BFGS update is equivalent to

Gt+1 = Gt −
Gtsts

⊤
t Gt

s⊤t Gtst
+
yty

⊤
t

s⊤t yt
. (6)

A major advantage of the BFGS update in (6) is that it forces
the new Hessian approximation matrix Gt+1 to satisfy the
secant condition, which implies Gt+1st = yt. This condi-
tion ultimately ensures that the BFGS direction G−1

t ∇f(xt)
approaches the Newton direction ∇2f(xt)

−1∇f(xt); see
Chapter 6 of (Nocedal & Wright, 2006) for details.

2.2. Greedy-BFGS Algorithm

As mentioned in the previous section, BFGS does a good a
job in approximating the Newton direction, but its Hessian
approximation may not approach the true Hessian. To be
precise, consider the following metric which captures the
difference between positive definite matrices A,G ∈ Rd×d

σ(A,G) := Tr(A−1G)− d, (7)

where Tr(X) is the trace of matrix X , i.e., the sum of the
diagonal elements of X . Note that if A ⪯ G, we can use
σ(A,G) as a potential function that measures the distance
between two matrices A and G. Note that σ(A,G) = 0 if
and only if A = G. Using the above potential function, in
the next lemma, we state the error of Hessian approximation
for the BFGS operator in (3). The proof can be found in
(Rodomanov & Nesterov, 2021a).

Lemma 2.1. Consider positive definite matrices A,G ∈
Rd×d and suppose that G+ = BFGS(A,G, u) as defined
in (3) and u ∈ Rd\{0}. If A ⪯ G, then we have

σ(A,G)− σ(A,G+) ≥
u⊤Gu

u⊤Au
− 1. (8)

This result shows how fast the gap between the Hessian
approximation and the true Hessian decreases after one step
of BFGS. The result in Lemma 2.1 also shows that the
selection of direction u can influence the decrease in the
trace potential function σ(A,G) after one BFGS update.
Note that for an arbitrary direction u ∈ Rd\{0}, there is no
guarantee that the Hessian approximation matrix converges
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to the exact Hessian matrix. In fact, if we set u = x+ − x
as done in the classic BFGS update, there is no guarantee
that σ(A,G) converges to 0. This observation reveals the
following question: How can we select u to maximize the
progress in decreasing σ(A,G) and ensuring that σ(A,G)
converges to 0, i.e., G converges to A?

Rodomanov & Nesterov (2021a) answered this question by
proposing a greedy selection scheme for determination of
the best choice of u. To better explain this concept, consider
a quadratic problem, where the objective function Hessian is
fixed and denoted by the positive definite matrix A. In this
case, to maximize the right hand side of (8), which shows
the progress for the BFGS update, one could select u as

ū(A,G) := argmax
u∈{ei}d

i=1

u⊤Gu

u⊤Au
, (9)

where {ei} is the vector whose i-th element is 1 and its
remaining elements are 0. If we choose u = ū(A,G) in
each iteration of BFGS update (3), we obtain the Greedy-
BFGS algorithm in (Rodomanov & Nesterov, 2021a). The
advantage of this greedily selected is that it ensures the
trace potential function σ(A,G) is strictly decreasing and
converges to 0 linearly as specified in the following lemma.
Lemma 2.2 ((Rodomanov & Nesterov, 2021a)). Consider
positive definite matrices A,G ∈ Rd×d that satisfy A ⪯ G
and µI ⪯ A ⪯ LI , where 0 < µ ≤ L are two con-
stants. Suppose that Ḡ+ = BFGS(A,G, ū(A,G)) where
ū(A,G) ∈ Rd is greedily selected as defined in (9). Then,

σ(A, Ḡ+) ≤
(
1− µ

dL

)
σ(A,G). (10)

This result shows that by following the Greedy-BFGS up-
date the error of Hessian approximation, in terms of the met-
ric σ(., .) defined in (7), converges to zero linearly and even-
tually the sequence of Hessian approximations approaches
the true Hessian. Note that, for the non-quadratic case, a
similar argument holds, but the algorithm should be slightly
modified as the computation of the average Hessian Jt
is costly and instead one might use the current Hessian
∇2f(xt). We discuss this point in detail in the following
section, when we present our Sharpened-BFGS method.

3. Sharpened-BFGS
In this section, we propose the Sharpened-BFGS algorithm
which benefits from the update of BFGS for Newton di-
rection approximation and the Greedy-BFGS update to ap-
proximate the Hessian matrix. In a nutshell, the update of
Sharpened-BFGS first adjusts the Hessian approximation
according to the BFGS update by setting u = xt+1−xt, and
then improves the Hessian approximation by following the
greedy update, and selecting the vector u in a greedy fash-
ion. To introduce our method, we first focus on a quadratic

Algorithm 1 Sharpened-BFGS applied to (11).
Require: Initial point x0 and initial matrix G0 = LI .

1: for t = 0, 1, 2, . . . do
2: Update the variable: xt+1 = xt −G−1

t ∇f(xt);
3: Compute st = xt+1 − xt;
4: Compute Ḡt = BFGS(A,Gt, st);
5: Compute ū = ū(A, Ḡt) according to (9);
6: Compute Gt+1 = BFGS(A, Ḡt, ū);
7: end for

program where the Hessian is fixed. We then build on our
intuition from the quadratic case to develop the general
version of our method for the problem in (1).

3.1. Quadratic Programming

Consider a special case of (1) where the objective function
is quadratic and given by

min
x∈Rd

f(x) =
1

2
x⊤Ax+ b⊤x, (11)

where A ∈ Rd×d is a symmetric positive definite matrix
satisfying µI ⪯ A ⪯ LI and b ∈ Rd. The Sharpened-
BFGS algorithm applied to (11) is shown in Algorithm 1.
We observe that the proposed algorithm involves two BFGS
updates per iteration. Intuitively, we improve the Hessian
approximation along the classical BFGS direction and sub-
sequently along the Greedy-BFGS direction. Notice that the
initial Hessian approximation matrix is G0 = LI . Hence,
the initial Hessian inverse approximation matrix is simply
H0 = (1/L)I . For the quadratic problem, the sequence
generated by Sharpened-BFGS converges to the optimal so-
lution globally, as we show in Theorems 3.2 and 3.4. Hence,
the initial point x0 can be any vector in Rd.

To formally show how Sharpened-BFGS exploits the
fast properties of both BFGS and Greedy-BFGS, we
first define the Newton decrement as λf (x) :=√

∇f(x)⊤∇2f(x)−1∇f(x). In our results, we report
convergence in terms of λf (x) and we use the notation
λt := λf (xt). We next state the following intermediate
result that shows for the class of quasi-Newton updates de-
fined in (2) (with step size η = 1) on a quadratic program,
how fast λf (x) converges to zero. The proof of this result
can be found in (Rodomanov & Nesterov, 2021b).
Lemma 3.1. Consider the quadratic function in (11) and
the sequence of iterates generated according to the update
in (2) with step size ηt = 1. Then, we have that

λt+1 = θ(A,Gt, xt+1 − xt)λt, (12)

where

θ(A,G, u) :=

(
u⊤(G−A)A−1(G−A)u

u⊤GA−1Gu

) 1
2

. (13)
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First, note that θ(A,G, u) captures the closeness of G and
A along the direction of u, where u ∈ Rd\{0}. The above
result shows that the contraction factor for the convergence
of the Newton decrement is related to the gap between
Gt(xt+1−xt) and A(xt+1−xt). In the following theorem,
we characterize a global upper bound on θ(A,Gt, xt+1−xt)
for the Sharpened-BFGS method.
Theorem 3.2. Consider the Sharpened-BFGS method in
Algorithm 1 applied to the quadratic problem (11). Then,

θ(A,Gt, xt+1 − xt) ≤ 1− µ

L
, ∀t ≥ 0, (14)

and therefore

λt ≤
(
1− µ

L

)t
λ0, ∀t ≥ 0. (15)

Proof. Check Appendix B.

The above result shows that the iterates generated by
Sharpened-BFGS converge to the solution at a linear rate
of 1 − µ/L. However, this is not a tight bound and sim-
ply follows from the fact that eigenvalues of Gt and A are
uniformly bounded. In the next lemma, we present that
the sequence θ(A,Gt, xt+1 − xt) eventually approaches
zero and hence the iterates of Sharpened-BFGS converge
superlinearly.
Lemma 3.3. Consider Sharpened-BFGS in Algorithm 1
applied to the quadratic function (11). Further, define θt :=
θ(A,Gt, xt+1 − xt) and σt := σ(A,Gt). Then,

σt+1 ≤
(
1− µ

dL

) (
σt − θ2t

)
(16)

for any t ≥ 0. Moreover, we have
t−1∑
i=0

θ2i
(1− µ

dL )
i
≤ σ0, ∀t ≥ 1. (17)

Proof. Check Appendix C.

First, note that (16) shows that in Sharpened-BFGS σt con-
verges to zero as in the Greedy-BFGS algorithm. Moreover
comparing the bound in (16) with the one in (10) shows
that in Sharpened-BFGS σt converges faster than Greedy-
BFGS, as θ2t > 0. Second, the result in (17) shows that
the sequence θt converges to zero. Hence, one can leverage
this result to show a tighter upper bound for θt compared to
the one in (14) and show a faster rate than the one in (15)
for the Sharpened-BFGS. This goal is accomplished in the
following Theorem.
Theorem 3.4. Consider Sharpened-BFGS described in Al-
gorithm 1 applied to the quadratic function (11). Then, for
t ≥ 1 we have

λt ≤
(
1− µ

dL

) t(t−1)
4

(
dL

tµ

) t
2

λ0. (18)

Algorithm 2 General Sharpened-BFGS
Require: Initial point x0 and initial matrix G0 = LI .

1: for t = 0, 1, 2, . . . do
2: Update xt+1 = xt −G−1

t ∇f(xt);
3: Compute st = xt+1 − xt;
4: Set Jt =

∫ 1

0
∇2f(xt + τst)dτ ;

5: Compute Ḡt = BFGS(Jt, Gt, st);
6: Compute rt = ∥xt+1 − xt∥xt ;
7: Compute Ĝt = (1 +Mrt/2)

2Ḡt;
8: Compute ū = ū(∇2f(xt+1), Ĝt) according to (9);
9: Compute Gt+1 = BFGS(∇2f(xt+1), Ĝt, ū);

10: end for

Proof. Check Appendix D.

If we analyze the superlinear convergence rate in (18), we
observe that there are two terms that contribute to the rate.
The first is the quadratic rate (1 − µ

dL )
t(t−1)

4 and the sec-
ond is (dLtµ )

t
2 . Notice that for the second term (dLtµ )

t
2 , the

superlinear convergence kicks in only after t ≥ dL
µ . Hence,

by combining the results of Theorem 3.2 and 3.4, we ob-
tain that during the initial iterations t < dL

µ Sharpened-
BFGS converges linearly and for t > dL

µ the rate becomes
faster than quadratic rate and λt approaches zero at a rate of
O((1− µ

dL )
t2(dLµt )

t).

3.2. General Strongly-Convex and Smooth Setting

In this section, we extend our algorithm and its analysis to
non-quadratic convex programs. To do so, We first state the
required assumptions on the objective function to establish
the superlinear convergence rate of Sharpened-BFGS.

Assumption 3.1. The objective function f is twice differen-
tiable. It is strongly convex with parameter µ > 0 and its
gradient ∇f is Lipschitz continuous with parameter L > 0.

Assumption 3.2. The objective function f is strongly self-
concordant with M > 0, i.e., for any x, y, z, w ∈ Rd, we
have ∇2f(y) − ∇2f(x) ⪯ M∥y − x∥z∇2f(w), where
∥y − x∥z :=

√
(y − x)⊤∇2f(z)(y − x).

The strongly self-concordant functions form a subclass of
the famous self-concordant functions class introduced in
(Nesterov, 1989; Nesterov & Nemirovskii, 1994), which
plays a fundamental role in the local analysis of Newton’s
method. The concept of strong self-concordance was first
proposed by Rodomanov & Nesterov (2021a) to establish
the explicit quadratic convergence rate of the greedy QN
method. Note that a strongly convex function with Lips-
chitz continuous Hessian is strongly self-concordant; see
Example 4.1 in (Rodomanov & Nesterov, 2021a).

The general Sharpened-BFGS method is presented in Al-
gorithm 2. We observe that Algorithm 2 is fundamentally
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similar to the Algorithm 1 for the quadratic case, but there
are still some differences between them. In general, similar
to Algorithm 1, we first update the Hessian approxima-
tion matrix along the standard BFGS direction and then
along the Greedy-BFGS direction. The only difference be-
tween Algorithm 1 and 2 is that we add the correction term
rt = ∥xt+1−xt∥xt

in Steps 6 and 7 of Algorithm 2. The rea-
son for this modification is that the trace potential function
σ(A,G) is only well-defined under the condition A ⪯ G.
Suppose currently the condition ∇2f(x) ⪯ G holds. We
add the correction term to ensure that after one BFGS up-
date, the new point x+ and the new Hessian approximation
matrixG+ still satisfy the condition ∇2f(x+) ⪯ G+. Since
the Hessian of the general convex function is not fixed, there
is no guarantee that the quasi-Newton update can preserve
the property of ∇2f(x) ⪯ G without that correction term.
The initial Hessian approximation matrix is still G0 = LI .
We should also add that Step 4 does not require computing
Jt =

∫ 1

0
∇2f(xt + τst)dτ explicitly. As we discussed in

Section 2.1, we can compute the standard BFGS update in
Step 5 according to (6).

Remark 3.1. The computational cost per iteration of Algo-
rithm 1 is O(d2). The difference between Algorithm 2 and 1
is in Steps 6 and 7 of Algorithm 2. The computational cost
of calculating the vector rt = ∥xt+1−xt∥xt and the matrix
Ĝt = (1+Mrt/2)

2Ḡt is also O(d2). Hence, the computa-
tional cost per iteration of Algorithm 2 is also O(d2).

The convergence rate analysis of the Sharpened-BFGS
method is inspired by the counterpart of the quadratic func-
tion, but there are still some differences between these two
analyses as we need to take into account the variation of the
Hessian for the non-quadratic case. Most importantly, for
the general (non-quadratic) case, we can only obtain local
convergence results as we state in Theorems 3.6 and 3.8. In
other words, the initial point x0 should be within a local
neighborhood of the optimal solution x∗ to guarantee the
convergence of Sharpened-BFGS. Similar to Section 3.1, we
first establish the relationship between θ defined in (13) and
the Newton decrement λf (x) after one iteration of quasi-
Newton update for minimizing a general convex function.
The proof can be found in (Rodomanov & Nesterov, 2021b).

Lemma 3.5. Consider problem (1) and suppose Assump-
tions 3.1–3.2 are satisfied. Then, the iterates xt generated
according to the update in (2) with step size ηt = 1 satisfy

λt+1 ≤
(
1 +

Mrt
2

)
θ(Jt, Gt, xt+1 − xt)λt, (19)

where Jt :=
∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ and rt :=

∥xt+1 − xt∥xt
.

Notice that the above lemma is in parallel to Lemma 3.1 for
the quadratic case. Now, we establish a local upper bound

for the measurement θ(Jt, Gt, xt+1−xt) and prove the local
linear convergence rate of the general Sharpened-BFGS
method, which is similar to the results in Theorem 3.2.

Theorem 3.6. Consider Sharpened-BFGS in Algorithm 2
applied to the objective function f satisfying Assumption 3.1
and 3.2. Moreover, suppose that the initial point x0 satisfies

λ0 ≤ C0µ

ML
, (20)

where C0 = 1
4 ln

3
2 . Then, for any t ≥ 0 we have

θ(Jt, Gt, xt+1 − xt) ≤ 1− 2µ

3L
, (21)

which leads to
λt ≤ (1− µ

2L
)tλ0. (22)

Proof. Check Appendix E.

The above theorem presents that in a local neighborhood of
the optimal solution, the iterates generated by Sharpened-
BFGS achieve a linear convergence rate of 1−µ/2L, which
is obtained by a loose bound on θt. As mentioned in Sec-
tion 3.1, our ultimate target is to improve this to the superlin-
ear rate. In the following lemma, we establish inequalities
similar to (16) and (17) to establish a superlinear conver-
gence rate for Sharpened-BFGS.

Lemma 3.7. Consider Sharpened-BFGS in Algorithm 2 ap-
plied to the objective function f satisfying Assumptions 3.1
and 3.2. Moreover, suppose that the initial point x0 satisfies

λ0 ≤ C0µ

ML
, (23)

where C0 = 1
4 ln

3
2 . Further, consider the definitions θt :=

θ(∇2f(xt), Gt, xt+1 − xt) and σt := σ(∇2f(xt), Gt).
Then, for any t ≥ 0 it holds that

σt+1 ≤ (1− µ

2dL
)

[
(1 +

Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]
.

(24)
Moreover, we have

t−1∑
i=0

θ2i
(1− µ

2dL )
i
≤ 8(σ0 + 4Mdλ0), ∀t ≥ 1. (25)

Proof. Check Appendix F.

The conclusions of the above lemma are similar to the ones
for the quadratic case in Lemma 3.3, except that a local
condition is required. Specifically, the result in (24) implies
that in Sharpened-BFGS σt converges to zero as long as
λ0 is sufficiently small. Similarly this rate is faster than
the one for Greedy-BFGS as θ2t > 0. Second, the result
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in (25) implies that the sequence θt converges to zero at
a fast rate as its weighted sum by a factor larger than 1
that is exponentially growing is finite. Hence, locally this
result provides a tighter upper bound on θt compared to
the one in (21) and shows a faster rate than the one in (22)
for Sharpened-BFGS. We leverage these points to establish
the convergence rate of Sharpened-BFGS for non-quadratic
problems.

Theorem 3.8. Consider the Sharpened-BFGS method in
Algorithm 2 applied to the objective function f satisfying
Assumptions 3.1-3.2. Suppose the initial point x0 satisfies

λ0 ≤ C1µ

dML
, (26)

where C1 = ln 2
20 . Then, ∀t ≥ 1, we have

λt ≤ 2
(
1− µ

2dL

) t(t−1)
4

(
8dL

tµ

) t
2

λ0. (27)

Proof. Check Appendix G.

We observe that the superlinear convergence rate of The-
orem 3.8 is very similar to the result of Theorem 3.4. As
we discussed in the last paragraph of Section 3.1, we can
summarize the Theorem 3.6 and 3.8 into one convergence re-
sult. Hence, the iteration generated by the Sharpened-BFGS
method applied to the unconstrained optimization problem
as specified in Algorithm 2 satisfies the following local con-
vergence rate. When the iteration number t ≤ Θ(dL

µ ), the
linear convergence rate in (21) holds. When t ≥ Θ(dL

µ ),
we can reach the superlinear convergence rate in (27).

4. Discussions
In this section, we compare the convergence results of
Sharpened-BFGS with the ones for Greedy-BFGS and stan-
dard BFGS. We specifically focus on the case that the objec-
tive function satisfies Assumption 3.1 and 3.2. To simplify
the comparisons, we replace all the universal constants with
1 in the convergence results and only compare the parame-
ters µ, L, M and d defined in Assumption 3.1 and 3.2. We
denote the condition number by κ = L/µ ≥ 1.

Sharpened-BFGS. According to our result, if we set G0 =
LI and the initial point x0 satisfies

λf (x0) = O
(

1

dMκ

)
,

then the iterates generated by Sharpened-BFGS satisfy:

λf (xt)

λf (x0)
≤ min


(
1− 1

κ

)t

,

(
1− 1

dκ

)t(t−1)
4
(
dκ

t

) t
2

 .

Hence, for t < dκ, the first upper bound is smaller and the
Newton decrement converges at a linear rate of (1 − 1

κ )
t,

and for t ≥ dκ the second term becomes smaller and we
observe a superlinear rate of (1− 1

dκ )
t(t−1)

4 (dκt )
t
2 , which is

faster than quadratic rate.

Greedy-BFGS. Next, we present the convergence result for
Greedy-BFGS in (Rodomanov & Nesterov, 2021a). If we
set G0 = LI and the initial point x0 satisfies

λf (x0) = O
(

1

dMκ

)
,

then the iterates of Greedy-BFGS satisfy:

λf (xt)

λf (x0)
≤ min


(
1− 1

κ

)t

,

(
1− 1

dκ

)t(t−1)
2
(
1

2

)t
 .

We observe that the superlinear convergence appears
after dκ ln (dκ) iterations for Greedy-BFGS, while for
Sharpened-BFGS it takes dκ steps to reach the superlinear
convergence. Hence, Sharpened-BFGS achieves the super-
linear rate with fewer iterations compared to Greedy-BFGS.
Moreover, eventually the superlinear convergence rate of
Sharpened-BFGS is faster than the one for Greedy-BFGS.
This is because both of the methods achieve a quadratic
convergence rate of the form (1− 1

dκ )
t2 . However, when t

is sufficiently large, we have (dκt )
t
2 ≪ ( 12 )

t.

BFGS. Now, we present the convergence result for BFGS
provided in (Rodomanov & Nesterov, 2021c). If we set
G0 = LI and the initial point x0 satisfies

λf (x0) = max

{
O
(

1

Mκ

)
,O
(

1

Md lnκ

)}
,

then the iterates of BFGS satisfy:

λf (xt)

λf (x0)
≤ min

{(
1− 1

κ

)t

,

(
d lnκ

t

) t
2

}
.

We observe that the superlinear convergence of BFGS starts
after d lnκ steps, while it takes dκ iterations for the appear-
ance of the superlinear convergence of Sharpened-BFGS.
However, the superlinear convergence rate of Sharpened-
BFGS is faster than BFGS as for large t we have

(
1− 1

dκ

)t(t−1)
4
(
dκ

t

) t
2

≪
(
d lnκ

t

) t
2

.

For the broad strokes, see the quantitative comparisons sum-
marized in Table 1.
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Figure 2. Comparison of BFGS, Greedy-BFGS, Sharpened-BFGS and gradient descent (GD) on different datasets.

5. Numerical Experiments
In this section, we present our numerical experiments on
different datasets to compare the performance of Sharpened-
BFGS with BFGS and Greedy-BFGS. We focus on the
following logistic regression problem with l2 regularization

min
x∈Rd

f(x) =
1

N

N∑
i=1

ln (1 + e−yiz
⊤
i x) +

µ

2
∥x∥2, (28)

where {zi}Ni=1 are the data points and {yi}Ni=1 are their
corresponding labels. We assume that zi ∈ Rd and yi ∈
{−1, 1} for all 1 ≤ i ≤ N . This objective function is
strongly convex with parameter µ > 0. We normalize all
data points such that ∥zi∥ = 1 for all 1 ≤ i ≤ N . Hence, the

gradient of the function f(x) is smooth with parameter L =
1/4 + µ. The logistic regression objective function is also
strongly self-concordant; check Section 5.1 in (Rodomanov
& Nesterov, 2021a). Therefore, the objective function f(x)
defined in (28) satisfies Assumptions 3.1-3.2.

We conduct our experiments on eight datasets. All the pa-
rameters (sample size N , dimension d and regularization
parameter µ) of these different datasets are summarized in
Table 2. The regularization parameter µ is chosen from the
set A = {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10} to achieve
the best performance. The algorithms that we study are (i)
Sharpened-BFGS, (ii) standard BFGS, (iii) Greedy-BFGS,
and (iv) gradient descent (GD). We initialize all the algo-
rithms with the same initial point x0 = (1/d3/2) ∗ 1⃗, where
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Dataset N d µ

svmguide3 1243 21 0.01
phishing 11055 68 0.001

mushrooms 8124 112 0.001
a9a 32561 123 0.001

connect-4 67557 126 0.0001
w8a 49749 300 0.0001

protein 17766 357 0.0001
colon-cancer 62 2000 0.00001

gisette 6000 5000 0.00001

Table 2. Sample size N , dimension d, regularization parameter µ.

1⃗ ∈ Rd is the one vector. We set the initial Hessian approx-
imation matrix as LI and set the stepsize to 1 for all QN
methods. The step size of gradient descent is set as 1/L
to achieve its linear convergence rate on each dataset. In
practice, we found it is better not to apply the correction
strategy in the hybrid and greedy methods (i.e., simply set
Ĝt = Ḡt in step 7 of Algorithm 2). The convergence rates
of the ratio λf (xt)/λf (x0) versus the number of iterations
t are presented in Figure 2.

We observe that Sharpened-BFGS outperforms both the clas-
sical and greedy BFGS methods. More specifically, in the
initial phase of the convergence process, Sharpened-BFGS
exploits the Newton direction approximation of BFGS and
has a fast convergence like BFGS, while Greedy-BFGS
has a slower convergence at the beginning as it Hessian ap-
proximation is not accurate yet. Then, once the time index
increases and almost approaches d, and d greedy updates
are accomplished, the Hessian approximation of Greedy-
BFGS becomes more accurate. As a result, Greedy-BFGS
achieves a very fast convergence rate at this turning point.
Similarly, Sharpened-BFGS follows the same fast conver-
gence of Greedy-BFGS almost at the same time index, as
it also exploits the Hessian approximation update rule in
Greedy-BFGS. This behavior is consistent over all the con-
sidered datasets in our experiments, as illustrated in Figure 2.
We should also add that these empirical observations are
consistent with our theoretical findings and the performance
comparisons of these algorithms in Section 4.

6. Conclusions
In this paper, we proposed a novel quasi-Newton method
called Sharpened-BFGS for solving unconstrained con-
vex optimization problems, where the objective function
is strongly convex with µ, its gradient is smooth with L,
and it is strongly self-concordant with M . Sharpened-
BFGS benefits from the Newton direction approximation
of BFGS as well as Hessian approximation of Greedy-

BFGS. Using these properties, we proved that the proposed
Sharpened-BFGS achieves a superlinear convergence rate of
O((1− µ

dL )
t(t−1)

4 (dLtµ )
t
2 ), which is faster than quadratic rate.

We also compared the convergence results of our method
with the classical BFGS and Greedy-BFGS methods and
highlighted how Sharpened-BFGS takes advantage of the
Newton direction approximation in BFGS and the Hessian
approximation in Greedy-BFGS. We also numerically illus-
trated the advantages of our proposed method against BFGS
and Greedy-BFGS.
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Appendix

A. Preliminary Lemmas
In this subsection, we develop some technical preliminaries which are critical in the path towards establishing our main
convergence results. We begin with the following lemma regarding the BFGS operator defined in Sec. 2.1

Lemma A.1. Consider positive definite matrices A,G ∈ Rd×d and suppose that G+ = BFGS(A,G, u) as defined in (3)
for any u ∈ Rd\{0}. Then, the following results hold:

1. For any constants ξ, η ≥ 1, we have

1

ξ
A ⪯ G ⪯ ηA ⇒ 1

ξ
A ⪯ G+ ⪯ ηA. (29)

2. If A ⪯ G, then we have
σ(A,G)− σ(A,G+) ≥ θ2(A,G, u). (30)

3. If 1
ξA ⪯ G and θ(A,G, u) ≤ ξ, where ξ ≥ 1 is a constant, then

σ(A,G)− σ(A,G+) ≥
1

4ξ2
θ2(A,G, u)− ln ξ. (31)

Proof. Check Lemma 2.1 in (Rodomanov & Nesterov, 2021b) for the proof of (29) and check Lemma 2.2 in (Rodomanov &
Nesterov, 2021b) for the proof of (30). Now we prove (31). We denote Det(A) as the determinant of the matrix A ∈ Rd×d.
Applying results of Lemma 2.4 in (Rodomanov & Nesterov, 2021b), we obtain that

ψ(A,G)− ψ(A,G+) ≥ ω(
θ(A,G, u)

ξ
), (32)

where
ψ(A,G) := Tr(A−1(G−A))− lnDet(A−1G) = σ(A,G)− lnDet(A−1G), (33)

and
ω(t) := t− ln(1 + t), ∀t ≥ −1. (34)

Thus, we obtain that

ψ(A,G)− ψ(A,G+) = σ(A,G)− σ(A,G+)− lnDet(A−1G) + lnDet(A−1G+)

= σ(A,G)− σ(A,G+) + lnDet(G−1G+).
(35)

From Lemma 6.2 of (Rodomanov & Nesterov, 2021b), we have that

Det(G−1G+) =
u⊤Au

u⊤Gu
. (36)

Hence, we get that

ψ(A,G)− ψ(A,G+) = σ(A,G)− σ(A,G+) + ln
u⊤Au

u⊤Gu
. (37)

Substituting (37) into the (32), we obtain that

σ(A,G)− σ(A,G+) ≥ ω(
θ(A,G, u)

ξ
)− ln

u⊤Au

u⊤Gu
. (38)

Notice that the function ω(t) satisfies the following property,

ω(t) ≥ t2

2(t+ 1)
, ∀t ≥ 0. (39)
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Thus, we derive that

ω(
θ(A,G, u)

ξ
) ≥ θ2(A,G, u)/ξ2

2(θ(A,G, u)/ξ + 1)
=

θ2(A,G, u)

2ξ(θ(A,G, u) + ξ)
≥ θ2(A,G, u)

4ξ2
, (40)

where the second inequality is due to the condition θ(A,G, u) ≤ ξ. From condition 1
ξA ⪯ G, we know that for any

u ∈ Rd\{0}
u⊤Au

u⊤Gu
≤ ξ. (41)

Substituting (40) and (41) into (38), we achieve conclusion (31).

In the following lemma, we show that the Hessians of the strongly self-concordant function at two different points.

Lemma A.2. Suppose the objective function f(x) is strongly self-concordant with constant M > 0. Consider x, y ∈ Rd,
r = ∥y − x∥x and J =

∫ 1

0
∇2f(x+ τ(y − x))dτ . Then, we have that

∇2f(x)

1 +Mr
⪯ ∇2f(y) ⪯ (1 +Mr)∇2f(x). (42)

∇2f(x)

1 + Mr
2

⪯ J ⪯ (1 +
Mr

2
)∇2f(x). (43)

∇2f(y)

1 + Mr
2

⪯ J ⪯ (1 +
Mr

2
)∇2f(y). (44)

Proof. Check Lemma 4.2 in (Rodomanov & Nesterov, 2021a).

Lemma A.3. Suppose the objective function f(x) satisfies the Assumption 3.1 and 3.2. Consider the following update

xt+1 = xt −G−1
t ∇f(xt), (45)

where Gt ∈ Rd×d is the s.p.d. Hessian approximation matrix satisfying that

∇2f(xt) ⪯ Gt ⪯ η∇2f(xt), (46)

where η ≥ 1 is some constant. Suppose the following condition holds

Mλt ≤ 2. (47)

Denote that rt = ∥xt+1 − xt∥xt
and Jt =

∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ . Then, we have

rt ≤ λt, (48)

θ(Jt, Gt, xt+1 − xt) ≤
η − 1 + Mλt

2

η
. (49)

Proof. From (45), we have that

rt = ∥xt+1 − xt∥xt
=
(
∇f(xt)⊤G−1

t ∇2f(xt)G
−1
t ∇f(xt)

) 1
2

≤
(
∇f(xt)⊤G−1

t ∇f(xt)
) 1

2 ≤
(
∇f(xt)⊤∇2f(xt)

−1∇f(xt)
) 1

2

= λt,

(50)

where the inequalities hold due to (46). Therefore, (48) holds. Now we condition (49). Using (46) and (43) of Lemma A.2,
we obtain that

1

1 + Mrt
2

Jt ⪯ ∇2f(xt) ⪯ Gt ⪯ η∇2f(xt) ⪯ η(1 +
Mrt
2

)Jt. (51)
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Using rt ≤ λt from (48), we get that
1

1 + Mλt

2

Jt ⪯ Gt ⪯ η(1 +
Mλt
2

)Jt. (52)

Hence, we have

−

(
1− 1

η(1 + Mλt

2 )

)
J−1
t ⪯ G−1

t − J−1
t ⪯ Mλt

2
J−1
t . (53)

Notice that (
1− 1

η(1 + Mλt

2 )

)
≤ 1−

1− Mλt

2

η
=
η − 1 + Mλt

2

η
. (54)

Since Mλt ≤ 2 and η ≥ 1, we have

Mλt
2

= 1− (1− Mλt
2

) ≤ 1−
1− Mλt

2

η
=
η − 1 + Mλt

2

η
. (55)

Therefore, we have

−
η − 1 + Mλt

2

η
J−1
t ⪯ G−1

t − J−1
t ⪯

η − 1 + Mλt

2

η
J−1
t . (56)

Hence, we get

(G−1
t − J−1

t )Jt(G
−1
t − J−1

t ) ⪯

(
η − 1 + Mλt

2

η

)2

J−1
t , (57)

s⊤t Gt(G
−1
t − J−1

t )Jt(G
−1
t − J−1

t )Gtst ≤

(
η − 1 + Mλt

2

η

)2

s⊤t GtJ
−1
t Gtst, (58)

where st = xt+1 − xt is the variable difference. Therefore, by the definition of θ in (13), we prove conclusion (49),

θ(Jt, Gt, xt+1 − xt) =

(
s⊤t (Gt − Jt)J

−1
t (Gt − Jt)st

s⊤t GtJ
−1
t Gtst

) 1
2

=

(
s⊤t Gt(J

−1
t −G−1

t )Jt(J
−1
t −G−1

t )Gtst

s⊤t GtJ
−1
t Gtst

) 1
2

≤
η − 1 + Mλt

2

η
.

(59)

B. Proof of Theorem 3.2
First, we use induction to prove the following condition

A ⪯ Gt ⪯
L

µ
A, ∀t ≥ 0. (60)

From µI ⪯ A ⪯ LI , we observe that the initial Hessian approximation matrix G0 = LI satisfies A ⪯ G0 ⪯ L
µA. Hence,

condition (60) holds for t = 0. We assume that condition (60) holds for t = k, i.e., A ⪯ Gk ⪯ L
µA, where k ≥ 0. Applying

(29) of Lemma A.1 to the update in step 4 of Algorithm 1, we obtain that A ⪯ Ḡk ⪯ L
µA. Applying (29) of Lemma A.1

again to the update in step 6 of Algorithm 1, we obtain that A ⪯ Gk+1 ⪯ L
µA. Therefore, condition (60) holds for t = k+1.

By induction, we prove that condition (60) holds for any t ≥ 0. Moreover, this condition implies that for any t ≥ 0, we have

0 ⪯ A−1 −G−1
t ⪯ (1− µ

L
)A−1. (61)

Hence, we obtain that

(Gt −A)A−1(Gt −A) = Gt(A
−1 −G−1

t )A(A−1 −G−1
t )Gt ⪯ (1− µ

L
)2GtA

−1Gt, (62)
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s⊤t (Gt −A)A−1(Gt −A)st ≤ (1− µ

L
)2stGtA

−1Gtst, (63)

where st = xt+1 − xt is the variable difference. By the definition of θ in (13), we have that

θ(A,Gt, xt+1 − xt) =

(
s⊤t (Gt −A)A−1(Gt −A)st

stGtA−1Gtst

) 1
2

≤ 1− µ

L
. (64)

Therefore, (14) holds for any t ≥ 0. Applying (12) of Lemma 3.1, we prove that

λt+1 = θ(A,Gt, xt+1 − xt)λt ≤ (1− µ

L
)λt, ∀t ≥ 0. (65)

Hence, we prove the linear convergence rate of (15).

C. Proof of Lemma 3.3
The initial Hessian approximation matrix G0 = LI ⪰ A. Applying the same induction technique used in the proof of
Theorem 3.2, we can prove that for any t ≥ 0

Gt ⪰ A, Ḡt ⪰ A, (66)

where Ḡt is defined in step 4 of Algorithm 1. Using (30) of Lemma A.1, we have that

σ(A,Gt)− σ(A, Ḡt) ≥ θ2(A,Gt, xt+1 − xt), ∀t ≥ 0. (67)

Applying (10) of Lemma 2.2 to the step 6 of Algorithm 1, we obtain that

σ(A,Gt+1) ≤ (1− µ

dL
)σ(A, Ḡt), ∀t ≥ 0. (68)

We prove conclusion (16) by combining and regrouping the above two inequalities. Now we prove condition (17). Recall
and define the following shorthanded notations

θt = θ(A,Gt, xt+1 − xt), σt = σ(A,Gt), c =
µ

dL
. (69)

Condition (16) is equivalent to
σt ≤ (1− c)σt−1 − (1− c)θ2t−1, ∀t ≥ 1. (70)

Applying the above inequality recursively, we can derive that

σt ≤ (1− c)σt−1 − (1− c)θ2t−1

≤ (1− c)2σt−2 − (1− c)2θ2t−2 − (1− c)θ2t−1

≤ (1− c)tσ0 −
t−1∑
i=0

(1− c)t−iθ2i .

(71)

The above inequality indicates that

t−1∑
i=0

(1− c)t−iθ2i ≤ (1− c)tσ0 − σt ≤ (1− c)tσ0. (72)

Dividing the term (1− c)t on both sides of the above inequality, we can obtain that

t−1∑
i=0

θ2i
(1− c)i

≤ σ0. (73)

Hence, we prove the result (17) since c = µ
dL .
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D. Proof of Theorem 3.4
Using the condition A−1 ⪯ 1

µI and recalling the notation c = µ
dL , we can upper bound σ0 by

σ0 = σ(A,G0) = Tr(A−1LI)− d ≤ Tr(
L

µ
I)− d = d(

L

µ
− 1) ≤ d

L

µ
=

1

c
. (74)

Combining the above upper bound and (17), we derive that

t−1∑
i=0

θ2i
(1− c)i

≤ σ0 ≤ 1

c
. (75)

From (12) of Lemma 3.1, we obtain that

λt
λ0

=

t−1∏
i=0

λi+1

λi
=

t−1∏
i=0

θi =

t−1∏
i=0

(1− c)
i
2

θi

(1− c)
i
2

=

t−1∏
i=0

(1− c)
i
2

t−1∏
i=0

θi

(1− c)
i
2

= (1− c)
t(t−1)

4

t−1∏
i=0

θi

(1− c)
i
2

. (76)

Using the arithmetic-geometric mean inequality and (75), we derive that

t−1∏
i=0

θi

(1− c)
i
2

=

[
t−1∏
i=0

θ2i
(1− c)i

] 1
2

≤

[
1

t

t−1∑
i=0

θ2i
(1− c)i

] t
2

≤
(

1

ct

) t
2

. (77)

Leveraging (76) and (77), we achieve the final convergence rate of (18)

λt
λ0

≤ (1− c)
t(t−1)

4

(
1

ct

) t
2

= (1− µ

dL
)

t(t−1)
4 (

dL

tµ
)

t
2 , ∀t ≥ 1. (78)

E. Proof of Theorem 3.6
First, we use induction to prove the following condition

∇2f(xt) ⪯ Gt ⪯ ξt
L

µ
∇2f(xt), ∀t ≥ 0, (79)

where
ξ0 = 1 and ξt = e2M

∑t−1
i=0 ri , ∀t ≥ 1. (80)

We use induction to prove (79) and (80). When t = 0, from Assumption 3.1 we know that

∇2f(x0) ⪯ G0 = LI ⪯ L

µ
∇2f(x0). (81)

Hence, (79) and (80) hold for t = 0. Suppose that (79) and (80) hold for t = k, we have that

∇2f(xk) ⪯ Gk ⪯ ξk
L

µ
∇2f(xk), ξk = e2M

∑k−1
i=0 ri . (82)

Now we consider the case of t = k + 1. Condition (43) of Lemma A.2 indicates that

1

1 + Mrk
2

Jk ⪯ ∇2f(xk) ⪯ Gk ⪯ ξk
L

µ
∇2f(xk) ⪯ ξk

L

µ
(1 +

Mrk
2

)Jk. (83)

where Jk =
∫ 1

0
∇2f(xk + τ(xk+1 − xk))dτ . Applying (29) of Lemma A.1, we have that

1

1 + Mrk
2

Jk ⪯ Ḡk = BFGS(Jk, Gk, xk+1 − xk) ⪯ ξk
L

µ
(1 +

Mrk
2

)Jk, (84)
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where the equality is due to step 5 of Algorithm 2. Condition (44) of Lemma A.2 indicates that

1

(1 + Mrk
2 )2

∇2f(xk+1) ⪯
1

1 + Mrk
2

Jk ⪯ Ḡk ⪯ ξk
L

µ
(1 +

Mrk
2

)Jk,⪯ ξk
L

µ
(1 +

Mrk
2

)2∇2f(xk+1). (85)

Multiplying the term (1 + Mrk
2 )2 on both sides of the above inequality, we get that

∇2f(xk+1) ⪯ (1 +
Mrk
2

)2Ḡk = Ĝk ⪯ ξk
L

µ
(1 +

Mrk
2

)4∇2f(xk+1), (86)

where the equality is due to step 7 of Algorithm 2. Applying the fact 1 + x ≤ ex, we have

ξk(1 +
Mrk
2

)4 ≤ ξke
2Mrk = e2M

∑k−1
i=0 rie2Mrk = e2M

∑k
i=0 ri = ξk+1, (87)

where the first equality is due to the induction assumption in (82) and the last equality is due to the definition in (80).
Substituting (87) into (86), we have that

∇2f(xk+1) ⪯ Ĝk ⪯ ξk+1
L

µ
∇2f(xk+1). (88)

Applying (29) of Lemma A.1 again and step 9 of Algorithm 2, we obtain that

∇2f(xk+1) ⪯ Gk+1 = BFGS(∇2f(xk+1), Ĝk, ū(∇2f(xk+1), Ĝk)) ⪯ ξk+1
L

µ
∇2f(xk+1). (89)

Hence, (79) and (80) hold for t = k + 1. Therefore, We finish the proof of (79) and (80) using induction.

Now, we use induction again to prove the result of (21) and (22). It’s obvious that (22) holds for t = 0. Suppose that (22)
holds for 0 ≤ t ≤ k, we have that

Mλt ≤Mλ0 ≤ C0
µ

L
=

ln 3
2

4

µ

L
< 1 < 2, 0 ≤ t ≤ k, (90)

where we use the initial condition (20) and the fact µ ≤ L. Conditions (79) and (90) imply that (48) and (49) of Lemma A.3
hold for all 0 ≤ t ≤ k where η = ξtL/µ. Hence, we have that

θ(Jt, Gt, xt+1 − xt) ≤
η − 1 + Mλt

2

η
= 1− µ

Lξt
(1− Mλt

2
), 0 ≤ t ≤ k. (91)

Applying the initial condition (20) and the induction assumption of (22) for 0 ≤ t ≤ k, we observe that

M

t∑
i=0

λi ≤Mλ0

t∑
i=0

(1− µ

2L
)i ≤ 2M

L

µ
λ0 ≤ 2C0, 0 ≤ t ≤ k. (92)

Consequently,

e2M
∑t

i=0 λi ≤ e4C0 = eln
3
2 =

3

2
, 0 ≤ t ≤ k. (93)

Since Mλt < 1 from (90) and the fact that 1− x/2 ≥ e−x for x ∈ (0, 1), we get that

1− Mλt
2

≥ e−Mλt , 0 ≤ t ≤ k. (94)

Hence, we can obtain that for 0 ≤ t ≤ k,

1

ξt
(1− Mλt

2
) = e−2

∑t−1
i=0 Mri(1− Mλt

2
) ≥ e−2

∑t−1
i=0 Mrie−Mλt

≥ e−2
∑t−1

i=0 Mλie−Mλt ≥ e−2M
∑t

i=0 λi ≥ 2

3
,

(95)
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where the equality holds due to the definition of (80), the first inequality holds due to (94), the second inequality holds due
to (48), the third inequality holds due to Mλk ≥ 0 and the last inequality holds due to (93). Substituting (95) into (91), we
get that

θ(Jt, Gt, xt+1 − xt) ≤ 1− µ

Lξt
(1− Mλt

2
) ≤ 1− 2µ

3L
, 0 ≤ t ≤ k. (96)

Therefore, (21) holds for 0 ≤ t ≤ k. Now consider the case of t = k + 1. From (90) for t = k and the fact that
(ln 3

2 )/8 < 1/16, we get that
Mλk
2

≤
ln 3

2

8

µ

L
≤ µ

16L
. (97)

From (19) of Lemma 3.5 and (48), we have that

λk+1 ≤ (1 +
Mrk
2

)θ(Jk, Gk, xk+1 − xk)λk ≤ (1 +
Mλk
2

)θ(Jk, Gk, xk+1 − xk)λk. (98)

Substituting (96) for t = k and (97) into (98), we get that

λk+1 ≤ (1 +
µ

16L
)(1− 2µ

3L
)λk = (1− 29µ

48L
− µ2

24L2
)λk ≤ (1− 29µ

48L
)λk ≤ (1− µ

2L
)λk. (99)

Thus, condition (22) holds for t = k + 1 since

λk+1 ≤ (1− µ

2L
)λk ≤ (1− µ

2L
)k+1λ0. (100)

Using the same technique we can prove that condition (21) holds for t = k + 1. Therefore, we finish proving the conclusion
(21) and (22) using induction.

F. Proof of Lemma 3.7
For brevity, we use the following shorthanded notations

c =
µ

2dL
, ρt = 1 +

Mλf (xt)

2
, αt = σt + 4Mdλt, βt = ρ4t (1 + 8Mdλt). (101)

The initial condition (23) indicates that Mλ0 ≤ C0µ/L ≤ C0 < 2. Hence, rt ≤ λt of (48) in Lemma A.3 always holds for
any t ≥ 0. Thus, we have that

1 +
Mrt
2

≤ 1 +
Mλt
2

= ρt, ∀t ≥ 0. (102)

Substituting the above inequality into (43) and (44) of Lemma A.2, we obtain that

∇2f(xt)

ρt
⪯ Jt ⪯ ρt∇2f(xt),

∇2f(xt+1)

ρt
⪯ Jt ⪯ ρt∇2f(xt+1). (103)

From (86) of the proof of Theorem 3.6, we showed that for any t ≥ 0, we have Ĝt ⪰ ∇2f(xt+1). Recall that Gt+1 =
BFGS(∇2f(xt+1), Ĝt, ū) and ū = ū(∇2f(xt+1), Ĝt) in step 8 and 9 of Algorithm 2. Applying Lemma 2.2, we obtain
that

σt+1 ≤ (1− µ

dL
)σ(∇2f(xt+1), Ĝt) ≤ (1− µ

2dL
)σ(∇2f(xt+1), Ĝt) = (1− c)σ(∇2f(xt+1), Ĝt). (104)

Using the condition Ĝt = (1 + Mrt
2 )2Ḡt in step 7 of Algorithm 2 and (102), we can observe that Ĝt ≤ ρ2t Ḡt. Using this

condition, (103) and the definition of σ in (7), we obtain

σ(∇2f(xt+1), Ĝt) = Tr(∇2f(xt+1)
−1
Ĝt)− d ≤ ρ2tTr(∇2f(xt+1)

−1
Ḡt)− d ≤ ρ3tTr(J

−1
t Ḡt)− d (105)

From (79), we know that

∇2f(xt) ⪯ Gt ⪯ ξt
L

µ
∇2f(xt), ∀t ≥ 0. (106)
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Combining the above inequality and (103), we can show that,

1

ρt
Jt ⪯ Gt ⪯ ξt

L

µ
ρtJt, ∀t ≥ 0. (107)

From (21) of Theorem 3.6, we obtain that

θt ≤ 1− 2µ

3L
≤ 1 ≤ ρt. (108)

In summary, (107) shows that Gt ⪰ 1
ρt
Jt and (108) shows that θt ⪯ ρt. Consider (31) of Lemma A.1 and take G = Gt,

A = Jt, G+ = BFGS(Jt, Gt, st) = Ḡt in step 5 of Algorithm 2 and ξ = ρt. Applying (31) of Lemma A.1, we obtain that

σ(Jt, Gt)− σ(Jt, Ḡt) ≥
1

4ρ2t
θ2t − ln ρt, (109)

which is equivalent to

Tr(J−1
t Ḡt) ≤ Tr(J−1

t Gt)−
1

4ρ2t
θ2t + ln ρt, (110)

where we use the definition of σ in (7). Substituting (110) into (105), we obtain that

σ(∇2f(xt+1), Ĝt) ≤ ρ3t

(
Tr(J−1

t Gt)−
1

4ρ2t
θ2t + ln ρt

)
− d. (111)

Substituting (111) into (104), we have that

σt+1 ≤ (1− c)

[
ρ3t

(
Tr(J−1

t Gt)−
1

4ρ2t
θ2t + ln ρt

)
− d

]
. (112)

Applying (103) and the definition of σ in (7) again, we obtain that

Tr(J−1
t Gt) ≤ ρtTr(∇2f(xt)

−1
Gt) = ρt(σt + d). (113)

Substituting (113) into (112), we achieve that

σt+1 ≤ (1− c)

[
ρ3t

(
ρt(σt + d)− 1

4ρ2t
θ2t + ln ρt

)
− d

]
= (1− c)(ρ4tσt + ρ4td+ ρ3t ln ρt − d)− 1

4
(1− c)ρtθ

2
t

≤ (1− c)ρ4t (σt + d+
1

ρt
ln ρt −

1

ρ4t
d)− 1

4
(1− c)θ2t ,

(114)

where the last inequality holds due to the condition ρt ≥ 1. We have that

d+
1

ρt
ln ρt −

1

ρ4t
d ≤ d+

d

ρt
ln ρt −

1

ρ4t
d =

ρ4t + ρ3t ln ρt − 1

ρ4t
d ≤ (ρ4t + ρ3t ln ρt − 1)d

=

[
(1 +

Mλt
2

)4 + (1 +
Mλt
2

)3 ln (1 +
Mλt
2

)− 1

]
d

≤ (e2Mλt − 1 +
Mλt
2

e
3
2Mλt)d,

(115)

where the first inequality is due to d ≥ 1, the second inequality is due to ρt ≥ 1 and the last inequality holds due to
1 + x ≤ ex. Since the initial condition (23) holds, applying Theorem 3.6 we obtain that

Mλt ≤Mλ0 ≤ C0
µ

L
≤ C0 =

ln 3
2

4
≤ 1

8
. (116)
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Hence, (115) can be upper bounded by

d+
1

ρt
ln ρt −

1

ρ4t
d ≤ (e2Mλt − 1 +

Mλt
2

e
3
2Mλt)d

≤ (2Mλt + 4M2λ2t +
Mλt
2

e
3
2Mλt)d

= (2 + 4Mλt +
1

2
e

3
2Mλt)Mdλt

≤ (2 +
1

2
+

1

2
e

3
16 )Mdλt

≤ 4Mdλt,

(117)

where the second inequality is due to ex − 1 ≤ x+ x2 for x ≤ 1
4 and the third inequality is due to (116). Substituting (117)

into (114), we reach that

σt+1 ≤ (1− c)ρ4t (σt + 4Mdλt)−
1

4
(1− c)θ2t = (1− c)

[
(1 +

Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]
. (118)

This is equivalent to the conclusion (24). Now, we move forward to prove (25). Notice that (24) is equivalent to

σt ≤ (1− c)ρ4t−1(σt−1 + 4Mdλt−1)−
1

4
(1− c)θ2t−1, ∀t ≥ 1. (119)

Recall the notation
αt = σt + 4Mdλt. (120)

Combining the above two conditions, we obtain that

αt ≤ (1− c)ρ4t−1αt−1 −
1

4
(1− c)θ2t−1 + 4Mdλt (121)

Notice that for any symmetric positive semi-definite matrices A,B ∈ Rd×d, we have

B ⪯ Tr(A−1B)A. (122)

From (79) in the proof of Theorem 3.6, we know that Gt ⪰ ∇2f(xt). Taking A = ∇2f(xt) and B = Gt −∇2f(xt) in the
above inequality and using the definition of σ in (7), we get that

Gt −∇2f(xt) ⪯ Tr(∇2f(xt)
−1

(Gt −∇2f(xt)))∇2f(xt) = σt∇2f(xt). (123)

Hence, we obtain that
∇2f(xt) ⪯ Gt ⪯ (1 + σt)∇2f(xt). (124)

Applying (49) of Lemma A.3 with η = 1 + σt, we obtain that

θt = θ(Jt, Gt, xt+1 − xt) ≤
σt +

Mλt

2

1 + σt
≤ σt +

Mλt
2

≤ σt + 4Mdλt, (125)

where the second inequality is due to σt ≥ 0 and the third inequality holds due to d ≥ 1. Combing (19) of Lemma 3.5, (48)
and the above inequality, we have that

λt+1 ≤ (1 +
Mrt
2

)θtλt ≤ (1 +
Mλt
2

)θtλt ≤ (1 +
Mλt
2

)(σt + 4Mdλt)λt = ρtαtλt, (126)

Thus, we prove that
λt ≤ ρt−1αt−1λt−1 ∀t ≥ 1. (127)

Substituting (127) into (121), we have that

αt ≤ (1− c)ρ4t−1αt−1 + 4Mdρt−1αt−1λt−1 −
1

4
(1− c)θ2t−1

≤ (1− c)ρ4t−1αt−1 + 8(1− c)Mdρ4t−1αt−1λt−1 −
1

4
(1− c)θ2t−1

= (1− c)ρ4t−1αt−1(1 + 8Mdλt−1)−
1

4
(1− c)θ2t−1,

(128)
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where the second inequality is due to 1
2 ≤ 1− µ

2L = 1− c and ρt−1 ≥ 1. Recall the notation βt = ρ4t (1 + 8Mdλt). The
above inequality can be simplified as

αt ≤ (1− c)βt−1αt−1 −
1

4
(1− c)θ2t−1. (129)

Applying the above inequality recursively, we obtain the following result

αt ≤ (1− c)βt−1αt−1 −
1

4
(1− c)θ2t−1

≤ (1− c)2βt−2βt−1αt−2 −
1

4
(1− c)2βt−1θ

2
t−2 −

1

4
(1− c)θ2t−1

≤ (1− c)tα0

t−1∏
j=0

βj −
1

4

t−1∑
i=0

(1− c)t−iθ2i

t−1∏
j=i+1

βj .

(130)

Here we regulate that
∏t−1

j=t βj is 1. The above inequality indicates that

1

4

t−1∑
i=0

(1− c)t−iθ2i

t−1∏
j=i+1

βj ≤ (1− c)tα0

t−1∏
j=0

βj − αt ≤ (1− c)tα0

t−1∏
j=0

βj . (131)

Since βj = ρ4j (1 + 6Mdλj) ≥ 1 for all j ≥ 1, we obtain that

t−1∏
j=i+1

βj ≥ 1, 0 ≤ i ≤ t− 1. (132)

Applying 1 + x ≤ ex, we obtain that

βj = (1 +
Mλj
2

)4(1 + 8Mdλj) ≤ e2Mλje8Mdλj = e10Mdλj , ∀j ≥ 0. (133)

Hence, from the linear convergence result of (22) and the initial condition (23), we observe

t−1∏
j=0

βj ≤
t−1∏
j=0

e10Mdλj = e10Md
∑t−1

j=0 λj ≤ e10Mdλ0
∑t−1

j=0(1−
µ
2L )j ≤ e20MdL

µ λ0 ≤ e20C1 = eln 2 = 2. (134)

Leveraging the results in (131), (132) and (134), we obtain that

1

4

t−1∑
i=0

(1− c)t−iθ2i ≤ 1

4

t−1∑
i=0

(1− c)t−iθ2i

t−1∏
j=i+1

βj ≤ (1− c)tα0

t−1∏
j=0

βj ≤ 2(1− c)tα0. (135)

This is equivalent to
t−1∑
i=0

(1− c)t−iθ2i ≤ 8(1− c)tα0. (136)

Dividing the term (1− c)t on both sides of the above inequality, we can obtain that

t−1∑
i=0

θ2i
(1− c)i

≤ 8α0. (137)

Hence, we prove the result (25) since c = µ
2dL and α0 = σ0 + 4Mdλ0.
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G. Proof of Theorem 3.8
Using G0 = LI , initial condition (26), the definition of σ in (7) and Assumption 3.1, we obtain

σ0 + 4Mdλ0 = Tr(∇2f(x0)
−1
G0)− d+ 4Mdλ0 ≤ d

L

µ
− d+ 4

ln 2

20

µ

L
≤ d

L

µ
− d+ 1 ≤ d

L

µ
. (138)

Substituting (138) into (25), we have that
t−1∑
i=0

θ2i
(1− c)i

≤ 8d
L

µ
. (139)

Using Lemma 3.5 and (49) of Lemma A.3 and recalling the notation ρt = 1 + Mλt

2 , we obtain that

λt
λ0

=

t−1∏
i=0

λi+1

λi
≤

t−1∏
i=0

(1 +
Mri
2

)θi ≤
t−1∏
i=0

(1 +
Mλi
2

)θi =

t−1∏
i=0

ρi

t−1∏
i=0

θi. (140)

Applying 1 + x ≤ ex, d ≥ 1, the linear convergence result of (22) and the initial condition (26) again, we obtain that

t−1∏
i=0

ρi =

t−1∏
i=0

(1 +
Mλi
2

) ≤ e
M
2

∑t−1
i=0 λi ≤ e

M
2 λ0

∑t−1
i=0(1−

µ
2L )i ≤ e

M
2 λ0

2L
µ ≤ e

C1
d ≤ eC1 = e

ln2
20 ≤ eln 2 = 2. (141)

Leveraging (140) and (141), we get that

λt
λ0

≤ 2

t−1∏
i=0

θi = 2

t−1∏
i=0

(1− c)
i
2

θi

(1− c)
i
2

= 2

t−1∏
i=0

(1− c)
i
2

t−1∏
i=0

θi

(1− c)
i
2

= 2(1− c)
t(t−1)

4

t−1∏
i=0

θi

(1− c)
i
2

. (142)

Using the arithmetic-geometric mean inequality and (139), we obtain that

t−1∏
i=0

θi

(1− c)
i
2

=

[
t−1∏
i=0

θ2i
(1− c)i

] 1
2

≤

[
1

t

t−1∑
i=0

θ2i
(1− c)i

] t
2

≤
(
8dL

µt

) t
2

. (143)

Combining (142), (143) and c = µ
2dL , we achieve the final convergence rate of (27)

λt
λ0

≤ 2(1− c)
t(t−1)

4

(
8dL

µt

) t
2

= 2(1− µ

2dL
)

t(t−1)
4 (

8dL

tµ
)

t
2 , ∀t ≥ 1. (144)

H. Randomized Sharpened-BFGS Algorithm
In this section, we extend our analysis to the randomized version of Sharpened-BFGS method. This is enlightened by the
latest work of (Ye et al., 2021), where the authors proposed the modified Greedy-BFGS method based on the Cholesky
factorization of the inverse Hessian approximation matrix. They presented that instead of selecting the greedy direction
defined in (9) of Lemma 2.2, we consider the following Greedy-BFGS update G+ = BFGS(A,G,Rū(A,R)), where R is
the upper triangular matrix satisfying A−1 = R⊤R and ū(A,R) is defined as

ū(A,R) := argmax
u∈{ei}d

i=1

u⊤R−⊤A−1R−1u

u⊤u
. (145)

Then, the linear convergence rate of 1− 1/(dκ) in (10) of Lemma 2.2 can be improved to 1− 1/d, which is independent of
the condition number κ = L/µ. However, for each unit vector ei the computational cost of the term e⊤i R

−⊤A−1R−1ei
is O(d2). Hence, the cost of calculating the vector ū(A,R) in (145) is O(d3), which makes this modified greedy update
impractical to implement. Therefore, the authors of (Ye et al., 2021) proposed to replace the greedy vector in (145) by the
random vector ũ ∼ N (0, Id) and consider the randomized BFGS update Ḡ+ = BFGS(A,G,Rũ), where R is still the
upper triangular Cholesky factorization matrix of A−1. The condition-number-free linear convergence rate of 1− 1/d is
preserved for this randomized algorithm. This is summarized in the following lemma.
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Lemma H.1 ((Ye et al., 2021)). Consider positive definite matrices A,G ∈ Rd×d that satisfy A ⪯ G. Suppose that
Ḡ+ = BFGS(A,G,R⊤ũ) where R is the upper triangular matrix with G−1 = R⊤R and ũ ∼ N (0, Id) ∈ Rd is the
random vector. Then, we have

E
[
σ(A, Ḡ+)

]
≤
(
1− 1

d

)
E [σ(A,G)] . (146)

Notice that the computational cost of Cholesky decomposition is in general O(d3) for a matrix with dimension d. However,
the expense per iteration of randomized BFGS method could be reduced to O(d2) using technique highlighted in (Ye et al.,
2021). Therefore, we can improve the superlinear convergence rate of our Sharpened-BFGS algorithm by replacing the
Greedy-BFGS update with the randomized BFGS method proposed in (Ye et al., 2021). Meanwhile, the computational cost
per iteration of randomized Sharpened-BFGS method is still O(d2). This novel randomized Sharpened-BFGS method is
summarized in Algorithm 3. The local linear convergence rate presented in Theorem 3.6 still holds for this randomized
Sharpened-BFGS method. In the following theorem, we directly show the explicit local superlinear convergence rate for this
randomized Sharpened-BFGS algorithm.

Theorem H.2. Consider the randomized Sharpened-BFGS quasi-Newton method in Algorithm 3 applied to the objective
function satisfying Assumption 3.1 and 3.2. Suppose that the initial point x0 satisfies that

λ0 ≤ C1µ

dML
, C1 =

ln 2

20
. (147)

Then, we can reach the following local superlinear convergence rate with high probability

λt ≤ 2(1− 1

2d
)

t(t−1)
4 (

8dL

tµ
)

t
2λ0, ∀t ≥ 1. (148)

Proof. Here we just present the abbreviated proof to avoid repeated details since the proof of this theorem is very similar to
the proof of Lemma 3.7 and Theorem 3.8. From the theory of probability, Lemma H.1 shows that there exists a constant δ
such that the inequality

σ(A, Ḡ+) ≤ (1− 1

d
)σ(A,G) (149)

holds with probability at least 1 − δ. Here we neglect this parameter δ to simplify the proof and denote that the above
inequality holds with high probability. Then, applying the same techniques from the proof of Lemma 3.7, we can show that
the following condition holds with high probability for any t ≥ 0

σt+1 ≤ (1− 1

2d
)

[
(1 +

Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]
, (150)

where θt := θ(∇2f(xt), Gt, xt+1 − xt) and σt := σ(∇2f(xt), Gt). Moreover, we have that with high probability

t−1∑
i=0

θ2i
(1− 1

2d )
i
≤ 8(σ0 + 4Mdλ0), ∀t ≥ 1. (151)

Finally, using the same methods from the proof of Theorem 3.8, we can prove that the suplinear convergence rate of (148)
holds with high probability.

We observe that the quadratic convergence rate term is O((1− 1/d)t
2

) in the above superlinear convergence rate in (148),
which is independent of the condition number κ. This condition-number-free quadratic convergence rate is the direct
consequence of the linear convergence rate of (146) from Lemma H.1.
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Algorithm 3 The randomized Sharpened-BFGS method.
Require: Initial point x0 and initial Hessian approximation matrix G0 = LI .

1: for t = 0, 1, 2, . . . do
2: Update the variable: xt+1 = xt −G−1

t ∇f(xt);
3: Compute the variable difference: st = xt+1 − xt;
4: Set the matrix: Jt =

∫ 1

0
∇2f(xt + τst)dτ ;

5: Compute the matrix: Ḡt = BFGS(Jt, Gt, st);
6: Compute the correction term: rt = ∥xt+1 − xt∥xt

;
7: Compute the matrix: Ĝt = (1 +Mrt/2)

2Ḡt;
8: Compute upper triangular matrix: Rt with Ĝt

−1
= R⊤

t Rt;
9: Choose the random direction: ũ ∼ N (0, Id);

10: Compute Gt+1 = BFGS(∇2f(xt+1), Ĝt, R
⊤
t ũ);

11: end for


