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Abstract
The federated learning (FL) framework enables
edge clients to collaboratively learn a shared in-
ference model while keeping privacy of training
data on clients. Recently, many heuristics efforts
have been made to generalize centralized adap-
tive optimization methods, such as SGDM, Adam,
AdaGrad, etc., to federated settings for improving
convergence and accuracy. However, there is still
a paucity of theoretical principles on where to and
how to design and utilize adaptive optimization
methods in federated settings. This work aims to
develop novel adaptive optimization methods for
FL from the perspective of dynamics of ordinary
differential equations (ODEs). First, an analytic
framework is established to build a connection
between federated optimization methods and de-
compositions of ODEs of corresponding central-
ized optimizers. Second, based on this analytic
framework, a momentum decoupling adaptive op-
timization method, FEDDA, is developed to fully
utilize the global momentum on each local itera-
tion and accelerate the training convergence. Last
but not least, full batch gradients are utilized to
mimic centralized optimization in the end of the
training process to ensure the convergence and
overcome the possible inconsistency caused by
adaptive optimization methods.

1. Introduction
Recent advances in federated learning (FL) present a promis-
ing machine learning (ML) paradigm that enables collab-
orative training of shared ML models over multiple dis-
tributed devices without the need for data sharing, while
mitigating the data isolation as well as protecting the data
privacy (Konečný et al., 2016b;a; McMahan et al., 2016;
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2017a; Kairouz et al., 2021). In a FL model, end clients
(e.g., Android phones) use their local data to train a local
ML model, while keeping the local data decentralized. The
end clients send the parameter updates of local models (e.g.,
Android phone updates) rather than raw data to the central
server (e.g., Android cloud). The server produces a shared
global ML model by aggregating the local updates.

One of critical challenges in the FL paradigm is ex-
pensive communication cost between the clients and
server (Konečný et al., 2016b; Caldas et al., 2018a; Liu
et al., 2019; Hamer et al., 2020a; He et al., 2020). Tra-
ditional federated optimization methods, such as FedAvg
and its variants (Konečný et al., 2016b;a; McMahan et al.,
2017a; Kairouz et al., 2021), use local client updates, where
the clients perform multiple epochs of stochastic gradient
descent (SGD) on their local datasets to update their models
before communicating to the server. This can dramatically
reduce the communication required to train a FL model.

Despite achieving remarkable performance, FL techniques
often suffer from two key challenging issues: (1) Client
drift. Too many SGD epochs on the same clients may result
in overfitting to their local datasets, such that the local mod-
els are far away from globally optimal models and the FL
training achieves slower convergence (Karimireddy et al.,
2020d; Woodworth et al., 2020; Reddi et al., 2021a; Karim-
ireddy et al., 2021); and (2) lack of adaptivity. Standard
SGD optimization methods used in most FL models may be
unsuitable for federated settings and result in high commu-
nication costs (Zhang et al., 2019; Reddi et al., 2021a).

In centralized ML models, adaptive optimization methods,
such as SGD with Momentum (SGDM) (Rumelhart et al.,
1986; Qian, 1999; Sutskever et al., 2013), Adaptive Moment
Estimation (Adam) (Kingma & Ba, 2015), Adaptive Gra-
dient (AdaGrad) (McMahan & Streeter, 2010; Duchi et al.,
2011b), etc., have achieved superior success in speeding up
the training convergence. Adaptive optimization methods
are designed to control possible deviations of mini-batch
gradients in centralized models. Several recent studies try
to adapt centralized optimization algorithms to the feder-
ated learning settings for achieving faster convergence and
higher test accuracy (Xie et al., 2019; Reddi et al., 2021a;
Karimireddy et al., 2021; Wang et al., 2021b).

The above adaptive optimization methods can be broadly
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classified into two categories: (1) Server adaptive meth-
ods. FedOpt is a generalization of FedAvg that allows the
clients and the server to choose different optimization meth-
ods (Reddi et al., 2021a). Although FedOPT is a generic
framework that can use adaptive optimizers as client or
server optimizers, the core section (Section 3) of the Fe-
dOPT paper only considers the setting that ClientOPT is
SGD, which fails to make full use of the strength of the
adaptive methods for improving the convergence (Wang
et al., 2021b); (2) Client adaptive techniques. Local AdaAl-
ter proposes a novel SGD variant based on AdaGrad, and
adopt the concept of local SGD to reduce the communi-
cation (Xie et al., 2019). Mime uses a combination of
control-variates and server-level optimizer state (e.g. mo-
mentum) at every client-update step to ensure that each local
update mimics that of the centralized method run on i.i.d.
data (Karimireddy et al., 2021). However, Local AdaAl-
ter and Mime use the same optimizer states (momentums
and pre-conditioners) on all clients, which is similar to
server adaptive methods in FedOpt and does not exploit
local adaptivity (Wang et al., 2021b). FedLocal is the first
real client adaptive approach that employs adaptive opti-
mization methods for local updates at clients (Wang et al.,
2021b). It restarts the update of client optimizer states (i.e.,
momentums and pre-conditioners) at the beginning of each
round. This restart operation fails to inherit and aggregate
the states from previous rounds and may loss the strength
of adaptive optimization methods in centralized models,
which aggregate the states from previous rounds to speed
up the convergence. For the standard FL models, applying
adaptive optimization methods to local updates may come
with the cost of a non-vanishing solution bias: instead of
using current gradient to update local parameters in the
standard SGD, the adaptive methods utilize the aggrega-
tion of client optimizer states (i.e., momentum aggregates
previous and past gradients) in multiple client-update steps
to update local parameters. In this case, the heterogene-
ity property in federated settings results in large deviations
among uploaded local gradients as well as makes the con-
verge point far away from the global minimizer and slow
down the convergence, compared with the standard SGD.
FedLocal proposes correction techniques to overcome this
bias issue and to complement the local adaptive methods for
FL. However, the correction techniques that are essentially
heuristic post-processing methods without knowledge of
previous client optimizer states on the server are hard to
solve this problem fundamentally for stochastic optimiz-
ers, such as SGDM, Adam, AdaGrad, etc. Therefore, the
above techniques often follow manually-crafted heuristics
to generalize centralized adaptive optimization methods to
the federated settings. There is still a paucity of theoret-
ical principles on where to and how to design and utilize
adaptive optimization methods in federated settings.

This work aims to develop novel adaptive optimization
methods for FL from the perspective of the decomposi-
tion of ODEs of centralized optimizers. We establish an
analytic framework to connect the federated optimization
methods with the decompositions of ODEs of correspond-
ing centralized optimizers. The centralized gradient descent
(CGD) is utilized as a warm-up example to briefly illus-
trate our underlying idea. The CGD reads W (t + 1) =

W (t)−
∑M
i=1

Ni

N Li(W (t)) ∗ η, where W (t) is the global
parameter, M is the number of clients, N i is the number
of training samples on ith device, N =

∑M
i N i is the total

number of training samples, Li is the loss function on ith

client. It is straightforward to check that
∑M
i=1

Ni

N Li(W (t))
is the total loss of centralized training. Therefore, the CGD
is the numerical solution of an ODE system d

dτW (τ) =

−
∑M
i=1

Ni

N Li(W (τ)). One way to decompose the ODE
system is as follows: W̄ (τ) =

∑M
i=1

Ni

N W i(τ), where
W i(τ) solves d

dτW
i(τ) = −Li(W i(τ)), i = 1, · · ·M .

Thus, W̄ (τ) is an approximate solution to the above ODE
system. The numerical solution of the decomposed sys-
tem is W i(t + 1) = W i(t) − ∇Li(W i(t)) ∗ η, and then
W̄ (t+ 1) =

∑M
i=1

Ni

N W i(t) is an approximate numerical
solution to the ODE system of CGD. This scheme can be
extended to the SGD case by replacing full batch gradients
with mini-batch gradients, which is exactly the update rule
of FedAvg (McMahan et al., 2017a). This example illus-
trates how to derive federated optimization methods based
on the decomposition of ODEs of centralized optimizers.
Moreover, this example also demonstrates the rationality
of FedAvg, since FedAvg is an approximation of the above
ODE system of CGD and the convergence of the CGD guar-
antees the convergence of FedAvg if the approximation error
is well controlled. In the same spirit, to design adaptive op-
timization methods for FL, it is crucial to discover suitable
decompositions of ODEs of centralized adaptive optimizers.

Based on the above analytic framework, we develop a mo-
mentum decoupling adaptive optimization method for FL.
By decoupling the global momentum from local updates, the
equation of global momentum becomes a linear equation.
Consequently, we can decompose the equation of global
momentum exactly and distribute the update of global mo-
mentum to local devices. The aggregation of the portions of
the global momentum on local devices is exactly equal to
the global momentum without any deviation. Particularly, in
our FedDA method: (1) the global momentums are updated
with local gradients in each local iteration; (2) all global mo-
mentums updated through local iterations will attend global
training to update global model. This is an analogy to cen-
tralized training, which fully utilizes the global momentum.
Notice that momentums can provide fast convergence and
high accuracy for centralized training. The global momen-
tum in our FedDA method makes the best effort to mimic
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the role of momentum in centralized training, which can
accelerate the convergence of FL training. We theoretically
demonstrate that (1) local momentum deviates from the cen-
tralized one at exponential rate; (2) global momentum in
FedDA deviates from the centralized one at algebraic rate.

Adaptive optimization methods for FL are often faced with
convergence inconsistency in training (Wang et al., 2021b).
We propose to utilize full batch gradients of clients to mimic
centralized optimization in the end of the training process to
ensure the convergence. Based on our proposed framework
of decomposing ODEs, if local devices only iterate once
with full batch gradients in a training round, then our FedDA
method is in agreement with centralized training in that
round. Take the advantage of this, by reducing the iteration
number to 1 in the end of training, our FedDA method
is able to mimic centralized training, which ensures the
convergence and overcome the inconsistency.

Empirical evaluation on real federated tasks and datasets
demonstrates the superior performance of our momentum
decoupling adaptive optimization model against several
state-of-the-art regular federated learning and federated opti-
mization approaches. In addition, more experiments, imple-
mentation details, and hyperparameter selection and setting
are presented in Appendices A.4-A.5.

2. Preliminaries and Notations
Federated learning aims to solve the following optimization
problem.

min
W∈Rd

L(W ) =

M∑
i=1

Ni
N
Li(W )

where Li(W ) =
1

Ni

∑
k∈Pi

lk(W )

(1)

where lk(W ) = l(xk, yk;W ) denotes the loss of the pre-
diction on example (xk, yk) made with model parameters
W . There are M clients over which the data is partitioned,
with Pi the set of indexes of data points on client Si, with
Ni = |Pi|. W i, Li, Gi, gi, and N i denote the local model
parameter, loss function, full batch gradient, mini-batch gra-
dient, number of training data on client Si respectively. N is
the total number of training data, i.e., N = N1 + · · ·+NM

and η represents the learning rate. In each round, there are
K clients participating in the training (K ≤M ).

This work aims to derive the theoretical principle on where
to and how to design and utilize adaptive optimization meth-
ods in federated settings. Based on the theoretical principle,
it tries to propose an effective and efficient framework to
generalize adaptive optimization methods in centralized set-
tings to FL with fast convergence and high accuracy.

3. Decomposition of ODEs and FL
In this section, we establish the connection between the
decomposition of ODEs of centralized optimizers and FL.
As a warm up, we start with the most simple centralized
optimizer Gradient Descent. In particular, we demonstrate
that relation between the decomposition of the ODE for GD
and FedAvg, and explain why FedAvg works from ODE
theory.

Centralized training and FL share the same goal, that is to
minimize the total loss L.

L(W ) =

M∑
i=1

N i

N
Li(W ). (2)

The most classical centralized optimization method is Gra-
dient Descent (GD):

W (t+ 1) = W (t)−∇L(W (t)) ∗ η. (3)

A more popular optimization is Stochastic Gradient Descent
(SGD). It updates the model with the gradient of the loss
of a mini-batch at each step, which accelerates the training
process comparing to GD. Denote the loss of mini-batch
at step t by Lt, then the training process of SGD can be
expressed by

W (t+ 1) = W (t)−∇Lt(W (t)) ∗ η. (4)

From the point of view of ODEs, the training process of GD
in Eq.(3) is the numerical solution of the autonomous ODE

d

dτ
W (τ) = −∇L

(
W (τ)

)
≤ 0. (5)

The training process of SGD in Eq.(4) is as the numerical
solution of the non-autonomous ODE

d

dτ
W (τ) = −∇Lτ

(
W (τ)

)
. (6)

In fact, Eq. (5) is a gradient system, i.e., the vector field
of the equation −∇L

(
W (τ)

)
is in the gradient form. As a

gradient system, it is typical that the loss L descends along
the solutions until it reaches local minimum. This is because

d

dτ
L
(
W (τ)

)
= −|∇L

(
W (τ)

)
|2. (7)

The decentralization of the training process onto local de-
vices in FL is an analogy to the decomposition of Eq.(5)
into a system of ODEs. Theoretically, a precise decompo-
sition of Eq.(5) is W (τ) =

∑M
i=1

Ni

N W i(τ), where W i(τ)
satisfies

d

dτ
W i(τ) = −∇Li

(
W (τ)

)
, i = 1, · · · ,M. (8)
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Numerical solutions to the above decomposed ODE system
is

W i(t+ 1) = W i(t)−∇Li
(
W (t)

)
∗ η, i = 1, · · · ,M.

(9a)

W (t+ 1) =

M∑
i=1

N i

N
W i(t). (9b)

Eq.(9a) is the local update rule and Eq.(9b) is the global
aggregation rule. These update rules guarantees the training
process is equivalent to centralized GD. When local devices
are updated with mini-batch gradients, i.e.,

W i(t+ 1) = W i(t)− gi
(
W (t)

)
∗ η, (10)

then this framework agrees with centralized SGD. Moreover,
if only part of the devices participate the training (either full
batch or mini-batch) each round and aggregate after one iter-
ation as above, then it is also indistinguishable to centralized
SGD. These optimization methods are essentially identical
to centralized optimization though they are in FL framework,
which theoretically are able to produce a global model as
good as centralized one. However, in Eq.(9a) ∇Li must be
evaluate at W (t), i.e, global parameters W (t) are necessary
for the local updateW i(t+1) at any step t. Therefore, local
models have to aggregate after each iteration, which will
cause expensive communication costs and poor efficiency.
A redemption is to trade some accuracy for efficiency. To
reduce communication cost, more local iterations have to
be operated each round. Accordingly, Eq. (9a) is modified
to following approximate decomposition of Eq.(5) so that
more local iterations are admited.

d

dτ
W i(τ) = −∇Li

(
W i(τ)

)
,

W i(0) = W (0), i = 1, · · · ,M.
(11)

Let T denote local iteration number. The corresponding
numerical solution of Eq.(11) is

W i(t+1) = W i(t)−∇Li(W i(t))∗η, t = 0, 1, · · · , T−1,
(12)

which is exactly GD for Si. To further accelerate local
training, one may perform SGD for local devices, i.e.,

W i(t+ 1) = W i(t)− gi(W i(t)) ∗ η, t = 0, 1, · · · , T − 1.
(13)

The cost of this method is that the aggregation of W i

in Eq.(11) is not the solution to Eq.(5). Let W̄ (τ) =∑M
i=1

Ni

N W i(τ) be the aggregation of the solution to
Eq.(11). It is straightforward to check that

d

dτ
W̄ (τ) = −

M∑
i=1

N i

N
∇Li(W i(τ)). (14)

Comparing the above equation with Eq.(5), one has

d

dτ

(
W (τ)− W̄ (τ)

)
=−

M∑
i=1

N i

N

(
∇Li(W (τ))

−∇Li(W i(τ)
)
.

(15)

It is clear W (0) = W̄ (0). Integrating Eq.(15) from 0 to tη,
it arrives

W (tη)− W̄ (tη)

= −
∫ tη

0

M∑
i=1

N i

N

(
∇Li(W (τ))−∇Li(W i(τ)

)
dτ.

(16)

By a very rough estimate, we have that for t = 1, · · · , T

|W (tη)− W̄ (tη)| ≤ 2sup
i
‖∇Li‖L∞tη, (17)

which yields that W̄ (τ) is a good approximation of W (τ)
for τ ≤ Tη when Tη is small. Therefore, FL framework
has to aggregate local models periodically and reset all
local and global parameters to be identical. By doing so,
the aggregations of local models are always stay close to
the centralized one. Since the centralized GD and SGD
converge to local minimum of the total loss function, so
does the one for FL. This method that performs SGD or GD
on local devices and aggregates periodically is exactly the
FedAvg. The above arguments also yields the underlying
mechanism of FedAvg, which agrees with the essential idea
of the proof of convergence of FedAvg.

Notice that the purpose of Eqs.(16) and (17) is to illustrate
the idea of how to connect decomposition of ODEs to FL
optimizations. We only used rough estimates instead of
sharp ones to illustrate the underlying ideas more straight-
forwardly. Our FedDA method has never used the estimate
in Eqs.(16) and (17) for attending any computations.

The superb performance of adaptive optimization methods,
such as SGDM, Adam, AdaGrad, have been demonstrated
for centralized training. Naturally, successful extensions of
these adaptive methods to FL are mostly desired.

4. Momentum Decoupling Adaptive
Optimization: FedDA+SGDM

Recall the centralized SGDM.

m(t+ 1) = β ∗m(t) + (1− β) ∗ g(W (t)),

W (t+ 1) = W (t)− η ∗m(t+ 1),
(18)

where m is momentum, W is the parameter vector, g is
the mini-batch gradient and η is the learning rate . The
corresponding ODE is a slow-fast system

η
d

dτ
m(τ) = −(1− β)m(τ) + (1− β)g(W (τ)),

d

dτ
W (τ) = −m(τ).

(19)
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m is a fast variable cause its derivative d
dτm(τ) is O(1/η)

and η is small. Therefore the rate of change of m is much
faster than that of W . It is easy to check Eq.(18) is the
numerical solution of Eq.(19) using Euler’s scheme.

Similar to GD case, the numerical solution of a precise
decomposition of SGDM is

mi(t+ 1) = β ∗mi(t) + (1− β) ∗ gi(W (t)),

W i(t+ 1) = W i(t)− η ∗mi(t+ 1),

m(t+ 1) =

M∑
i=1

N i

N
mi(t),

W (t+ 1) =

M∑
i=1

N i

N
W i(t).

(20)

Again, the drawback is the local iteration number must be 1.
To allow more local iterations, the most naive approach is
to perform SGDM on local devices directly

mi(t+ 1) = β ∗mi(t) + (1− β) ∗ gi(W i(t)),

W i(t+ 1) = W i(t)− η ∗mi(t+ 1).
(21)

Then aggregate the above local updates periodically. This
method is indeed an approximation of centralized SGDM for
the same reason as in FedAvg case, and therefore this naive
method may converge. However, the performance of this
naive method is not satisfying in experiments. The reasons
are twofold. First, the momentum is used to buff the devi-
ation of gradients. Decomposing the global momentum m
onto local devices as in Eq.(21) will incapacitate it because∑M
i=1

Ni

N mi(t) is deviated from the momentum of central-
ized optimizer. Second, since the aggregated momentum is
not accurate enough, it may also harm the local training if
it is inherited by the local devices. This is why the restart
local adaptive method works better (Wang et al., 2021b).
Therefore, though the Eq.(21) could be an approximation of
centralized SGDM, it may need a rather small learning rate
to ensure the quality of approximation, which results in un-
satisfactory training performance. Local training generates
local gradients deviating from the global ones, therefore a
global momentum is favorable to control the deviations of
the gradients uploaded by local devices. FedOpt updates
global momentum one time after the server receiving local
gradients generated by several local iterations each round.
Though it achieves great performance, it does not fully take
the advantage of global momentum. In FedOpt the global
momentum buffs the total gradients of multiple iterations.
However, for centralized SGDM, the momentum buffs the
gradient in each iteration. To let the global momentum fully
plays its role and accelerate the training of the global model,
we propose a decoupling adaptive technique (FedDA) to
approximately mimic centralized SGDM. In our FedDA
method, though the global momentum does not participate

local training directly, it buffers local gradients generated in
each local iteration. We propose the following decoupled
decomposition of Eq.(19).

d

dτ
W i(τ) = −gi(W i(τ)),

η
d

dτ
m(τ) = −(1− β)m(τ) + (1− β)

M∑
i=1

N i

N
gi(W i(τ))

d

dτ
W (τ) = −α ∗m(τ),

(22)

where W i is the parameters of local devices, m is the global
momentum, W is the parameters of global model and α is a
parameter to concede that local and global employ different
learning rates. Note that in Eq.(22), the local update of W i

is independent of the global momentum m, this is why we
name this method decoupling method. The crucial point
of our decoupling method is that since the the equations
of W i(τ) are independent of the global momentum m, the
equation of m is totally linear and can be precisely decom-
posed as m(τ) =

∑M
i=1

Ni

N mi(τ), where miτ solves

η
d

dτ
mi(τ) = −(1− β)mi(τ) + (1− β)∇gi(W i(τ)).

Therefore, the system in Eq.(22) is exactly equivalent to

d

dτ
W i(τ) = −gi(W i(τ)),

η
d

dτ
mi(τ) = −(1− β)mi(τ) + (1− β)gi(W i(τ)),

d

dτ
W (τ) = −α ∗m(τ).

(23)

That is we can calculate the global momentum m by pre-
cisely decomposing it to local devices and the aggregation
of the portion of the global momentum on local devices
mi will be exactly the global momentum. The numerical
solution to Eq.(23) is

W i(t+ 1) = W i(t)− gi(W i(t)) ∗ η, (24)

mi(t+ 1) = β ∗mi(t) + (1− β) ∗ gi(W i(t))η, (25)

m(t+ 1) =

M∑
i=1

N i

N
mi(t), (26)

W (t+ 1) = W (t)−m(t+ 1) ∗ α ∗ η. (27)

This numerical solution demonstrates our underlying ideas
better. Eq.(24) yields that local update does not depend on
the global momentum m. However, the global momentum
buffs local gradients in each local iteration as shown in
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Table 1: Statistics of the Datasets

Dataset #Training Clients #Test Clients #Training Samples #Test Samples
CIFAR-100 500 100 50,000 10,000
EMNIST-62 3,400 3,400 671,585 77,483
Stack Overflow 342,477 204,088 135,818,730 16,586,035

Eq.(26). Based on the numerical solution Eqs.(24)-(27), the
algorithm of our FedDA+SGDM method is as follows.

At round E, pick participating clients S1, · · · , Sk. For each
Si, i = 1, · · · ,K, initialize P i = 0, W i(0) = W (E),
mi(0) = m(E). For t = 0, T − 1,

W i(t+ 1) = W i(t)− gi(W i(t)) ∗ η,
mi(t+ 1) = βmi(t) + (1− β)gi(W i(t)),

P i = P i +mi(t+ 1).

(28)

The global update rule is:

P = aggregation of P i,

m(E + 1) = aggregation of mi(T ),

W (E + 1) = W (E)− P ∗ α ∗ η.
(29)

Notice that P is the summation of global momentums up-
dated during local iterations, and global parameter W is
updated by P . This mimics the centralized SGDM. We
theoretically demonstrate that (1) local momentum deviates
from the centralized one at exponential rate O(eλt); and (2)
global momentum in FedDA deviates from the centralized
one at algebraic rate O(t2). Please refer to Appendix A.3
for detailed proof.

Full batch gradient stabilization. Adaptive optimization
methods for FL are often faced with inconsistency of conver-
gence in training (Wang et al., 2021b). When the training
is almost finished, i.e, W is close to the local minimum
point of loss function, the gradient has to be more accurate
to ensure the convergence to local minimum point. Not
sufficiently accurate gradients will lead to unstable conver-
gence and inconsistency. Based on our framework, if local
devices only iterate once with full batch gradients in a train-
ing round, then our FedDA method is in agreement with
centralized training in that round. Therefore, by reducing
the iteration number to 1 in the end of training, our FedDA
method mimics centralized training, which ensures the con-
vergence and overcomes the inconsistency of training. Last
but not least, since this full batch method is utilized only
in the end of the training when the parameter W is fairly
close to local minimum point, the training converges and
stabilized rather quickly. Therefore, it is a bargain to employ
this full batch method in the end of the training to guarantee
the convergence of the training to local minimum point.

Our proposed momentum decoupling adaptive optimization
method has potential be extended to other federated learning
algorithms, e.g., FedProx, etc. Due to space limit, we only
use FedDA+SGDM as an example to show how to apply
the FedDA optimization to FedProx. At round E, pick par-
ticipating clients S1, · · · , Sk. For each Si, i = 1, · · · ,K,
initialize P i = 0, W i(0) = W (E), mi(0) = m(E). For
t = 0, · · · , T − 1, W i(t+ 1) = W i(t)−

(
gi(W i(t)) +µ ∗

(W i(t)−W (E)
)
∗ η,mi(t+ 1) = β ∗mi(t) + (1− β) ∗(

gi(W i(t)) +µ ∗ (W i(t)−W (E)
)
, P i = P i +mi(t+ 1).

The global update rule is the same as the one in Eq.(29). By
following the similar strategy, other two versions of FedDA
(FedDA+ADAM and FedDA+AdaGrad) can be added to
FedProx and other regular FL algorithms, which demon-
strates the applicability and generality of FedDA.

5. Experiments
In this section, we have evaluated the performance of our
FedDA model and other comparison methods in serval rep-
resentative federated datasets and learning tasks to date. We
show that FedDA with decoupling and full batch gradient
techniques is able to achieve faster convergence and higher
test accuracy in cross-device settings against several state-
of-the-art federated optimization methods. The experiments
exactly follow the same settings described by a recent feder-
ated optimization method, FedOpt (Reddi et al., 2021a).

Datasets. We focus on three popular computer vision and
natural language processing tasks over three representative
benchmark datasets respectively: (1) image classification
over CIFAR-100 (Krizhevsky, 2009). We train ResNet-18
by replacing batch norm with group norm (Hsieh et al.,
2020); (2) image classification over EMNIST (Hsieh et al.,
2020). We train a CNN for character recognition; and (3)
text classification over Stack Overflow (TensorFlow, 2019).
We perform tag prediction using logistic regression on bag-
of-words vectors. We select the 10,000 most frequently
used words, the 500 most frequent tags and a one-versus-
rest classification strategy, by following the same strategy
in FedOpt (Reddi et al., 2021a). The detailed descriptions
of the federated datasets and learning tasks are presented in
Appendix A.5.

Baselines. We compare the FedDA model with nine state-
of-the-art federated learning models, including five regu-
lar federated learning and four federated optimization ap-
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Figure 1: Convergence on CIFAR-100 with Three Optimizers
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Figure 2: Loss on CIFAR-100 with Three Optimizers
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Figure 3: Convergence on EMNIST with Three Optimizers
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Figure 4: Loss on EMNIST with Three Optimizers

proaches. FedAvg is a classical as well as practical method
for the federated learning of deep networks based on iter-
ative model averaging (McMahan et al., 2017a). SCAF-
FOLD is a algorithm which uses control variates to correct
for the client-drift in its local updates (Karimireddy et al.,
2020d). FedLin is an algorithmic framework to tackle the
key challenges of objective heterogeneity, systems hetero-
geneity, and imprecise communication in FL (Mitra et al.,
2021a). STEM is a stochastic two-sided momentum algo-
rithm, that utilizes certain momentum-assisted stochastic
gradient directions for both the client and server updates (Mi-
tra et al., 2021a). CLIMB is an agnostic constrained learn-
ing formulation to tackle the class imbalance problem in
FL without requiring further information beyond the stan-
dard FL objective (?). MFL performs momentum gradi-
ent descent in local update step of FL system to solve the
distributed machine learning problem (Liu et al., 2020a).
FedOpt is a flexible algorithmic framework that allows the
clients and the server to choose different optimization meth-
ods more general than stochastic gradient descent (SGD)
in FedAvg (Reddi et al., 2021a). MimeLite uses a combi-
nation of control-variates and server-level optimizer state
at every client-update step to ensure that each local up-
date mimics that of the centralized method run on i.i.d.
data (Karimireddy et al., 2021). Local Adaptivity (Fed-

Local) proposes techniques that enable the use of adaptive
optimization methods for local updates at clients in feder-
ated learning (Wang et al., 2021b). To our best knowledge,
this work is the first to certify the group fairness of classi-
fiers with theoretical input-agnostic guarantees, while there
is no need to know the shift between training and deploy-
ment datasets with respect to sensitive attributes. All nine
baselines used in our experiments either do not use momen-
tum, or use momentum without momentum aggregation,
or use momentum with aggregation but restart momentum
at each FL round (FedLocal). Our FedDA method keeps
the momentum aggregation in the entire FL process, which
results in faster convergence but larger oscillation.

Evaluation metrics. We use two popular measures in fed-
erated learning and plot the measure curves with increasing
training rounds to verify the convergence of different meth-
ods: Accuracy and Loss Function Values (Loss) (Karim-
ireddy et al., 2020d; Mitra et al., 2021a; Liu et al., 2020a;
Reddi et al., 2021a; Karimireddy et al., 2021; Wang et al.,
2021b). A larger Accuracy or a smaller Loss score indicates
a better federated learning result. We run 1,500 rounds of
training on the EMNIST and Stack Overflow datasets, and
4,000 rounds over the CIFAR-100 dataset. In addition, we
use final Accuracy to evaluate the quality of the federated
learning algorithms.



Accelerated Federated Learning with Decoupled Adaptive Optimization

Table 2: Final Accuracy on CIFAR-100

Optimizer SGDM Adam AdaGrad
FedLocal 0.384 0.009 0.113
SCAFFOLD 0.010 0.010 0.010
FedLin 0.440 0.440 0.440
FedAvg 0.324 0.324 0.324
MFL 0.293 0.346 0.135
CLIMB 0.010 0.010 0.010
STEM 0.014 0.014 0.014
MimeLite 0.427 0.009 0.009
FedOpt 0.425 0.443 0.301
FedDA 0.518 0.510 0.488

Table 3: Final Accuracy on EMNIST

Optimizer SGDM Adam AdaGrad
FedLocal 0.834 0.055 0.806
SCAFFOLD 0.794 0.794 0.794
FedLin 0.805 0.805 0.805
FedAvg 0.850 0.850 0.850
MFL 0.848 0.055 0.047
CLIMB 0.843 0.843 0.843
STEM 0.051 0.051 0.051
MimeLite 0.835 0.851 0.821
FedOpt 0.838 0.847 0.840
FedDA 0.860 0.853 0.868

Table 4: Final Mean Squared Error on EMNIST for Autoen-
coder

Optimizer SGDM Adam AdaGrad
FedLocal 0.0169 0.0289 0.0168
FedAvg 0.0171 0.0171 0.0171
MFL 0.0168 0.0290 0.0291
MimeLite 0.0183 0.0307 0.0287
FedOpt 0.0175 0.0173 0.0145
FedDA 0.0167 0.0166 0.0132

Convergence on CIFAR-100 and EMNIST. Figures 1 and
3 exhibit the Accuracy curves of ten federated learning
models for image classification over CIFAR-100 and charac-
ter recognition on EMNIST respectively. It is obvious that
the performance curves by federated learning algorithms
initially keep increasing with training rounds and remains
relatively stable when the curves are beyond convergence
points, i.e., turning points from a sharp Accuracy increase
to a flat curve. This phenomenon indicates that most feder-
ated learning algorithms are able to converge to the invariant
solutions after enough training rounds. However, among
five regular federated learning and five federated optimiza-
tion approaches, our FedDA federated optimization method
can significantly speedup the convergence on two datasets
in most experiments, showing the superior performance of
FedDA in federated settings. Compared to the learning re-
sults by other federated learning models, based on training
rounds at convergence points, FedDA, on average, achieves
34.3% and 22.6% convergence improvement on two datasets
respectively.

Loss on CIFAR-100 and EMNIST. Figures 2 and 4
present the Loss curves achieved by ten federated learn-
ing models on two datasets respectively. We have observed
obvious that the reverse trends, in comparison with the

Accuracy curves. In most experiments, our FedDA fed-
erated optimization method is able to achieve the fastest
convergence, especially, FedDA can converge within less
than 200 training rounds and then always keep stable on the
EMNIST dataset. A reasonable explanation is that FedDA
fully utilizes the global momentum on each local iteration as
well as employ full batch gradients to mimic centralized op-
timization in the end of the training process for accelerating
the training convergence.

Final Accuracy on CIFAR-100 and EMNIST. Tables 2-
4 show the quality of ten federated learning algorithms
over CIFAR-100 and EMNIST respectively. Notice that
the performance achieved by five regular federated learn-
ing algorithms, including FedAvg, SCAFFOLD, FedLin,
STEM, and CLIMB, keep unchanged when using different
optimizers, such as SGDM, Adam, and AdaGrad, while
five federated optimization approaches, including MFL, Fe-
dOpt, Mime, FedLocal, and our FedDA model obtain dif-
ferent performance. We have observed that our FedDA
federated optimization solution outperforms the competitor
methods in most experiments. FedDA achieves the highest
Accuracy values (> 0.488 over CIFAR-100 and > 0.853
on EMNIST respectively), which are better than other nine
baseline methods in all tests. A reasonable explanation is
that the combination of decoupling and full batch gradient
techniques is able to achieve faster convergence as well as
higher test accuracy in cross-device settings. In addition,
the promising performance of FedDA over both datasets
implies that FedDA has great potential as a general feder-
ated optimization solution to learning tasks over federated
datasets, which is desirable in practice.

Impact of local iteration numbers. Figure 5 shows the im-
pact of the numbers of local iterations in our FedDA model
with the adaptive optimizers over the datasets of CIFAR-
100, EMNIST, and Stack Overflow respectively. The perfor-
mance curves initially raise when the local iteration number
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Figure 5: Final Accuracy with Varying #Local Iterations
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Figure 6: Final Accuracy with Varying Training Rounds

increases and then keep relatively stable or even drop if the
local iteration number keeps increasing. This demonstrates
that there must exist a suitable local iteration number for
the FL training. A too large number may make the clients
overfit to their local datasets, such that the local models are
far away from globally optimal models and the FL training
achieves slower convergence. On the other hand, a too small
number may result in slow convergence of local training and
also increase the difficulty of convergence of global training.
Thus, it is important to choose the appropriate numbers for
well balancing the local training and global training. Notice
that the final accuracy of AdaGrad and SGDM is closed to
0 on the EMNIST dataset when the local iteration number
is larger than 10. A reasonable explanation is EMNIST is
a simple dataset and a large local iteration number makes
local models converge to their local minimum, which may
be distant from the minimum of global model. This leads to
lower accuracy of global model.

Impact of training round numbers. Figures 6 (a)-(c)
present the performance achieved by our FedDA method
with varying the numbers of training rounds from 100 to
2,000, from 10 to 1,000, and from 50 to 1,000 on three
datasets. It is obvious that the performance curves with
each optimizer keep increasing with the increased number
of training rounds. This phenomenon indicates that the accu-
racy in the federated settings are sensitive to training rounds.
This is because the special data and system heterogeneity
issues in the FL increase the difficulty in converging in a
short time and the FL models need more training rounds to
obtain the desired learning results. However, as shown in
the above experiments of convergence in Figures 1-4, our
FedDA method presents superior convergence performance,
compared with other FL algorithms, including both regular
federated learning and federated optimization approaches.

6. Conclusions
This work presents a theoretical principle on where to and
how to design and utilize adaptive optimization methods

in federated settings. First, we establish a connection be-
tween federated optimization methods and decompositions
of ODEs of corresponding centralized optimizers. Second,
we develop a momentum decoupling adaptive optimization
method to well balance fast convergence and high accu-
racy in FL. Finally, we utilize full batch gradient to mimic
centralized optimization in the end of the training process.
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Konečný, J., McMahan, H. B., Ramage, D., and Richtárik, P.
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A. Appendix
A.1. Related Work

Parallel, distributed, and federated learning have attracted active research in the last decade (Zhang et al., 2013; Lee et al.,
2013; Su et al., 2013; Palanisamy et al., 2014; Zhang et al., 2014; Su et al., 2015; Zhou et al., 2015a; Bao et al., 2015; Zhou
et al., 2015b; Lee et al., 2015; Jiang et al., 2016; Zhou, 2017; Zhou et al., 2018b;a; Palanisamy et al., 2018; Lee et al., 2019;
Zhou & Liu, 2019; Goswami et al., 2020; Zhang et al.; Zhou et al., 2022a; Yan et al., 2022b;a; Liu et al., 2022; Guimu Guo
& Zhou, 2022; Zhang et al., 2022). While it achieves much advancement in federated learning, FedAvg (McMahan et al.,
2017b) does not consider the adaptive optimization when aggregating the weights or gradients from devices, which makes
the training process inefficient and makes it difficult to tune or to achieve desired accuracy. SCAFFOLD (Karimireddy et al.,
2020c) exploits control variate to reduce the client drift problem, i.e., “over-fitting” to local device data, in order to reduce
the influence of the heterogeneity of non-IID data and to improve the performance (accuracy). The control parameters may
result in stateful devices (Karimireddy et al., 2020c; Acar et al., 2021), which is not compatible with cross-device Federated
Learning (FL) because of full participation of devices. The cross-device FL simultaneously deals with large amounts of
devices while each round only samples a fraction of the available devices for the training process in order to mitigate the
straggler problem (Kairouz et al., 2019; Liu et al., 2021). Although the contribution of the devices can be exploited to
dynamically update the global model (Wu & Wang, 2021), the contribution-based dynamic update cannot well address the
client-drift problem. The contribution can calculated based on the angle between the local gradient and the global gradient.

Adaptive optimization can be applied either at the server side to improve the performance (Reddi et al., 2021b) and to reduce
the communication and computation costs (Mills et al., 2021), using multiple adaptive optimization method, e.g., AdaGrad
(Duchi et al., 2011a), Yogi (Reddi et al., 2018), Adam (Kingma & Ba, 2014; Mills et al., 2019) and momentum (Rothchild
et al., 2020; Mills et al., 2021), or at the client side (Yuan et al., 2021b) to reduce the number of rounds (Mills et al., 2019)
utilizing momentum (Liu et al., 2020b; Gao et al., 2021; Wang et al., 2020), Adam (Mills et al., 2019). In contrast, the
single side application of existing adaptive optimization, i.e., the server side or the device side, may lead to insufficient
performance, due to incomplete adaptation of the adaptive optimization methods. While correction techniques can be
utilized to mitigate the bias of the convergence point for the application of AdaGrad at the device side (Wang et al., 2021c),
the application at both the server side and the device should be addressed at the same time to achieve better performance.
In addition, the application of momentum at the device side (Liu et al., 2020b) may incur severe client-drift because of
heterogeneity of non-IID data and law participation rate of devices. Moreover, the synchronization of the global momentum
parameters may incur extra communication costs (Wang et al., 2020). Momentum (Karimireddy et al., 2020b; Ozfatura et al.,
2021; Khanduri et al., 2021) and Adam (Leroy et al., 2019) can be utilized on both the server and the devices to achieve fast
training speed and high convergence accuracy, while the simple application may correspond to limited improvement.

The adaptive optimization methods can be combined with compression mechanism (Mills et al., 2019; Gao et al., 2021;
Rothchild et al., 2020; Li et al., 2020) to further reduce the communication costs. In addition, device selection methods
are utilized to achieve faster convergence (Xia et al., 2021) and higher accuracy (Chen et al., 2020), even with multiple
jobs (Zhou et al., 2022b). Furthermore, overlapping the local training process and the data transfer can improve the
communication efficiency (Zhou et al., 2022c). Sparsification (Mitra et al., 2021b) and quantization (Anonymous, 2022c)
can be exploited in FL to improve the communication efficiency, wherein the update at the device side relies on the gradients
of the last round of all the devices and more communication is required to configure the sparsification parameters (Mitra
et al., 2021b). Moreover, the combination of gossip protocol-based decentralized model aggregation, which is performed at
devices, and the centralized model aggregation, which is performed at the server, helps to speed up the training process of
FL (Anonymous, 2022d). Leading principal components (Anonymous, 2022g), low-rank hadamard product (Hyeon-Woo
et al., 2021), and progressive training (Wang et al., 2021a), i.e., the model progressively grows along with the training
process, can be exploited as well to reduce the communication costs and improve the performance. Some other methods,
e.g., communication-efficient ensemble algorithms (Hamer et al., 2020b), hierarchical architecture (Yang, 2021; Wu et al.,
2020), blockchain-based mechanism (Yapp et al., 2021), federated optimization (Pathak & Wainwright, 2020; Dai et al.,
2020), dual averaging procedure for non-smooth regularizer (Yuan et al., 2021b), agnostic constrained learning formulation
for class imbalance problems (Anonymous, 2022b), separation of unseen client data and unseen client distributions (Yuan
et al., 2021a), knowledge distillation for heterogeneous model structures (Afonin & Karimireddy, 2021), minibatch and local
random reshuffling (Yun et al., 2021), unlabeled data transformation for unsupervised LF (Anonymous, 2022h), multi-task
FL for image processing (Anonymous, 2022f), and personalization (Zhang et al., 2021; Oh et al., 2021; Hyeon-Woo et al.,
2021) or the trade-off between personalization and generalization (Chen & Chao, 2021), are proposed to further improve the
performance of FL. However, the above works are orthogonal to our approach and out of the scope of this paper.
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As private data may be recovered with small malicious modifications of the shared model (Fowl et al., 2021) or sensitive
information may still be leaked from the gradients (Balunović et al., 2021), differential privacy (Anonymous, 2022e;
Triastcyn et al., 2021) and compression techniques (Triastcyn et al., 2021) are combined to improve the privacy and
communication efficiency of FL, while the encoding of gradient knowledge with the regularization of locally trained
parameters (Anonymous, 2022a) helps improve the performance and robustness at the same time. While gradient flips
are indicative of attacks, reputation-based weighted aggregation can help to improve the robustness of FL (Sharma et al.,
2021). Batch-normalization (Hong et al., 2021) and Bayes optimal method (Balunović et al., 2021) can be exploited to deal
with adversarial training attack, while bucketing methods can alleviate the impact of byzantine attacks (Karimireddy et al.,
2020a). These methods can be combined with our approach to improve the robustness and the privacy of FL.

This work presents a theoretical principle on where to and how to design and utilize adaptive optimization methods in
federated settings. We theoretically analyze the connection between federated optimization methods and decompositions
of ODEs of corresponding centralized optimizers. We develop a momentum decoupling adaptive optimization method to
make full use of the strength of fast convergence and high accuracy of the global momentum. We also utilize the full batch
gradients to mimic centralized optimization for ensuring the convergence and overcoming the possible inconsistency caused
by adaptive optimization methods.

A.2. Momentum Decoupling Adaptive Optimization: FedDA+Adam and FedDA+AdaGrad

Recall the centralized Adam optimizer.

m(t+ 1) = β1 ∗m(t) + (1− β1) ∗ g(W (t)),

v(t+ 1) = β2 ∗ v(t) + (1− β2) ∗ (g(W (t))2,

m̂(t+ 1) = m(t+ 1)/(1− βt1),

v̂(t+ 1) = v(t+ 1)/(1− βt2),

W (t+ 1) = W (t)− m̂(t+ 1)/(
√
v̂(t+ 1) + ε) ∗ η.

(30)

where g(W ) =
∑M
i=1

Ni

N gi(W ). The Adam optimizer is the numerical solution to the ODE system

η
d

dτ
m(τ) = −(1− β1)m(τ) + (1− β1) ∗ g(W (τ)),

η
d

dτ
v(τ) = −(1− β2)v(τ) + (1− β2) ∗ (g(W (τ))2,

m̂(τ) = m(τ)/(1− βτ1 ),

v̂(τ) = v(τ)/(1− βτ2 ),

d

dτ
W (τ) = −m̂(τ)/(

√
v̂(τ) + ε) ∗ η.

(31)

The equilibria of the above is system are (m, v,W ) = (0, 0,W ∗), where W ∗ is local minimum point of the loss function,
i.e., g(W ∗) = 0. Therefore, the Adam optimizer trains the model to converge to local minimum point of the loss function.
Applying our decoupling method, we first decouple the global momentum and velocity m, v with local training, i.e.,

d

dτ
W i(τ) = −gi(W i(τ)),

η
d

dτ
m(τ) = −(1− β1)m(τ) + (1− β1) ∗ g(W (τ)),

η
d

dτ
v(τ) = −(1− β2)v(τ) + (1− β2) ∗ (g(W (τ))2.

(32)

Similar to the SGDM case, the equation of m(τ) is totally linear and can be decomposed precisely as

η
d

dτ
mi(τ) = −(1− β1)mi(τ) + (1− β1)gi(W i(τ)). (33)
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Unlike the equation of m which is linear, the equation of v is nonlinear due to the presence of the nonlinear term
(g(W ))2 =

(∑M
i=1

Ni

N gi(W )
)2

. It is apparent that

( M∑
i=1

N i

N
gi(W )

)2 6= M∑
i=1

N i

N
(gi(W ))2.

Therefore, it is not possible to decompose the equation of v precisely. Moreover,
∑M
i=1

Ni

N (gi(W ))2 is not even a close
approximation of

(∑M
i=1

Ni

N gi(W )
)2

. An immediate counter example is that (1−1)2 6= 12 +(−1)2. For centralized Adam,
the expectation of each component of m̂/

√
v̂ is approximately ±1 , which is a crucial point of Adam optimizer. Thus, when

attempting to generalize centralized Adam optimizer to FL, the key is thatm, v must be highly synchronized as in centralized
Adam. There are two possible resolutions. First, as in previous arguments of precise decomposition, by reducing local
iteration number to 1, one obtains a precise decomposition of Eq.(31). Consequently, the FL training matches centralized
training. However, the communication cost is too expensive to be affordable for this approach. Another possible way is
to utilize Adam optimizer on server, i.e., local models are trained with SGDM and then server aggregates total gradients
uploaded by local devices and input the aggregation into a global Adam. This is the same as FedOpt method. However,
on second thought, though v cannot be precisely decomposed, the global momentum m can be decomposed precisely as
mentioned before and it still can be utilized fully. Therefore, we propose our FedDA+Adam method as follows. At round E,
pick participating clients S1, · · · , Sk. For each Si, i = 1, · · · ,K, initialize P i = 0, W i(0) = W (E), mi(0) = m(E). For
t = 0, T − 1,

W i(t+ 1) = W i(t)− gi(W i(t)) ∗ η
mi(t+ 1) = β1m

i(t) + (1− β1)gi(W i(t))

P i = P i +mi(t+ 1)

(34)

The global update rule is:

P = aggregation of P i,

m(E + 1) = aggregation of mi(T )

G =
(
P − β1 ∗m(E)

)
/(1− β1)

m̂(E + 1) =
(
β1 ∗m(E) + (1− β1) ∗ G

)
/(1− βE1 )

V (E + 1) = β2 ∗ V (E) + (1− β2) ∗ G2

V̂ (E + 1) = V (E)/(1− βE2 )

W (E + 1) = W (E)− m̂(E + 1)/(

√
V̂ (E + 1) + ε) ∗ η ∗ α

(35)

The idea is to treat P as the momentum of the global Adam updated with a global gradient G, i.e., P = β1 + (1− β1) ∗ G.
Simple algebra gives the global gradient G =

(
P − β1 ∗m(E)

)
/(1− β1). Then the global velocity v is updated with G

followed by the update of W .

Recall the AdaGrad optimizer

V (t) = V (t− 1) + g(W (t))2,

W (t+ 1) = W (t)− g(W (t))/
(√

V (t) + ε
)
∗ η.

(36)

The corresponding ODE system is

η ∗ d

dτ
V (τ) = g(W (τ))2,

d

dτ
W (τ) = −g(W (τ))/

(√
V (τ) + ε

)
.

(37)

For the same reason, i.e., the nonlinearity of
(∑M

i=1
Ni

N gi(W )
)2

, AdaGrad optimizer is not suitable for decomposing onto
local devices as well. As in FedDA+Adam, we propose to utilize the decoupled global momentum to generate a global



Accelerated Federated Learning with Decoupled Adaptive Optimization

gradient G and update the global AdaGrad optimizer with input G.

W i(t+ 1) = W i(t)− gi(W i(t)) ∗ η
mi(t+ 1) = β1m

i(t) + (1− β1)gi(W i(t))

P i = P i +mi(t+ 1)

(38)

The global update rule is:

P = aggregation of P i,

m(E + 1) = aggregation of mi(T )

G =
(
P − β1 ∗m(E)

)
/(1− β1)

V (E + 1) = V (E) + G2

W (E + 1) = W (E)− G/(
√
V̂ (E + 1) + ε) ∗ η

(39)

By assembling all the pieces in Sections 4 and A.2, we provide the pseudo code of our FedDA algorithm with the adaptive
optimization of SGDM, Adam, and AdaGrad in Algorithms 1 and 2 respectively.

Algorithm 1 FedDA+SGDM

Input: W0, m0

1: for r = 0, · · · , R− 1 do
2: Sample a subset S of clients
3: for each client Si ∈ S in parallel do
4: P i

r,0 = 0, W i
r,0 =Wr , mi

r,0 = mr

5: for t = 0, · · · , T − 1 do
6: W i

r,t+1 =W i
r,t − gir,t(W i

r,t) ∗ η
7: mi

r,t+1 = β ∗mi
r,t + (1− β) ∗ gir,t(W i

r,t)

8: P i
r,t+1 = P i

r,t +mi
r,t+1

9: Pr = aggregation of P i
r,T

10: mr+1 = aggregation of mi
r,T

11: Wr+1 =Wr − Pr ∗ η ∗ α

Algorithm 2 FedDA+ADAM& FedDA+AdaGrad

Input: W0, m0, V0

1: for r = 0, · · · , R− 1 do
2: Sample a subset S of clients
3: for each client Si ∈ S in parallel do
4: P i

r,0 = 0, W i
r,0 =Wr , mi

r,0 = mr

5: for t = 0, · · · , T − 1 do
6: W i

r,t+1 =W i
r,t − gir,t(W i

r,t) ∗ η
7: mi

r,t+1 = β1 ∗mi
r,t + (1− β1) ∗ gir,t(W i

r,t)

8: P i
r,t+1 = P i

r,t +mi
r,t+1

9: Pr = aggregation of P i
r,T

10: mr+1 = aggregation of mi
r,T

11: Gr = (Pr − β1 ∗mr)/(1− β1)
12: ADAM
13: m̂r+1 = (β1 ∗mr + (1− β1) ∗ Gr)/(1− βr

1)
14: Vr+1 = (β2 ∗ Vr + (1− β2) ∗ G2r )
15: V̂r+1 = Vr+1/(1− βr

2)
16: Wr+1 =Wr − m̂r+1/(

√
Vr+1 + ε) ∗ η ∗ α

17: AdaGrad
18: Vr+1 = Vr + G2r
19: Wr+1 =Wr − Gr/(

√
Vr+1 + ε) ∗ η ∗ α
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A.3. Advantage of Global Momentum in FedDA

Assume that

1. (Lipschitz Gradient). There exists a constant Lg such that ‖gi(W1)− gi(W2)‖ ≤ Lg‖W1 −W2‖ for any W1,W2 and
i = 1, · · · ,m.

2. (Bounded Gradient) ‖gi‖L∞ <∞ for any i = 1, 2, · · · ,m.

Under these assumptions, we theoretically demonstrate that (1) local momentum deviates from the centralized one at
exponential rate O(eλt); and (2) global momentum in FedDA deviates from the centralized one at algebraic rate O(t2).

Local momentum deviates from the centralized one at exponential rate. Let (mi(τ),W i(τ)) be the solution to the
decomposed system

η
d

dτ
mi(τ) = −(1− β)mi(τ) + (1− β)gi(W i(τ)),

d

dτ
W i(τ) = −mi(τ).

(40)

Let (m(τ),W (τ)) be the solution to Eq.(19) with (m(0),W (0)) = (mi(0),W i(0)), i.e., centralized SGDm optimizer with
the same initialization as the decomposed optimizer. By direct calculations, we have

η
d

dτ
(mi(τ)−m(τ)) = (1− β)

(
− (mi(τ)−m(τ)) +

(
gi(W i(τ))− gi(W (τ))

)
+R(τ)

)
,

d

dτ
(W i(τ)−W (τ)) = −(mi(τ)−m(τ)),

(41)

where R(τ) =
∑
j 6=i

Nj

N

(
gj(W (τ))− gi(W (τ))

)
. One can check that ∇‖x‖ = x

‖x‖ for nay x ∈ Rn. Therefore, it holds
that ‖∇‖x‖‖ ≤ 1 and x · ∇‖x‖ = ‖x‖, where · means dot product. Taking the inner product of the first equation in Eq.(41)
with∇‖mi(τ)−m(τ)‖, we obtain

η
d

dτ
‖mi(τ)−m(τ)‖ ≤ (1− β)

(
− ‖mi(τ)−m(τ)‖+ Lg‖W i(τ)−W (τ)‖+ ‖R(τ)

)
. (42)

Similarly, take the inner produce of the second equation in Eq.(41) with∇‖W i −W‖, we obtain

d

dτ
‖W i(τ)−W (τ)‖ ≤ ‖mi(τ)−m(τ)‖ (43)

The system of Eq.(42) and Eq.(43) can be written as the following matrix form.

d

dτ

(
‖mi(τ)−m(τ)‖
‖W i(τ)−W (τ)‖

)
≤ A

(
‖mi(τ)−m(τ)‖
‖W i(τ)−W (τ)‖

)
+ (1− β)

(
‖R(τ)‖/η

0

)
(44)

where A =

(
−(1− β)/η (1− β)Lg/η

1 0

)
. By direct computations, the eigenvalue of the matrix A is λ± =

−(1−β)±
√

(1−β)2+4(1−β)Lg

2η . Therefore ‖eAt‖ ≤ CAe
λ+t for any t ≥ 0 for some constant CA. Note that λ+ > 0.

Applying variation of constants formula to Eq.(44), one has(
‖mi(tη)−m(tη)‖
‖W i(tη)−W (tη)‖

)
≤ eAtη

(
‖mi(0)−m(0)‖
‖W i(0)−W (0)‖

)
+ (1− β)

∫ tη

0

eA(tη−τ)

(
‖R(τ)‖/η

0

)
dτ. (45)

Note that mi(0)−m(0) = 0 and W i(0)−W (0). Therefore, for any t, it holds(
‖mi(tη)−m(tη)‖
‖W i(tη)−W (tη)‖

)
≤ (1− β)

∫ tη

0

eA(tη−τ)

(
‖R(τ)‖/η

0

)
dτ. (46)
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Utilizing ‖eAt‖ ≤ CAeλ
+t for t ≥ 0 in the above inequality , we obtain

‖mi(tη)−m(tη)‖+ ‖W i(tη)−W (tη)‖

≤
∫ tη

0

eλ
+(tη−τ)‖R(τ)‖/ηdτ = eλ

+tη(1− β)

∫ tη

0

e−λ
+τ
(
‖R(τ)‖/η

)
dτ,

(47)

which implies that ‖mi(tη)−m(tη)‖ is exponentially growing. Essentially, the term
(
gi(W i(τ))− gi(W (τ)) in Eq. (41)

causes such exponential growth. More precisely, since gi(W i) − gi(W ) = ∇gi(W )(W i −W ) + O(|W i −W |2), it
contributes a linear term ∇gi(W )(W i −W ) to Eq.(41). Consequently, the matrix A has a positive eigenvalue, which
implies that ‖eAt‖ is exponentially growing. Thus, the difference of momentum ‖mi(tη) − m(tη)‖ is exponentially
growing. However, in our FedDA method, since momentum is decoupled with local training, there is no such a term as

gi(W i)− gi(W ). Therefore, in our FedDA framework, the matrix analogous to matrix A is
(
−(1− β)/η 0

1 0

)
, whose

eigenvalues are 0,−(1− β). Therefore, the momentum deviation in our FedDA method is only algebraic growing.

Global momentum in FedDA deviates from the centralized one at algebraic rate. Let (W̄ i(τ), m̄(τ), W̄ (τ)) be the
solution to Eq.(22) with α = 1. Let (m(τ),W (τ)) be the solution to Eq.(19) with (m(0),W (0)) = (m̄(0), W̄ (0)). It is
straightforward to compute

η
d

dτ
(m̄(τ)−m(τ)) = −(1− β)

(
(m̄(τ)−m(τ)) +

M∑
i

Ni
N

(
gi(W̄ i(τ))− gi(W (τ))

))
d

dτ
(W̄ (τ)−W (τ)) = −(m̄(τ)−m(τ)),

(48)

By calculations similar to the above ones, we first have

d

dτ

(
‖m̄(τ)−m(τ)‖
‖W̄ (τ)−W (τ)‖

)
≤ Ā

(
‖m̄(τ)−m(τ)‖
‖W̄ (τ)−W (τ)‖

)
+ (1− β)

(
‖
∑M
i

Ni

N

(
gi(W̄ i(τ))− gi(W (τ))

)
‖/η

0

)
(49)

where Ā =

(
−(1− β)/η 0

1 0

)
. One can check that the eigenvalues of Ā are 0,−(1− β)/η, which implies that there exists

a constant CĀ such that ‖eĀt‖ ≤ CĀ for any t ≥ 0, i.e., ‖eĀt‖ is uniformly bounded without growth. Clearly,

‖gi(W̄ i(τ))− gi(W (τ))‖ ≤ Lg‖W̄ i(τ)−W (τ)‖. (50)

Moreover, utilizing W̄ i(0) = W (0), we have

W̄ i(τ)−W (τ) =

∫ τ

0

−gi(W̄ i(s)) +m(s)ds. (51)

It follows that
‖W̄ i(τ)−W (τ)‖ ≤

(
‖gi‖L∞ + sup

s≤τ
‖m(s)‖

)
τ. (52)

By variation of constants formula, we have

‖m(τ)‖ ≤ e−(1−β)τ/η‖m(0)‖+
1

η

∫ τ

0

e−(1−β)(τ−s)/η(1− β)‖g(W (s))‖ds, (53)

which implies that |m(τ)| ≤ |m(0)|+ ‖g‖L∞ for any τ ≥ 0. Therefore, we have

‖W̄ i(τ)−W (τ)‖ =
(
‖gi‖L∞ + ‖m(0)‖+ ‖g‖L∞)τ. (54)

Combining Eq.(50) and Eq.(54), we have

‖gi(W̄ i(τ))− gi(W (τ))‖ ≤ ‖∇gi‖L∞
(
‖gi‖L∞ + ‖m(0)‖+ ‖g‖L∞)τ. (55)
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Applying the variation of constants formula to Eq.(49), we have

(
‖m̄(tη)−m(tη)‖
‖W̄ (tη)−W (tη)‖

)
≤
∫ tη

0

eĀ(tη−τ)

(
‖
∑M
i

Ni

N

(
gi(W̄ i(τ))− gi(W (τ))

)
‖/η

0

)
dτ. (56)

Utilizing ‖eĀt‖ ≤ CĀ and Eq.(55), it holds

‖m̄(tη)−m(tη)|+ ‖W̄ (tη)−W (tη)‖ ≤
∫ tη

0

C∗τ/ηdτ =
C∗η

2
t2, (57)

where C∗ = sup
i
‖∇gi‖L∞

(
‖gi‖L∞ + ‖m(0)‖+ ‖g‖L∞). Therefore, the momentum in our FedDA method deviates from

the centralized one in algebraic rate O(t2), which is much slower than that of local momentum.

A.4. Additional Experiments

In this section, we conduct more experiments to validate the accuracy and convergence of our proposed FedDAmethod and
evaluate the sensitivity of client and server learning rates in our momentum decoupling adaptive optimization method for the
FL task.

Convergence and loss over Stack Overflow. Figures 7-8 present the Accuracy and Loss curves of ten federated learning
algorithms on Stack Overflow. Similar trends are observed for the performance comparison: FedDA achieves the 75.4%
convergence improvement, which are obviously better than other methods in most experiments. This demonstrates that the
full batch gradient techniques that mimic centralized optimization in the end of the training process are able to ensure the
convergence and overcome the possible inconsistency caused by adaptive optimization methods.
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Figure 7: Convergence on Stack Overflow with Three Optimizers
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Figure 8: Loss on Stack Overflow with Three Optimizers

Final Accuracy over Stack Overflow. Table 5 presents the final Accuracy scores of ten federated learning algorithms
on Stack Overflow. We have observed similar trends: the accuracy achieved by our FedDA is the highest in most tests.
Especially, as shown the experiment with SGDM as the optimizer, compared to the best competitors among ten federated
learning algorithms, the final Accuracy scores achieved by FedDA averagely achieves 22.3% improvement. A rational
guess is that the global momentum in our FedDA method makes the best effort to mimic the role of momentum in centralized
training, which can accelerate the convergence of FL training.

Table 5: Final Accuracy on Stack Overflow

Optimizer SGDM Adam AdaGrad
FedLocal 0.152 0.576 0.229
SCAFFOLD 0.250 0.250 0.250
FedLin 0.224 0.224 0.224
FedAvg 0.252 0.252 0.252
MFL 0.134 0.101 0.215
CLIMB 0.302 0.302 0.302
STEM 0.196 0.196 0.196
MimeLite 0.271 0.211 0.078
FedOpt 0.225 0.642 0.691
FedDA 0.273 0.642 0.674

Impact of client and server learning rates. Tables 6-11 report how the test Accuracy changes with server and client
learning rates on three datasets by fixing the server learning rates and changing the client learning rates, or by utilizing the
reverse settings. We have observed that the Accuracy scores oscillate within the range of 0.002 and 0.868 when changing
the client learning rates, while the Accuracy values fluctuate between 0.010 and 0.861. This demonstrates that it is crucial
to choose the optimal learning rates for the training on the clients and server to achieve the competitive performance. Please
refer to Table 12 for the implementation details of the server and client learning rates used in our current experiments.

Table 6: Final Accuracy with SGDM Optimizer and Varying Client Learning Rate

Dataset Server Learning Rate Accuracy / Client Learning Rate
CIFAR-100 0.1 0.521 / 1 0.448 / 3.3 0.236 / 10 0.099 / 33
EMNIST 0.1 0.778 / 1 0.819 / 3.3 0.783 / 10 0.052 / 33
Stack Overflow 0.1 0.174 / 1 0.262 / 10 0.250 / 100 0.002 / 1,000
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Table 7: Final Accuracy with Adam Optimizer and Varying Client Learning Rate

Dataset Server Learning Rate Accuracy / Client Learning Rate
CIFAR-100 0.1 0.179 / 1 0.317 / 3.3 0.269 / 10 0.179 / 33
EMNIST 0.03 0.488 / 0.01 0.836 / 0.1 0.842 / 0.3 0.804 / 1
Stack Overflow 0.3 0.409 / 0.1 0.492 / 1 0.473 / 10 0.459 / 100

Table 8: Final Accuracy with AdaGrad Optimizer and Varying Client Learning Rate

Dataset Server Learning Rate Accuracy / Client Learning Rate
CIFAR-100 0.1 0.462 / 0.03 0.488 / 0.1 0.410 / 0.3 0.259 / 1
EMNIST 0.1 0.055 / 0.00001 0.055 / 0.001 0.055 / 0.01 0.868 / 0.1
Stack Overflow 10 0.576 /1 0.651 / 10 0.629 / 30 0.632 / 100

Table 9: Final Accuracy with SGDM Optimizer and Varying Server Learning Rate

Dataset Client Learning Rate Accuracy / Server Learning Rate
CIFAR-100 0.03 0.374 / 1 0.522 / 3.3 0.356 / 10 0.273 / 33
EMNIST 0.1 0.859 / 0.3 0.861 / 1 0.778 / 3.3 0.783 / 10
Stack Overflow 100 0.191 / 0.001 0.256 / 0.003 0.204 / 0.01 0.292 / 0.1

Table 10: Final Accuracy with Adam Optimizer and Varying Server Learning Rate

Dataset Client Learning Rate Accuracy / Server Learning Rate
CIFAR-100 0.03 0.510 / 0.33 0.183 / 3.3 0.010 / 10 0.010 / 33
EMNIST 0.03 0.546 / 0.1 0.803 / 1 0.051 / 3.3 0.051 / 10
Stack Overflow 100 0.425 / 0.1 0.522 / 0.3 0.641 / 1 0.633 / 10

Table 11: Final Accuracy with AdaGrad Optimizer and Varying Server Learning Rate

Dataset Client Learning Rate Accuracy / Server Learning Rate
CIFAR-100 0.03 0.352 / 0.03 0.462 / 0.1 0.466 / 0.3 0.312 / 1
EMNIST 0.03 0.806 / 0.1 0.055 / 3.3 0.055 / 10 0.055 / 33
Stack Overflow 100 0.227 / 0.1 0.306 / 0.3 0.397 / 1 0.632 / 10

A.5. Experimental Details

Environment. Our experiments were conducted on a compute server running on Red Hat Enterprise Linux 7.2 with 2 CPUs
of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit
memory bus and memory bandwidth in the neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, our
experiments took about 2 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g.,
with a 1080 Ti GPU) could complete our full set of experiments in around tens of hours, if its full resources were dedicated.

All the codes were implemented based on the Tensorflow Federated (TFF) package (Ingerman & Ostrowski, 2019). Clients
are sampled uniformly at random, without replacement in a given round, but with replacement across rounds. Our
implementation follows the same settings in the approaches of FedAvg (McMahan et al., 2017a) and FedOpt (Reddi et al.,
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2021a). First, instead of doing K training steps per client, we do E epochs of training over each client’s dataset. Second, to
account for varying numbers of gradient steps per client, we weight the average of the client outputs by each client’s number
of training samples. Since the datasets used are all public datasets and the hyperparameter settings are explicitly described,
our experiments can be easily reproduced on top of a GPU server. We promise to release our open-source codes on GitHub
and maintain a project website with detailed documentation for long-term access by other researchers and end-users after
the paper is accepted.

Datasets. We following the same strategy in FedOpt (Reddi et al., 2021a) to create a federated version of CIFAR-100
by randomly partitioning the training data among 500 clients, with each client receiving 100 examples. We randomly
partition the data to reflect the coarse and fine label structure of CIFAR-100 by using the Pachinko Allocation Method (Li &
McCallum, 2006). In the derived client datasets, the label distributions better resemble practical heterogeneous client datasets.
We train a modified ResNet-18, where the batch normalization layers are replaced by group normalization layers (Wu & He,
2020). We use two groups in each group normalization layer. Group normalization can lead to significant gains in accuracy
over batch normalization in federated settings (Hsieh et al., 2020).

The federated version of EMNIST partitions the digits by their author (Caldas et al., 2018b). The dataset has natural
heterogeneity stemming from the writing style of each person. We use a convolutional network for character recognition.
The network has two convolutional layers with 3× 3 kernels, max pooling, and dropout, followed by a 128 unit dense layer.

Stack Overflow is a language modeling dataset consisting of question and answers from the question and answer site (Ten-
sorFlow, 2019). The questions and answers also have associated metadata, including tags. The dataset contains 342,477
unique users which we use as clients. We choose the 10,000 most frequently used words, the 500 most frequent tags and
adopt a one-versus-rest classification strategy, where each question/answer is represented as a bag-of-words vector.

Implementation. For four regular federated learning models of FedAvg 1, SCAFFOLD 2, STEM 3, and CLIMB 4, we
used the open-source implementation and default parameter settings by the original authors or the Google Research for our
experiments. For three federated optimization approaches of MimeLite 5, FedOpt 6, and FedLocal 7, we also utilized the
same model architecture as the official implementation provided by the Google Research and used the same datasets to
validate the performance of these federated optimization models in all experiments. For other regular federated learning
or federated optimization approaches, including MFL and FedLin, to our best knowledge, there are no publicly available
open-source implementations on the Internet. All hyperparameters are standard values from the reference works. The above
open-source codes from the GitHub are licensed under the MIT License, which only requires preservation of copyright and
license notices and includes the permissions of commercial use, modification, distribution, and private use.

For our proposed decoupled adaptive optimization algorithm, we performed hyperparameter selection by perform-
ing a parameter sweep on training rounds ∈ {1, 500, 2, 000, 2, 500, 3, 000, 3, 500, 4, 000}, momentum parameter
β1 ∈ {0.84, 0.86, 0.88, 0.9, 0.92, 0.94}, second moment parameter β2 ∈ {0.984, 0.986, 0.988, 0.99, 0.992, 0.994},
fuzz factor ε ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}, local iteration number ∈ {1, 2, 5, 10, 20}, and learning rate η ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3.3, 10, 33, 100, 333, 1, 000}. The above search process is often done using validation
data in centralized settings. However, such data is often inaccessible in federated settings, especially cross-device settings.
Therefore, we tune by selecting the parameters that minimize the average training loss over the last 100 rounds of training.
We run 1,500 rounds of training on the EMNIST and Stack Overflow, and 4,000 rounds over the CIFAR-100.

Hyperparameter settings.

Unless otherwise explicitly stated, we used the following default parameter settings in the experiments, as shown in Table
12.

1https://github.com/google-research/federated/tree/780767fdf68f2f11814d41bbbfe708274eb6d8b3/optimization
2https://github.com/google-research/public-data-in-dpfl
3https://papers.neurips.cc/paper/2021/hash/3016a447172f3045b65f5fc83e04b554-Abstract.html
4https://openreview.net/forum?id=Xo0lbDt975
5https://github.com/google-research/public-data-in-dpfl
6https://github.com/google-research/federated/tree/master/optimization
7https://github.com/google-research/federated/tree/master/local adaptivity
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Table 12: Hyperparameter Settings

Parameter Value
Training rounds for EMNIST and Stack Overflow 1,500

Training rounds for CIFAR-100 4,000
Momentum parameter β1 0.9

Second moment parameter β2 0.99
Client learning rate with SGDM on CIFAR-100 0.03
Client learning rate with Adam on CIFAR-100 0.03

Client learning rate with AdaGrad on CIFAR-100 0.1
Server learning rate with SGDM on CIFAR-100 3.3
Server learning rate with Adam on CIFAR-100 0.3

Server learning rate with AdaGrad on CIFAR-100 0.1
Local iteration number with SGDM on CIFAR-100 5
Local iteration number with Adam on CIFAR-100 5

Local iteration number with AdaGrad on CIFAR-100 5
Fuzz factor with Adam on CIFAR-100 0.1

Fuzz factor with AdaGrad on CIFAR-100 0.1
Client learning rate with SGDM on EMNIST 0.1
Client learning rate with Adam on EMNIST 0.1

Client learning rate with AdaGrad on EMNIST 0.1
Server learning rate with SGDM on EMNIST 1
Server learning rate with Adam on EMNIST 0.1

Server learning rate with AdaGrad on EMNIST 0.1
Local iteration number with SGDM on EMNIST 10
Local iteration number with Adam on EMNIST 10

Local iteration number with AdaGrad on EMNIST 5
Fuzz factor with Adam on EMNIST 0.1

Fuzz factor with AdaGrad on EMNIST 0.1
Client learning rate with SGDM on Stack Overflow 100
Client learning rate with Adam on Stack Overflow 100

Client learning rate with AdaGrad on Stack Overflow 100
Server learning rate with SGDM on Stack Overflow 10
Server learning rate with Adam on Stack Overflow 1

Server learning rate with AdaGrad on Stack Overflow 10
Local iteration number with SGDM on Stack Overflow 5
Local iteration number with Adam on Stack Overflow 1

Local iteration number with AdaGrad on Stack Overflow 5
Fuzz factor with Adam on Stack Overflow 0.00001

Fuzz factor with AdaGrad on Stack Overflow 0.00001


