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Abstract
In pure-exploration problems, information is gath-
ered sequentially to answer a question on the
stochastic environment. While best-arm identi-
fication for linear bandits has been extensively
studied in recent years, few works have been ded-
icated to identifying one arm that is ε-close to the
best one (and not exactly the best one). In this
problem with several correct answers, an identi-
fication algorithm should focus on one candidate
among those answers and verify that it is correct.
We demonstrate that picking the answer with high-
est mean does not allow an algorithm to reach
asymptotic optimality in terms of expected sam-
ple complexity. Instead, a furthest answer should
be identified. Using that insight to choose the
candidate answer carefully, we develop a simple
procedure to adapt best-arm identification algo-
rithms to tackle ε-best-answer identification in
transductive linear stochastic bandits. Finally, we
propose an asymptotically optimal algorithm for
this setting, which is shown to achieve competi-
tive empirical performance against existing modi-
fied best-arm identification algorithms.

1. Introduction
The multi-armed bandit (MAB) setting is an extensively
studied problem in sequential decision making (Robbins,
1952; Lattimore & Szepesvári, 2020). The environment
is represented by a set of arms, each associated with an
unknown reward distribution. The agent interacts with it
by sequentially “pulling” arms, that is choosing an arm and
observing a sample from its distribution. We focus on the
pure-exploration framework in which the objective of the
agent is to answer a query as fast and reliably as possible,
while disregarding the accumulated cost. We consider noisy
linear observations depending on an unknown parameter µ.
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The pure-exploration setting for stochastic bandits was first
studied in Even-Dar et al. (2002) and Bubeck et al. (2009).
It has been studied in two major theoretical frameworks
(Audibert et al., 2010; Gabillon et al., 2012; Jamieson &
Nowak, 2014; Kaufmann et al., 2016): the fixed-budget
setting and the fixed-confidence setting. In the fixed-budget
setting, the objective is to minimize the probability of
misidentifying a correct answer given a fixed number of
samples. We consider the fixed-confidence setting, where
the agent aims at minimizing the number of pulls to identify
a correct answer with confidence 1− δ.

The most well known pure exploration setting is best-arm
identification (BAI) (Audibert et al., 2010; Chen et al.,
2017), in which the goal is to return the arm with largest
expected reward. Numerous variants of BAI have been con-
sidered in recent years: linear bandits (Soare et al., 2014;
Zaki et al., 2020; Degenne et al., 2020a), thresholding ban-
dits (Locatelli et al., 2016; Cheshire et al., 2021), minimum
threshold (Kaufmann et al., 2018), combinatorial bandits
(Chen et al., 2014; Katz-Samuels et al., 2020; Jourdan et al.,
2021), top-m identification (Kalyanakrishnan et al., 2012;
Katz-Samuels & Scott, 2019; Réda et al., 2021), matching
bandits (Sentenac et al., 2021), logistic bandits (Jun et al.,
2021), identifying all ε-optimal answers (Mason et al., 2020;
Al Marjani et al., 2022), etc.

When the gap between the best and the second best arm is
small, BAI problems are difficult, meaning that an algorithm
needs a large number of samples to be correct. To avoid
wasteful queries, practitioners might be interested in the
easier task of identifying one answer that is ε-close to the
best one, but not exactly the best one.

In this work, we consider (ε, δ)-PAC best-answer identifica-
tion (ε-BAI) for transductive linear bandits. In transductive
bandits (Fiez et al., 2019), the set of arms K that can be
pulled by the agent is different from the set of answers Z
on which the identification procedure focuses. In contrast
to best-answer identification, our agent aims at identifying
one ε-optimal answer (defined below) among the existing
ones (Mannor & Tsitsiklis, 2004; Even-Dar et al., 2006;
Sabato, 2019). Note that the ranking and selection literature
explores this question with a different approach, see Hong
et al. (2021) for a review. ε-BAI has been studied for MAB
(Garivier & Kaufmann, 2021), spectral bandits (Kocák &
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Garivier, 2021), on the unit sphere (Jedra & Proutière, 2020)
and as a special case of the multiple correct answer set-
ting (Degenne & Koolen, 2019). As we will show, the
asymptotic complexity of ε-BAI is governed by the identifi-
cation of the furthest answer. This is the ε-optimal answer
for which it is easiest to verify ε-optimality. Therefore,
all ε-optimal answers are not equivalent. When aiming at
asymptotic optimality of the expected sample complexity, al-
gorithms should select the candidate ε-optimal answer more
carefully than simply using the greedy answers defined as
z⋆(µ)

def
= argmaxz∈Z⟨µ, z⟩ (the answers for which the re-

ward is maximal). In the special case of BAI, the assumption
|z⋆(µ)| = 1 is made and algorithms use the greedy answer,
which is the unique correct answer to identify.

For our algorithm, we adopt a saddle-point (or game) ap-
proach between the agent and the nature, aiming at itera-
tively approximating the lower bound on the expected sam-
ple complexity. The goal is to design an asymptotically
optimal algorithm with competitive empirical performance
in finite-time regime.

Contributions (1) We provide an analysis of ε-BAI for
transductive linear bandits and highlight a phenomenon
which was overlooked by previous work. The choice of the
candidate ε-optimal answer is crucial to reach asymptotic
optimality in terms of expected sample complexity and one
should identify the furthest answer instead of using the
greedy answers. (2) By carefully choosing the candidate
ε-optimal answer and leaving the sampling rule unchanged,
we develop a simple procedure to adapt BAI algorithms
to be (ε, δ)-PAC and empirically competitive for ε-BAI in
transductive linear stochastic bandits. (3) By leveraging
the concept of ε-optimal answer in the sampling rule, we
propose an asymptotically optimal algorithm in this setting,
which has competitive empirical performance.

1.1. Problem Statement

Transductive Linear Bandits We consider the transduc-
tive linear bandits setting, where the collection of arms
K ⊆ Rd and answers Z ⊆ Rd are finite sets, potentially
different (Fiez et al., 2019), with cardinality |K| = K
and |Z| = Z. Taking Z = K yields the linear ban-
dits setting. We assume that K spans Rd and denote
LK

def
= maxa∈K ∥a∥2 where ∥a∥2 is the euclidean norm

of a ∈ K. The interaction with the environment goes as fol-
lows: in each round t ≥ 1, the agent chooses an arm at ∈ K
and observes Xat

t = ⟨µ, at⟩ + ηt where µ is an unknown
mean parameter belonging to the set M ⊆ Rd, which is
known to the agent1. The noise ηt ∼ N (0, σ2) is condi-
tionally independent of the past. Without loss of generality,

1Note that we use a ∈ K as a superscript to denote the index
of the element in RK corresponding to the vector a.

we consider σ2 = 1. Prior works have lifted the Gaussian
assumption by considering sub-Gaussian distributions. The
focus of our work is to highlight a phenomenon which is
orthogonal to the distribution, therefore restricting ourselves
to Gaussians is an assumption we are willing to make.

(ε, δ)-PAC Best-Answer Identification In ε-BAI
(ε ≥ 0) for transductive linear bandits, the agent
aims at identifying one of the ε-optimal answers by
sequentially pulling arms. We address two different
notions of ε-optimality: the additive ε-optimal answers,
Zadd

ε (µ)
def
= {z ∈ Z : ⟨µ, z⟩ ≥ maxz∈Z⟨µ, z⟩ − ε}, and

the multiplicative ε-optimal answers, Zmul
ε (µ)

def
=

{z ∈ Z : ⟨µ, z⟩ ≥ (1− ε)maxz∈Z⟨µ, z⟩} when
maxz∈Z⟨µ, z⟩ > 0. The notation ·{add,mul} is dropped
when the statement holds for both notions of ε-optimality.
We will deal with both notions with the same method.
Previous works mostly consider the additive ε-optimality
(Garivier & Kaufmann, 2021; Kocák & Garivier, 2021).
When ε = 0 both notions coincide with BAI, in which
there is a unique correct answer. ε-BAI is often seen
as a more practical objective than BAI, in cases where
getting an answer close to optimal is enough: while a
BAI algorithm will spend many samples distinguishing
between an ε-optimal answer and the best answer, an ε-BAI
algorithm will be able to stop quickly.

Identification Strategy The σ-algebra Ft
def
=

σ (a1, X
a1
1 , · · · , at, Xat

t ), called history, encompasses all
the information available to the agent after t rounds. In
the fixed-confidence setting an identification strategy is
described by three rules: a sampling rule (at)t≥1 where
at ∈ K is Ft−1-measurable, a stopping rule τδ which is a
stopping time with respect to the filtration (Ft)t≥1, also
referred as the sample complexity, and a recommendation
rule ẑ which is Fτδ -measurable. While the sampling rule
could depend on additional internal randomization, the
algorithms proposed in this work are deterministic.

In the fixed-confidence setting, the learner is given a con-
fidence parameter δ ∈ (0, 1). A strategy is said to be
(ε, δ)-PAC if, for all µ ∈ M, with probability at most δ
it terminates while not recommending an ε-optimal answer,
i.e. Pµ [τδ < +∞, ẑ /∈ Zε(µ)] ≤ δ. Among the class of
(ε, δ)-PAC algorithms, our goal is to minimize the expected
sample complexity Eµ[τδ].

2. Comparing ε-Optimal Answers
2.1. Lower Bound

For any w ∈ (R+)K , we define the design matrix Vw
def
=∑

a∈K waaaT ∈ Rd×d, which is symmetric and positive
semi-definite, and definite if and only if Span({a ∈ K :
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wa ̸= 0}) = Rd. For any symmetric positive semi-
definite matrix V ∈ Rd×d, we define the semi-norm
∥x∥V

def
=

√
xTV x for x ∈ Rd, which is a norm if V is

positive definite. The probability simplex of dimension
K − 1 is denoted by △K for all K ≥ 2.

Alternative to z Given an answer z ∈ Z , the alterna-
tive to z is defined as the set of parameters for which z is
not an ε-optimal answer, ¬εz

def
= {λ ∈ M : z /∈ Zε(λ)}

where X denotes the closure of X . Rewriting it
for the additive and multiplicative ε-optimality, we ob-
tain: ¬add

ε z = {λ ∈ M : ⟨λ, z⟩ < maxz∈Z⟨λ, z⟩ − ε}
and ¬mul

ε z = {λ ∈ M : ⟨λ, z⟩ < (1− ε)maxz∈Z⟨λ, z⟩}.
Identifying an ε-optimal answer z ∈ Zε(µ) is equivalent to
rejecting the hypothesis that the unknown mean belongs to
the alternative to z, i.e. H0 = {µ ∈ ¬εz}. Informally, if we
know with enough certainty that µ does not belong to the
alternative ¬εz, we can safely return the answer z.

Asymptotic Lower Bound Theorem 2.1 gives an asymp-
totic lower bound on the expected sample complexity of
any (ε, δ)-PAC strategy for both additive and multiplicative
ε-optimality. This is a corollary of Theorem 1 in Degenne
& Koolen (2019), which holds for any multiple answer in-
stance and sub-Gaussian distributions (Appendix C.2).

Theorem 2.1 (Theorem 1 in Degenne & Koolen (2019)).
For all (ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tε(µ)

where the inverse of the characteristic time is

Tε(µ)
−1 def

= max
z∈Zε(µ)

max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

. (1)

An (ε, δ)-PAC algorithm is said to be asymptotically optimal
if the bound is tight: for all µ ∈ M, lim infδ→0

Eµ[τδ]
ln(1/δ) ≤

Tε(µ). The first lower bound for BAI was proved in Garivier
& Kaufmann (2016).

As noted by Chernoff (1959), the complexity Tε(µ)
−1 is

the value of a zero-sum game between two players. The
agent chooses an ε-optimal answer and a pulling propor-
tion over arms, (z, w) ∈ Zε(µ) × △K . The nature plays
the most confusing alternative λ ∈ ¬εz with respect to a
reweighted Kullback-Leibler divergence (∥ · ∥2Vw

for Gaus-
sians) in order to fool the agent into rejecting this answer.
Our algorithm, named LεBAI (Linear ε-BAI), is based on
this formulation. Even for known µ, computing Tε(µ)

−1 is
in general intractable due to the non-convexity of ¬εz and
the additional maximization over Zε(µ). When ε is large
enough to have Zε(λ) = Z for all λ ∈ M, then Tε(µ) = 0,
i.e. it is so easy that no sample is needed.

While lower bounds for BAI have been derived in the non-
asymptotic regime, it remains unclear whether equivalent
lower bounds hold for ε-BAI (Garivier & Kaufmann, 2021).

Comparison with BAI Since Tε(µ) ≤ T0(µ) for all µ ∈
M (because ¬εz ⊆ ¬0z), ε-BAI is easier than BAI. There
exists arbitrarily hard BAI instances that can be solved if
seen as an ε-BAI problem, e.g. when the gap between the
best and the second best arm is arbitrarily small.

2.2. Furthest Answer

Our contributions are linked with the concept the furthest
answer: it should be leveraged in the recommendation-
stopping pair (Section 3) and in the sampling rule (Sec-
tion 4). In a nutshell, to reach asymptotic optimality in
terms of sample complexity one should identify that fur-
thest answer instead of simply using the greedy answers: all
ε-optimal answers are not equivalent.

The furthest answer zF (µ) is the ε-optimal answer for which
it is easiest to verify that µ does not belong to its alternative
(when using an optimal allocation over arms wF (µ) ∈ △K ).
Introduced in Degenne & Koolen (2019) and Garivier &
Kaufmann (2021), it is defined as

(zF (µ), wF (µ))
def
= argmax

(z,w)∈Zε(µ)×△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

.

(2)

zF (µ) belongs to the ε-optimal answers Zε(µ), as does
the greedy answers z⋆(µ) = argmaxz∈Z⟨µ, z⟩, but these
answers may differ. In BAI with a unique best arm the set
Zε(µ) is a singleton, hence those two notions coincide.

We assume there is a unique furthest answer for the un-
known µ, i.e. |zF (µ)| = 1. When |zF (µ)| > 1, some
function of µ has to have exactly the same value for all an-
swers of the set. This happens with probability 0 if µ arises
from an absolutely continuous distribution. Almost all BAI
algorithms make the assumption that |z⋆(µ)| = 1, which
implies |zF (µ)| = 1 in the BAI case. Since the furthest
answer is assumed unique, we abuse notation and denote by
zF (µ) both that answer, and the singleton containing it as
in (2). z⋆(µ) denotes a set as we don’t assume |z⋆(µ)| = 1.
The dependence of zF (µ) and wF (µ) on ε is omitted.

Asymptotic Sub-optimality of z⋆(µ) An (ε, δ)-PAC strat-
egy is said to be asymptotically greedy if the only ε-optimal
answers for which the algorithm will stop asymptotically
are the greedy answers z⋆(µ), i.e. for all µ ∈ M,

lim
δ→0

Pµ[τδ < +∞, ẑ ∈ Zε(µ) \ z⋆(µ)] = 0 . (3)

Lemma 2.2 shows that any asymptotically greedy (ε, δ)-
PAC strategy is asymptotically sub-optimal whenever
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zF (µ) /∈ z⋆(µ), i.e. it can only reach Tg,ε(µ) which is
strictly higher than Tε(µ).

Lemma 2.2. For all asymptotically greedy (ε, δ)-PAC strat-
egy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tg,ε(µ)

where the inverse of the greedy characteristic time is

Tg,ε(µ)
−1 def

= max
z∈z⋆(µ)

max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

, (4)

and Tg,ε(µ) > Tε(µ) if and only if zF (µ) /∈ z⋆(µ).

Lemma 2.3 shows that any (ε, δ)-PAC strategy recommend-
ing any greedy answers ẑ ∈ z⋆(µτδ) which succeeds in iden-
tifying z⋆(µ) is asymptotically greedy. Since µ 7→ z⋆(µ) is
continuous and Z is finite, it is sufficient to have a sampling
rule ensuring that limt→+∞ µt = µ.

Lemma 2.3. Any (ε, δ)-PAC strategy recommending ẑ ∈
z⋆(µτδ) is asymptotically greedy if the sampling rule en-
sures that limδ→0 Pµ[τδ < +∞, z⋆(µτδ) = z⋆(µ)] = 1.

Asymptotic Optimality of zF (µ) The furthest answer has
by definition a central role in the characteristic time. Among
the oracles that first choose an answer z ∈ Zε(µ) and then
sample according to the optimal proportions to verify that
µ /∈ ¬εz, the only one achieving asymptotic optimality is
the one picking zF (µ). To be asymptotically optimal, an
ε-BAI algorithm has to implicitly identify zF (µ).

The definition of zF (µ) comes from an asymptotic lower
bound, and no finite time lower bounds are available for
ε-BAI. It could be that for larger δ (hence small stopping
times), identifying zF (µ) among Zε(µ) is too costly to be
done before stopping. In that regime, it could be that an al-
gorithm cannot do better than picking any ε-optimal answer.
This is an interesting open question for future work. Strong
moderate confidence terms (independent of δ) affecting the
sample complexity have been shown in different settings
(Katz-Samuels & Jamieson, 2020; Mason et al., 2020).

Figure 1. Influence of ε on (a) the proportion of draws where
zF (µ) /∈ z⋆(µ), (b) the median (and first/third quartile) of
Tmul
ε (µ)

Tmul
g,ε (µ)

, when zF (µ) /∈ z⋆(µ).

Numerical Simulations We compare the furthest and the
greedy answers for the multiplicative ε-optimality (see Fig-
ure 8 in Appendix F.2.2 for additive ε-optimality).

We consider d = 2, M = R2 and Z = K with K = 4.
We use µ = (1, 0) and generate 25000 random instances.
In each one of them, we consider z1 = µ and draw uni-
formly at random z2 ∈ {(cos(θ), sin(θ)) : θ ∈ [−θε, θε]}
and z3, z4 ∈ {(cos(θ), sin(θ)) : θ ∈ (−π,−θε) ∪ (θε, π]},
where θε

def
= arccos(1 − ε). This yields z1 = z⋆(µ),

z2 ∈ Zε(µ) and z3, z4 ∈ Z \ Zε(µ). To approximate
(Tε(µ), zF (µ)), we discretize △4 with 10000 vectors. This
is repeated for several values of ε. We never observed
|z⋆(µ)| > 1 or |zF (µ)| > 1.

Figure 1(a) reveals that the proportion of draws where
z⋆(µ) ̸= zF (µ) is not negligible (≈ 14%). On those in-

stances, Figure 1(b) shows that Tmul
ε (µ)

Tmul
g,ε (µ)

is on average 0.9.
Therefore, when they are different, the furthest answer has
a 10% lower characteristic time than greedy answers.

3. From BAI to ε-BAI Algorithms
We propose a simple procedure to convert any BAI algo-
rithm into an (ε, δ)-PAC algorithm. While leaving the origi-
nal sampling rule unchanged, the stopping-recommendation
rule are carefully chosen thanks to the concept of furthest
answer.

Structure Since ε-BAI is easier than BAI, the stopping
rule of BAI algorithms has to be modified for ε-BAI. Instead
of stopping whenever a single best arm is identified, it is
enough to stop when we know that an arm is ε-best. In most
(ε-)BAI algorithms, the stopping-recommendation pair and
the sampling rule can be thought as two independent blocks.
There exists stopping-recommendation pairs that guarantee
the strategy to be (ε, δ)-PAC regardless of the sampling
rule (e.g. see Lemma 3.1). Therefore, we can take the
sampling rule from a BAI algorithm and couple it with a
stopping-recommendation pair with this property.

We will now describe such a stopping-recommendation pair
for ε-BAI in transductive linear Gaussian bandits. Due
to its generality, this procedure can be readily adapted to
tackle general distributions (e.g. sub-Gaussian) and different
structures (e.g. spectral bandits) by simply adapting the
stopping rule and its associated threshold.

3.1. Stopping-Recommendation Pairs

Estimator Let Nt−1 ∈ (R+)K denotes the counts of
pulled arms at the start of round t, Na

t−1 =
∑t−1

s=1 1{as=a}.
We denote the Ordinary Least Square (OLS) estimator by
µt−1 = V −1

Nt−1

∑t−1
s=1 X

as
s as. When µt−1 ∈ M, this is also

the Maximum Likelihood Estimator (MLE).
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GLR-based Stopping Rule Given a candidate answer
zt ∈ Zε(µt−1) and the history Ft, the algorithm stops
as soon as the Generalized Likelihood Ratio (GLR, Ap-
pendix C.1) exceeds a stopping threshold β(t− 1, δ)

inf
λ∈¬εzt

∥µt−1 − λ∥2VNt−1
> 2β(t− 1, δ) . (5)

In Lemma 3.1, we show that combining a recommenda-
tion rule such that zt ∈ Zε(µt−1) and this stopping rule
is sufficient to obtain a (ε, δ)-PAC strategy regardless of
the sampling rule. This holds even when the stopping crite-
rion is checked only on an infinite subset of N. The proof
(Appendix D) leverages the concentration inequalities of
Kaufmann & Koolen (2021).
Lemma 3.1. Let T ⊆ N with |T | = ∞. Given any sam-
pling and recommendation rules such that zt ∈ Zε(µt−1)
for all t ∈ T , then evaluating the stopping criterion (5) at
each time t ∈ T with the threshold

β(t, δ) = 2K ln (4 + ln (t/K)) +KCG
(
ln (1/δ)

K

)
(6)

yields an (ε, δ)-PAC strategy. CG(x) ≈ x+ ln(x) as in (9).

Since this result holds for any sampling and recommenda-
tion rules satisfying one mild requirement, zt ∈ Zε(µt−1)
for all t ∈ T , this leaves open the question on how to design
those two rules to stop as early as possible. Algorithms that
are agnostic to the choice of the candidate ε-optimal answer
might have a higher expected sample complexity than the
ones aiming at identifying the furthest answer.

Recommendation Rule Taking a greedy answer zt ∈
z⋆(µt−1) is a direct choice. Thanks to its efficient imple-
mentation, using a greedy answer is the only computation-
ally feasible recommendation rule for combinatorial or con-
tinuous answers sets. Unfortunately, when zF (µ) /∈ z⋆(µ),
this approach leads to sub-optimal algorithms in terms of
asymptotic sample complexity (Lemmas 2.2-2.3).

When Z is not too large or when we disregard the com-
putational cost, a more careful choice than the greedy one
alleviates this sub-optimality. The ε-optimal answers for
which the GLR (l.h.s of (5)) is maximized are the instanta-
neous furthest answers

zF (µt−1, Nt−1)
def
= argmax

z∈Zε(µt−1)

inf
λ∈¬εz

∥µt−1 − λ∥2VNt−1
.

By definition, zF (µt−1, Nt−1) are the ε-optimal answers
for which we have the most evidence against H0 = {µ ∈
¬εz} at time t. At a lower computational cost than using a
furthest answer for the current estimator zt ∈ zF (µt−1), we
will see that using an instantaneous furthest answer enjoys
similar empirical performance (sample complexity). For
all the above sets of candidate answers, the ties are broken
arbitrarily. Empirically, we only observed singletons.

Dependence in K In linear bandits, when K is large,
dependencies in K can be replaced by d (Lattimore &
Szepesvári, 2020). The focus of our work is to highlight the
importance of carefully choosing answers, therefore having
K instead of d is a price we are willing to pay for simpler
arguments. Prior works removed the K dependency in the
analysis of game-based algorithms (Degenne et al., 2020a;
Tirinzoni et al., 2020; Réda et al., 2021).

3.2. Modified BAI Algorithms

Modification Procedure Given any BAI algorithm for
transductive linear Gaussian bandits, we modify it to use (5)
as stopping rule while leaving the sampling rule unchanged.
By Lemma 3.1, the resulting algorithm is an (ε, δ)-PAC
strategy. For the recommendation rule, theory (Lemmas 2.2-
2.3) and experiments (Figure 2) both suggest to use zt ∈
zF (µt−1, Nt−1) instead of zt ∈ z⋆(µt−1). We do not prove
any theoretical guarantees on the sample complexity of the
modified algorithms since such results depend heavily on
each sampling rule.

BAI Benchmarks Lots of algorithms have been designed
to tackle the BAI setting and we mention below the ones
used in the experiments as benchmarks. Soare et al.
(2014) proposed a static allocation design XY-Static and its
elimination-based improvement XY-Adaptive, which are
linked to a G-optimal design. In Xu et al. (2018), LinGapE
was introduced as the first gap-based BAI algorithm. All the
above BAI algorithms are not shown to be asymptotically
optimal and depend on δ (except XY-Static). Algorithm
such as DKM (Degenne et al., 2019) and LinGame (De-
genne et al., 2020a) are asymptotically optimal and their
sampling rule does not depend on δ.

Other Stopping Rules For all BAI algorithm using a
GLR-based stopping rule the ε-BAI stopping rule (5) is a
natural modification. Some other non-GLR-based stopping
rule also have a direct extension to ε-BAI. This is the case
for the gap-based stopping rule for additive ε-optimality
employed by LinGapE, where we can stop when the gap is
smaller than ε instead of stopping when it is negative.

3.3. Experiments

We perform experiments to highlight the empirical per-
formance of the modified BAI algorithms on additive ε-
BAI problems. Moreover, we show that using zt ∈
zF (µt−1, Nt−1) in (5) achieves lower empirical stopping
time compared to zt ∈ z⋆(µt−1), and outperforms the ε-gap
stopping rule with zt ∈ z⋆(µt−1). We consider linear ban-
dits, i.e. K = Z , with M = Rd and (ε, δ) = (0.05, 0.01),
and perform 5000 runs. The stopping-recommendation pair
is updated at each time t.
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Hard Instance We adapt the usual hard instance studied
in BAI for linear bandits to enforce the existence of mul-
tiple correct answers, i.e. |Zε(µ)| > 1. Taking µ = e1
with ea = (1(a′=a))a′∈[d], the answers set is defined as
Z = {e1, · · · , ed, ad+1, ad+2} where ad+1 = cos(ϕ1)e1 +
sin(ϕ1)e2 ∈ Zε(µ) and ad+2 = cos(ϕ2)e1 + sin(ϕ2)e2 /∈
Zε(µ). Considering d = 2, we use ϕ1 = rεθε and
ϕ2 = (1 + rε)θε with θε = arccos(1− ε) and rε = 0.1.

On this instance, the BAI algorithms without modification
require on average 545 times more samples than compared
to their modified version (Table 6 in Appendix F.2.1). The
discrepancy is particularly striking since the hard instance
for ε-BAI is even harder for BAI.

Figure 2. Empirical stopping time of the modified BAI algorithms
with zt ∈ zF (µt−1, Nt−1) on the hard instance (star is mean).
“-G” denotes zt ∈ z⋆(µt−1). “-O” denotes the ε-gap stopping rule
for zt ∈ z⋆(µt−1).

Figure 2 reveals that, for all modified BAI, considering
an instantaneous furthest answer instead of a greedy an-
swer leads to lower empirical stopping time. Their ratio
is 0.92 on average. This matches the asymptotic obser-
vations in Figure 8(b) (Appendix F.2.2, equivalent of Fig-
ure 1(b) for the additive setting). The modified LinGapE
using zt ∈ zF (µt−1, Nt−1) outperforms the ε-gap exten-
sion of the original stopping rule, which is equivalent to
using (5) with zt ∈ z⋆(µt−1). While guided by the asymp-
totic regime, using zF (µt−1, Nt−1) instead of z⋆(µt−1) for
the stopping-recommendation pair has practical utility in
the moderate confidence regime with a 10% speed-up in
terms of sample complexity.

4. LεBAI Algorithm
Leveraging the concept of furthest answer in the sampling
rule, we present LεBAI (Linear ε-BAI), an asymptotically
optimal algorithm for (ε, δ)-PAC best-answer identification
in transductive linear bandits. It deals with both the multi-
plicative and the additive ε-optimality. Similarly to works

on linear bandits (Abbasi-yadkori et al., 2011; Soare et al.,
2014), we assume that the set of parameters is bounded, i.e.
there exists M > 0 such that for all µ ∈ M, ∥µ∥2 ≤ M .

Algorithm 1 LεBAI
Input: History Ft, Z-oracle LZ and learner LK.
Output: Candidate ε-optimal answer ẑ.
Pull once each arm a ∈ K, set n0 = K and Wn0 = 1K ;
for t = n0 + 1, · · · do

Get zt ∈ zF (µt−1, Nt−1);
If (5) holds for zt then return zt;
Get

(
z̃t, w

LK

t

)
from LZ × LK;

Let wt =
1K

tK +
(
1− 1

t

)
wLK

t and Wt = Wt−1 + wt;
Closest alternative:
λt ∈ argminλ∈¬εz̃t ∥µt−1 − λ∥2Vwt

;
Optimistic gains: ∀a ∈ K,
Ua
t =

(
∥µt−1 − λt∥aaT +

√
cat−1

)2
;

Feed LK with gain gt(w) = (1− 1
t )⟨w,Ut⟩;

Pull at ∈ argmina∈K Na
t−1 −W a

t , observe Xat
t ;

end for

Structure After pulling each arm once, at each round t ≥
n0+1, if the stopping condition (5) for the candidate answer
zt ∈ zF (µt−1, Nt−1), we return zt; else, the sampling rule
returns an arm at to pull. Then, the statistics are updated
based on this new observation.

Sampling Rule The algorithmic ingredients used in the
sampling rule of LεBAI build upon the ones in LinGame
(Degenne et al., 2020a). It is a saddle-point algorithm ap-
proximating a two-player zero-sum game. At each round
t ≥ n0 + 1, if the algorithm hasn’t stopped yet, the agent
chooses an ε-optimal answer and a pulling proportion over
arms

(
z̃t, w

LK

t

)
∈ Zε(µt−1) ×△K , where z̃t can be dif-

ferent from zt. A mild logarithmic forced exploration is
added, i.e. wt = 1

tK1K +
(
1− 1

t

)
wLK

t . The agent will
play by combining a no-regret learner on △K (e.g. Ada-
Hedge of De Rooij et al. (2014)), denoted by LK, and a
Z-oracle, denoted by LZ . While Theorem 4.1 was proven
for z̃s ∈ zF (µs−1), we obtain similar empirical perfor-
mance with the heuristic z̃s ∈ zF (µs−1, µs−1) at a much
lower computational cost.

Given (z̃t, wt) from LZ×LK, the nature plays the most con-
fusing alternative parameter λt ∈ argminλ∈¬εz̃t ∥µt−1 −
λ∥2Vwt

. To update LK, the agent uses gains gt(w) =

(1 − 1
t )⟨w,Ut⟩ where the optimistic gains are defined

for all a ∈ K as Ua
t =

(
∥µt−1 − λt∥aaT +

√
cat−1

)2
with cat−1 = min

{
2β
(
s2, s2/3

)
∥a∥2

V −1
Ns

, 4M2L2
K

}
. Un-

der a good event, the quantity ⟨w,Ut⟩ is an upper bound
on the unknown infλ∈¬εzF (µ) ∥µ − λ∥2Vw

(Lemma E.18).
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Finally, at is obtained deterministically by tracking, i.e.
at ∈ argmina∈K Na

t−1 −W a
t .

The computational cost is discussed in Appendix F.1. To
obtain efficient implementations for combinatorial or large
arms sets K, LεBAI should be modified by using existing
improvements for game-based algorithms (Tirinzoni et al.,
2020; Réda et al., 2021; Jourdan et al., 2021).

When ε = 0, LεBAI is close to LinGame, but uses one
learner instead of Z learners. Other differences are that
LinGame uses regularization in the estimator and a stopping
threshold featuring d.

4.1. Upper Bound

For both the multiplicative and the additive ε-optimality,
Theorem 4.1 shows that LεBAI yields an (ε, δ)-PAC asymp-
totically optimal algorithm. The proof sketch of Theo-
rem 4.1 is inspired by the one of LinGame (Degenne et al.,
2020a), hence we will only highlight the novel technical
difficulties that had to be addressed.

Theorem 4.1. Let LK with sub-linear regret (e.g. Ada-
Hedge) and LZ returning z̃t ∈ zF (µt−1). Using (6) as
stopping threshold β(t, δ), LεBAI yields an (ε, δ)-PAC al-
gorithm and, for all µ ∈ M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]

ln (1/δ)
≤ Tε(µ) .

Technical Difficulties In BAI, we have |z⋆(µ)| = 1. The
key property used in BAI proofs which does not hold in
ε-BAI is that for all z ̸= z⋆(µ), µ belongs to the alternative
¬0z. The consequence of this is that whenever the answer
used by the sampling rule z̃t is wrong, the correct parameter
belongs to ¬0z̃t, hence the algorithm will sample in order to
try and exclude that true parameter, which cannot succeed
and will at some point correct the mistake. In ε-BAI we
can have z̃t ̸= zF (µ) while having µ /∈ ¬εz̃t and there is
a priori no such self-correction mechanism to enforce that
z̃t = zF (µ) after a while.

Our analysis reveals that a similar self-correction mecha-
nism can be obtained for LεBAI. Let ¬F z be the furthest al-
ternative to z, i.e. the set of parameters for which z is not the
unique furthest answer. Intuitively, as it uses z̃t ∈ zF (µt−1),
LεBAI samples to asymptotically exclude ¬F z̃t. Leverag-
ing the logarithmic forced exploration, this cannot succeed
when z̃t ̸= zF (µ). Those two choices yield a self-correction
mechanism for ε-BAI. More formally, we show that, under
a good concentration event, the event z̃s ̸= zF (µ) only
happens a sub-linear number of times.

5. Related Work
Track-And-Stop (TaS) First introduced in Garivier &
Kaufmann (2016) to solve BAI in MAB, TaS computes at
each time step the optimal allocation, and then tracks it (with
added forced exploration). When no close form solutions are
available, i.e. when additional structure is considered, TaS-
based algorithms suffer from intractable computational cost.
TaS-based algorithms are asymptotically optimal for BAI
and efficient to compute (Jedra & Proutière, 2020). Building
on Frank-Wolfe algorithm, the computational efficient FWS
has recently been introduced (Wang et al., 2021).

ε-BAI Algorithms Tackling ε-BAI in MAB for additive
ε-optimality, ε-TaS (Garivier & Kaufmann, 2021) recom-
mends zF (µt, Nt) and uses the associated GLRT as stop-
ping rule. The sampling rule computes wF (µt) and then
tracks it with added forced exploration. Addressing addi-
tive spectral bandits, SpectralTaS (Kocák & Garivier, 2021)
recommends z⋆(µt) and uses the GLRT associated with
zF (µt, Nt) for the stopping rule. For the sampling rule, a
mirror ascent algorithm is run based on a super-gradient of
a function depending on any ε-optimal answer. While the
choice of the answer is not discussed, it is our understand-
ing that a greedy answer is used (matching their candidate
answer). When considering ε-BAI on the unit sphere, Jedra
& Proutière (2020) recommend z⋆(µt) and use the associ-
ated GLRT, however their sampling rule is uniform over a
spanner.

Designed for the multiple-correct answer setting, Sticky TaS
(Degenne & Koolen, 2019) is a modified TaS algorithm: at
round t, they compute

⋃
µ′∈Ct

zF (µ
′) where Ct is a con-

tinuous confidence region around µt, and stick to one of
those (given an arbitrary order). For some identification
problems (e.g. Any Half-Space), it rewrites as comput-
ing
⋃

µ∈Dt
zF (µ

′), where Dt is discrete. There is no such
rewriting for ε-BAI. While Sticky TaS can be implemented
for Dt, it is not feasible for Ct. Experiments suggest that it
performs on par with ε-TaS at a higher computational cost,
i.e. solving the same optimization for each parameter in a
confidence region.

6. Experiments
We show that LεBAI has competitive empirical performance
compared to existing ε-BAI algorithms, which are computa-
tionally expensive, and that using an instantaneous furthest
answer is efficient both in terms of computational cost and
sample complexity. Moreover, LεBAI performs on par with
the modified BAI algorithms, which are not asymptotically
optimal, on hard and random instances.

As heuristic with lower computational cost (not supported
by Theorem 4.1), the Z-oracle in LεBAI returns an instanta-
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neous furthest answer, i.e. z̃t ∈ zF (µt−1, Nt−1). The exper-
iments below are considering the multiplicative ε-optimality
(Appendix F.2.1-F.2.2 for supplementary ones). We use the
same experimental setup as in Section 3.3. On the 5000
runs, we report the standard deviation of means by using
sub-samples of 100 runs.

Table 1. Empirical stopping time (± σ) on the hard instance with
K = {e1, e2}.

z⋆(µt−1) zF (µt−1) zF (µt−1, Nt−1)

LεBAI 416 (±13) 383 (±16) 381 (±17)
ε-TaS 400 (±14) 371 (±15) 371 (±15)
Fixed 401 (±14) 374 (±14) 374 (±14)

Uniform 492 (±16) 450 (±17) 449 (±17)

ε-BAI and Candidate Answer Even when K is small,
algorithms based on solving the optimization problem
(zF (µ), wF (µ)) are intractable, i.e. ε-TaS or recommending
the furthest answer. We evaluate their performance empiri-
cally on the hard instance with K = {e1, e2}, and discretize
uniformly ∆2 with 500 vectors.

In Table 1, we combine and compare four ε-BAI sampling
rules with three candidate answers for the stopping rule
(5). Comparing the rows of Table 1 reveals that LεBAI
performs on par with ε-TaS and the “oracle” fixed algorithm,
which tracks the unknown optimal allocation wF (µ). It also
consistently outperforms uniform sampling (≈ 85%).

Comparing the columns of Table 1, we see that using
a greedy answer is consistently worse than a (instanta-
neous) furthest answer, with a ratio of stopping time be-
ing on average 0.92 (coherent with Figure 1(b)). More-
over, it highlights that using an instantaneous furthest an-
swer achieves similar performance as a furthest answer at
a lower computational cost. In the following experiments,
the stopping-recommendation pair is (5) combined with
zt ∈ zF (µt−1, Nt−1).

Modified BAI Algorithms Figure 3 compares LεBAI
with the modified BAI algorithms, all using the same
stopping-recommendation pair. We see that LεBAI slightly
outperforms the modified LinGapE and XY-Adaptive, per-
forms better than the modified LinGame and XY-Static
and is on par with the “oracle” fixed algorithm. Uniform
sampling and the modified DKM perform poorly.

Random Instances To assess the impact of higher dimen-
sions, random instances are considered (one per run). For
the answer set, 19 vectors (ak)k∈[19] are uniformly drawn

from Sd−1 def
=
{
a ∈ Rd : ∥a∥2 = 1

}
and set µ = a1. To en-

force multiple correct answers, a modification of the greedy

Figure 3. Empirical stopping time on the hard instance (K = Z).
The modified BAI algorithms use (5) with zt ∈ zF (µt−1, Nt−1).

answer is added such that a20,i = a1,i for i ̸= i0 and

a20,i0 =
1−∥µ∥2

2+µ2
i0

−rεε

µi0
where i0 = argmini∈[d] µi and

rε = 0.1. Those instances are motivated by a practical BAI
example where a modified/corrupted version of the unique
correct answer exists. Seeing the problem as an ε-BAI one
allows to return an ε-optimal answer, while avoiding waste-
ful queries required by BAI algorithms (Table 4).

In Figure 4, LεBAI shows similar empirical performance
with modified BAI algorithms. Even though it is outper-
formed by the modified LinGapE, LεBAI is almost twice as
fast as the modified XY-Adaptive and appears to be slightly
more robust than the modified LinGame to increasing di-
mension.

7. Conclusion
In (ε, δ)-PAC best-answer identification for transductive lin-
ear bandits, we have shown that the choice of the candidate
ε-optimal answer is important for the sample complexity.
Using an instantaneous furthest answer as candidate answer,
we proposed a simple procedure to adapt existing BAI algo-
rithms for ε-BAI problems. Leveraging it in the sampling
rule as well, we introduced LεBAI which is asymptotically
optimal and has competitive empirical performance.

Computing the furthest answer requires solving the closest
alternative sub-problem |Zε(µt−1)| times. While that num-
ber is small (in particular much less that Z) in the examples
we considered, that computation can become an issue if
many different answers are close to each other. If we extend
the setting to continuous answers, the computation of the
furthest answer by iterating becomes unfeasible. The ques-
tion of finding an ε-optimal point of a reward function in a
non-finite set is the general question of optimization, which
is central to many areas of machine learning. Extending the
problem-dependent approach of the bandit framework to
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Figure 4. Empirical stopping time on random instances (K = Z) for d ∈ {6, 8, 10, 12} (from left to right). The modified BAI algorithms
use (5) with zt ∈ zF (µt−1, Nt−1).

that setting is an interesting research direction.

Studying the performance of ε-BAI algorithms on BAI tasks
is another avenue for future work. ε-BAI algorithms don’t
commit to the greedy answer unlike BAI methods, and we
might have zF (µt−1, Nt−1) = z⋆(µ) before z⋆(µt−1) =
z⋆(µ). For this reason we conjecture that using an ε-BAI
method with a well-tuned decreasing sequence (εt)t∈N⋆

might outperform BAI algorithms on best arm tasks.

Finally, since the existence of a tight finite-time lower bound
for multiple-correct answer setting is still an open problem,
it remains unclear how to assess the theoretical performance
of algorithms in this regime. We believe that, once derived,
this lower bound would reveal the existence of strong moder-
ate confidence terms (independent of δ) affecting the sample
complexity, which could then be used to design ε-BAI algo-
rithms with theoretical guarantees in both regime.
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Jourdan, M., Mutnỳ, M., Kirschner, J., and Krause, A. Ef-
ficient pure exploration for combinatorial bandits with
semi-bandit feedback. In Algorithmic Learning Theory
(ALT), 2021.

Jun, K.-S., Jain, L., Nassif, H., and Mason, B. Improved
Confidence Bounds for the Linear Logistic Model and
Applications to Bandits. In International Conference on
Machine Learning, 2021.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. PAC
subset selection in stochastic multi-armed bandits. In
International Conference on Machine Learning (ICML),
2012.

Katz-Samuels, J. and Jamieson, K. The true sample com-
plexity of identifying good arms. In International Con-
ference on Artificial Intelligence and Statistics, 2020.

Katz-Samuels, J. and Scott, C. Top Feasible Arm Identifi-
cation. In International Conference on Artificial Intelli-
gence and Statistics, 2019.

Katz-Samuels, J., Jain, L., Jamieson, K. G., et al. An em-
pirical process approach to the union bound: Practical
algorithms for combinatorial and linear bandits. Advances
in Neural Information Processing Systems, 2020.

Kaufmann, E. and Koolen, W. M. Mixture martingales revis-
ited with applications to sequential tests and confidence
intervals. Journal of Machine Learning Research, 22
(246):1–44, 2021.
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A. Outline
The appendices are organized as follows:

• Notations are summarized in Appendix B.

• In Appendix C, we prove all the results presented in Section 2 on the (greedy) characteristic time.

• The proof of Lemma 3.1 on the stopping-recommendation pairs is given in Appendix D.

• The full proof of Theorem 4.1 is given in Appendix E.

• The implementation details and additional experiments are presented in Appendix F.

Table 2. Notation for the setting

Notation Type Description

M ⊆ Rd Set of possible parameters subset of Rd, maxλ∈M ∥λ∥2 ≤ M
µ M Bandit mean parameter, (µi)i∈[d]

K ⊆ Rd Set of arms of cardinality K, an arm is denoted by a and LK
def
= maxa∈K ∥a∥2

µa R Mean reward of arm a, µa def
= ⟨µ, a⟩

Z ⊆ Rd Set of answers of cardinality Z, an arm is denoted by z
ε R⋆

+ Approximation error
Zε(µ) ⊆ Z Set of ε-optimal answers, with ·{add,mul}

¬εz ⊆ M Set of alternative parameters to answer z, with ·{add,mul}

Tε(µ) R⋆
+ Characteristic time for µ, with ·{add,mul}

z⋆(µ) ⊆ Z Greedy answers for µ
zF (µ) Z Furthest answer for µ, with ·{add,mul}

zF (µ,N) ⊆ Z Instantaneous furthest answers for µ and allocation N , with ·{add,mul}

Table 3. Notation for algorithms

Notation Type Description

δ (0, 1) Confidence parameter
at K Arm sampled at time t
Xat

t R Observation at time t, Xat
t ∼ N (µat , σ2) where σ2 = 1

Ft History up to time t, σ(a1, Xa1
1 , · · · , at, Xat

t )

µt Rd Maximum likelihood estimator, µt = V −1
Nt

∑t
s=1 X

as
s as

zt Z Candidate answer at time t
τδ N Stopping time for confidence δ
Nt (R+)

K Empirical count of sampled arms at time t
wt, Wt (R+)

K Pulling distribution over arms and its cumulative sum at time t
β(t, δ) N× (0, 1) → R⋆

+ Stopping threshold at time t for confidence δ
f(t) N → R⋆

+ Exploration bonus at time t
λt M Most confusing alternative parameter player by nature at time t
Ut (R+)

K Optimistic gain at time t

B. Notation
We recall some commonly used notations: the set of integers [n]

def
= {1, · · · , n}, the interval of integers Ja, bK, the

euclidean inner-product ⟨x, y⟩ def
=
∑

i∈[d] xiyi, the design matrix Vw
def
=
∑

a∈K waaaT for an allocation over arms w,
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the norm ∥x∥V
def
=

√
xTV x for a positive definite matrix V , the closure X of a set X , the cartesian product

∏
i∈[n] Xi

between sets (Xi)i∈[n], the set of probability distributions P(X) over X and the n-dimensional probability simplex

△n
def
= {x ∈ Rn | x ≥ 0, ⟨1n, x⟩ = 1}. The Landau’s notations o, O and Θ are used. In Table 2, we summarize problem-

specific notation. Table 3 gathers notation for the algorithms.

C. Proofs Related to the Characteristic Time
In Appendix C.1, we recall the formula of the generalized log-likelihood ratio for Gaussian bandits. The asymptotic lower
bound on the expected sample complexity (Theorem 2.1) is stated in Appendix C.2. In Appendix C.3, when M = Rd, we
derive explicit formulas on Tε(µ)

−1 (Lemma C.1) and exhibit hard BAI instances that can be solved as an ε-BAI problem
(Lemma C.3). In Appendix C.4, we prove the results related to the greedy characteristic time (Lemma 2.2-2.3).

C.1. Likelihood Ratio for Gaussian Bandits

For Gaussian bandits such that σ2 = 1, the Kullback-Leibler (KL) divergence between two bandits, with mean parameters µ
and λ, on the arm a ∈ K is:

dKL(µ
a, λa) =

1

2
(µa − λa)2 =

1

2
(aT(µ− λ))

2

The generalized log-likelihood ratio (GLR) between the whole model space M and a subset Λ ⊆ M is

GLRM
t (Λ)

def
= ln

supµ̃∈M Lµ̃(X
a1
1 , · · · , Xat

t )

supλ∈Λ Lλ(X
a1
1 , · · · , Xat

t )

where Lλ(X
a1
1 , · · · , Xat

t ) denotes the likelihood of the observations Xa1
1 , · · · , Xat

t for a bandit with parameter λ.

Given two mean parameters (θ, λ) ∈ M2, we have

ln
Lθ(X

a1
1 , · · · , Xat

t )

Lλ(X
a1
1 , · · · , Xat

t )
=
∑
a∈K

Na
t (dKL(µ

a
t , λ

a)− dKL(µ
a
t , θ

a))

where µt
def
= V −1

Nt−1

∑t−1
s=1 X

as
s as is a sufficient statistic of our observations. Note that, when µt ∈ M, µt coincide with the

MLE µ̃t defined as:

µ̃t = argmin
λ∈M

∑
a∈K

Na
t dKL(µ

a
t , λ

a) = argmin
λ∈M

1

2
∥µt − λ∥2VNt

The GLR for the set Λ is

GLRM
t (Λ) = min

λ∈Λ

∑
a∈K

Na
t dKL(µ

a
t , λ

a)−
∑
a∈K

Na
t dKL(µ

a
t , µ̃

a
t )

= min
λ∈Λ

1

2
∥µt − λ∥2VNt

− 1

2
∥µt − µ̃t∥2VNt

C.2. Proof of Theorem 2.1

Theorem (Theorem 2.1, Corollary of Theorem 1 in (Degenne & Koolen, 2019)). For all (ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tε(µ)

where the inverse of the characteristic time is

Tε(µ)
−1 def

= max
z∈Zε(µ)

max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw
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Proof. Since ε-BAI for Gaussian distributions is a special case of identification in bandits with multiple correct answers and
sub-Gaussian distributions, Theorem 1 in Degenne & Koolen (2019) applies to our setting. Therefore, we obtain that: for all
(ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ T ⋆(µ)

where
T ⋆(µ)−1 def

= max
i∈i⋆(µ)

max
w∈△K

inf
λ∈¬i

∑
a∈K

wadKL(µ
a, λa)

with i⋆(µ) is the set of correct answers for µ and ¬i def
= {µ ∈ M : i /∈ i⋆(µ)}.

To conclude, we need to specify to our setting and some simple manipulations. First, under the Gaussian assumptions
with σ2 = 1, notice that µa = ⟨a, µ⟩ and dKL(µ

a, λa) = 1
2 ⟨a, µ− λ⟩2 = 1

2∥µ− λ∥2aaT yield that
∑

a∈K wadKL(µ
a, λa) =

1
2∥µ− λ∥2Vw

.

When considering additive ε-optimality, the set of correct answer i⋆(µ) is Zadd
ε (µ) =

{z ∈ Z : ⟨µ, z⟩ ≥ maxz∈Z⟨µ, z⟩ − ε}, and ¬i corresponds to ¬add
ε z. For the multiplicative ε-optimality, the set

of correct answer i⋆(µ) is Zmul
ε (µ) = {z ∈ Z : ⟨µ, z⟩ ≥ (1− ε)maxz∈Z⟨µ, z⟩}, and ¬i corresponds to ¬mul

ε z. Note that
for the multiplicative setting, we assume maxz∈Z⟨µ, z⟩ > 0 and ε ≥ 0 (or maxz∈Z⟨µ, z⟩ < 0 and ε ≤ 0), while for the
additive setting, we can consider ε ≥ 0 and maxz∈Z⟨µ, z⟩ ∈ R. Using the correspondences between sets for each notion of
ε-optimality, Theorem 1 in Degenne & Koolen (2019) rewrites as: for all (ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tε(µ)

where

T add
ε (µ)−1 = max

z∈Zadd
ε (µ)

max
w∈△K

inf
λ∈¬add

ε z

1

2
∥µ− λ∥2Vw

Tmul
ε (µ)−1 = max

z∈Zmul
ε (µ)

max
w∈△K

inf
λ∈¬mul

ε z

1

2
∥µ− λ∥2Vw

C.3. Explicit Formulas and Hard BAI Instances

In Appendix C.3.1, we derive explicit formulas on Tε(µ)
−1 (Lemma C.1), while Appendix C.3.2 proved that there exists

hard BAI instances that can be solved as an ε-BAI problem (Lemma C.3).

C.3.1. EXPLICIT FORMULAS

Lemma C.1 shows more explicit formulas for Tε(µ) when M = Rd.

Lemma C.1. Assume M = Rd,

2

T add
ε (µ)

= max
z∈Zadd

ε (µ)
max
w∈△K

min
x∈Z\{z}

(ε+ ⟨µ, z − x⟩)2

∥z − x∥2
V †
w

2

Tmul
ε (µ)

= max
z∈Zmul

ε (µ)
max
w∈△K

min
x∈Z\{z}

⟨µ, z − (1−ε)x⟩2

∥z − (1−ε)x∥2
V †
w

where V †
w is the Moore-Penrose pseudo-inverse of Vw. The associated alternative parameters are

λadd
ε (µ, z, w, x) = µ− ε+ ⟨µ, z − x⟩

∥z − x∥2
V †
w

V †
w(z − x) ,

λmul
ε (µ, z, w, x) = µ− ⟨µ, z − (1− ε)x⟩

∥z − (1− ε)x∥2
V †
w

V †
w(z − (1− ε)x) .
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For the multiplicative ε-optimality, we recognize a term similar to the characteristic time T0(µ,Z) of BAI for transductive
bandits with answer set Z . Defining Zz

ε
def
= {z}∪{(1−ε)x : x ∈ Z\{z}}, we see that Tmul

ε (µ) = minz∈Zmul
ε (µ) T0 (µ,Zz

ε ).
Therefore, the complexity of the multiplicative setting is equals to the easiest BAI for modified transductive bandits, in

which K is unchanged and Zz
ε is the set of answers. Since Tmul

ε (µ) = T0

(
µ,Zzmul

F (µ)
ε

)
, the unique correct answer that has

to be identified in this modified BAI is the furthest answer zmul
F (µ).

The proof of Lemma C.1 uses Lemma C.2, a known result in the literature which we prove for completeness, and the fact
that ¬εz is a union over a finite number of half-spaces.

Lemma C.2. For all µ, λ ∈ Rd, y ∈ Rd, x ∈ R, we have

inf
λ∈Rd:x−⟨λ,y⟩≤0

∥µ− λ∥2Vw
=


0 if x− ⟨µ, y⟩ ≤ 0 or y /∈ Im(Vw)(

x−⟨µ,y⟩
∥y∥

V
†
w

)2

else

where V †
w is the Moore-Penrose pseudo-inverse of Vw. It is achieved at

λ =


µ if x− ⟨µ, y⟩ ≤ 0

µ+ αu if y /∈ Im(Vw), s.t. (u, α) ∈ Ker(Vw)× R, x− ⟨µ+ αu, y⟩ ≤ 0

µ+ x−⟨µ,y⟩
∥y∥2

V
†
w

V †
wy else

Proof. Since Vw is self-adjoint, Ker(Vw)
⊥ = Im(Vw). If y /∈ Im(Vw), then there exists u ∈ Ker(Vw) with ⟨u, y⟩ ≠ 0.

There exists also α ∈ R such that x− ⟨µ+ αu, y⟩ ≤ 0 and ∥µ− (µ+ αu)∥Vw
= 0, hence the value of the objective is 0.

Otherwise, y ∈ Im(Vw). We can restrict the problem to an infimum over λ− µ ∈ Im(Vw) since for any λ satisfying the
constraint, its projection on that space also satisfies the constraint and has lower objective value.

Let V †
w be the Moore-Penrose pseudo-inverse of Vw. Restricted to Im(Vw), this is a true inverse.

By using the Lagrangian of the problem, we obtain the following:

inf
λ−µ∈Im(Vw):x−⟨λ,y⟩≤0

∥µ− λ∥2Vw
= sup

α≥0
inf

λ−µ∈Im(Vw)
∥µ− λ∥2Vw

+ α(x− ⟨λ, y⟩)

= sup
α≥0

α(x− ⟨µ, y⟩)− α2
∥y∥2

V †
w

4

=


0 if x− ⟨µ, y⟩ ≤ 0(

x−⟨µ,y⟩
∥y∥

V
†
w

)2

else

where the infimum in the first equality is reached at λ = µ+ 1
2αV

†
wy and the supremum in the last equality is reached at

α = 2x−⟨µ,y⟩
∥y∥2

V
†
w

if x− ⟨µ, y⟩ ≥ 0 and at α = 0 else.

We are now ready to prove Lemma C.1.

Proof. Let w ∈ △K . We will conduct the proof of both results in parallel. When M = Rd, by definitions of ¬add
ε z and

¬mul
ε z which involve the closure of a set that can be written as a union over a finite number of half-spaces, we can rewrite:

¬add
ε z =

⋃
x ̸=z

{
λ ∈ Rd : ⟨λ, z − x⟩+ ε ≤ 0

}
and inf

λ∈¬add
ε z

1

2
∥µ− λ∥2Vw

= min
x̸=z

inf
λ∈Rd:⟨λ,z−x⟩+ε≤0

∥µ− λ∥2Vw

¬mul
ε z =

⋃
x ̸=z

{
λ ∈ Rd : ⟨λ, z − (1− ε)x⟩ ≤ 0

}
and inf

λ∈¬mul
ε z

1

2
∥µ− λ∥2Vw

= min
x ̸=z

inf
λ∈Rd:⟨λ,z−(1−ε)x⟩≤0

∥µ− λ∥2Vw
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Since z⋆(µ) = argmaxz∈Z⟨µ, z⟩, for all z ∈ Zadd
ε (µ) (resp. z ∈ Zmul

ε (µ)) and all x ̸= z, we have by definition
⟨µ, z − x⟩ + ε ≥ ⟨µ, z − z⋆(µ)⟩ + ε ≥ 0 (resp. ⟨µ, z − (1 − ε)x⟩ ≥ ⟨µ, z − (1 − ε)x⟩ ≥ 0). Using Lemma C.2 with
ỹ = x− z and x̃ = ε (resp. ỹ = (1− ε)x− z and x̃ = 0), we obtain directly:

2T add
ε (µ)−1 = max

z∈Zadd
ε (µ)

max
w∈△K

min
x ̸=z

(
ε+ ⟨µ, z − x⟩
∥z − x∥V †

w

)2

2Tmul
ε (µ)−1 = max

z∈Zmul
ε (µ)

max
w∈△K

min
x ̸=z

(
⟨µ, z − (1− ε)x⟩
∥z − (1− ε)x∥V †

w

)2

The associated alternative parameters are:

λadd
ε (µ, z, w, x) = µ− ε+ ⟨µ, z − x⟩

∥z − x∥2
V †
w

V †
w(z − x)

λmul
ε (µ, z, w, x) = µ− ⟨µ, z − (1− ε)x⟩

∥z − (1− ε)x∥2
V †
w

V †
w(z − (1− ε)x)

Link with BAI First, note that ¬εz ⊆ ¬0z for all z ∈ Z , yields Tε(µ) ≤ T0(µ) for all µ ∈ M. When considering the
BAI for transductive linear bandits with Gaussian distribution, the characteristic time that lower bounds the expected sample
complexity has the following form when M = Rd (Degenne et al., 2020a),

2T0(µ)
−1 = max

w∈△K

min
x ̸=z⋆(µ)

(
⟨µ, z⋆(µ)− x⟩
∥z⋆(µ)− x∥V †

w

)2

(7)

This formula has striking similarities with the one obtained for multiplicative ε-optimality. Defining Zz
ε

def
= {z} ∪ {(1−

ε)x}x̸=z , we obtain that

Tmul
ε (µ) = min

z∈Zmul
ε (µ)

T0 (µ,Zz
ε )

where T0 (µ,Zz
ε ) is the characteristic time for a BAI problem where the set of answers is Zz

ε , as defined in (7). Therefore,
the complexity of the multiplicative setting is equal to the complexity of a BAI instance in which K is unchanged, but the set
of answers is changed into Zz

ε .

C.3.2. HARD BAI INSTANCES

Lemma C.3 shows that there exists arbitrarily hard BAI instances that can be solved if seen as an ε-BAI problem.

Lemma C.3. Let ε > 0, M = Rd and Tε(µ,Z) = Tε(µ). For all µ ∈ M, there exists a set of arms K and a sequence of
answers sets (Zt)t∈N, such that

lim
t→+∞

T0(µ,Zt) = +∞ and lim
t→+∞

Tε(µ,Zt) < +∞

The proof of Lemma C.3 is obtained directly by using Lemma C.4, which provides explicit hard instances.

Lemma C.4. Let ε > 0, M = Rd and µ ∈ M. Let {zi}i∈[d−1] such that { µ
∥µ∥2

} ∪ {zi}i∈[d−1] is an orthonormal basis
of Rd. Define K = { µ

∥µ∥2
} ∪ {zi}i∈[d−1]. Let (θt) ∈ [0, π

2 )
N, a decreasing sequence such that θt →+∞ 0. Define the

sequence of answers sets Zt = { µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1} ∪ {zi}i∈[d−1] for all t ∈ N and

Tε(µ,Z)−1 def
= max

z∈Zε(µ)
max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

.
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Then, we have T0(µ,Zt) →t→+∞ +∞ and

T add
ε (µ,Zt) →t→+∞

1

(1 + ε)2

(
1

w⋆(d− 1)
+

d− 1

1− w⋆(d− 1)

)
< +∞

Tmul
ε (µ,Zt) →t→+∞

1

w⋆((1− ε)2(d− 1))
+ (1− ε)2

d− 1

1− w⋆((1− ε)2(d− 1))
< +∞

where

w⋆(a) =


√

1+(1−a)2−1

a−1 if a > 1
1
2 if a = 1√

1+(1−a)2+1

1−a if a ∈ (0, 1)

Proof. Using the explicit formulas of Lemma C.2, we will perform the computations for both the multiplicative and the
additive notions of ε-optimality. Define K = { µ

∥µ∥2
} ∪ {zi}i∈[d−1], where the d-th component is associated with µ

∥µ∥ .
Define Zt = { µ

∥µ∥2
, cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1} ∪ {zi}i∈[d−1] for all t ≥ 1, where { µ
∥µ∥} ∪ {zi}i∈[d−1] is an orthonormal

basis of Rd. Note that ∥ cos(θt) µ
∥µ∥2

+ sin(θt)zd−1∥2 = 1 and ⟨µ, z⟩ = 0 if z ∈ {zi}i∈[d−1], else its value is 1 and cos(θt)

for µ
∥µ∥2

and cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1 respectively. Therefore, we have directly that z⋆(µ) = µ

∥µ∥2
and

∀t ≥ t0, Zε(µ) =

{
µ

∥µ∥2
, cos(θt)

µ

∥µ∥2
+ sin(θt)zd−1

}
where t0 = inf{t ∈ N⋆ | θt ≤ arccos(1− ε)}.

In the following, we consider t ≥ t0. Let z ∈
{

µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1

}
and x ∈ Zt \ {z}, we have

⟨µ, z − x⟩ =


1− cos(θt) if (z, x) = ( µ

∥µ∥2
, cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1)

cos(θt)− 1 if (z, x) = (cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1,

µ
∥µ∥2

)

1 if x ∈ {zi}i∈[d−1]

⟨µ, z − (1− ε)x⟩ =


1− (1− ε) cos(θt) if (z, x) = ( µ

∥µ∥2
, cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1)

cos(θt)− (1− ε) if (z, x) = (cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1,

µ
∥µ∥2

)

1 if x ∈ {zi}i∈[d−1]

Using that K = { µ
∥µ∥2

} ∪ {zi}i∈[d−1] is an orthogonal basis of Rd. Let w ∈ △̊K

∥z − x∥2
V †
w

=


(1− cos(θt))

2 1
wd

+ sin(θt)
2 1
wd−1

if (z, x) ∈
{

µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1

}2

1
wd

+ 1
wi

if z = µ
∥µ∥2

and x ∈ {zi}i∈[d−1]

cos(θt)
2 1
wd

+ sin(θt)
2 1
wd−1

+ 1
wi

if z = cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1 and x ∈ {zi}i∈[d−2]

cos(θt)
2 1
wd

+ (1− sin(θt))
2 1
wd−1

if z = cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1 and x = zd−1

∥z − (1− ε)x∥2
V †
w
=

(1− (1− ε) cos(θt))
2 1
wd

+ (1− ε)2 sin(θt)
2 1
wd−1

if (z, x) = ( µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1)

(cos(θt)− (1− ε))2 1
wd

+ sin(θt)
2 1
wd−1

if (z, x) = (cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1,

µ
∥µ∥2

)
1
wd

+ (1−ε)2

wi
if z = µ

∥µ∥2
and x ∈ {zi}i∈[d−1]

cos(θt)
2 1
wd

+ sin(θt)
2 1
wd−1

+ (1−ε)2

wi
if z = cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1, x ∈ {zi}i∈[d−2]

cos(θt)
2 1
wd

+ (1− ε− sin(θt))
2 1
wd−1

if z = cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1, x = zd−1
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Since cos(θt) →t→+∞ 1 and sin(θt) →t→+∞ 0, we obtain

(ε+ ⟨µ, z − x⟩)2

∥z − x∥2
V †
w

→t→+∞

+∞ if (z, x) ∈
{

µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1

}2

(1+ε)2

1
wd

+ 1
wi

if x ∈ {zi}i∈[d−1]

⟨µ, z − (1− ε)x⟩2

∥z − (1− ε)x∥2
V †
w

→t→+∞


wd if (z, x) ∈

{
µ

∥µ∥2
, cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1

}2

1
1

wd
+

(1−ε)2

wi

if x ∈ {zi}i∈[d−1]

Since |Zt| = d + 1, the minimum over a d values gz(w,Zt) = minx∈Zt
gz(w, x) is a continuous function of

(w,Zt), where gaddz (w, x) = (ε+⟨µ,z−x⟩)2
∥z−x∥2

V
†
w

and gmul(w, x) = ⟨µ,z−(1−ε)x⟩2
∥z−(1−ε)x∥2

V
†
w

. Therefore, we have for all z ∈{
µ

∥µ∥2
, cos(θt)

µ
∥µ∥2

+ sin(θt)zd−1

}
,

min
x∈Zt\{z}

(ε+ ⟨µ, z − x⟩)2

∥z − x∥2
V †
w

→t→+∞ min
i∈[d−1]

(1 + ε)2

1
wd

+ 1
wi

min
x∈Zt\{z}

⟨µ, z − (1− ε)x⟩2

∥z − (1− ε)x∥2
V †
w

→t→+∞ min
i∈[d−1]

1
1
wd

+ (1−ε)2

wi

where we used that wd > 1
1

wd
+

(1−ε)2

wi

. Since gz(w,Zt) is a continuous function and △K is compact, Berge’s the-

orem yields that gz(Zt) = maxw∈△K
gz(w,Zt) is continuous function of Zt. Therefore, we have for all z ∈{

µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1

}
,

max
w∈△K

min
x∈Zt\{z}

(ε+ ⟨µ, z − x⟩)2

∥z − x∥2
V †
w

→t→+∞ (1 + ε)2 max
w∈△K

min
i∈[d−1]

1
1
wd

+ 1
wi

max
w∈△K

min
x∈Zt\{z}

⟨µ, z − (1− ε)x⟩2

∥z − (1− ε)x∥2
V †
w

→t→+∞ max
w∈△K

min
i∈[d−1]

1
1
wd

+ (1−ε)2

wi

Since |Zε(µ)| = |
{

µ
∥µ∥2

, cos(θt)
µ

∥µ∥2
+ sin(θt)zd−1

}
| = 2, the minimum over 2 values is continuous. Since the inverse

is also a continuous function in R⋆ and Zε(µ) →t→+∞ { µ
∥µ∥2

}, hence

T add
ε (µ,Zt) →t→+∞

1

(1 + ε)2
min

w∈△K

max
i∈[d−1]

1

wd
+

1

wi

Tmul
ε (µ,Zt) →t→+∞ min

w∈△K

max
i∈[d−1]

1

wd
+

(1− ε)2

wi

Rewriting those optimization problems, we obtain

min
w∈△K

max
i∈[d−1]

1

wd
+

1

wi
= min

w∈(0,1)

(
1

w
+

1

1− w

(
max

w̃∈△d−1

min
i∈[d−1]

w̃i

)−1
)

= min
w∈(0,1)

(
1

w
+

d− 1

1− w

)

min
w∈△K

max
i∈[d−1]

1

wd
+

(1− ε)2

wi
= min

w∈(0,1)

(
1

w
+

(1− ε)2

1− w

(
max

w̃∈△d−1

min
i∈[d−1]

w̃i

)−1
)

= min
w∈(0,1)

(
1

w
+

(1− ε)2(d− 1)

1− w

)
where the first equality uses a rewriting of the simplex. The second inequalities are obtained since
maxw̃∈△d−1

mini∈[d−1] w̃i =
1

d−1 , achieved for w̃ = 1
d−11d−1 and would lead to smaller values if there exists i0 ∈ [d− 1]

such that w̃i0 < 1
d−1 , namely w̃i0 .



Choosing Answers in ε-Best-Answer Identification for Linear Bandits

Considering the function fa(w) = 1
w + a

1−w , we have f ′
a(w) = (a−1)w2+2w−1

w2(1−w)2 . Let w⋆(a) = argminw∈(0,1) fa(w).
Therefore, by solving the second order equation with discriminant ∆ = 4 + 4(1− a)2 and keeping the solution belonging
to (0, 1), we obtain

w⋆(a) =


√

1+(1−a)2−1

a−1 if a > 1
1
2 if a = 1√

1+(1−a)2+1

1−a if a ∈ (0, 1)

Therefore, we have shown

T add
ε (µ,Zt) →t→+∞

1

(1 + ε)2

(
1

w⋆(d− 1)
+

d− 1

1− w⋆(d− 1)

)
Tmul
ε (µ,Zt) →t→+∞

1

w⋆((1− ε)2(d− 1))
+ (1− ε)2

d− 1

1− w⋆((1− ε)2(d− 1))

Now, lets show that the corresponding BAI problem diverges. Using the same arguments of continuity as before and taking
the limit when t → +∞, we have

⟨µ, z − x⟩2

∥z − x∥2
V †
w

→t→+∞
1

1
wd

+ 1
wi

if x ∈ {zi}i∈[d−1]

∼+∞
1

1
wd

+ sin(θt)2

(1−cos(θt))2
1
wi

→t→+∞ 0 if (z, x) ∈
{

µ

∥µ∥2
, cos(θt)

µ

∥µ∥2
+ sin(θt)zd−1

}2

where the last part is obtained since sin(θt)
2

(1−cos(θt))2
→ +∞. Therefore, using the same continuity arguments, we have

min
x∈Zt\{ µ

∥µ∥}

⟨µ, z − x⟩2

∥z − x∥2
V †
w

→t→+∞ 0 and T0(µ,Zt)
−1 →t→+∞ 0 .

This yields that T0(µ,Zt) →t→+∞ +∞.

C.4. Greedy Characteristic Time

In Appendix C.4.1, we prove the lower bound for asymptotically greedy algorithm (Lemma 2.2). In Appendix C.4.2, we
show that using zt ∈ z⋆(µt) yields an asymptotically greedy strategy (Lemma 2.3) .

C.4.1. PROOF OF LEMMA 2.2

Lemma 3 in Garivier & Kaufmann (2021) is a useful change of measures result in the low-level form (involving probabilities
and not expectation). This Lemma is key to derive a lower bound on the sample complexity of ε-BAI, as done in Garivier &
Kaufmann (2021) and Degenne & Koolen (2019).

Lemma C.5 (Lemma 3 in Garivier & Kaufmann (2021)). Consider two distributions P and Q. Let us denote the log-
likelihood ratio after t rounds by Lt = ln dP

dQ . Then for any measurable event A ∈ Ft and threshold γ ∈ R,

P[A] ≤ eγQ[A] + P {Lt > γ}

We rewrite Lemma 2 in Degenne & Koolen (2019) in the setting of (ε, δ)-PAC BAI for transductive linear bandits with
Gaussian distribution.

Lemma C.6 (Lemma 2 in Degenne & Koolen (2019)). For any answer z ∈ Z , the divergence from µ to ¬εz equals

Tε(µ, z)
−1 = sup

w∈△K

inf
λ∈¬εz

∥µ− λ∥2Vw
= inf

P
max
a∈K

Eλ∼P
[
∥µ− λ∥2aaT

]
(8)

where the infimum ranges over probability distributions on ¬εz supported on (at most) K points.
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We rewrite Lemma 19 in Degenne & Koolen (2019) in the setting of (ε, δ)-PAC BAI for transductive linear bandits with
Gaussian distribution. In words, if A is likely under µ, it must also be likely under at least one λk for sample sizes
t ≪ Tε(µ, z). It was proven using Lemma C.5.
Lemma C.7 (Lemma 19 in Degenne & Koolen (2019)). Let z ∈ Z . Let w and λ1, · · · , λK be a minimax witness from
Lemma C.6, and let us introduce the abbreviation αa = ∥µ−

∑
k∈[K] wkλk∥2aaT for all a ∈ K. Fix a sample size t, and

consider any event A ∈ Ft. Then, for any β > 0

max
k∈[K]

Pλk
{A} ≥ e−tTε(µ,z)

−1−β

(
Pµ{A} − exp

(
−β2

2tmaxa∈K αa

))
.

where Tε(µ, z)
−1 = supw∈△K

infλ∈¬εz ∥µ− λ∥2Vw
.

We are now ready to prove Lemma 2.2, which we recall below.
Lemma (Lemma 2.2). For all asymptotically greedy (ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tg,ε(µ)

where the inverse of the greedy characteristic time is

Tg,ε(µ)
−1 def

= max
z∈z⋆(µ)

max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

,

and Tg,ε(µ) > Tε(µ) if and only if zF (µ) /∈ z⋆(µ).

Proof. We will bound the expectation of the stopping time τδ through Markov’s inequality. For T > 0,

Eµ [τδ] ≥ T (1− Pµ [τδ ≤ T ]) .

The event {τδ ≤ T} can be partitioned depending on the answer whether the answer is ε-optimal or not, and then
whether it’s z⋆(µ) or not. By hypothesis, Pµ [τδ ≤ T, ẑ /∈ Zε(µ)] ≤ Pµ [τδ < +∞, ẑ /∈ Zε(µ)] ≤ δ and 0 ≤
limδ→0 Pµ [τδ ≤ T, ẑ ∈ Zε(µ) \ z⋆(µ)] ≤ limδ→0 Pµ [τδ < +∞, ẑ ∈ Zε(µ) \ z⋆(µ)] = 0. This yields

Pµ [τδ ≤ T ] = Pµ [τδ ≤ T, ẑ /∈ Zε(µ)] + Pµ [τδ ≤ T, ẑ ∈ Zε(µ) \ z⋆(µ)] +
∑

z∈z⋆(µ)

Pµ [τδ ≤ T, ẑ = z] ,

lim
δ→0

Pµ [τδ ≤ T ] ≤
∑

z∈z⋆(µ)

lim
δ→0

Pµ [τδ ≤ T, ẑ = z]

Let z ∈ z⋆(µ), w and λ1, · · · , λK be a minimax witness from Lemma C.6. Then by Lemma C.7, for any β > 0

Pµ [τδ ≤ T, ẑ = z] ≤ exp

(
T

Tε(µ, z)
+ β

)
max
k∈[K]

Pλk
[τδ ≤ T, ẑ = z] + exp

(
−β2

2T maxa∈K αa

)
≤ δ exp

(
T

Tε(µ, z)
+ β

)
+ exp

(
−β2

2T maxa∈K αa

)
where the second inequality uses that λk ∈ ¬εz for all k ∈ [K], hence z ∈ z⋆(µ) ⊆ Z \ Zε(λk) and that the strategy
satisfies Pλ [τδ < +∞, ẑ /∈ Zε(λ)] ≤ δ for all λ ∈ M.

Let α = maxa∈K αa. For η ∈ (0, 1), T = (1− η)minz∈z⋆(µ) Tε(µ, z) ln(1/δ), β = η
2
√
1−η

√
T

minz∈z⋆(µ) Tε(µ,z)
log(1/δ),

and all z ∈ z⋆(µ),

Pµ [τδ ≤ T, ẑ = z] ≤ δ exp

(
T

Tε(µ, z)
+

η

2
√
1− η

√
T log(1/δ)

minz∈z⋆(µ) Tε(µ, z)

)
+ exp

(
−η2 log(1/δ)

8(1− η)minz∈z⋆(µ) Tε(µ, z)α

)
≤ δ exp

(
(1− η/2) log

1

δ

)
+ exp

(
−η2 log(1/δ)

8(1− η)minz∈z⋆(µ) Tε(µ, z)α

)
= δη/2 + δη

2/(8(1−η)minz∈z⋆(µ) Tε(µ,z)α) →δ→0 0 ,
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where we used that minz∈z⋆(µ) Tε(µ, z) ≤ Tε(µ, z).

Since we have just shown limδ→0 Pµ [τδ ≤ T ] for T = (1− η)minz∈z⋆(µ) Tε(µ, z) ln(1/δ), we obtain

lim
δ→0

Eµ [τδ]

ln(1/δ)
≥ lim

δ→0

T

ln(1/δ)
(1− Pµ [τδ ≤ T ]) ≥ (1− η) min

z∈z⋆(µ)
Tε(µ, z)

(
1− lim

δ→0
Pµ [τδ ≤ T ]

)
= (1− η) min

z∈z⋆(µ)
Tε(µ, z) .

Letting η go to zero, we obtain that

lim inf
δ→0

Eµ [τδ]

log(1/δ)
≥ min

z∈z⋆(µ)
Tε(µ, z) = Tg,ε(µ) .

The fact that Tg,ε(µ) > Tε(µ) if and only if zF (µ) /∈ z⋆(µ) is a direct consequence of the definition of Tε(µ), Tg,ε(µ) and
zF (µ).

C.4.2. PROOF OF LEMMA 2.3

Lemma (Lemma 2.3). Any (ε, δ)-PAC strategy recommending ẑ ∈ z⋆(µτδ) is asymptotically greedy if the sampling rule
ensures that limδ→0 Pµ[τδ < +∞, z⋆(µτδ) = z⋆(µ)] = 1.

Proof. By definition of (ε, δ)-PAC, we have Pµ [τδ < +∞, ẑ /∈ Zε(µ)] ≤ δ. Since ẑ ∈ z⋆(µτδ), we have {τδ <
+∞, z⋆(µτδ) = z⋆(µ)} ⊆ {τδ < +∞, ẑ ∈ z⋆(µ)}. Therefore, the assumption yields limδ→0 Pµ[τδ < +∞, ẑ ∈
z⋆(µ)] = 1. Partitioning the event {τδ < +∞, ẑ ∈ Z} (which obviously holds)

δ ≥ Pµ [τδ < +∞, ẑ /∈ Zε(µ)] = 1− Pµ [τδ < +∞, ẑ ∈ z⋆(µ)]− Pµ [τδ < +∞, ẑ ∈ Zε(µ) \ z⋆(µ)] ≥ 0 .

Taking the limit δ → 0 yields

lim
δ→0

Pµ [τδ < +∞, ẑ ∈ Zε(µ) \ z⋆(µ)] = 0 ,

i.e. the strategy is asymptotically greedy.

D. Proof of Lemma 3.1
The proof leverages the concentration inequalities in the Corollary 10 of Kaufmann & Koolen (2021), which we restate
below.

Lemma D.1. Let ν a Gaussian bandit with mean µ. Let S ⊆ K and x > 0.

Pν

[
∃t ∈ N :

∑
a∈S

Na
t dKL(µ

a
t , µ

a) >
∑
a∈S

2 ln (4 + ln (Na
t )) + |S|CG

(
x

|S|

)]
≤ e−x

where CG is defined in Kaufmann & Koolen (2021) by CG(x) = maxλ∈]1/2,1]
gG(λ)+x

λ and

gG(λ) = 2λ− 2λ ln(4λ) + ln ζ(2λ)− 1

2
ln(1− λ) , (9)

where ζ is the Riemann ζ function and CG(x) ≈ x+ ln(x).

Let T ⊆ N be a set of times with |T | = ∞. For both notions of ε-optimality (additive or multiplicative), the crucial
element is the stopping criterion, which performs a GLRT at each time t ∈ T for an arbitrary candidate ε-optimal answer
zt ∈ Zε(µt),

inf
λ∈¬εzt

∥µt−1 − λ∥2VNt−1
> 2β(t− 1, δ)

Lemma 3.1 holds for both notions of ε-optimality (additive or multiplicative) and is agnostic to the sampling rule. Moreover,
it holds when the stopping criterion is evaluated only on some predefined indices of time T ⊆ N with |T | = ∞, for example
on a geometric grid, and for any recommendation rule verifying zt ∈ Zε(µt) for all t ∈ T .
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Lemma (Lemma 3.1). Let T ⊆ N be a set of times with |T | = ∞. Regardless of the sampling rule and for any
recommendation rule such that zt ∈ Zε(µt−1) for all t ∈ T , then evaluating the stopping criterion (5) at each time t ∈ T
with the threshold

β(t, δ) = 2K ln

(
4 + ln

(
t

K

))
+KCG

(
ln
(
1
δ

)
K

)

yields an (ε, δ)-PAC strategy. CG is defined in (9) and CG(x) ≈ x+ ln(x).

Proof. For simplicity, let’s first prove the result when T = N. Considering a notion of ε-optimality (additive or multiplica-
tive), an arbitrary sampling rule and a recommendation rule such that for all t, zt ∈ Zε(µt−1). By evaluating the stopping
criterion (5) at each time t ∈ N, we obtain the following inequalities:

Pµ [τδ < +∞, ẑ /∈ Zε(µ)] ≤ Pµ

[
∃t ∈ N, zt /∈ Zε(µ), inf

λ∈¬εzt
∥µt−1 − λ∥2VNt−1

> 2β(t− 1, δ)

]
≤ Pµ

[
∃t ∈ N, zt /∈ Zε(µ), ∥µt−1 − µ∥2VNt−1

> 2β(t− 1, δ)
]

≤ Pµ

[
∃t ∈ N, ∥µt−1 − µ∥2VNt−1

> 2β(t− 1, δ)
]

= Pµ

[
∃t ∈ N,

∑
a∈K

Na
t−1dKL(µ

a
t−1, µ

a) > β(t− 1, δ)

]

where the first inequality is obtained by definition of the stopping criterion and using that P [∃t > n0, At] ≤ P [∃t ∈ N, At].
Crucially, since β(t − 1, δ) > 0, it implicitly requires that zt ∈ Zε(µt), otherwise infλ∈¬εzt ∥µt−1 − λ∥2VNt−1

= 0.
The second inequality is obtained since µ ∈ ¬εzt (as zt /∈ Zε(µ)) and the third inequality uses P [A,B] ≤ P [A]. The
equality is a direct consequence of our notations and the Gaussian assumption with σ2 = 1, i.e. VN =

∑
a∈K NaaaT and

dKL(µ
a, λa) = 1

2∥µ− λ∥2aaT .

Using the concavity of x 7→ 2 ln (4 + ln (x)) and the fact that
∑

a∈K Na
t = t, we obtain

∑
a∈K 2 ln (4 + ln (Na

t )) ≤
2K ln

(
4 + ln

(
t
K

))
. Since for u ≤ v, P[X > v] ≤ P[X > u], by defining the stopping threshold as in (6) and using

Lemma D.1 for S = K, we obtain:

Pµ [τδ < +∞, ẑ /∈ Zε(µ)] ≤ Pµ

[
∃t ∈ N,

∑
a∈K

Na
t−1dKL(µ

a
t−1, µ

a) > β(t− 1, δ)

]

≤ Pµ

[
∃t ∈ N :

∑
a∈K

Na
t−1dKL(µ

a
t−1, µ

a) >
∑
a∈K

2 ln
(
4 + ln

(
Na

t−1

))
+KCG

(
ln
(
1
δ

)
K

)]
≤ δ

This concludes the proof for stopping-recommendation pair evaluating the stopping criterion at each time t. When the
stopping criterion is evaluated only on some predefined indices of time T ⊆ N with |T | = ∞, for example on a geometric
grid, the proof is identical. Since P [∃t ∈ T , At] ≤ P [∃t ∈ N, At], we perform the same manipulations with T instead of N
and conclude

Pµ

[
∃t ∈ T ,

∑
a∈K

Na
t−1dKL(µ

a
t−1, µ

a) > β(t− 1, δ)

]
≤ Pµ

[
∃t ∈ N,

∑
a∈K

Na
t−1dKL(µ

a
t−1, µ

a) > β(t− 1, δ)

]

Note that Lemma 3.1 covers all the stopping-recommendation pairs considered in Section 3.1: the different candidate
answers (greedy, instantaneous furthest and furthest answers) and the computational relaxations (each time t, sticky and lazy
updates).
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E. Proof of Theorem 4.1
In this appendix, we provide the full proof of Theorem 4.1, which is recalled below. It is organized as follows:

• In Appendix E.1, the proof scheme is first sketched, then detailed and proved.

• In Appendix E.2, we show that combining an instantaneous furthest answer zt ∈ zF (µt−1, Nt−1) as recommendation
rule and the stopping criterion (5) yield the desired property (17) to obtain asymptotic optimality. Moreover, we
introduce the lazy and sticky computational relaxations for the stopping-recommendation pair, which both satisfy the
property (17).

• In Appendix E.3, the sampling rule used in LεBAI is shown to satisfy the desired property (18) on the sampling rule.

• We assemble the different blocks of the proof in Appendix E.4, yielding the Theorem 4.1.

• Technical results are stated and proved in Appendix E.5.

We shall assume that ∥µt∥2 ≤ M holds for all t. This can be guaranteed by projecting the estimates onto the set of realizable
models. We will abuse the Landau’s notations o, O and Θ to cope for t and ln

(
1
δ

)
simultaneously, while discarding crossed

terms. The notations õ, Õ and Θ̃ are used similarly with the simplification of dropping the poly-logarithmic multiplicative
factors.

For the sake of generality, the proofs will be conducted with parameters b > 0 and α > 1 in the definitions of the exploration
bonus f(t) def

= 2β
(
t, t1/α

)
and the slacks (cas)(s,a)∈Jn0,t−1K×K defined below in (20). In the main content, we directly used

the values chosen thanks to the analysis (b, α) = (1, 3) as discussed in Appendix E.4.

E.1. Proof Scheme

The proof scheme sketched below is inspired by recent works using a game approach (Degenne et al., 2020a). We present
below a sketch of the proof, see Appendix E.1.1 for a more detail proof scheme.

In order to obtain an asymptotic upper bound on Eµ [τδ], we derive a non-asymptotic one and take the limit δ → 0. Having
multiple ε-optimal answers is a key difficulty in several arguments. Our main contribution with respect to this proof lies in
overcoming this hurdle.

Using Lemma E.1 (Lemma 13 in Degenne et al. (2020a)), the proof boils down to proving the existence and an upper
bound on T1(δ) ∈ N, such that for all t ≥ T1(δ) if a concentration event Et holds then the algorithm has already
stopped, Et ⊆ {τδ ≤ t}. To obtain the asymptotic optimality of the identification strategy, the upper bound should satisfy
T1(δ) ≤ Tε(µ) ln

(
1
δ

)
+ o

(
ln
(
1
δ

))
, where the dependency in t vanishes when δ → 0.

Lemma E.1 (Lemma 13 in Degenne et al. (2020a)). Let (Et)t≥1 be a sequence of concentration events, such that for

all t ≥ 1, Pµ

[
E∁
t

]
≤ 1

tα and an identification strategy such that for all δ ∈ (0, 1), there exists T1(δ) ∈ N such that for

t ≥ T1(δ), Et ⊆ {τδ ≤ t}. Then, Eµ [τδ] ≤ T1(δ) +
1

α−1 .

Proof. Since α > 1, using an integral-sum comparison we obtain that:
∑+∞

t=1
1
tα ≤

∫ +∞
x=1

1
xα dx = 1

α−1 . Since τδ is a
positive random variable, we have:

E
µ
[τδ] =

∑
t∈N

Pµ [τδ > t] ≤ T1(δ) +
∑

t≥T1(δ)

Pµ

[
E∁
t

]
≤ T1(δ) +

∑
t≥T1(δ)

1

tα
≤ T1(δ) +

1

α− 1

where we split the sum in two terms and used that for t ≥ T1(δ), {τδ > t} ⊆ E∁
t .

Considering the sequence of concentration events (Et)t≥1, where for all t ≥ 1

Et
def
=
{
∀s ≤ t : ∥µs − µ∥2VNs

≤ f(t)
}

(10)
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ensures that Pµ

[
E∁
t

]
≤ 1

tα (Lemma E.2), where f(t)
def
= 2β

(
t, t1/α

)
. To show the existence of T1(δ) and an upper bound

leading to asymptotic optimality, it is sufficient to show that under Et, if the algorithm does not stop at time t+ 1, then

tTε(µ)
−1 ≤ ln

(
1

δ

)
+ o

(
t+ ln

(
1

δ

))
To derive the above inequality, the analysis distinguishes between two independent components. Under Et, if the algorithm
does not stop at time t+ 1, the stopping-recommendation pair should satisfy

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
− o

(
t+ ln

(
1

δ

))
while the sampling rule has to verify

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ 2tTε(µ)

−1 − o

(
t+ ln

(
1

δ

))
The expression maxz∈Z infλ∈¬εz ∥µ − λ∥2VNt

only feature the empirical counts. Therefore, our proof scheme allows to
combine any stopping-recommendation pair and any sampling rule, provided they satisfy the corresponding inequality. The
fact that our algorithms are (ε, δ)-PAC is a direct consequence of Lemma 3.1.

E.1.1. DETAILS AND PROOFS

As stated in Subsection 4.1, the proof scheme is inspired by recent works using a game approach (Degenne et al., 2019;
2020a). To obtain an asymptotic upper bound on the expected sample complexity Eµ [τδ], we first derive a non-asymptotic
upper bound, which might be loose as a function of t. Then, we consider the limit δ → 0.

The first step towards the non-asymptotic upper-bound on Eµ [τδ] is Lemma E.1, whose proof is inspired by Lemma 13 in
Degenne et al. (2020a). This approach is due to Garivier & Kaufmann (2016).

In Lemma E.2, it is shown that the sequence of concentration events (Et)t≥1 defined in (10), for all t ≥ 1

Et
def
=
{
∀s ≤ t : ∥µs − µ∥2VNs

≤ f(t)
}

satisfies the first condition of Lemma E.1. Recall that β(t, δ) = Θ
(
ln
(
1
δ

)
+ ln(ln(t))

)
. Since f(t)

def
= 2β

(
t, t1/α

)
, f is a

logarithmic function of t, i.e. f(t) = Θ(ln(t)).

Lemma E.2. Considering (Et)t≥1 in (10), we have: for all t ≥ 1, Pµ

[
E∁
t

]
≤ 1

tα

Proof. Similarly to the proof of Lemma 3.1, we will apply Corollary 10 in Kaufmann & Koolen (2021):

Pµ

[
∃s ∈ N :

∑
a∈K

Na
s dKL(µ

a
s , µ

a) >
∑
a∈K

2 ln (4 + ln (Na
s )) +KCG

(
ln
(
1
δ

)
K

)]
≤ δ

By concavity of x 7→ ln(4 + ln(x)) (which is also an increasing function) and
∑

a∈K Na
s = s, we have: for all s ∈ [t],∑

a∈K
2 ln(4 + ln(Na

s )) ≤ 2K ln
(
4 + ln

( s

K

))
≤ 2K ln

(
4 + ln

(
t

K

))

Recall that for u ≤ v, P[X > v] ≤ P[X > u] and Pµ

[⋃
s∈[t] As

]
≤ Pµ

[⋃
s∈N As

]
.

Pµ

[
E∁
t

]
= Pµ

[
∃s ∈ [t], ∥µs − µ∥2VNs

> 2β
(
t, t−α

)]
≤ Pµ

[
∃s ∈ [t],

∑
a∈K

Na
s dKL(µ

a
s , µ

a) >
∑
a∈K

2 ln (4 + ln (Na
s )) +KCG

(
ln (tα)

K

)]

≤ Pµ

[
∃s ∈ N :

∑
a∈K

Na
s dKL(µ

a
s , µ

a) >
∑
a∈K

2 ln (4 + ln (Na
s )) +KCG

(
ln (tα)

K

)]
≤ 1

tα
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Lemma E.3 gives a sufficient condition on the identification strategy to ensure there exists T1(δ) ∈ N satisfying the second
condition of Lemma E.1.
Lemma E.3. Let (Et)t≥1 be a sequence of concentration events. Assume that the identification strategy verifies the following
property: there exists β1, β2 ∈ (0, 1] such that if the algorithm does not stop at time t+ 1 and Et holds then

Hµ(t, δ) ≥ tTε(µ)
−1 where Hµ(t, δ) = ln

(
1

δ

)
+ Õ

(
t1−β1 + ln (1/δ)

1−β2

)
(11)

Then, for all δ ∈ (0, 1), there exists T1(δ) ∈ N such that for t ≥ T1(δ), Et ⊆ {τδ ≤ t}.

Proof. Assume there exists an identification strategy satisfying the above condition. Let T (δ) be the maximum of the t ∈ N
such that

Hµ(t, δ) ≥ tTε(µ)
−1 (12)

where T (δ) always exists since Hµ(t, δ) = O(t1−β1) = o(t). Let δmin be the largest δ ∈ (0, 1) such that

Hµ

(
ln(1/δ)(1−β1)

−1

, δ
)
< ln(1/δ)(1−β1)

−1

Tε(µ)
−1 (13)

where δmin always exists since Hµ

(
ln(1/δ)(1−β1)

−1

, δ
)
= O (ln(1/δ)) = o

(
ln(1/δ)(1−β1)

−1
)

. It depends only on the
parameters of the problem: Tε(µ), L, M , d and α.

For δ ≤ δmin, we have Hµ

(
ln(1/δ)(1−β1)

−1

, δ
)

< ln(1/δ)(1−β1)
−1

Tε(µ)
−1, hence T (δ) < ln(1/δ)(1−β1)

−1

. Since

t 7→ Hµ(t, δ) is increasing, plugging ln(1/δ)(1−β1)
−1

in the left-hand side of (12), we obtain T (δ) < T0(δ) where

T0(δ)
def
= Tε(µ)Hµ

(
ln(1/δ)(1−β1)

−1

, δ
)

(14)

Moreover, under Et and if we do not stop, it implies that t ≤ T (δ). To sum up, we have shown: (1) for δ ≤ δmin, for
t ≥ T0(δ), we know that τδ ≤ t and (2) for δ > δmin, for t ≥ T (δ) + 1, we know that τδ ≤ t. In both cases, this means that
Et ⊆ {τδ ≤ t}. Therefore, there exists T1(δ) defined as

T1(δ)
def
=

{
T0(δ) if δ ≤ δmin

T (δ) + 1 else.
(15)

such that for t ≥ T1(δ), Et ⊆ {τδ ≤ t}.

By definition of T1(δ) in (15), we have T1(δ) = Tε(µ) ln
(
1
δ

)
+ o (ln (1/δ)). This fact is crucial to obtain the upper bound

with the right constant when considering δ → 0, hence it is necessary to prove asymptotic optimality.

The last and hardest component of the proof is to show that: under (Et)t≥1 (10) and if the algorithm does not stop at time
t+ 1, then the identification strategy satisfies the condition (11) of Lemma E.3. When this holds, we say that the strategy is
sample-efficient.

Plugging together all the previous results, we obtain directly Lemma E.4.
Lemma E.4. Let (Et)t≥1 as in (10). Using a sample-efficient (ε, δ)-PAC strategy, i.e. (11) holds true, yields an (ε, δ)-PAC
strategy and, for all µ ∈ M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]

ln
(
1
δ

) ≤ Tε(µ)

Proof. Under these hypotheses, the two conditions of Lemma E.1 are fulfilled. Using the definition of (Et)t≥1 in (10),
the first condition holds thanks to Lemma E.2. By definition of a sample-efficient identification strategy we can apply
Lemma E.3, hence the second condition is also true. Therefore, applying Lemma E.1, we have: for all δ ∈ (0, 1)

Eµ [τδ] ≤ T1(δ) +
1

α− 1
(16)
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with T1(δ) = Tε(µ) ln
(
1
δ

)
+o (ln (1/δ)). Dividing by ln

(
1
δ

)
on both side and taking lim supδ→0, we obtain the asymptotic

optimality of this algorithm.

By assumption, the algorithm was (ε, δ)-PAC. By the inequality (16), we have that τδ is finite almost surely, i.e.
Pµ [τδ < +∞] = 1.

Sample-Efficient Identification Strategy When proving that a strategy is sample-efficient, we distinguish two independent
conditions. Under Et if the algorithms does not stop at time t+ 1, the stopping-recommendation pair should satisfy

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
− Õ

(
t1−β1 + ln (1/δ)

1−β2

)
(17)

while the sampling rule has to verify

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ 2tTε(µ)

−1 − Õ
(
t1−β1 + ln (1/δ)

1−β2

)
(18)

with (β1, β2) ∈ (0, 1]
2. By grouping together both inequalities (17-18), we obtain directly the condition of Lemma E.3. The

above lemmas are assembled in a global proof in Appendix E.4.

E.2. Stopping-Recommendation Pairs

Lemma E.5 shows that the desired condition on the stopping-recommendation pair (17) holds when considering an
instantaneous furthest answer as recommendation rule and evaluating the stopping rule at each time t. In particular, it holds
for (β1, β2) =

(
1, 1

2

)
(the poly-logarithmic dependence in t is hidden in the notation Õ). The extension of the proof for

other update schemes is detailed in Appendix E.2.1.

Note that while the condition on the recommendation rule to have a (ε, δ)-PAC algorithm is very mild, i.e. zt ∈ Zε(µt−1),
the choice of zt is crucial to obtain an asymptotically optimal algorithm. Intuitively it should converge asymptotically
towards zF (µ). For this reason, using a greedy answer zt ∈ z⋆(µt) as recommendation rule is doomed to fail whenever
zF (µ) /∈ z⋆(µ) (which is often the case). It remains unclear whether using a furthest answer for the current estimator
zt ∈ zF (µt) as recommendation rule would result in an asymptotically optimal algorithm. While converging to zF (µ), it
might be inefficient when associated with the stopping criterion (5). This is an interesting open question to investigate in
future work.

Lemma E.5. Regardless of the sampling rule, an identification strategy evaluating at each time t the stopping rule (5) with
stopping threshold β(t, δ) (6) for an instantaneous furthest answer zt ∈ zF (µt−1, Nt−1) satisfies that, under Et as in (10),
if the algorithm does not stop at time t+ 1, then

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
− hδ(t)

where hδ(t) =
√
8f(t)β(t, δ) + 4f(t) = Θ

(
ln(t) +

√
ln
(
1
δ

))
.

Proof. Fix any time t ≥ 1. Suppose that Et holds and the algorithm does not stop at time t+ 1. From the stopping rule and
the definition of zt+1 ∈ zF (µt, Nt), we obtain

2β(t, δ) ≥ inf
λ∈¬εzt+1

∥µt − λ∥2VNt
= max

z∈Z
inf

λ∈¬εz
∥µt − λ∥2VNt

≥ max
z∈zF (µ,Nt)

inf
λ∈¬εz

∥µt − λ∥2VNt
(19)

where the last inequality uses Lemma E.15. Combining the triangular inequality and concentration event Et,

∥µt − λ∥2VNt
≥ (∥µ− λ∥VNt

− ∥µt − µ∥VNt
)2

≥ ∥µ− λ∥2VNt
− 2∥µ− λ∥VNt

∥µt − µ∥VNt

≥ ∥µ− λ∥2VNt
− 2∥µ− λ∥VNt

√
f(t) .

Let z̃ ∈ argmaxz∈zF (µ,Nt) infλ∈¬εz ∥µt − λ∥2VNt
and λ̃ ∈ argminλ∈¬εz̃ ∥µt − λ∥2VNt

. Then,

∥µt − λ̃∥2VNt
≥ ∥µ− λ̃∥2VNt

− 2
√
f(t)

√
∥µ− λ̃∥2VNt
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Using Lemma E.10 for y = ∥µt − λ̃∥2VNt
, α = 2

√
f(t) and x = ∥µ− λ̃∥2VNt

, we obtain

∥µt − λ̃∥2VNt
≥ ∥µ− λ̃∥2VNt

− 2
√

f(t)
√

∥µt − λ̃∥2VNt
− 4f(t)

≥ ∥µ− λ̃∥2VNt
− 2
√

f(t)
√

2β(t, δ)− 4f(t)

≥ inf
λ∈¬εz̃

∥µ− λ∥2VNt
−
√
8f(t)β(t, δ)− 4f(t)

= max
z∈Z

inf
λ∈¬εz̃

∥µ− λ∥2VNt
−
√
8f(t)β(t, δ)− 4f(t) .

The second inequality is obtained by using (19) and the definition of λ̃. The third is obtained by taking the infλ∈¬εz̃ , which
is possible since λ̃ ∈ ¬εz̃. The equality uses that z̃ ∈ zF (µ,Nt). Therefore, we have shown that

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
− hδ(t)

where hδ(t) =
√
8f(t)β(t, δ) + 4f(t) = Θ

(
ln(t) +

√
ln
(
1
δ

))
, hence sub-linear function of both t and ln

(
1
δ

)
.

E.2.1. COMPUTATIONAL RELAXATIONS

Depending on Z , computing an instantaneous furthest answer at each time t might be too costly. To reduce the computational
cost, we propose two different relaxations for any stopping-recommendation pair: the lazy version and the sticky one. The
main idea behind both of them is to avoid the computation of a new recommendation rule at each time. Defining a grid
of time T ⊆ N, we stick to the previous candidate answer when t /∈ T , i.e. zt = zt−1, else we compute a new one. To
satisfy the sole requirement on the recommendation rule (Lemma 3.1), a new value has to be computed when t /∈ T and
zt−1 /∈ Zε(µt−1).

Both computational relaxations use the stopping criterion defined in (5). While the sticky version evaluates it at each time
t > n0, the lazy version only does it when the recommendation rule is updated (t ∈ T ). It is important to notice that thanks
to Lemma 3.1, the lazy and sticky computational relaxations yield (ε, δ)-PAC strategy regardless of the sampling rule.

In the following, we consider an instantaneous furthest answer as recommendation rule and a geometric-like grid of time T .
To ensure asymptotic optimality of the algorithm, we need to have a strictly positive and decreasing expansion parameter
(γi)i∈N⋆ such that γi → 0. More formally, we use T def

= {n0 + 1} ∪ {ti}i∈N where t0 > n0 denotes the end of the first
phase and for all i ∈ N⋆, ti = ⌈(1 + γi)ti−1⌉. Since γi is strictly positive, we have ti > ti−1 and T is an infinite set of
times, hence Lemma 3.1 applies. Since the main components of the proof are unchanged, we only state the noteworthy
modifications.

Lazy Update When considering the lazy update, both the candidate answer and the stopping criterion are computed only
when t ∈ T . Under Et, if the algorithm doesn’t stop at time t+ 1, there exists i ∈ N such that t ∈ Jti, ti+1 − 1K such that
the stopping criterion is not met at time ti + 1:

2β(ti, δ) ≥ inf
λ∈¬εzti+1

∥µti − λ∥2VNti

≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNti

− hδ(ti)

where hδ is defined in Lemma E.5 and the second inequality is obtained as above since Eti ⊆ Et and zti+1 = zF (µti , Nti).
Therefore, using the lazy update with an instantaneous furthest answer as recommendation rule allow to satisfy the condition
(17) at time ti.

Given a sampling rule satisfying the condition (18) at time ti, the rest of the proof is exactly the same as sketched in
Appendix E.1 and proved in Appendix E.3 with ti instead of t. Therefore, we will obtain

Hµ(ti, δ) ≥ tiTε(µ)
−1

Since t ∈ Jti, ti+1 − 1K, we have Hµ(ti, δ) ≤ Hµ(t, δ) and ti ≥ ti+1−1
1+γi+1

≥ t
1+γi+1

. This yields

H̃µ(t, δ)
def
= (1 + γi+1)Hµ(t, δ) ≥ tTε(µ)

−1
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We remark that t → +∞ implies i → +∞, hence γi+1 →t→+∞ 0. Choosing γi independently of δ and noting that
H̃µ(t, δ) = ln

(
1
δ

)
+O

(
t1−β1 + ln (1/δ)

1−β2

)
since Hµ(t, δ) = ln

(
1
δ

)
+O

(
t1−β1 + ln (1/δ)

1−β2

)
, we can conclude

the proof. Combining the lazy update with a good sampling rule and an instantaneous furthest answer as recommendation
rule leads to asymptotically optimal algorithms.

For an expansion parameter which is constant, the manipulation above shows that the upper bound won’t match the lower
bound by a constant multiplicative factor 1+γ0. Therefore, the shrinking expansion parameter is crucial to obtain asymptotic
optimality.

Sticky Update When considering the sticky update, the candidate answer is computed only when t ∈ T , while the stopping
criterion is evaluated at each time t. Since the GLRTs conducted with the lazy update are strictly included in the ones
conducted with the sticky update (with matching candidate answer), the sticky approach is strictly better in terms of sample

complexity than considering the lazy one. Therefore, we have τ sticky
δ ≤ τ lazy

δ , hence limδ→0
Eµ[τ

sticky
δ ]

ln(1/δ) ≤ limδ→0
Eµ[τ

lazy
δ ]

ln(1/δ) .
Using the above result showing that lazy update leads to asymptotic optimal algorithms, we conclude that sticky update also
leads to asymptotic optimal algorithms.

E.3. Sampling Rule

In this appendix, we show that the desired condition (18) on the sampling rule holds when considering the sampling rule in
LεBAI (Appendix E.3.2). Appendix E.3.1 details the two algorithmic requirements enforced in LεBAI.

E.3.1. REQUIREMENTS

To conduct the analysis of the sampling rule used in LεBAI, two algorithmic requirements were needed to be enforced.
However, as experiments show in Appendix F.2, competitive empirical performance are obtained without them.

Forced Exploration To provide an upper bound on the number of times a good event doesn’t occur (Lemma E.20), forced
exploration has to be introduced by using wt =

1
tK1K +

(
1− 1

t

)
wLK

t . Good events will be formally introduced below in
(22). Since we are using tracking and

∑t
s=n0+1

1
s = Θ(ln t), the forced exploration only concerns a logarithmic number of

steps.

Exact Z-Oracle Likewise, to provide an upper bound on the number of times a good event doesn’t occur (Lemma E.20),
the Z-oracle has to satisfy z̃t ∈ zF (µt−1). Since this requirement is computationally intractable, it doesn’t lead to a
practical algorithm. In the experiments, we use an instantaneous furthest answer z̃t = zt ∈ zF (µt−1, Nt−1) which has good
empirical behavior. Since it was already computed for the recommendation rule, no additional computation are needed.

While the proof still eludes us, we believe that using an instantaneous furthest answer would be also a theoretically valid
choice for the Z-oracle. Intuitively an instantaneous furthest answer is a good proxy for zF (µ) because the empirical
proportions will eventually converge to wF (µ). Using our current proof techniques, it is difficult to show this result since
the convergence properties and upper bound on the expected sample complexity are highly intertwined. Borrowing the
proofs strategy of (Garivier & Kaufmann, 2016), it might be possible to show it with purely asymptotic arguments. We leave
this interesting question to future work.

E.3.2. PROOF OF DESIRED PROPERTY

To highlight the structure of the proof, we prove separately two inequalities satisfied by the sampling rule used in LεBAI
(Lemma E.6 and Lemma E.7). This intermediate step involves the cumulative gain of the learner used by the K-player.

Lemma E.6. Let LZ be the Z-oracle such that z̃s ∈ zF (µs−1). Let b > 0. For all s ∈ Jn0, t− 1K and a ∈ K, let
(cas)s≥n0,a∈K be defined by

cas
def
= min

{
f
(
s1+b

)
∥a∥2

V −1
Ns

, 4M2L2
K

}
(20)

The optimistic gain gs(w)
def
= (1− 1

s )⟨w,Us⟩ are defined such that: for all a ∈ K and s ∈ Jn0 + 1, tK,

Ua
s

def
=
(
∥µs−1 − λs∥aaT +

√
cas−1

)2
(21)
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with λs
def
= argminλ∈¬εz̃s ∥µs−1 − λ∥2Vws

. Then, under Et if LεBAI does not stop at time t+ 1,

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥

t∑
s=n0+1

gs

(
wLK

s

)
− r1(t) ,

where

r1(t) = C1 +
(
NF (t) + t

1
1+b

)
4KM2L2

K + h′(t) + h′′(t) = Θ
(
ln(t)

√
t+ ln(t)2t

1
1+b

)
with h′′(t) = f

(
t1+b

)
(K ln(K) + 2K ln(t)) + 4MLK

√
f (t1+b)

(
K ln(K) +

√
8Kt

)
and h′(t) = 4MLK

√
(K ln(K) + 2K ln(t)) f (t1+b) t+ 8M2L2

Kt
1

1+b .

Proof. Step 1. From Nt to Wt. Let Wt
def
=
∑

s∈[t] ws. Using Lemma E.15,

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ max

z∈zF (µ,Wt)
inf

λ∈¬εz
∥µ− λ∥2VNt

.

Recall that for all N ∈ RK
+ , ∥µ− λ∥2VN

=
∑

a∈K Na∥µ− λ∥2aaT . Using Cauchy-Schwartz and the bounded assumption,
we have: ∥µ− λ∥2aaT = ⟨µ− λ, a⟩2 ≤ ∥µ− λ∥22∥a∥22 ≤ 4M2L2

K. For any λ ∈ M, using Lemma E.9,

∥µ− λ∥2VNt
≥ ∥µ− λ∥2VWt

− ln(K)
∑
a∈K

∥µ− λ∥2aaT

≥ ∥µ− λ∥2VWt
− C1 ,

where C1
def
= 4 ln(K)KM2L2

K = Θ(1).

Let z̃ ∈ argmaxz∈zF (µ,Wt) infλ∈¬εz ∥µ− λ∥2VNt
and λ̃ ∈ argminλ∈¬εz̃ ∥µ− λ∥2VNt

. Using the above yields

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ ∥µ− λ̃∥2VWt

− C1

≥ inf
λ∈¬εz̃

∥µ− λ∥2VWt
− C1

= max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VWt
− C1 ,

where we used that λ̃ ∈ ¬εz̃ and z̃ ∈ zF (µ,Wt).

Step 2. From (µ, zF (µ,Wt)) to (µs−1, z̃s). Using the concavity of inf and ∥µ − λ∥2VWt
=
∑t

s=n0+1 ∥µ − λ∥2Vws
, we

obtain

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VWt
≥ max

z∈Z

t∑
s=n0+1

inf
λ∈¬εz

∥µ− λ∥2Vws
.

Using the triangular inequality, for all z ∈ Z and s ∈ Jn0 + 1, tK

∥µ− λ∥2Vws
≥ (∥µs−1 − λ∥Vws

− ∥µs−1 − µ∥Vws
)2 ≥ ∥µs−1 − λ∥2Vws

− 2∥µs−1 − µ∥Vws
∥µs−1 − λ∥Vws

For λ̃z
s ∈ argminλ∈¬εz ∥µ− λ∥2Vws

, we obtain

∥µ− λ̃z
s∥2Vws

≥ ∥µs−1 − λ̃z
s∥2Vws

− 2∥µs−1 − µ∥Vws
∥µs−1 − λ̃z

s∥Vws

≥ inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− 2∥µs−1 − µ∥Vws

∥µs−1 − λ̃z
s∥Vws

≥ inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− 4MLK∥µs−1 − µ∥Vws
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The second to last inequality is obtained by taking the infλ∈¬εz , which is possible since λ̃z
s ∈ ¬εz, and the last one by upper

bounding ∥µs−1 − λ̃s∥Vws
≤ ∥µs−1 − λ̃s∥2 ≤ 2MLK (since ws ∈ △K). Summing those inequalities together, using

Cauchy-Schwartz when s ≥
⌈
t

1
1+b

⌉
and the boundedness assumption when s <

⌈
t

1
1+b

⌉
, we obtain: for all z ∈ Z

t∑
s=n0+1

inf
λ∈¬εz

∥µ− λ∥2Vws
≥

t∑
s=n0+1

inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− 4MLK

t∑
s=n0+1

∥µs−1 − µ∥Vws

≥
t∑

s=n0+1

inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− 4MLK

√
t−

⌈
t

1
1+b

⌉
+ 1

√√√√√√
t∑

s=

⌈
t

1
1+b

⌉ ∥µs−1 − µ∥2Vws

− 8M2L2
K

(⌈
t

1
1+b

⌉
− n0 − 1

)
≥

t∑
s=n0+1

∥µs−1 − λs∥2Vws
− 4MLK

√
t

√√√√√√
t∑

s=

⌈
t

1
1+b

⌉ ∥µs−1 − µ∥2Vws
− 8M2L2

Kt
1

1+b

The second inequality is obtained by concavity of x 7→
√
x, and the last one uses the definition of the best-response oracle in

the sampling rule, λs ∈ argminλ∈¬εz̃s ∥µs−1 − λ∥2Vws
. Using Lemma E.25, we know that

∑t

s=

⌈
t

1
1+b

⌉ ∥µs−1 − µ∥2Vws
≤

f
(
t1+b

)
(K ln(K) + 2K ln(t)) = O(ln(t)2). Therefore, we obtain: for all z ∈ Z

t∑
s=n0+1

inf
λ∈¬εz

∥µ− λ∥2Vws
≥

t∑
s=n0+1

inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− h′(t)

where h′(t)
def
= 4MLK

√
(K ln(K) + 2K ln(t)) f (t1+b) t+ 8M2L2

Kt
1

1+b = Θ
(
ln(t)

√
t+ t

1
1+b

)
. Taking the maximum

on both sides for the above result and using Lemma E.21, we obtain by chaining the above inequalities

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ max

z∈Z

t∑
s=n0+1

inf
λ∈¬εz

∥µs−1 − λ∥2Vws
− C1 − h′(t)

≥
t∑

s=n0+1

inf
λ∈¬εz̃s

∥µs−1 − λ∥2Vws
−
(
NF (t) + t

1
1+b

)
4KM2L2

K − C1 − h′(t)

=

t∑
s=n0+1

∥µs−1 − λs∥2Vws
−
(
NF (t) + t

1
1+b

)
4KM2L2

K − C1 − h′(t) ,

where NF (t) is defined in (24).

Step 3. From ∥µs−1 − λs∥2Vws
to gs

(
wLK

s

)
. Using Lemma E.17, we obtain: for all s ∈ Jn0 + 1, tK and a ∈ K,

∥µs−1 − λs∥2aaT ≥ Ua
s − cas−1 − 4MLK

√
cas−1
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Summing those inequalities together, we obtain:

t∑
s=n0+1

∑
a∈K

wa
s∥µs−1 − λs∥2aaT

≥
t∑

s=n0+1

∑
a∈K

wa
sU

a
s −

t∑
s=n0+1

∑
a∈K

wa
s c

a
s−1 − 4MLK

t∑
s=n0+1

∑
a∈K

wa
s

√
cas−1

≥
t∑

s=n0+1

∑
a∈K

wa
sU

a
s − f

(
t1+b

)
(K ln(K) + 2K ln(t))− 4MLK

√
f (t1+b)

(
K ln(K) +

√
8Kt

)
≥

t∑
s=n0+1

(
1− 1

s

)
⟨wLK

s , Us⟩ − f
(
t1+b

)
(K ln(K) + 2K ln(t))

− 4MLK

√
f (t1+b)

(
K ln(K) +

√
8Kt

)
=

t∑
s=n0+1

gs

(
wLK

s

)
− f

(
t1+b

)
(K ln(K) + 2K ln(t))− 4MLK

√
f (t1+b)

(
K ln(K) +

√
8Kt

)
where the second inequality is obtained by using Lemma E.24 and the third since the optimistic gains are positive and the
weights are defined as ws =

1
sK1K +

(
1− 1

s

)
wLK

s for all s ∈ Jn0 + 1, tK. The last equality uses the definition of the gain
gs(w) =

(
1− 1

s

)
⟨w,Us⟩. Therefore, since ∥µs−1 − λs∥2Vws

=
∑

a∈K wa
s∥µs−1 − λs∥2aaT , we obtain that:

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥

t∑
s=n0+1

gs

(
wLK

s

)
− C1 −

(
NF (t) + t

1
1+b

)
4KM2L2

K − h′(t)− h′′(t)

where h′′(t) = f
(
t1+b

)
(K ln(K) + 2K ln(t)) + 4MLK

√
f (t1+b)

(
K ln(K) +

√
8Kt

)
= Θ

(√
t ln(t)

)
.

Lemma E.7. Let LZ be the Z-oracle such that z̃s ∈ zF (µs−1). Let LK be a learner with regret RLK(t) = O(tα1) with
α1 ∈ (0, 1) and fed with optimistic gain gs(w) = (1− 1

s )⟨w,Us⟩ where (Us)s∈Jn0+1,tK defined in (21). Then, under Et if
LεBAI does not stop at time t+ 1,

t∑
s=n0+1

gs

(
wLK

s

)
≥ 2tTε(µ)

−1 − r2(t)

where

r2(t) = RLK(t) + h′′′(t) = O
(
ln(t)2t

1
1+b + tmax{α1,

1
1+b ,1−

1
1+b}

)
with h′′′(t) = 2

(
t

1
1+b +NF (t) + t1−

1
1+b

)
Tε(µ)

−1

Proof. Step 4. No-regret property. Using the no-regret property of the chosen online learner LK fed with gains (gs)s≥n0+1

and playing
(
wLK

s

)
s≥n0+1

, whose regret is denoted by RLK(t) = O(tα1), we obtain directly

t∑
s=n0+1

gs

(
wLK

s

)
≥ max

w∈△K

t∑
s=n0+1

gs(w)−RLK(t)

Step 5. From the optimal gain to Tε(µ)
−1. Dropping the first positive terms and the ones for which the good event As

def
=

{λs ∈ ¬εzF (µ) ∨ µs−1 ∈ ¬εzF (µ) ∨ z̃s = zF (µ)} doesn’t hold, i.e.
r
n0 + 1,

⌈
t

1
1+b

⌉
− 1

z
∪
{
s ∈

r⌈
t

1
1+b

⌉
, t

z
: ¬As

}
,
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and using Lemma E.18, we obtain: for all w ∈ △K ,

t∑
s=n0+1

gs(w) ≥
t∑

s=

⌈
t

1
1+b

⌉1(As)gs(w) ≥
(
1− t−

1
1+b

) t∑
s=

⌈
t

1
1+b

⌉1(As)⟨w,Us⟩

≥
(
1− t−

1
1+b

) t∑
s=

⌈
t

1
1+b

⌉1(As) inf
λ∈¬εzF (µ)

∥µ− λ∥2Vw

≥
(
1− t−

1
1+b

)(
t− t

1
1+b −NF (t)

)
inf

λ∈¬εzF (µ)
∥µ− λ∥2Vw

where
∣∣∣{s ∈ r⌈

t
1

1+b

⌉
, t

z
: ¬As

}∣∣∣ ≤ NF (t) since {z̃s = zF (µ)} ⊆ As, where NF (t) defined in (24) satisfies NF (t) =

O
(
ln(t)2t

1
1+b

)
(Lemma E.20). For the last inequality, we also used that −

⌈
t

1
1+b

⌉
+ 1 ≥ −t

1
1+b . Taking the maximum

over △K , we obtain:

max
w∈△K

t∑
s=n0+1

gs(w) ≥
(
1− t−

1
1+b

)(
t− t

1
1+b −NF (t)

)
max
w∈△K

inf
λ∈¬εzF (µ)

∥µ− λ∥2Vw

= 2
(
1− t−

1
1+b

)(
t− t

1
1+b −NF (t)

)
Tε(µ)

−1

≥ 2
(
t− t

1
1+b −NF (t)− t1−

1
1+b

)
Tε(µ)

−1

where the equality is obtained by definition of zF (µ). The last inequality is obtained by dropping some positive terms.
Putting everything together, we obtain:

t∑
s=n0+1

gs

(
wLK

s

)
≥ 2tTε(µ)

−1 −RLK(t)− h′′′(t)

where h′′′(t) = 2
(
t

1
1+b +NF (t) + t1−

1
1+b

)
Tε(µ)

−1 = O
(
ln(t)2t

1
1+b + tmax{ 1

1+b ,1−
1

1+b}
)

.

Chaining the two inequalities in Lemma E.6 and Lemma E.7, we obtain directly Lemma E.8. Therefore, the sampling rule
in LεBAI satisfies the desired condition (18) for β2 = 1 and β1 = 1−max

{
1
2 ,

1
1+b , 1−

1
1+b , α1

}
.

Lemma E.8. Let LZ be the Z-oracle such that z̃s ∈ zF (µs−1). Let LK be a learner with regret RLK(t) = O(tα1) with
α1 ∈ (0, 1) fed with optimistic gain gs(w) = (1− 1

s )⟨w,Us⟩ where (Us)s∈Jn0+1,tK defined in (21). Then, under Et if the
algorithms does not stop at time t+ 1,

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
≥ 2tTε(µ)

−1 − r(t)

where r(t) = r1(t) + r2(t) = Õ
(
tmax{ 1

2 ,
1

1+b ,1−
1

1+b ,α1}
)

.

E.4. Summarized Proof

Combining the lemmas obtained in Appendix E.1, E.2 and E.3, we obtain directly Theorem 4.1. Therefore, our algorithm
LεBAI provides asymptotically optimal algorithms if instantiated properly.
Theorem (Theorem 4.1). Let LK be a learner with sub-linear regret and LZ be the Z-oracle such that z̃s ∈ zF (µs−1). Let
the recommendation rule be an instantaneous furthest answer zt ∈ zF (µt−1, Nt−1) and the stopping rule given by (5),
both being either evaluated at each time t or with the sticky or lazy update schedule as described in Appendix E.2.1. Let
the stopping threshold β(t, δ) as in (6) and the exploration bonus f(t) def

= 2β
(
t, t1/α

)
. Then, LεBAI yields an (ε, δ)-PAC

algorithm and, for all µ ∈ M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]

ln
(
1
δ

) ≤ Tε(µ) .
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Proof. First, let’s prove the result for the stopping-recommendation pair with an update at each time t. Combining
Lemma E.5 and Lemma E.8, we obtain:

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2VNt
− hδ(t)

≥ 2tTε(µ)
−1 − r(t)− hδ(t)

where hδ(t) =
√
8f(t)β(t, δ) + 4f(t) = Θ

(
ln(t) +

√
ln
(
1
δ

))
and r(t) = r1(t) + r2(t) = Õ

(
tmax{ 1

2 ,
1

1+b ,1−
1

1+b ,α1}
)

.
Therefore, our identification strategy is sample-efficient, i.e. it verifies (11) with

Hµ (t, δ) ≥ tTε(µ)
−1 where Hµ (t, δ) = β(t, δ) +

1

2
(r(t) + hδ(t)) = O

(
t1−β1 + ln(1/δ)1−β2

)
where β1 = 1−max

{
1
2 ,

1
1+b , 1−

1
1+b , α1

}
∈ (0, 1] and β2 = 1

2 ∈ (0, 1].

Combining Lemma 3.1 and Lemma E.4, we obtain directly that our LεBAI yields a (ε, δ)-PAC and asymptotically optimal
algorithm.

When considering the computational relaxations of the update schemes called sticky or lazy, the proof is identical as
explained in Appendix E.2.1 and the fact that Lemma 3.1 can also be used.

Values of Parameters In the proof above, the condition (11) holds for β1 = 1−max
{

1
2 ,

1
1+b , 1−

1
1+b , α1

}
and β2 = 1

2 .

For AdaHedge (De Rooij et al., 2014), Lemma E.14 shows that α1 = 1
2 . An optimal choice of parameter suggests that

1
1+b = 1 − 1

1+b . Therefore, we choose b = 1. Higher b would imply more conservative optimistic gains. Therefore, we
have shown that the condition (11) holds for β1 = β2 = 1

2 . As done in Degenne et al. (2020a), we can choose α = 3 in the
definition of the exploration bonus f(t) = 2β

(
t, t1/α

)
. The higher α, the higher the exploration bonus is.

E.5. Technical Arguments

In this appendix, we list and prove the technical arguments used in the core of the proof of Theorem 4.1. For clarity, we
distinguish between the lemmas extracted from the literature (Appendix E.5.1), the key new lemmas (Appendix E.5.2) and
the technical ones allowing to upper bound the considered cumulative sums (Appendix E.5.3).

E.5.1. LEMMAS FROM THE LITERATURE

We recall the lemmas extracted from the literature, while omitting the proofs for the sake of space. Lemma E.9 is a
powerful result allowing to upper and lower bound the difference between the empirical allocation over arms and the
cumulative sum of the played proportions when using tracking. Lemma E.10 and Lemma E.11 are technical results on
manipulation of inequalities and cumulative sums. Lemma E.13 shows that µ 7→ zF (µ) is upper hemicontinuous on M.
Upper hemicontinuity is defined in Definition E.12. Lemma E.14 gives an upper bound on the regret incurred by AdaHedge.

Lemma E.9 (Theorem 6 in Degenne et al. (2020b)). The tracking procedure, which draws at ∈ argmina∈K Na
t−1 −W a

t

where Wt = Wt−1 + wt, ensures that for all t ∈ N, for all a ∈ K,

−
K∑
j=2

1

j
≤ Na

t −W a
t ≤ 1

In practice, we will use the following slightly coarser lower bound − ln(K) ≤ Na
t −W a

t .

Lemma E.10 (Lemma 28 in Degenne et al. (2020a)). For all α, y > 0, if for some x ≥ 0, it holds that y ≥ x− α
√
x, then

x ≤ y + α
√
y + α2 .

Lemma E.11 (Lemma 8 in Degenne et al. (2019)). For t ≥ t0 ≥ 1 and (xs)s∈[t] non-negative real numbers such that
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s=1 xs > 0,

t∑
s=t0

xs∑s
r=1 xr

≤ ln

(
t∑

s=1

xs

)
− ln

(
t0−1∑
s=1

xs

)
t∑

s=t0

xs√∑s
r=1 xr

≤ 2

√√√√ t∑
s=1

xs − 2

√√√√t0−1∑
s=1

xs

Definition E.12 (Upper hemicontinuity). For a set B, let S(B) = 2B \ {∅} be the set of all non-empty subsets of B. A
set-valued function Γ : A 7→ S(B) is upper hemicontinuous at a ∈ A if for any open neighborhood V of Γ(a) there exists a
neighborhood U of a such that for all x ∈ U , Γ(x) is a subset of V .

Lemma E.13 (Theorem 4 in Degenne & Koolen (2019)). The function µ 7→ zF (µ) is upper hemicontinuous on Rd with
non-empty and compact values.

Proof. Theorem 4 in Degenne & Koolen (2019) proves that the function µ 7→ zF (µ) is upper hemicontinuous on M with
non-empty and compact values. In their paper the function µ 7→ zF (µ) was only defined on M. However, a careful analysis
of their Appendix D reveals that their result and proof apply without any change when µ 7→ zF (µ) is defined on Rd. Since in
our setting zF (µ) is defined on Rd, this concludes the proof. Note that while µ 7→ zF (µ) is defined on M, the alternatives
(¬εz)z∈Z are all subsets of M.

Lemma E.14. On the online learning problem with K arms and gains gs(w) = (1 − 1
s )⟨w,Us⟩ for s ∈ Jn0 + 1, tK,

AdaHedge predicting
(
wLK

s

)
s∈Jn0+1,tK

has regret

RLK(t) = max
w∈△K

t∑
s=n0+1

gs(w)− gs

(
wLK

s

)
≤
(√

t ln(K) +
4

3
ln(K) + 2

)
σ = O

(√
t
)

where σ = maxs∈Jn0+,tK(1− 1
s ) (maxa∈K Ua

s −mina∈K Ua
s ).

Proof. For scaled losses in [0, 1], Theorem 6 in De Rooij et al. (2014) yields that AdaHedge’s cumulative regret Rt satisfies:
Rt ≤ 2

√
Vt ln(K) + 4

3 ln(K) + 2 where Vt =
∑

s∈[t] vs with vs =
∑

a∈K wLK

s,a (l
a
s − ⟨wLK

s , ls⟩)2.

Rewriting our gains as losses, we have las = (1− 1
s )

maxb∈K Ub
s−Ua

s

bs
where bs = (1− 1

s ) (maxa∈K Ua
s −mina∈K Ua

s ) is the

scale of the loss at time s. We have vs ≤ ∥ls−⟨wLK

s , ls⟩∥2∞ = (1− 1
s )

2 ∥⟨wLK
s ,Us⟩−Us∥2

∞
b2s

≤ b2s
σ2 where σ = maxs∈Jn0+,tK bs.

The upper bound on Rt rewrites as: Rt ≤ 1
σ

√∑
s≤t b

2
s ln(K) + 4

3 ln(K) + 2. Theorem 16 in De Rooij et al. (2014) yields

that RLK(t) = σRt. Therefore, we conclude that:

RLK(t) ≤
√ ∑

s∈Jn0+,tK

b2s ln(K) +

(
4

3
ln(K) + 2

)
max

s∈Jn0+,tK
bs ≤

(√
t ln(K) +

(
4

3
ln(K) + 2

))
max

s∈Jn0+,tK
bs

Using the definition of Ua
s and Lemma E.17, we obtain:

bs ≤ max
a∈K

Ua
s ≤ max

a∈K

(
∥µs−1 − λs∥2aaT + cas−1 + 4MLK

√
cas−1

)
≤ 16M2L2

K

where the last inequality is obtained by the boundedness assumption and the definition of cas .

We also recall a trivial result obtained by comparison of sum and integrals: for all α ∈ (0, 1) and all t ∈ N⋆,
∑

s∈[t]
1
sα =

Θ(t1−α).
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E.5.2. KEY LEMMAS

The following lemmas are key arguments used throughout Appendix E. Lemma E.15 is a simple, yet powerful, result
allowing to change the considered alternatives. This subtlety arises only because we are considering multiple correct
answers.

Lemma E.15. For all w ∈ RK
+ , µ ∈ M and z̃ ∈ Z ,

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2Vw
≥ inf

λ∈¬εz̃
∥µ− λ∥2Vw

.

In particular, for all (w, w̃) ∈ (RK
+ )2 and (µ, µ̃) ∈ M2,

max
z∈Z

inf
λ∈¬εz

∥µ− λ∥2Vw
≥ max

z̃∈zF (µ̃,w̃)
inf

λ∈¬εz̃
∥µ− λ∥2Vw

.

Proof. Case 1: z̃ /∈ Zε(µ), hence µ ∈ ¬εz̃. Therefore infλ∈¬εz̃ ∥µ− λ∥2Vw
= 0.

Case 2: z̃ ∈ Zε(µ). The result is direct by taking the maximum.

Lemma E.16 shows that the slacks (cas)
s∈

s
⌈t

1
1+b ⌉,t−1

{
,a∈K

are an upper bound of the unknown distance ∥µ− µs∥2aaT .

Lemma E.16. Let (cas)s∈Jn0,t−1K,a∈K in (20). Under Et, for all (s, a) ∈
r
⌈t

1
1+b ⌉, t− 1

z
×K, ∥µ− µs∥2aaT ≤ cas .

Proof. Since (µ, µs) ∈ M2, the boundedness yields: ∥µ− µs∥2aaT = ⟨µ− µs, a⟩2 ≤ ∥µ− µs∥22∥a∥22 ≤ 4M2L2
K.

By definition, under Et, for all s ∈ [t], we have ∥µs − µ∥2VNs
≤ f(t). Since x 7→ f(x) is increasing, for all s ≥ ⌈t

1
1+b ⌉, we

have f(t) ≤ f
(
s1+b

)
. By initialization VNs is positive definite, using Cauchy-Schwartz yields:

⟨µ− µs, a⟩2 ≤ ∥µs − µ∥2VNs
∥a∥2

V −1
Ns

≤ f
(
s1+b

)
∥a∥2

V −1
Ns

Combining both upper bound and using the definition of (cas)s∈Jn0,t−1K,a∈K in (20) conclude the proof.

Lemma E.17 shows useful upper and lower bounds on the optimistic gains (Ua
s )s∈Jn0+1,tK,a∈K.

Lemma E.17. Let b > 0, (cas−1)s∈Jn0+1,tK,a∈K and (Ua
s )s∈Jn0+1,tK,a∈K defined in (20-21). For all s ∈ Jn0 + 1, tK, for all

a ∈ K,

∥µs−1 − λs∥2aaT ≤ Ua
s ≤ ∥µs−1 − λs∥2aaT + cas−1 + 4MLK

√
cas−1 .

For all s ∈
r⌈

t
1

1+b

⌉
, t

z
, for all a ∈ K, Ua

s ≥ ∥µs−1 − µ∥2aaT and Ua
s ≥ ∥µ− λs∥2aaT .

Proof. By definition of Ua
s in (21) and using the boundedness to show ∥µs−1 − λs∥aaT ≤ 2MLK, we have: for all

s ∈ Jn0 + 1, tK, for all a ∈ K,

Ua
s = ∥µs−1 − λs∥2aaT + cas−1 + 2∥µs−1 − λs∥aaT

√
cas−1 ≥ ∥µs−1 − λs∥2aaT

Ua
s ≤ ∥µs−1 − λs∥2aaT + cas−1 + 4MLK

√
cas−1

By definition of Ua
s in (21), Lemma E.16 and triangular inequality, we have: for all s ∈

r⌈
t

1
1+b

⌉
, t

z
, for all a ∈ K,

Ua
s =

(
∥µs−1 − λs∥aaT +

√
cas−1

)2 ≥ (∥µs−1 − λs∥aaT + ∥µs−1 − µ∥aaT)
2 ≥ ∥µ− λs∥2aaT

Ua
s ≥ cas−1 ≥ ∥µs−1 − µ∥2aaT



Choosing Answers in ε-Best-Answer Identification for Linear Bandits

Lemma E.18 shows that under a good event As the gain ⟨w,Us⟩ is an upper bound on the unknown infλ∈¬εzF (µ) ∥µ−λ∥2Vw

for all w ∈ △K . This good event essentially boils down to having as candidate answer the unknown furthest answer
z̃s = zF (µ).

Lemma E.18. Let b > 0 as in Lemma E.17. Let (As)
s∈

s⌈
t

1
1+b

⌉
,t

{ defined as: for all s ∈
r⌈

t
1

1+b

⌉
, t

z
,

As
def
= {λs ∈ ¬εzF (µ) ∨ µs−1 ∈ ¬εzF (µ) ∨ z̃s = zF (µ)} (22)

Under Et, we have for all w ∈ △K and s ∈
r⌈

t
1

1+b

⌉
, t

z
, under As it holds that

⟨w,Us⟩ ≥ inf
λ∈¬εzF (µ)

∥µ− λ∥2Vw

Proof. Summing the lower bound of Lemma E.17 yields: for all s ∈
r⌈

t
1

1+b

⌉
, t

z
and all w ∈ △K , ⟨w,Us⟩ ≥ ∥µ− λs∥2Vw

and ⟨w,Us⟩ ≥ ∥µ− µs−1∥2Vw
.

Case 1: λs ∈ ¬εzF (µ). Taking the infimum on the first inequality, we have: for all s ∈
r⌈

t
1

1+b

⌉
, t

z
and all w ∈ △K ,

⟨w,Us⟩ ≥ inf
λ∈¬εzF (µ)

∥µ− λ∥2Vw

Case 2: µs−1 ∈ ¬εzF (µ). Taking the infimum on the second inequality, we obtain directly: for all w ∈ △K and s ≥ t
1

1+b ,

⟨w,Us⟩ ≥ inf
λ∈¬εzF (µ)

∥µ− λ∥2Vw

Case 3: z̃s = zF (µ). By definition λs ∈ ¬εz̃s, hence λs ∈ ¬εzF (µ). Therefore, we can use the first case.

We introduce a strictly positive geometrical quantity ∆2
min (23) in Lemma E.19. This result crucially uses that Z is finite and

|zF (µ)| = 1 for the unknown parameter µ. It means that we can’t be arbitrarily close to µ while having a unique furthest
answer which is different from zF (µ).

∆2
min represents the distance of µ to the furthest alternative to zF (µ), denoted by ¬F zF (µ). The furthest alternative is

fundamentally different from the alternative ¬εzF (µ) (which is considered in the rest of the paper). While the furthest
alternative corresponds to an identification problem with a unique correct answer, the alternative corresponds to an
identification problem with multiple correct answers. Therefore, we see that to achieve asymptotic optimality in this multiple
correct answer setting, we need to solve the harder problem of exactly identifying the unique zF (µ).

Lemma E.19. Defining

∆2
min

def
= inf

λ∈¬F zF (µ)
max
a∈K

∥µ− λ∥2aaT > 0 (23)

where ¬F zF (µ)
def
=
{
λ ∈ Rd : zF (µ) ̸= zF (λ)

}
. Then, we have: ∆2

min > 0.

Proof. By Lemma E.13, we know that λ 7→ zF (λ) is upper hemicontinuous on Rd with non-empty and compact values.
Since Z is finite and zF (µ) is a singleton by assumption on µ, the upper hemicontinuity implies that there exists an open a
neighborhood U of µ such that for all µ̃ ∈ U , zF (µ̃) = zF (µ). This is obtained directly by using Definition E.12 and taking
an open neighborhood V of zF (µ) such that V ∩ Z = zF (µ), which exists since |zF (µ)| = 1 and Z finite. Noticing that
U ⊆ (¬F zF (µ))

∁ and using that U is an open neighborhood of µ, we can conclude that ∆2
min > 0.

Lemma E.20 shows that the good event {z̃s = zF (µ)} ⊆ As doesn’t happen only for a sub-linear number of times. A
similar argument was shown in Lemma 25 of Degenne et al. (2020a). This crucially uses the fact that ∆2

min > 0.
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Lemma E.20. Let LZ be the Z-oracle such that z̃s ∈ zF (µs−1). For all s ∈
r⌈

t
1

1+b

⌉
, t

z
, let

Bs
def
= {z̃s = zF (µ)} and NF (t)

def
=
∣∣∣{s ∈ r⌈

t
1

1+b

⌉
, t

z
: ¬Bs

}∣∣∣ . (24)

Then, under Et,

NF (t) ≤
K

∆2
min

t
1

1+b f
(
t1+b

)
(K ln(K) + 2K ln(t)) = O

(
ln(t)2t

1
1+b

)

Proof. Using Lemma E.25, under Et,

f
(
t1+b

)
(K ln(K) + 2K ln(t)) ≥

t∑
s=

⌈
t

1
1+b

⌉ ∥µs−1 − µ∥2Vws
≥

t∑
s=

⌈
t

1
1+b

⌉1(¬Bs)∥µs−1 − µ∥2Vws

≥
t∑

s=

⌈
t

1
1+b

⌉1(¬Bs)
1

sK

∑
a∈K

∥µs−1 − µ∥2aaT

where the last inequality is obtained since ws =
1
sK1K +

(
1− 1

s

)
wLK

s for all s ∈ Jn0 + 1, tK.

Since Bs = {z̃s = zF (µ)} and z̃s ∈ zF (µs−1), we obtain:

¬Bs = {z̃s /∈ zF (µ), z̃s ∈ zF (µs−1)} ⊆ {zF (µs−1) ̸= zF (µ)}

where in the above zF (µ) is viewed as the set containing one element. Therefore, since µs−1 ∈ Rd and zF (µs−1) ̸= zF (µ),
we have shown that µs−1 ∈ ¬F zF (µ). By the definition of ∆2

min in (23), there exists as ∈ K such that ∥µs−1 − µ∥2asaT
s
≥

∆2
min. This yields

∑
a∈K ∥µs−1 − µ∥2aaT ≥ ∆2

min. Therefore, we obtain: 1
s

∑
a∈K ∥µs−1 − µ∥2aaT ≥ ∆2

min

s ≥ ∆2
min

t
1

1+b
for all

s ∈
r⌈

t
1

1+b

⌉
, t

z
. Putting everything together, we have shown that:

NF (t) ≤
K

∆2
min

t
1

1+b f
(
t1+b

)
(K ln(K) + 2K ln(t))

Lemma E.21. Let LZ be the Z-oracle such that z̃s ∈ zF (µs−1). Then, under Et,

min
z∈Z

t∑
s=n0+1

[fs(z̃s)− fs(z)] ≤
(
NF (t) + t

1
1+b

)
4KM2L2

K = O
(
ln(t)2t

1
1+b

)
,

where fs(z) = infλ∈¬εz ∥µs−1 − λ∥2Vws
.

Proof. Let Bs as in (24) for all s ∈
r⌈

t
1

1+b

⌉
, t

z
. Since fs(z) ≥ 0, we can drop the the first positive terms and the ones for
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which the good event Bs doesn’t hold, i.e.
r
n0 + 1,

⌈
t

1
1+b

⌉
− 1

z
∪
{
s ∈

r⌈
t

1
1+b

⌉
, t

z
: ¬Bs

}
, hence

min
z∈Z

t∑
s=n0+1

[fs(z̃s)− fs(z)]

≤ min
z∈Z

∑
s∈

s⌈
t

1
1+b

⌉
,t

{
1(Bs)[fs(z̃s)− fs(z)] +

∑
s∈

s⌈
t

1
1+b

⌉
,t

{
1(¬Bs)fs(z̃s) +

∑
s∈

s
n0+1,

⌈
t

1
1+b

⌉
−1

{
fs(z̃s)

= min
z∈Z

t∑
s=n0+1

1(Bs)[fs(zF (µ))− fs(z)] +
∑

s∈
s⌈

t
1

1+b

⌉
,t

{
1(¬Bs)fs(z̃s) +

∑
s∈

s
n0+1,

⌈
t

1
1+b

⌉
−1

{
fs(z̃s)

≤
∑

s∈
s⌈

t
1

1+b

⌉
,t

{
1(¬Bs)fs(z̃s) +

∑
s∈

s
n0+1,

⌈
t

1
1+b

⌉
−1

{
fs(z̃s)

where we used that the best constant policy for (fs) is by definition better than the constant policy playing zF (µ). By
boundedness assumption, we have fs(z̃s) ≤ 4KM2L2

K for all s. Therefore, under Et,

min
z∈Z

t∑
s=n0+1

[fs(z̃s)− fs(z)] ≤
(
NF (t) + t

1
1+b

)
4KM2L2

K = O
(
ln(t)2t

1
1+b

)
.

E.5.3. UPPER BOUNDING CUMULATIVE SUMS

Lemma E.22 is very similar to Lemma 9 in Degenne et al. (2019) and Lemma 15 in Jourdan et al. (2021), the novelty lies in
using Lemma E.9 to obtain tighter upper bounds. It gives an upper bound on the cumulative sum of the reweighted inverse
of the empirical allocations.

Lemma E.22. The tracking procedure, which draws at ∈ argmina∈K Na
t−1 −W a

t where Wt = Wt−1 + wt, ensures that
for all t ∈ N,

∑
a∈K

t∑
s=n0

wa
s

Na
s

≤ K ln(K) +K ln (t) and
∑
a∈K

t∑
s=n0+1

wa
s

Na
s−1

≤ K ln(K) + 2K ln (t)

∑
a∈K

t∑
s=n0

wa
s√
Na

s

≤ K ln(K) + 2
√
Kt and

∑
a∈K

t∑
s=n0+1

wa
s

Na
s−1

≤ K ln(K) + 2
√
2Kt

Proof. Let’s prove the first and the third inequality. Let a ∈ K and ta0 be the first time such that:
∑ta0−1

s=1 wa
s > ln(K)− 1.

Since wa
ta0−1 ≤ 1, this yields

∑ta0−1
s=1 wa

s ≤ ln(K). Since Na
s ≥ 1 for s ≥ n0, we obtain:

t∑
s=n0

wa
s

Na
s

=

ta0−1∑
s=n0

wa
s

Na
s

+

t∑
s=ta0

wa
s

Na
s

≤
ta0−1∑
s=n0

wa
s +

t∑
s=ta0

wa
s

Na
s

≤ ln(K) +

t∑
s=ta0

wa
s

Na
s

t∑
s=n0

wa
s√
Na

s

=

ta0−1∑
s=n0

wa
s√
Na

s

+

t∑
s=ta0

wa
s√
Na

s

≤
ta0−1∑
s=n0

wa
s +

t∑
s=ta0

wa
s√
Na

s

≤ ln(K) +

t∑
s=ta0

wa
s√
Na

s
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Combining the Lemma E.9 and Lemma E.11 for xs = wa
s , we obtain:

t∑
s=ta0

wa
s

Na
s

≤
t∑

s=ta0

wa
s∑s

r=1 w
a
r − ln(K)

≤ ln

(
t∑

s=1

wa
s − ln(K)

)
− ln

ta0−1∑
s=1

wa
s − ln(K)


t∑

s=ta0

wa
s√
Na

s

≤
t∑

s=ta0

wa
s√∑s

r=1 w
a
r − ln(K)

≤ 2

√√√√ t∑
s=1

wa
s − ln(K)− 2

√√√√ta0−1∑
s=1

wa
s − ln(K)

Since
∑ta0−1

s=1 wa
s > ln(K) − 1, we have ln

(∑ta0−1
s=1 wa

s − ln(K)
)

≥ 0. Therefore, we have shown:
∑t

s=ta0

wa
s

Na
s

≤

ln
(∑t

s=1 w
a
s

)
and

∑t
s=ta0

wa
s√
Na

s

≤ 2
√∑t

s=1 w
a
s . By concavity of x 7→ ln(x) (resp. x 7→

√
x) and the fact that∑t

s=1

∑
a∈K wa

s = t, we obtain:

∑
a∈K

t∑
s=n0

wa
s

Na
s

≤ K ln(K) +K ln (t) and
∑
a∈K

t∑
s=n0

wa
s√
Na

s

≤ K ln(K) + 2
√
Kt

For all s ≥ n0, we have Na
s−1 ≥ 1, hence Na

s−1 ≥ 1
2Ns,a. Plugging this inequality in the sum starting from ta0 yields:∑

a∈K
∑t

s=n0+1
wa

s

Na
s−1

≤ K ln(K) + 2K ln (t) and
∑

a∈K
∑t

s=n0

wa
s√

Na
s−1

≤ K ln(K) + 2
√
2Kt.

Lemma E.23 gives an upper bound on the norm of each arms once reweighted by the inverse of the empirical allocation.

Lemma E.23. For all s ∈ Jn0 + 1, tK and all a ∈ K, we have ∥a∥2
V −1
Ns−1

≤ 1
Na

s−1
.

Proof. Recall that K is arbitrary and by initialization Na
s−1 ≥ 1 for all (s, a) ∈ Jn0 + 1, tK ×K. Let a ∈ K. Let’s rewrite

VNs−1 = Ca
s−1 +Na

s−1aa
T where Ca

s−1 =
∑

b∈K:b ̸=a N
b
s−1bb

T. If K = {ea}a∈[d], we have directly that ∥a∥2
V −1
N

= 1
Na . In

the following, we consider the more general case where K ̸= {ea}a∈[d].

Case 1: Ca
s−1 is invertible. Using the Sherman-Morrison formula, we obtain: for all s ∈ Jn0 + 1, tK and all a ∈ K

V −1
Ns−1

= (Ca
s−1)

−1 −Na
s−1

(Ca
s−1)

−1aaT(Ca
s−1)

−1

1 +Na
s−1a

T(Ca
s−1)

−1a

∥a∥2
V −1
Ns−1

= aTV −1
Ns−1

a =
aT(Ca

s−1)
−1a

1 +Na
s−1a

T(Ca
s−1)

−1a
≤ 1

Na
s−1

where for the last inequality, we used that x
1+xy ≤ 1

y (since it is equivalent with 1 + xy ≥ xy which is true) for
x = aT(Ca

s−1)
−1a and y = Na

s−1.

Case 2: Ca
s−1 is not invertible. By initialization, we know that VNs−1

is invertible for all s ∈ Jn0 + 1, tK. Let u ∈
Ker(Ca

s−1) \ {0d}. We have Na
s−1⟨a, u⟩a = VNs−1

u ̸= 0d since VNs−1
is invertible and u ̸= 0d. Given that Na

s−1 > 0
(otherwise VNs−1

= Ca
s−1, hence contradiction with invertible), we obtain that ⟨a, u⟩ > 0, hence u /∈ Span(a)⊥. By

dimension consideration, we obtain Span(a) = Ker(Ca
s−1). This yields directly that a is an eigenvector of VNs−1 with

eigenvalue Na
s−1∥a∥22. Therefore, a is also an eigenvector of V −1

Ns−1
with eigenvalue 1

Na
s−1∥a∥2

2
and we can conclude:

aTV −1
Ns−1

a = aT

(
1

Na
s−1∥a∥2

2
a
)
= 1

Na
s−1

.

Lemma E.24 gives an upper bound on the cumulative sum of the reweighted slacks involved in the optimistic reward.
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Lemma E.24.

t∑
s=n0+1

∑
a∈K

wa
s c

a
s−1 ≤ f

(
t1+b

)
(K ln(K) + 2K ln(t))

t∑
s=n0+1

∑
a∈K

wa
s

√
cas−1 ≤

√
f (t1+b)

(
K ln(K) +

√
8Kt

)

Proof. Using the definition of cas in (20), f
(
(s− 1)1+b

)
≤ f

(
t1+b

)
for all s ≤ t, we obtain:

t∑
s=n0+1

∑
a∈K

wa
s c

a
s−1 ≤

t∑
s=n0+1

∑
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sf
(
(s− 1)1+b

)
∥a∥2

V −1
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≤ f
(
t1+b

) t∑
s=n0+1

∑
a∈K

wa
s∥a∥2V −1

Ns−1

≤ f
(
t1+b

) t∑
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∑
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s

Na
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≤ f
(
t1+b

)
(K ln(K) + 2K ln(t))

where the second to last inequality is obtained by Lemma E.23 and the last one by Lemma E.22. Using the same arguments,
we obtain:

t∑
s=n0+1

∑
a∈K

wa
s

√
cas−1 ≤

√
f (t1+b)

t∑
s=n0+1

∑
a∈K
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≤
√
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t∑
s=n0+1

∑
a∈K

wa
s√

Na
s−1

≤
√

f (t1+b)
(
K ln(K) +

√
8Kt

)

Lemma E.25 gives an upper bound on the cumulative sum of the reweighted KL divergence between the true parameter and
its MLE.

Lemma E.25. Let b > 0 as in (20). Under Et,

t∑
s=

⌈
t

1
1+b

⌉ ∥µs−1 − µ∥2Vws
≤ f

(
t1+b

)
(K ln(K) + 2K ln(t))

Proof. Using Lemma E.16, we obtain:
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1
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⌉
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s∥µs−1 − µ∥2aaT ≤
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1
1+b

⌉
∑
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∑
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s c

a
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≤ f
(
t1+b

)
(K ln(K) + 2K ln(t))

where the second inequality uses wa
s c

a
s−1 ≥ 0 and the last inequality is obtained by Lemma E.24.

F. Implementation Details and Additional Experiments
After presenting the implementations details in Appendix F.1, we display supplementary experiments in Appendix F.2.
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F.1. Implementation Details

Computational Cost of LεBAI When M = Rd, the non-convex set of alternatives can be rewritten as a union over
Z − 1 half-spaces, on which there is a closed-form formula for the closest alternative of Lemma C.1. Therefore, the
stopping-recommendation pair has a computational cost in O(Zd2|Zε(µt−1)|). For the heuristic LεBAI, i.e. z̃t = zt, the
sampling rule has a computational cost in O((K + Z)d2). Computing zF (µt−1) requires solving |Zε(µt−1)| separate
optimization problems. Each one can be rewritten as an easier one-dimensional optimization problem (Garivier & Kaufmann,
2016) which can be solved numerically by using two nested binary searches. Our experiments testify of the feasibility of
that procedure.

Algorithm Implementations We list below more clarifications on the exact implementation of each individual algorithm.

• The discretization of the simplex ∆2 and ∆4 (with 500 and 10000 vectors) is obtained by drawing uniformly vectors in
the simplex, in practice we used a Dirichlet distribution with parameters 1

212 and 1
414.

• The algorithms DKM, LinGame and LεBAI are implemented without the boundedness assumption. In practice, given
(µ, z, w, x) ∈ M×Zε(µ)×△K ×Z \{z}, we used the closed-form formulas for the closest alternative λ0(µ, z, w, x)
and λε(µ, z, w, x) as detailed in Appendix C.3.1.

• We consider the greedy version of LinGapE, which does not have a theoretical guarantee in the general case. We pull
an arm with zt ∈ z⋆(µt−1) and xt = argmaxx̸=zt⟨µt−1, x− zt⟩+ ∥x− zt∥V −1

Nt−1

√
2β(t− 1, δ).

• Likewise, we use the greedy version of XY-Static in order to avoid computing the optimal allocation at each step.

• We set the hyper-parameter of XY-Adaptive to 0.1 as done in Soare et al. (2014); Degenne et al. (2020a). It controls
the length of each phase.

Stopping Threshold Instead of the stopping threshold (6) supported by the theory, we use as heuristic β (t, δ) =

4 ln
(

4+ln(t/2)
δ

)
, where we take the main term and plug in d instead of K. This is similar to what we could obtain with a

threshold tailored to linear bandits and featuring only d. With this choice, the empirical error (number of runs such that
ẑ /∈ Zε(µ)) is lower than the confidence parameter δ. Previous algorithms on BAI settings (Garivier & Kaufmann, 2016;
Degenne et al., 2019; 2020a; Jourdan et al., 2021) were using β (t, δ) = ln

(
1+ln(t)

δ

)
as heuristic for the stopping threshold.

Interestingly, using this coarser stopping threshold for ε-BAI leads to an empirical error which is higher than δ, violating the
(ε, δ)-PAC property. Therefore, we need to be closer to the theoretically validated threshold.

An additional argument in favor of considering the same stopping rule for all BAI algorithm can be seen in the choice of
the stopping threshold itself. DKM (Degenne et al., 2019) uses the concentration results in Garivier & Kaufmann (2016),
LinGame (Degenne et al., 2020a) the ones in (Lattimore & Szepesvári, 2020) and LεBAI the ones in (Kaufmann & Koolen,
2021). Therefore, a fair comparison of the sampling rule requires using the same β(t, δ), as defined above.

Reproducibility To assess our code and reproduce the experiments presented in this paper, you need to unzip the provided
code by running unzip code.zip. All the algorithms and experiments are implemented in Julia 1.6.3 (but also
run on Julia 1.1.1). Plots were generated with the StatsPlots.jl package. Other dependencies are listed in
the Readme.md. The Readme.md file provides detailed julia instructions to reproduce our experiments, as well as a
script.sh to run them all at once. The general structure of the code (and some functions) is taken from the tidnabbil
library.2

F.2. Supplementary Experiments

Supplementary experiments for the multiplicative ε-optimality are shown in Appendix F.2.1. The equivalent experiments for
the additive ε-optimality are displayed in Appendix F.2.2.

In the following, the hard/random instances that are considered are the same as in Section 6. We consider the same choice
of parameters: (ε, δ) = (0.05, 0.01), discretization of the simplex with 500 (resp. 10000) vectors when K = 2 (resp.

2This library was created by (Degenne et al., 2019), see https://bitbucket.org/wmkoolen/tidnabbil. No license were available on the
repository, but we obtained the authorization from the authors.

https://bitbucket.org/wmkoolen/tidnabbil
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K = 4), average (resp. standard deviation) on 5000 runs (resp. sub-samples of size 100). Unless specified otherwise, the
recommendation rule and the Z-oracle return an instantaneous furthest answer, i.e. zt = z̃t ∈ zF (µt−1, Nt−1), and the
stopping-recommendation pair is updated/evaluated at each time t.

F.2.1. MULTIPLICATIVE OPTIMALITY

Below, we present experiments on the multiplicative ε-optimality that were conducted to highlight algorithmic choices.

Figure 5. Empirical stopping time of the modified BAI algorithms with zt ∈ zF (µt−1, Nt−1) on the hard instance (star equals mean).
“-G” denotes when zt ∈ z⋆(µt−1).

Modified BAI Figure 5 conveys the same message as Figure 2. For all modified BAI using (5), considering an instantaneous
furthest answer instead of a greedy answer leads to lower empirical stopping time. Their ratio is 0.928 on average (coherent
with Figure 1(b)). Note that the extension of LinGapE to the multiplicative ε-optimality is not obtained directly as was done
for the additive setting, hence we didn’t displayed it.

Table 4. Empirical stopping time (± σ) with their original stopping rule or with ours (5) on the hard instance (K = Z). The modified BAI
algorithms use (5) with zt ∈ zF (µt−1, Nt−1).

LinGame LinGapE XY-Adaptive

Original 151473 (±18082) 121716 (±14771) 263806 (±36896)
Modified 423 (±51) 414 (±51) 399 (±52)

Original Stopping Rule In Table 4, we displayed the difference between the empirical stopping time of BAI algorithms
using their original stopping rule and ours (5). Their stopping time is 438 times higher when using their original stopping
rule which was designed for an harder problem, i.e. identifying the unique best-answer which is also an ε-optimal answer.

Empirical Allocation Table 5 details the empirical allocations of pulls. Uniform and DKM sample all arms similarly.
Therefore, they stop with almost twice as many samples as the other algorithms whose empirical allocations are close to the
oracle allocation used in the fixed algorithm. As expected, XY-Adaptive outperforms XY-Static and G-Static. We see that
LεBAI slightly outperforms LinGapE and XY-Adaptive, performs better than LinGame and XY-Static and is on par with
the “oracle” fixed algorithm.

Computational Relaxations In Appendix E.2.1, we introduced the sticky and the lazy schemes. Instead of updating the
candidate answer and evaluating the stopping criterion at each time t, the lazy scheme only does it on all time t ∈ T ⊆ N.
The sticky scheme evaluates the stopping criterion at each time t ≥ n0 + 1, but update the candidate answer when
t ∈ T ⊆ N. With a good choice of T , using the sticky/lazy schemes with LεBAI yield an asymptotically optimal algorithm
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Table 5. Average number of pulls per arm and empirical stopping time (± σ) on the hard instance (K = Z). The modified BAI algorithms
use (5) with zt ∈ zF (µt−1, Nt−1).

a1 a2 a3 a4 Total

LεBAI 115 247 19 3 384 (±17)
LinGame 120 239 52 12 423 (±16)

DKM 174 223 173 175 745 (±29)
LinGapE 63 349 1 1 414 (±16)
G-Static 204 227 7 19 458 (±18)
XY-Static 223 224 1 1 449 (±17)

XY-Adaptive 82 315 1 1 399 (±18)
Fixed 96 271 1 1 370 (±16)

Uniform 214 214 214 213 856 (±33)

Figure 6. Empirical stopping time on the hard instance (K = Z) for (a) the lazy and sticky update, and different implementations of (b)
the lazy scheme and (c) the sticky scheme. “-S” denotes the sticky scheme and “-L” the lazy one. The notations for implementations are:
“-C” for the constant one with T0 = 10, “-G” for the geometric one with (T0, γ) = (10, 0.2), “-D” for geometrically decreasing one with
(T0, γ) = (10, 0.2) and “-B” for the Bernoulli one with parameter p = 0.1.

(Appendix E.2.1). To ensure that the strategy is (ε, δ)-PAC, it is sufficient to consider |T | = +∞ (Lemma 3.1), property
satisfied by all the implementations below.

In Figure 6, we test several implementations of lazy/sticky schemes to assess their impact on the empirical stopping time.
They differ by how the infinite grid of time T is defined. The constant implementation uses an arithmetic grid of time with
parameter T0 > n0, i.e. T = {n0 + 1} ∪ {iT0}i∈N⋆ . The geometric implementation uses a geometric grid of time with

parameter T0 > n0 and γ > 0, i.e. T def
= {n0 + 1} ∪ {Ti}i∈N where Ti = ⌈(1 + γ)Ti−1⌉ for i ∈ N⋆. The geometrically

decreasing implementation uses a grid of time with parameter T0 > n0 and γ > 0, i.e. T def
= {n0 + 1} ∪ {Ti}i∈N where

Ti = ⌈(1 + γ√
i
)Ti−1⌉ for i ∈ N⋆. The Bernoulli implementation with parameter p is slightly different as it adds internal

randomness, hence it is not a deterministic strategy anymore. The idea is simple: draw X ∼ B(p), if X = 1 we update the
candidate answer, else we stick to it. The geometrically decreasing implementation is the only implementation ensuring that
LεBAI is an asymptotically optimal algorithm (Appendix E.2.1).

In Figure 6(a), we see that the sticky relaxation allows to perform on par with the algorithm updating the recommendation
rule at each time t. However, when considering the lazy relaxation, we pay the price of not evaluating the stopping rule at
each time t by incurring a slightly higher empirical stopping time. Therefore, depending on the constraints of the practitioner,
the sticky/lazy schemes allow to reduce the computational cost per time step while keeping similar sample complexity.

In Figure 6(b), we observe that the empirical stopping time might be higher depending on the implementation of the lazy
scheme. Overall, algorithms using a lazy scheme suffer from slightly worse sample complexity. This is the price to pay to
drastically reduce the computational cost.

In Figure 6(c), we see that the exact implementation of the sticky scheme has few consequences as regards the empirical
stopping time since they all perform on par with the algorithm updating the recommendation rule at each time t. Therefore,
the sticky scheme is the computational relaxation to adopt when one wishes to reduce the computational cost in a significant
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manner without damaging the empirical performance.

Figure 7. Empirical stopping time on the hard instance (K = Z). “-D” denotes when the D-Tracking is used instead of C-Tracking and
“-NF” denotes the removal of forced exploration.

Tracking And Forced Exploration The tracking procedure that we use throughout the paper is referred as C-Tracking
in the literature, since it tracks the cumulative sum of pulling proportions over arms played by the agent, i.e. at ∈
argmina∈K Na

t−1 − W a
t where Wt =

∑t
s=n0+1 ws. Another commonly considered tracking procedure is D-Tracking

(Garivier & Kaufmann, 2016), in which the pulling proportion over arms played by the agent at time t is directly tracked,
i.e. at ∈ argmina∈K Na

t−1 − (t − n0)w
a
t . In Degenne & Koolen (2019), it is shown that D-Tracking might fail when

several correct answer exist. This explains why we only considered C-Tracking in this paper. In Figure 7, we observe that
considering D-Tracking instead of C-Tracking leads to similar empirical stopping time.

As discussed in Appendix E.3.1, we need a logarithmic forced exploration to conclude the proof, which was not needed
by previous game-based approaches Degenne et al. (2020a). In Figure 7, we see that removing the forced exploration has
almost no impact on the empirical stopping time.

F.2.2. ADDITIVE OPTIMALITY

When comparing the following plots and their equivalent in the main content of the paper, we observe that the characteristic
time and the empirical stopping time in the additive ε-optimality is always smaller than for the multiplicative one (all
other parameters being identical). If there isn’t a natural choice of ε-optimality, this fact might influence the choice of the
practitioner. Overall the messages conveyed by the following plots are the same as the ones highlighted in the multiplicative
ε-optimality case, we report them for the sake of completeness.

Furthest Answer The results observed in Figure 8 are similar to the ones in Figure 1, while the discrepancy is less
noteworthy. The proportion of draws where zF (µ) /∈ z⋆(µ) is not negligible, reaching on average 10%. The impact on the
characteristic time is visible with a ratio on average at 0.95, but it is very slim when considering ε ≤ 0.01. Up to ε ≈ 0.25
the proportion of draws where zF (µ) /∈ z⋆(µ) has a logarithmic increase with ε. Therefore, when they are different, the
furthest answer still outperforms a greedy answer achieving T add

g,ε (µ). We note that this difference is smaller in the additive
ε-optimality than for the multiplicative ε-optimality.

Table 6. Empirical stopping time (± σ) with their original stopping rule or with ours (5) on the hard instance (K = Z). The modified BAI
algorithms use (5) with zt ∈ zF (µt−1, Nt−1).

LinGame LinGapE XY-Adaptive

Original 151473 (±18082) 121716 (±14771) 263806 (±36896)
Modified 393 (±49) 297 (±39) 314 (±38)
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Figure 8. Influence of ε on (a) the proportion of draws where zF (µ) /∈ z⋆(µ), (b) the median (and first/third quartile) of Tadd
ε (µ)

Tadd
g,ε (µ)

, when

zF (µ) /∈ z⋆(µ).

Original Stopping Rule In Table 6, the Original line is unchanged compared to Table 4 since BAI algorithms consider
ε = 0, hence no multiplicative/additive notions of ε-optimality. Similarly, their stopping time is 545 times higher when
using their original stopping rule which was designed for an harder problem, i.e. identifying the unique best-answer which
is also an ε-optimal answer.

Table 7. Empirical stopping time (± σ) for different combinations of sampling rule and recommendation rule on the hard instance with
K = {e1, e2}.

z⋆(µt−1) zF (µt−1) zF (µt−1, Nt−1)

LεBAI 350 (±14) 318 (±12) 318 (±13)
ε-TaS 323 (±12) 298 (±13) 298 (±13)
Fixed 324 (±10) 300 (±11) 300 (±11)

Uniform 477 (±15) 434 (±16) 434 (±16)

Choosing Answers Table 7 conveys the same messages as Table 1. It shows that using greedy is consistently worse than
an (instantaneous) furthest answer, the ratio of their stopping time is 0.917 on average (coherent with Figure 8(b)) and
that instantaneous furthest answer and furthest answer have the same empirical performance. While LεBAI consistently
outperform uniform sampling (73%), it performs slightly worse than ε-TaS and the “oracle” fixed algorithm (tracking the
optimal allocation wF (µ)).

Modified BAI Algorithms and Empirical Allocation The detailed empirical allocations presented in Table 8 bare
similarity with the results shown in Table 5. Likewise, Figure 9 shows similar results as Figure 3. Uniform and DKM
sample all arms equally. Their stopping time is twice as high as the other algorithms whose empirical allocations are close
to the oracle allocation (fixed algorithm). XY-Adaptive outperforms XY-Static and G-Static. We see that LεBAI slightly
outperforms LinGapE and XY-Adaptive, performs better than LinGame and XY-Static and is on par with the “oracle” fixed
algorithm.

Random Instances In Higher Dimensions For random instances and increasing dimension, Figure 10 reveals the same
trends as Figure 4. LεBAI shows competitive empirical performance with modified BAI algorithms. Even though it is
outperformed by LinGapE, LεBAI is almost twice as fast as XY-Adaptive and appears to be slightly more robust than
LinGame to increasing dimension.
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Table 8. Average number of pulls per arm and empirical stopping time (± σ) on the hard instance (K = Z). The modified BAI algorithms
use (5) with zt ∈ zF (µt−1, Nt−1).

a1 a2 a3 a4 Total

LεBAI 77 228 13 3 321 (±13)
LinGame 112 221 49 11 393 (±15)

DKM 169 217 168 169 723 (±27)
LinGapE 47 248 1 1 297 (±13)
G-Static 196 217 7 18 438 (±18)
XY-Static 215 217 1 1 434 (±17)

XY-Adaptive 76 236 1 1 314 (±12)
Fixed 48 251 1 1 300 (±11)

Uniform 211 211 211 210 844 (±33)

Figure 9. Empirical stopping time on the hard instance (K = Z), the star represents the mean. The modified BAI algorithms use (5) with
zt ∈ zF (µt−1, Nt−1).
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Figure 10. Empirical stopping time on random instances (K = Z) for d ∈ {6, 8, 10, 12} (from top left to bottom right). The modified
BAI algorithms use (5) with zt ∈ zF (µt−1, Nt−1).


