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Abstract

We give a sketching-based iterative algorithm
that computes a 1 + ε approximate solution for
the ridge regression problem minx ∥Ax− b∥22 +
λ∥x∥22 where A ∈ Rn×d with d ≥ n. Our algo-
rithm, for a constant number of iterations (requir-
ing a constant number of passes over the input),
improves upon earlier work (Chowdhury et al.,
2018) by requiring that the sketching matrix only
has a weaker Approximate Matrix Multiplication
(AMM) guarantee that depends on ε, along with
a constant subspace embedding guarantee. The
earlier work instead requires that the sketching
matrix has a subspace embedding guarantee that
depends on ε. For example, to produce a 1+ ε ap-
proximate solution in 1 iteration, which requires
2 passes over the input, our algorithm requires
the OSNAP embedding to have m = O(nσ2/λε)
rows with a sparsity parameter s = O(log(n)),
whereas the earlier algorithm of Chowdhury et al.
(2018) with the same number of rows of OSNAP
requires a sparsity s = O(

√
σ2/λε · log(n)),

where σ = ∥A∥2 is the spectral norm of the ma-
trix A. We also show that this algorithm can be
used to give faster algorithms for kernel ridge re-
gression. Finally, we show that the sketch size
required for our algorithm is essentially optimal
for a natural framework of algorithms for ridge
regression by proving lower bounds on oblivious
sketching matrices for AMM. The sketch size
lower bounds for AMM may be of independent
interest.
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1. Introduction
Given a matrix A ∈ Rn×d, a vector b ∈ Rn, and a parameter
λ ≥ 0, the ridge regression problem is defined as:

min
x
∥Ax− b∥22 + λ∥x∥22.

Throughout the paper, we assume n ≤ d, and that x∗ is the
optimal solution for the problem. Let Opt be the optimal
value for the above problem. Earlier work (Chowdhury
et al., 2018) gives an iterative algorithm using so-called
subspace embeddings. The following theorem states their
results when their algorithm is run for 1 iteration. Note that
their algorithm is more general and when run for t iterations,
the error is proportional to εt.

Theorem 1.1 (Theorem 1 of Chowdhury et al. (2018)).
Given A ∈ Rn×d, let V ∈ Rd×n be an orthonormal ba-
sis for the rowspace of matrix A. If S ∈ Rm×d is a matrix
which satisfies

∥V TSTSV − In∥2 ≤ ε/2, (1)

then x̃ = AT(ASTSAT + λIn)
−1b satisfies

∥x̃− x∗∥2 ≤ ε∥x∗∥2.

A matrix S which satisfies (1) is called an ε/2 subspace
embedding for the column space of V , since for any y in
colspan(V ), we have (1 − ε/2)∥y∥22 ≤ ∥Sy∥22 ≤ (1 +
ε/2)∥y∥22. We also frequently drop the term “column space”
and say S is an ε/2 subspace embedding for the matrix V
itself.

There are many oblivious and non-oblivious constructions
of subspace embeddings. As the name suggests, oblivious
subspace embedding (OSE) constructions do not depend
on the matrix V that is to be embedded. OSEs specify a
distribution S such that for any arbitrary matrix V , a random
matrix S drawn from the distribution S is an ε subspace
embedding for V with probability ≥ 1 − δ. On the other
hand, non-oblivious constructions compute a distribution S
that depends on the matrix V that is to be embedded. See
the survey by Woodruff (2014) for an overview.

In many cases, such as in streaming, it is important that the
sketch used is oblivious, since matrix-dependent subspace
embedding constructions may need to read the entire input
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matrix first. Oblivious sketches also allow turnstile updates
to the matrix A in a stream. In the turnstile model of stream-
ing, we receive updates of the form ((i, j), v) which update
Ai,j to Ai,j + v. In our paper we focus on algorithms for
ridge regression that use oblivious sketching matrices.

To satisfy (1), using CountSketch (Clarkson & Woodruff,
2017; Meng & Mahoney, 2013), we can obtain a sketch-
ing dimension of m = O(n2/ε2) for which the matrix
SAT can be computed in O(nnz(A)) time, where nnz(A)
denotes the number of nonzero entries in the matrix A. Us-
ing OSNAP embeddings (Nelson & Nguyen, 2013; Co-
hen, 2016), we can obtain a sketching dimension of m =
O(n1+γ log(n)/ε2) for which the matrix SAT can be com-
puted in time O(nnz(A)/γε). For γ = O(1/ log(n)), we
have m = O(n log(n)/ε2) with SAT that can be computed
in time O(nnz(A) log(n)/ε). We can see that there is a
tradeoff between CountSketch and OSNAP — one has a
smaller sketching dimension while the other is faster to
apply to a given matrix. If tSAT is the time required to com-
pute SAT, then x̃ in Theorem 1.1 can be computed in time
O(nnz(A) + tSAT +mnω−1 + nω) where ω is the matrix
multiplication constant. Thus it is important to have both a
small tSAT and small m to obtain fast running times.

When allowed O(log(1/ε)) passes over the input matrix A,
the algorithm of Chowdhury et al. (2018) produces an ε rel-
ative error solution using only a constant, say 1/2 subspace
embedding. When only O(1) passes are allowed over the
input, their algorithm requires a δ = f(ε) subspace embed-
ding to obtain ε error solutions. As seen above this leads to
either a high value of m or a high value of tSAT .

We show that we only need a simpler Approximate Matrix
Multiplication (AMM) guarantee, along with a constant
subspace embedding, instead of requiring S to be an ε/2
subspace embedding.
Definition 1.2 (AMM). Given matrices A and B of appro-
priate dimensions, a matrix S satisfies the ε-AMM property
for (A,B) if

∥ATSTSB −ATB∥F ≤ ε∥A∥F∥B∥F.

We now state the guarantees of our algorithm (Algorithm 1)
for 1 iteration, requiring 2 passes over the matrix A.
Theorem 1.3. If S is a random matrix such that for any
fixed d × n orthonormal matrix V and a vector r, with
probability ≥ 9/10,

∥V TSTSV − In∥2 ≤ 1/2

and

∥V TSTSV r − r∥2 ≤ (ε/2
√
n)∥V ∥F∥V r∥2 = (ε/2)∥r∥2,

(2)
then x̃ = AT(ASTSAT + λIn)

−1b satisfies ∥x̃ − x∗∥2 ≤
ε∥x∗∥2 with probability ≥ 9/10.

We show that the OSNAP distribution satisfies both of
these two properties with a sketching dimension of r =
O(n log(n)+n/ε2) and with SAT that can be computed in
O(nnz(A) · log(n)) time. Note that our algorithm (Algo-
rithm 1) is also more general, and when run for t iterations,
the error is proportional to εt. Our algorithm differs from
that of Chowdhury et al. (2018) in that our algorithm needs
a fresh sketching matrix in each iteration whereas their al-
gorithm only needs one sketching matrix across iterations.

Many natural problems in the streaming literature have been
studied specifically with 2 passes (Chen et al., 2021; Konrad
& Naidu, 2021; Assadi & Raz, 2020; Brody & Woodruff,
2011). Also in the case of federated learning, where mini-
mizing the number of rounds of communication is important
(Park et al., 2021), the smaller sketch sizes required by our
algorithm (Algorithm 1) gives an improvement over the
algorithm of Chowdhury et al. (2018).

We can also bound the cost of x̃ computed by our algorithm.
For any x ∈ Rd, let cost(x) = ∥Ax−b∥22+λ∥x∥22. Bounds
on ∥x̃− x∗∥2 also let us obtain an upper bound on cost(x̃).
It can be shown that for any vector x, cost(x̃) = Opt +
∥A(x∗ − x̃)∥22 + λ∥x∗ − x̃∥22. Thus, ∥x̃− x∗∥2 ≤ ε∥x∗∥2
implies that cost(x̃) = Opt + (σ2 + λ)ε2∥x∗∥22 ≤ (1 +
(1 + σ2/λ)ε2)Opt. Throughout the paper, we are most
interested in the case σ2 ≥ λ, as it is when cost(x̃) could
be much higher than Opt. Setting ε = O(

√
δλ/σ2), we

obtain that the solution x̃ returned by Theorem 1.3 is a 1+ δ
approximation.

We also show that our algorithm can be used to obtain ap-
proximate solutions to Kernel Ridge Regression with a poly-
nomial kernel. We show that instantiating the construction
of Ahle et al. (2020) with appropriate sketching matrices
gives a fast way to apply sketches, satisfying the subspace
embedding and AMM properties, to the matrix ϕ(A), where
the i-th row of the matrix ϕ(A) is given by A⊗p

i∗ .

1.1. Lower bounds for Ridge Regression

It can be seen that the optimal solution x∗ = AT(AAT +
λIn)

−1b. Our algorithm, for one iteration, is simply to
compute x̃ = AT(ASTSAT + λIn)

−1b for a matrix S
that satisfies the requirements in Theorem 1.3. All the
algorithm does is substitute the expensive matrix prod-
uct AAT, which can take O(n · nnz(A)) time to com-
pute, with the matrix product ASTSAT, which only takes
tSAT +mnω−1 time to compute. Thus, constructing “good”
distributions for which x̃ is a 1 + ε approximation seems
to be the most natural way to obtain fast algorithms for
ridge regression. As discussed previously, OSNAP matrices
with m = O(n log(n) + nσ2/λε) and having near-optimal
tSAT = Õ(nnz(A)) can be used to compute a solution x̃
that is a 1 + ε approximation. We show that for a large
class of nice-enough distributions over m× d matrices S , if



Sketching Algorithms and Lower Bounds for Ridge Regression

S ∼ S satisfies that x̃ = AT(ASTSAT + λI)−1b is a 1+ ε
approximation with high probability, then r = Ω(nσ2/λε).
This shows that OSNAP matrices have both a near-optimal
sketching dimension r and near-optimal time tSAT . We
show the lower bound by showing that for any “nice” dis-
tribution S for which x̃ is a 1 + ε approximation with high
probability, the distribution must also satisfy an Approxi-
mate Matrix Multiplication (AMM) guarantee, i.e., for any
matrix B, for S ∼ S, ∥BTSTSB −BTB∥F must be small
with high probability. We then show a lower bound on m
for any distribution S which satisfies the AMM guarantee.
Here we demonstrate our techniques in the simple case of
n = 1. Without loss of generality, we assume λ = 1.

Consider the ridge regression problem minx(a
Tx − b)2 +

∥x∥22, where a is an arbitrary d-dimensional vector. We
have x̃ = a(aTSTSa+ 1)−1b and

cost(x̃) =
( ∥a∥22b
∥Sa∥22 + 1

− b

)2

+
∥a∥22

(∥Sa∥22 + 1)2
b2

whereas Opt = b2/(∥a∥22 + 1). For ∥a∥2 ≥ 100/
√
ε, it

turns out that unless (1 − √ε/∥a∥2)∥a∥22 ≤ ∥Sa∥22 ≤
(1+

√
ε/∥a∥2)∥a∥22, we will have cost(x̃) ≥ (1+ ε/2)Opt.

Thus for x̃ to be a 1 + ε/2 approximation with probabil-
ity ≥ 99/100 for any arbitrary a, it must be the case that
with probability ≥ 99/100, |aTa − aTSTSa| = |∥a∥22 −
∥Sa∥22| ≤ (

√
ε/∥a∥2)∥a∥22 i.e., S must satisfy the AMM

property with parameter
√
ε/∥a∥2. We show an Ω(1/δ2)

lower bound for any distribution which satisfies the δ-AMM
property, which gives a lower bound of Ω(∥a∥22/ε) for ridge
regression for n = 1.

For the case of general n, we show that any “nice” distribu-
tion S that gives 1 + ε approximate solutions for ridge re-
gression must satisfy the

√
ε/nσ2-AMM guarantee, which

by using the lower bound for AMM, gives an Ω(nσ2/ε)
lower bound for ridge regression.

To prove the lower bound, we crucially use the fact that
the sketching distribution S must satisfy that x̃ is a 1 + ε
approximation for any particular ridge regression problem
instance (A, b) with high probability.

1.2. Lower bounds for AMM

We prove the following lower bound for oblivious sketching
matrices that give AMM guarantees.

Theorem 1.4 (Informal). If S is a distribution over m× d
matrices such that for any n× d matrix A, S ∼ S satisfies
with probability ≥ 99/100, that

∥ASTSAT −AAT∥F ≤ δ∥A∥F∥AT∥F,

for δ ≤ c/
√
n, then m = Ω(1/δ2) where c > 0 is a small

enough universal constant.

To the best of our knowledge, this is the first tight lower
bound on the dimension of oblivious sketching matrices for
AMM. The lower bound is tight up to constant factors as the
CountSketch distribution with m = O(1/δ2) rows has the
above property. Note that for δ = ε/n, the distribution S as
in the above theorem satisfies that for any d×n orthonormal
matrix V , with probability ≥ 99/100,

∥V TSTSV − In∥F ≤ (ε/n)∥V ∥2F = ε.

Thus, a distribution S that has the ε/n-AMM property also
has the ε-subspace embedding property. Nelson & Nguyen
(2014) gives an Ω(n/ε2) lower bound for such distribu-
tions, thus giving an Ω(1/(δ2n)) lower bound for δ-AMM
for small enough δ. The above theorem gives a stronger
Ω(1/δ2) lower bound.

We now give a brief overview of our proof for n = 1.
Consider a ∈ Rd to be a fixed unit vector and let S be a
distribution supported on r × d matrices as in the above
theorem. Then we have PrS∼S [|aTSTSa− 1| ≤ δ] ≥ 0.99.
Let UΣV T be the singular value decomposition of S with
Σ ∈ Rr×r. Without loss of generality, we can assume
that V T is independent of Σ and that V T is a uniformly
random orthonormal matrix. This follows from the fact
that if S is an oblivious AMM sketch, then SQ is also an
oblivious AMM sketch, where Q is a uniformly random
d× d orthogonal matrix independent of S. Thus, we have
PrΣ,V T [|aTV Σ2V Ta − 1| ≤ δ] ≥ 0.99, where Σ and V T

are random matrices that correspond to the AMM sketch S,
as described.

Jiang & Ma (2017) show that if m = o(d), then the total vari-
ation distance between V Ta and (1/

√
d)g is small, where

g is an m dimensional vector with independent Gaussian
entries. Thus, we obtain that PrΣ,g[|(1/d)gTΣ2g − 1| ≤
δ] = PrΣ,g[|(1/d)

∑m
i=1 σ

2
i g

2
i − 1| ≤ δ] ≥ 0.95.

If
∑m

i=1 σ
2
i ≤ d/200, then (1/d)

∑m
i=1 σ

2
i g

2
i ≤ 1/2

with probability ≥ 0.99 by Markov’s inequality. So,
PrΣ[

∑m
i=1 σ

2
i ≤ d/200] must be small. On the other

hand, Var((1/d)
∑

i σ
2
i g

2
i ) = (2/d2)

∑m
i=1 σ

4
i . Thus for

(1/d)
∑m

i=1 σ
2
i g

2
i to concentrate in the interval (1−δ, 1+δ),

we would expect
√

Var((1/d)
∑

i σ
2
i g

2
i ) ≈ δ, which im-

plies (2/d2)
∑m

i=1 σ
4
i ≈ δ2. Thus, with a reasonable proba-

bility, it must be simultaneously true that d/200 ≤∑m
i=1 σ

2
i

and
∑m

i=1 σ
4
i ≈ d2δ2/2. Then,

d2/(200)2 ≤
(

m∑
i=1

σ2
i

)
≤ m

m∑
i=1

σ4
i ≈ md2δ2/2,

thus obtaining m ≳ Ω(1/δ2). We extend this proof idea to
the general case of n ≥ 1.

Non-asymptotic upper bounds on the total variation (TV)
distance between Gaussian matrices and sub-matrices of
random orthogonal matrices obtained in recent works (Jiang
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& Ma, 2017; Li & Woodruff, 2021) let us replace the ma-
trices that are harder to analyze with Gaussian matrices in
our proof of the lower bound for AMM. We believe this
technique could be helpful in proving tight lower bounds
for other types of sketching guarantees.

1.3. Other Contributions

We also show lower bounds on the communication complex-
ity for approximating the optimal value of the ridge regres-
sion problem, which is a different, but related problem, to
the computation of 1 + ε approximate solutions which is
studied in this paper. We obtain an Ω(1/ε2) bit lower bound
for ridge regression when σ2/λ ≈ 1. The hard instance is
a two-party communication game on a 2 × d matrix, for
which one party has the first row and the other party has the
second row. Surprisingly, if each party has d/2 columns of
the design matrix A = [A1 A2], then they can compute the
exact optimal value if the first party communicates A1A

T
1

to the second party using O(n2) words of communication.
This suggests that the turnstile streaming setting is harder
than the column arrival setting for streaming algorithms for
ridge regression. We stress that our algorithm to compute
a (1 + ε)-approximate solution to ridge regression works
in the turnstile streaming setting by maintaining SAT in a
stream. Nevertheless, to output the d dimensional solution
x̃, our algorithm needs to compute one matrix-vector prod-
uct with AT at the end of the stream, necessitating a second
pass over the stream.

In contrast, we obtain Ω(d) bit communication complexity
lower bounds for the Lasso and square-root Lasso objectives,
even for computing 1 + c approximations to the optimum
value for a small enough constant c. Fast algorithms for
these objectives seem to be harder to find and as the lower
bounds indicate, there may not be sketching-based algo-
rithms for these problems.

We defer most of the proofs to the supplementary material.
We also include an experiment there comparing the time
required by our algorithm to the time required to compute
the exact solution for ridge regression.

2. Preliminaries
For n ∈ Z, [n] denotes the set {1, . . . , n}. Given a ma-
trix A ∈ Rn×d, let nnz(A) denote the number of nonzero
entries in A. For the matrix A, ∥A∥F denotes the Frobe-
nius norm (

∑
i,j A

2
i,j)

1/2 and ∥A∥2 denotes the spectral
(operator) norm maxx̸=0 ∥Ax∥2/∥x∥2. When there is no
ambiguity, throughout the paper we use σ to denote ∥A∥2.
Let A = UΣV T be the Singular Value Decomposition
(SVD) with U ∈ Rn×ρ, Σ ∈ Rρ×ρ, and V ∈ Rd×ρ, where
ρ = rank(A). For arbitrary matrices M,N , the symbol
tMN denotes the time required to compute the product MN .

We use uppercase symbols A,U, V, S, . . . to denote matrices
and lowercase symbols a, b, u, v, . . . to denote vectors. For
a matrix A, Ai∗ (A∗i) denotes the i-th row (column). We use
boldface symbols U,V,S, r, . . . to stress that these objects
are random and are explicitly sampled from an appropriate
distribution.

Definition 2.1 (Approximate Matrix Multiplication). Given
an integer d, we say that an m× d random matrix S has the
(ε, δ)-AMM property if for any matrices A and B with d
rows, we have that

∥ATSTSB −ATB∥F ≤ ε∥A∥F∥B∥F.

with probability ≥ 1− δ over the randomness of S.

We usually drop δ from the notation by picking it to be a
small enough constant.

Definition 2.2 (Oblivious Subspace Embeddings). Given
an integer d, an m×d random matrix S is an (ε, δ)-OSE for
n-dimensional subspaces if for any arbitrary d× n matrix
A, with probability ≥ 1− δ, simultaneously for all vectors
x,

∥SAx∥22 ∈ (1± ε)∥Ax∥22.

For both OSEs and distributions satisfying the (ε, δ)-AMM
property, two major parameters of importance are the size
of the sketch (m), and the time to compute SA (tSA). See
Woodruff (2014) and the references therein for several OSE
constructions and their corresponding parameters.

3. Iterative Algorithm for Ridge Regression
The following theorem describes the guarantees of the solu-
tion x̂ returned by Algorithm 1.

Theorem 3.1. If Algorithm 1 samples independent sketching
matrices Sj ∈ Rm×d for all j ∈ [t] satisfying the properties

1. with probability ≥ 1 − 1/(20t), for all vectors x,
∥SjA

Tx∥22 ∈ (1± 1/2)∥ATx∥22, and

2. for all arbitrary matrices M,N , with probability ≥
1− 1/(20t),

∥MTST
j SjN −MTN∥F ≤

√
ε/4n∥M∥F∥N∥F,

then with probability ≥ 9/10, ∥x̂ − x∗∥2 ≤ (
√
ε)t∥x∗∥2

and further cost(x̂) ≤ (1 + (σ2/λ+ 1)εt)Opt.

We prove a few lemmas which give intuition about the
algorithm before proving the above theorem.

After i − 1 iterations of the algorithm,
∑i−1

j=1 x̃
(j) is the

estimate for the optimum solution x∗. At a high level, in
the i-th iteration, the algorithm is trying to compute an
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Algorithm 1 RIDGEREGRESSION

Input: A ∈ Rn×d, b ∈ Rd, t ∈ Z, ε, λ > 0
Output: x̂ ∈ Rd

b(0) ← b, x̃(0) ← 0d, y(0) ← 0n
for j = 1, . . . , t do
b(j) ← b(j−1) − λy(j−1) −Ax̃(j−1)

Sj ← 1/2 subspace embedding for the rowspace of A
and has the

√
ε/4n AMM property

y(j) ← (AST
j SjA

T + λI)−1b(j)

x̃(j) ← ATy(j)

end for
x̂←∑t

j=1 x̃
(j)

return x̂

approximation to the difference x∗−∑i−1
j=1 x̃j by computing

an approximate solution to the problem

min
x
∥A(x+

i−1∑
j=1

x̃j)− b∥22 + λ∥x+

i−1∑
j=1

x̃j∥22.

Let x∗(j) = AT(AAT + λI)−1b(j). The following lemma
shows that the solution to the above problem is x∗(i).

Lemma 3.2. For all i, x∗ = x∗(i) +
∑i−1

j=1 x̃
(j).

Proof. Let f(x) = ∥A(x +
∑i−1

j=1 x̃
(j)) − b∥22 + λ∥x +∑i−1

j=1 x̃
(j)∥22 and z be the solution realizing minx f(x). We

have∇xf(x) |x=z = 0 giving z = (ATA+ λI)−1(ATb−
(ATA+ λI)

∑i−1
j=1 x̃

(j)).

Noting that x̃(j) = ATy(j) for all j and that for all i,
b(i) = b − λ

∑i−1
j=1 y

(j) −∑i−1
j=1 Ax̃(j−1), we obtain that

z = (ATA+ λI)−1ATb(i). Now using the matrix identity
(ATA+ λI)−1AT = AT(AAT + λI)−1, we get z = x∗(i)

is the optimal solution to minx f(x).

As x∗(i) is the optimal solution, it is also clear that x∗ =
x∗(i) +

∑i−1
j=1 x̃

(j) since otherwise x∗ is not the optimal
solution for the original ridge regression problem, which is
a contradiction.

So by the end of the (j − 1)-th iteration, the estimate to x∗

is off by x∗(j). The algorithm is approximating x∗(j) =
AT(AAT + λI)−1b∗(j) with x̃(j) = AT(AST

j SjA
T +

λI)−1b∗(j). The following lemma gives the error of this
approximation assuming that the sketching matrix Sj has
both the subspace embedding and AMM properties. This
is the part where our proof differs from that of the proof of
Chowdhury et al. (2018).

Lemma 3.3. If Sj is drawn from a distribution such that
for any fixed matrix AT, Sj is a 1/2 subspace embedding

with probability 1−δ and for any fixed matrices M,N , with
probability 1− δ,

∥MTST
j SjN −MTN∥F ≤

√
ε/n∥M∥F∥N∥F,

then with probability ≥ 1 − 2δ, ∥x∗(j) − x̃(j)∥2 ≤
(2
√
ε)∥x∗(j)∥2.

Proof. Let A = UΣV T be the singular value decompo-
sition of A. We have x∗(j) = V Σ(I + Σ2)−1UTb(j).
By using (I + Σ2)−1 = Σ−1(I + Σ−2)−1Σ−1, we get
x∗(j) = V (I + Σ−2)−1Σ−1UTb(j). Let v(j) = (I +
Σ−2)−1Σ−1UTb(j) which gives x∗(j) = V v(j).

Similarly, x̃(j) = V (V TST
j SjV + Σ−2)−1Σ−1UTb(j).

Writing V TST
j SjV = In + E, we have

x̃(j) = V (I +Σ−2 + E)−1Σ−1UTb(j)

= V (I + (I +Σ−2)−1E)−1(I +Σ−2)−1Σ−1UTb(j)

= V (I + (I +Σ−2)−1E)−1v(j).

As ∥E∥2 ≤ 1/2, the inverse (I + (I + Σ−2)−1E)−1 is
well-defined. Since the matrix V has orthonormal columns,
∥x̃(j)−x∗(j)∥2 = ∥(I+(I+Σ−2)−1E)−1v(j)−v(j)∥2. Let
(I+(I+Σ−2)−1E)−1v(j) = v(j)+∆ and we have v(j) =
v(j) + (I +Σ−2)−1Ev(j) + (I + (I +Σ−2)−1E)∆ which
implies (I + (I + Σ−2)−1E)∆ = −(I + Σ−2)−1Ev(j).
Finally,

(1/2)∥∆∥2 ≤ σmin(I + (I +Σ−2)−1E)∥∆∥2
≤ ∥(I + (I +Σ−2)−1E)∆∥2
= ∥(I +Σ−2)−1Ev(j)∥2 ≤ ∥Ev(j)∥2.

which gives ∥x∗(j) − x̃(j)∥2 = ∥V∆∥2 ≤ 2∥Ev(j)∥2. If
the matrix Sj has a

√
ε/n-AMM property i.e.,

∥V TST
j SjV v(j) − V TV v(j)∥2 ≤

√
ε/n∥V ∥F∥v(j)∥2

=
√
ε∥v(j)∥2,

we have ∥Ev(j)∥2 ≤
√
ε∥V v(j)∥2 and that ∥x∗(j) −

x̃(j)∥2 ≤ 2
√
ε∥v(j)∥2 = 2

√
ε∥x∗(j)∥2.

Proof of Theorem 3.1. By a union bound, with probability
≥ 9/10, in all t iterations, we can assume that the matrices
Sj have both the subspace embedding property for the col-
umn space of AT, as well as the AMM property for V and
v(j).

From Lemma 3.2, ∥x̂−x∗∥2 = ∥x̃(t)+
∑t−1

i=1 x̃
(i)−x∗∥2 =

∥x̃(t) − x∗(t)∥2 ≤ (
√
ε)∥x∗(t)∥2. We also have

x∗ = x∗(j−1) +

j−2∑
i=1

x̃(i) = x∗(j) +
j−1∑
i=1

x̃(i)
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which implies x∗(j) = x∗(j−1) − x̃(j−1) and therefore,
∥x∗(j)∥2 = ∥x̃(j−1) − x∗(j−1)∥2 ≤

√
ε∥x∗(j−1)∥2 for all

j, where the last inequality follows from Lemma 3.3. Now
noting that x∗(1) = x∗, we obtain ∥x̂−x∗∥2 ≤ (

√
ε)t∥x∗∥2

and using the Pythagorean theorem,

cost(x̂) ≤ Opt + (σ2 + λ)∥x̂− x∗∥22
≤ Opt + (σ2 + λ)εt∥x∗∥22.

As λ∥x∗∥22 ≤ Opt, we obtain the result.

We now show that the OSNAP distribution has both the
properties required by Algorithm 1.

3.1. Properties of OSNAP

Nelson & Nguyen (2013) proposed OSNAP, an oblivious
subspace embedding. OSNAP embeddings are parameter-
ized by their number m of rows and their sparsity s. Es-
sentially, OSNAP is a random m × d matrix S, with each
column having exactly s nonzero entries at random loca-
tions. Each nonzero entry is ±1/√s with probability 1/2
each. They show that if the positions of the nonzero en-
tries satisfy an “expectation” property and if the nonzero
values are drawn from a k-wise independent distribution for
a sufficiently large k, then S is an OSE.

Theorem 3.4 (Informal, (Nelson & Nguyen, 2013)). If
m = O(n1+γ poly(log(n), 1/ε)/ε2) and s = O(1/γε),
then OSNAP is an ε-OSE for n dimensional spaces. Further,
tSA = O(nnz(A)/γε) for any d× n matrix A.

In the supplementary, we show that OSNAP with any spar-
sity parameter s and m = Ω(1/ε2) has the ε-AMM property.
We state our result as the following lemma.

Lemma 3.5. OSNAP with m = Ω(1/ε2δ) and sparsity
parameter s ≥ 1 has the (ε, δ)-AMM property.

3.2. Running times : Embedding vs Current Work

As discussed in the introduction, the algorithm of Chowd-
hury et al. (2018) is better than ours when O(log(1/ε))
passes over the matrix A are allowed, as we require a fresh
1/2 subspace embedding in each iteration and they require
only one 1/2 subspace embedding. However, our algorithm
is faster when the algorithm is restricted to t = O(1) passes
over the input. We compare the running time of our algo-
rithm with theirs when both algorithms are run only for 1
iteration to obtain 1 + ε approximate solutions. For ease of
exposition, we consider the case when σ2/λ = O(1).

From Theorem 1.1, the algorithm of Chowdhury et al.
(2018) requires a c

√
ε subspace embedding to output a

1 + ε approximation to ridge regression. By applying a
sequence of CountSketch and OSNAP sketches, we can
obtain a c

√
ε embedding with m = npoly(log(n))/ε and

tSAT = O(nnz(A) + n3 poly(log(n))/
√
ε) or by directly

applying OSNAP, we obtain m = n poly(log(n))/ε and
tSAT = O(nnz(A) poly(log(n))/

√
ε).

From Theorem 3.1, our algorithm needs a random matrix
that has the 1/2 subspace embedding property and the
c
√
ε/n-AMM property to compute a 1 + ε approxima-

tion. OSNAP with m = O(n/ε + npoly(log(n))) and
s = O(poly(log(n))) has this property giving tSAT =
O(nnz(A) poly(log(n))).

Finally, the total time to compute x̃ is

O(tSAT +mnω−1 + nω),

where ω < 3 denotes the matrix multiplication exponent.
For the algorithm of Chowdhury et al. (2018), depending
on the sketching matrices used as described above, the total
running time is either

O(nnz(A) + n3 poly(log(n))/
√
ε+ nω poly(log(n))/ε)

or

O(nnz(A) poly(log(n))/
√
ε+ nω poly(log(n))/ε).

For Algorithm 1 with t = 1, the total running time is
O(nnz(A) poly(log(n)) + nω poly(log(n))/ε). Thus we
have that when nnz(A) ≈ nω/ε, our algorithm is asymp-
totically faster than their algorithm, as our running time
does not have the n3 term and nnz(A)/

√
ε terms. We note

that although the fastest matrix multiplication algorithms
are sometimes considered impractical, Strassen’s algorithm
is already practical for reasonable values of n, and gives
ω < log2 7. If we consider the algorithm of Chowdhury et al.
(2018) using just the OSNAP embedding, our algorithm is
faster by a factor of 1/

√
ε, which could be substantial when

ε is small.

Even non-asymptotically, our result shows that we can re-
place the sketching matrix in their algorithm with a sketch-
ing matrix that is both sparser and has fewer rows, while still
obtaining a 1 + ε approximation. Both of these properties
help the algorithm to run faster.

4. Applications to Kernel Ridge Regression
A function k : X×X → R is called a positive semi-definite
kernel if it satisfies the following two conditions: (i) For
all x, y ∈ X , k(x, y) = k(y, x), and (ii) for any finite set
S = {s1, . . . , st} ⊆ X , the matrix K = [k(si, sj)]i,j∈[t]

is positive semi-definite. Mercer’s theorem states that a
function k(·, ·) is a positive semi-definite kernel as defined
above if and only if there exists a function ϕ such that
for all x, y ∈ X , k(x, y) = ϕ(x)Tϕ(y). Many machine
learning algorithms only work with inner products of the
data points and therefore all such algorithms can work using
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the function k directly instead of the explicit mapping ϕ,
which in principle could even be infinite dimensional, for
example, as in the case of the Gaussian kernel.

Let the rows of a matrix A be the input data points
a1, . . . , an, and let ϕ(A) denote the matrix obtained by
applying the function ϕ to each row of the matrix A. The
kernel ridge regression problem (see Murphy (2012) for
more details) is defined as

c∗ = argmin
c
∥ϕ(A) · c− b∥22 + λ∥c∥22.

We have that c∗ = ϕ(A)T(ϕ(A) · ϕ(A)T + λI)−1b and
the value predicted for an input x is given by ϕ(x)Tc∗ =
ϕ(x)Tϕ(A)T(ϕ(A) · ϕ(A)T + λI)−1b. Letting β =
(ϕ(A)ϕ(A)T + λI)−1b we have ϕ(x)Tc∗ =

∑
i k(ai, x)βi.

Now, note that the (i, j)-th entry of the matrix K :=
ϕ(A) · ϕ(A)T is given by k(ai, aj) and therefore, to solve
the kernel ridge regression problem, we do not need the
explicit map ϕ(·) and can work directly with the kernel
function. Nevertheless, to construct the matrix K, we need
to query the kernel function k for Θ(n2) pairs of inputs,
which may be prohibitive if the kernel evaluation is slow.

Our result for ridge regression shows that if S is a 1/2
subspace embedding and gives a ε/2

√
n AMM guarantee,

then

c̃ = ϕ(A)T · (ϕ(A) · STS · ϕ(A)T + λI)−1b

satisfies ∥c̃ − c∗∥ ≤ ε∥c∗∥2 and if β̃ := (ϕT(A) · STS ·
ϕ(A)T+λI)−1b, then for a new input x, the prediction on x
can be computed as

∑
i k(ai, x)β̃i. For polynomial kernels,

k(x, y) = ⟨x, y⟩p, given the matrix A, it is possible to
compute S ·ϕ(A)T for a random matrix S that satisfies both
the subspace embedding property and the AMM property,
and hence obtain β̃ without computing the kernel matrix.
The next theorem follows from the proofs of Theorems 1
and 3 of Ahle et al. (2020).

Theorem 4.1. For all positive integers n, d, p, there exists a
distribution on linear sketches Πp ∈ Rm×dp

parameterized
by sparsity s such that: if m = Ω(p/ε2) and any sparsity s,
then Πp has the ε-AMM property, while if m = Ω̃(p4n/ε2)
and s = Ω̃((p4/ε2 poly(log(nd/ε))), then Πp has the ε
subspace embedding property. Further, given any matrix
A ∈ Rn×d, the matrix Πp · ϕ(A)T for ϕ(x) = x⊗p can be
computed in Õ(pnm+ ps · nnz(A)) time.

We show that the construction of Ahle et al. (2020) gives the
above theorem when Sbase is taken to be TensorSketch and
Tbase is taken to be OSNAP. To prove the theorem, we first
prove a lemma which shows that the OSNAP distribution
has the JL-moment property. For a random variable X, let
∥X∥Lt := (E[|X|t])1/t.
Definition 4.2 (JL-Moment Property). For every positive
integer t and parameters ε, δ ≥ 0, we say a random matrix

S ∈ Rm×d satisfies the (ε, δ, t)-JL moment property if for
any x ∈ Rd with ∥x∥2 = 1,

∥∥Sx∥22 − 1∥Lt ≤ εδ1/t and E[∥Sx∥22] = 1.

Lemma 4.3. If S is an OSNAP matrix with m = Ω(1/δε2)
rows and any sparsity parameter s ≥ 1, then S has the
(ε, δ, 2)-JL moment property.

Proof of Theorem 4.1. Let q = 2⌈log2(p)⌉. The construction
of the sketch for polynomial kernels of Ahle et al. (2020)
uses two distributions of matrices Sbase and Tbase. The proof
of Theorem 1 of Ahle et al. (2020) requires that the distri-
butions Sbase and Tbase have the (ε/

√
4q + 2, δ, 2)-JL mo-

ment property. We take Sbase to be TensorSketch and Tbase
to be OSNAP. As Lemma 4.3 shows, OSNAP with m =
Ω(q/δε2) and any sparsity s has the (ε/

√
4q + 2, δ, 2)-JL

moment property.

From Theorem 3 of Ahle et al. (2020), we also have that for
m = Ω̃(p4n/ε2) and sparsity parameter s = Ω̃((p4/ε2) ·
poly(log(nd/ε))), the sketch has the ε-subspace embed-
ding property. The running time of applying the sketch to
ϕ(A)T also follows from the same theorem.

Thus for the sketch to have both the 1/2 subspace embed-
ding property and the ε/

√
4n AMM property, we need to

take m = Ω̃(p4n + pn/ε2) and s = Ω̃(p4 poly(log(nd))).
The time to compute Πp · ϕ(A)T is Õ(p5nnz(A) + p5n2 +
p2n/ε2) and the time to compute β̃ is Õ(p5nnz(A)+p5n2+
p2n2/ε2+ p4nω + pnω/ε2), thereby obtaining a near-input
sparsity time algorithm for polynomial kernel ridge regres-
sion.

5. Lower bounds
Dimensionality reduction, by multiplying the input matrix
A on the right with a random sketching matrix, seems to be
the most natural way to speed up ridge regression. Recall
that in our algorithm above, we show that we only need the
sketching distribution to satisfy a simple AMM guarantee,
along with being a constant factor subspace embedding, to
be able to obtain a 1 + ε approximation. We show that, in
this natural framework, the bounds on the number of rows
required for a sketching matrix we obtain are nearly optimal
for all “non-dilating” distributions.

More formally, we show lower bounds in the restricted set-
ting where for an oblivious random matrix S, the vector
x̃ = AT(ASTSAT + λI)−1b must be a 1 + ε approxi-
mation to the ridge regression problem with probability
≥ 99/100. We show that the matrix S must at least have
m = Ω(nσ2/λε) rows if S is “non-dilating”.

Definition 5.1 (Non-Dilating Distributions). A distribution
S over m× d matrices is a Non-Dilating distribution if for
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all d× n orthonormal matrices V ,

PrS∼S [∥SV ∥2 ≤ O(1)] ≥ 99/100.

Most sketching distributions proposed in previous work sat-
isfy the property E[V TSTSV ] = V TV = I . Thus the
condition of non-dilation is not very restrictive. For exam-
ple, a Gaussian distribution with O(n) rows satisfies this
condition, and other sketching distributions such as SRHT,
CountSketch, and OSNAP with O(n log(n)) rows all sat-
isfy this condition with O(1) replaced by at most O(log(n)).
Though we prove our lower bounds for non-dilating distri-
butions with O(1) distortion, the lower bounds also hold
with distributions with O(log(n)) distortion with at most an
O(log(n)) factor loss in the lower bound.

For n′ ≥ n, let On′×n denote the collection of n′ × n
orthonormal matrices V ∈ Rn′×n i.e., V TV = In. Without
loss of generality, we assume that λ = 1.

Assume that there is a distribution S over m× d matrices
such that given an arbitrary matrix A ∈ Rn×d and b ∈ Rn

such that for S ∼ S, with probability ≥ 99/100,

∥Ax̃− b∥22 + ∥x̃∥22 ≤ (1 + ε)Opt,

where x̃ = AT(ASTSAT+I)−1b. Given an instance (A, b),
let S be a goodA,b matrix if the above event holds, i.e., x̃ is
a 1 + ε approximation. Let b be a fixed unit vector. Thus,
from our assumption,

PrU∼On×n,V∼Od×n,S∼S [S is goodσUVT,b] ≥ 99/100.
(3)

For the problem (σUVT, b) where b is a fixed unit vector,
we have Opt = 1/(1 + σ2). We also have for v = (Σ−2 +
VTSTSV)−1Σ−1UTb that

cost(x̃)− Opt = vTEΣ(I − (Σ2 + I)−1)ΣEv

≥ λmin(I − (Σ2 + I)−1)∥ΣEv∥22,

where E = VTSTSV−VTV, which is the error in approx-
imating the identity matrix using the sketch S, and Σ is the
matrix of singular values of σUVT. In our case, Σ = σIn
for some σ ≥ 1 which implies that

cost(x̃)− Opt ≥ 1

2
∥E(σ−2I +VTSTSV)−1UTb∥22

once we cancel out Σ and Σ−1. Thus, if S is good(σUVT,b),

∥E(σ−2I +VTSTSV)−1UTb∥22 ≤
2ε

1 + σ2
≤ 2ε

σ2
.

Therefore, PrU,V,S[∥E(σ−2I + VTSTSV)−1UTb∥22 ≤
2ε/σ2] ≥ PrU,V,S[S is goodσUVT,b] ≥ 99/100. Now, for
a fixed unit vector b, the vector UTb is a uniformly random
unit vector that is independent of V and S. Thus,

PrV,S,r[∥E(σ−2I +VTSTSV)−1r∥22 ≤ 2ε/σ2] ≥ 0.99,

where above and throughout the section, r is a uniformly
random unit vector. Now we transform this property of
the random matrix S into a probability statement about the
Frobenius norm of a certain matrix.

Lemma 5.2 (Random vector to Frobenius Norm). If M ∈
Rn×n is a random matrix independent of the random uni-
form vector r such that PrM,r[∥Mr∥22 ≤ a] ≥ 99/100, then
PrM[∥M∥2F ≤ Can] ≥ 9/10 for large enough constant C.

This lemma implies that for any random matrix S satisfying
(3), we have ∥E(σ−2I +VTSTSV)−1∥2F ≤ Cnε/σ2 with
probability ≥ 9/10 over V,S. Using the non-dilating prop-
erty of S and applying a union bound, we now have with
probability ≥ 8/10,

∥E∥2F ≤
∥E(σ−2I +VTSTSV)−1∥2F
σmin((σ−2I +VTSTSV)−1)2

=
Cnε/σ2

σmin((σ−2I +VTSTSV)−1)2
≤ O(nε/σ2)

where we used the fact that for any invertible matrix A,
1/σmin(A

−1) = σmax(A) and σmax(σ
−2I+VTSTSV) ≤

(1/σ2) + ∥VTSTSV∥2 = O(1) with probability ≥ 9/10.
Thus, a lower bound on the number of rows in the matrix S
to obtain, with probability ≥ 8/10,

∥VTSTSV − I∥F ≤ O(
√
nε/σ2) = O(

√
ε/nσ2)n (4)

implies a lower bound on the number of rows of a random
matrix S that satisfies (3).

5.1. Lower bounds for AMM

Lemma 5.3. Given parameters n and error parameter
ε ≤ c/

√
n for a small enough constant c, for all d ≥ Cn/ε2,

if a random matrix S ∈ Rm×d for all matrices A ∈ Rd×n

satisfies, ∥ATSTSA−ATA∥F ≤ ε∥AT∥F∥A∥F with prob-
ability ≥ 9/10, then m = Ω(1/ε2).

Moreover, the lower bound of Ω(1/ε2) holds even for
the sketching matrices that give the following guarantee:
PrA,S[∥ATSTSA − I∥F ≤ εn] ≥ 0.9, where A is a uni-
formly random d × n orthonormal matrix independent of
the sketch S.

Although the above lemma only shows that an AMM sketch
requires m = Ω(1/ε2) for d ≥ Cn/ε2, we can extend it
to show the lower bound for d ≥ C/ε2 for a large enough
constant C. Note that C/ε2 = Ω(n) since ε ≤ c/

√
n.

Theorem 5.4. Given n ≥ 0 and ε < c/
√
n for a small

enough constant c, there are universal constants C,D such
that for all d ≥ D/ε2, any distribution that has the ε AMM
property for d× n matrices must have ≥ C/ε2 rows.

As discussed in the introduction, we crucially use the fact
that a sub-matrix of a random orthonormal matrix is close
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to a Gaussian matrix in total variation distance to prove the
above theorem. This seems to be a useful direction to obtain
lower bounds for other sketching problems.

5.2. Lower Bound Wrapup

In the case of ridge regression with λ = 1, (4) shows that
the sketching distribution has to satisfy the AMM guarantee
with parameter c

√
ε/nσ2. By using the above hardness

result for AMM, we obtain the following theorem.

Theorem 5.5. If S is a non-dilating distribution over m×d
matrices such that for all ridge regression instances (A, b, λ)
with A ∈ Rn×d, 1 ≤ σ2/λ ≤ α satisfies,

PrS∼S [∥Ax̃− b∥22 + λ∥x̃∥22 ≤ (1 + ε)Opt] ≥ 0.99,

for x̃ = AT(ASTSAT + λI)−1b, then m = Ω(nα/ε) =
Ω(nσ2/λε).

6. Communication Complexity Lower Bounds
for Ridge Regression

Consider a ridge regression matrix A of the form A1 +A2

where Alice has the matrix A1 and Bob has the matrix A2.
To compute a vector y such that ATy is a 1 + ε approxima-
tion, the theorem from the previous section lower bounds
the communication required between Alice and Bob by
Ω(nσ2/λε). The lower bound is crude in that it assumes
that they only communicate A1S

T between them for some
sketch S, and they compute y only as (ASTSAT + λI)−1b.

In this section, we present communication complexity lower
bounds for a different but related problem of computing a
value v such that v = (1 ± ε)Opt in the above two-player
scheme, where Alice has the matrix A1 and Bob has the
matrix A2. We show the lower bound by reducing from the
well-known GAP-HAMMING problem (Indyk & Woodruff,
2003; Woodruff, 2004) to a ridge regression instance with a
2× d design matrix.

In the GAP-HAMMING problem, Alice and Bob receive
vectors x, y ∈ {±1}d and want to decide if dH(x, y) ≥
d/2 + εd or dH(x, y) ≤ d/2 − εd, where dH(x, y) is the
Hamming distance |{i |xi ̸= yi}|. This problem has a
communication complexity lower bound of Ω(1/ε2) bits,
even for multiple rounds (Chakrabarti & Regev, 2012). Let
M be a 2× d matrix with x and y as its rows. Consider the
following ridge regression problem:

min
x
∥Mx−

[
1
−1

]
∥22 + λ∥x∥22.

Let N = dH(x, y). The optimal value of the above ridge
regression problem is given by 2λ/(λ+ 2N). In the case
when N ≥ d/2+ εd and N ≤ d/2+ εd, the optimal values
differ by a factor of 1 + 4ε/(1 + λ/d). So, obtaining a

1 +O(ε/(1 + λ/d)) approximation to ridge regression lets
us solve the Gap-Hamming problem, and hence requires
Ω(1/ε2) bits of communication. As ∥M∥22 = Θ(d), we
obtain an Ω(1/ε2(1+λ/σ2)) bit lower bound for computing
a 1 + ε approximate value for ridge regression.

In contrast to the Ω(1/ε2) type communication lower
bounds on computing 1± ε approximations to the optimal
values of ridge regression, we obtain Ω(d) lower bounds
on the communication complexity of approximating opti-
mal values of Lasso and square-root Lasso objectives even
up to a factor of 1 + c for a small enough constant c > 0.
Concretely, we prove the following results.
Theorem 6.1 (Communication Complexity of Lasso). Let
0 < λ < 1 be the Lasso parameter. If Alice has the n× d
matrix M1 and Bob has the n× d matrix M2, then to deter-
mine a 1 + c approximation, for a small enough constant c,
to the optimal value of

min
z
∥(M1 +M2)z − b∥22 + λ∥z∥1,

requires Ω(d) bits of communication between Alice and
Bob.

Theorem 6.2 (Hardness of Sketching Square-Root Lasso).
Let 0 < λ < 2

√
2/3 be the Lasso parameter. If Alice has

the n × d matrix M1 and Bob has the n × d matrix M2,
then to determine a 1+ c approximation, for a small enough
constant c > 0, to the optimal value of

min
z
∥(M1 +M2)z − b∥2 + λ∥z∥1,

requires Ω(d) bits of communication between Alice and
Bob.

To show these lower bounds, we reduce the classic DIS-
JOINTNESS problem (Håstad & Wigderson, 2007) to com-
puting 1 + c approximations to optimal values of an ap-
propriate Lasso and square-root Lasso problem. See the
supplementary for proofs.
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A. Missing Proofs from Section 4
Proof of Lemma 4.3. For i ∈ [m] and j ∈ [d], let δi,j be the indicator random variable that denotes if the (i, j)-th entry of
the matrix S is nonzero. We have that

∑
i δi,j = s and that for any S ⊆ [m]× [d], E[Π(i,j)∈Sδi,j ] ≤ (s/m)|S|. Also, let

σi,j be the sign of the (i, j)-th entry and let σi,j be 4-wise independent Rademacher random variables. Now,

∥Sx∥22 =
∑
i

|Si∗x|2 =
1

s

∑
i

(
∑
j

δi,jσi,jxj)
2 =

1

s

∑
i

∑
j,j′

δi,jδi,j′σi,jσi,j′xjxj′

=
1

s

∑
i

∑
j

(δi,j)
2(σi,j)

2x2
j +

1

s

∑
i

∑
j ̸=j′

δi,jδi,j′σi,jσi,j′xjxj′ .

We have δ2i,j = δi,j and σ2
i,j = 1 for all i, j. So,

(1/s)
∑
i

∑
j

(δi,j)
2(σi,j)

2x2
j = (1/s)

∑
i

∑
j

δi,jx
2
j = (1/s)

∑
j

x2
j

∑
i

δi,j = (1/s)
∑
j

x2
j · s = ∥x∥22 = 1.

Therefore,

∥Sx∥22 = 1 +
1

s

∑
i

∑
j ̸=j′

δi,jδi,j′σi,jσi,j′xjxj′ .

If σi,j are uniform random signs that are 2-wise independent, then for j ̸= j′, E[σi,jσi,j′ ] = 0 and as the set of random
variables δi,j are independent of the random variables σi,j , we have E[δi,jδi,j′σi,jσi,j′ ] = E[δi,jδi,j′ ]E[σi,jσi,j′ ] = 0 for
j ̸= j′ which implies that E[∥Sx∥22] = 1. We also have

(∥Sx∥22 − 1)2 =
1

s2

∑
i,i′

∑
j ̸=j′

k ̸=k′

δi,jδi,j′δi′,kδi′,k′σi,jσi,j′σi′,kσi′,k′xjxj′xkxk′ .

If i ̸= i′, j ̸= j′, and k ̸= k′, then the random variables σi,j , σi,j′ , σi′,k, and σi′,k′ are distinct and if they are 4-wise
independent Rademacher random variables, then E[σi,jσi,j′σi′,kσi′,k′ ] = 0 which implies that

E[(∥Sx∥22 − 1)2] =
1

s2

∑
i

∑
j ̸=j′

k ̸=k′

E[δi,jδi,j′δi,kδi,k′ ]E[σi,jσi,j′σi,kσi,k′ ]xjxj′xkxk′ .

Again, if all the indices j, j′, k, k′ are distinct, then by the 4-wise independence of the σ random variables, we obtain that
E[σi,jσi,j′σi,kσi,k′ ] = 0, which leaves only j = k ̸= j′ = k′ and j = k′ ̸= j′ = k as the cases where the expectation can
be non-zero. In each of these cases, σi,jσi,j′σi,kσi,k′ = 1 with probability 1. Therefore,

E[(∥Sx∥22 − 1)2] =
2

s2

∑
i

∑
j,j′

E[δi,jδi,j′ ]x2
jx

2
j′ ≤

2

s2
s2

m2

∑
i

∑
j ̸=j′

x2
jx

2
j′ ≤

2

m2

∑
i

(
∑
j

x2
j )(
∑
j′

x2
j′) ≤

2

m

which gives that ∥∥Sx∥22 − 1∥L2 = E[(∥Sx∥22 − 1)2]1/2 ≤
√
2/m. Now, for m = Ω(1/ε2δ), we have ∥∥Sx∥22 − 1∥L2 ≤

εδ1/2, which proves that the matrix S has the (ε, δ, 2)-JL moment property.

B. Missing Proofs from Section 5
B.1. Proof of Lemma 5.2

Lemma 5.2 transforms a probability statement about the squared norm of a product of a random matrix M with an
independent uniform random vector r. To prove the lemma, we first prove the following similar lemma in which the matrix
M is a deterministic matrix.

Lemma B.1. Let M ∈ Rn×n be a fixed matrix and r be a uniformly random unit vector. If Prr[∥Mr∥22 ≤ a] ≥ 9/10, then
∥M∥2F ≤ Cna for a large enough universal constant C.
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Proof. Let g ∈ Rn be a Gaussian random vector with i.i.d. entries drawn from N(0, 1). Then the distribution of g/∥g∥2 is
identical to that of a uniformly random unit vector in n dimensions by rotational invariance of the Gaussian distribution.
Therefore from our assumption, Prg[∥Mg∥22 ≤ a∥g∥22] ≥ 9/10. We also have that with probability ≥ 9/10, ∥g∥22 ≤ C1n
for a large enough absolute constant C1. Thus, we have by a union bound that,

Prg[∥Mg∥22 ≤ a∥g∥22 ∧ ∥g∥22 ≤ C1n] ≥ 8/10,

which implies that
Prg[∥Mg∥22 ≤ C1an] ≥ 8/10.

Let M = UΣV T be the singular value decomposition of the matrix M . Then, the above equation is equivalent to

8/10 ≤ Prg[∥ΣV Tg∥22 ≤ C1an] = Prg[∥Σg∥22 ≤ C1an]

where the equality follows from the fact that for an orthonormal matrix V T, we have V Tg ≡ g. Thus, if the singular values
of M are σ1, . . . , σn, we have

Prg[
∑
i

σ2
i g

2
i ≤ C1an] ≥ 8/10.

Now, we have the following lemma which gives an upper bound on the probability of a linear combination of squared
Gaussian random variables being small.

Lemma B.2 (Lowther (2012)). If ai ≥ 0 for i = 1, . . . , n are constants and g1, . . . ,gn are i.i.d. Gaussians of mean 0 and
variance 1, then for every δ > 0,

Pr[
∑
i

aig
2
i ≤ δ

∑
i

ai] ≤ e
√
δ.

Proof. The inequality is obviously true for δ ≥ 1. We now consider arbitrary δ < 1. Assume without loss of generality that∑
i ai = 1. Now, for any λ > 0,

Pr[
∑
i

aig
2
i ≤ δ] = Pr[−λ

∑
i

aig
2
i ≥ −λδ] = Pr[exp(−λ

∑
i

aig
2
i ) ≥ exp(−λδ)] ≤ exp(λδ)E[exp(−λ

∑
i

aig
2
i )]

and therefore,

Pr[
∑
i

aig
2
i ≤ δ] = exp(λδ)E[exp(−λ

∑
i

aig
2
i )]

= exp(λδ)
∏
i

E[exp(−λaig2
i )]

= exp(λδ)
∏
i

(1 + 2λai)
−1/2.

Now,
∏

i(1 + 2λai) ≥ 1 + 2λ(
∑

i ai) = 1 + 2λ which implies that
∏
(1 + 2λai)

−1/2 ≤ (1 + 2λ)−1/2 which gives

Pr[
∑
i

aig
2
i ≤ δ] ≤ exp(λδ)(1 + 2λ)−1/2.

Picking λ ≥ 0 such that 1 + 2λ = 1/δ, we obtain that Pr[
∑

i aig
2
i ≤ δ] ≤ exp((1− δ)/2)

√
δ ≤ e

√
δ.

For δ = 0.01, the above lemma implies that Pr[
∑

i σ
2
i g

2
i ≤ 0.01

∑
i σ

2
i ] ≤ e · (0.1) ≤ 0.3. This, in particular implies that

0.01
∑

i σ
2
i = 0.01∥Σ∥2F ≤ C1an which gives ∥M∥2F = ∥Σ∥2F ≤ Can for a large enough absolute constant C.

We now extend the above lemma to the case when the matrix M is also random and independent of the random unit vector r.

Proof of Lemma 5.2. Let M be good if Prr[∥Mr∥22 ≤ a] ≥ 9/10 and let M be bad otherwise and note from the above
lemma that if M is good, then ∥M∥2F ≤ Can. Now,

99/100 ≤ PrM,r[∥Mr∥22 ≤ a]

≤ PrM[M is good] + PrM[M is bad] · (9/10)
= 9/10 + (1/10) · PrM[M is good]

which implies that PrM[M is good] ≥ 9/10 and therefore PrM[∥M∥2F ≤ Can] ≥ PrM[M is good] ≥ 9/10.
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B.2. Proof of Lower Bounds for AMM

Proof of Lemma 5.3. We assume that such a distribution exists with m ≤ c/ε2 for a small enough constant c. Let A ∈ Rd×n

be a uniformly random orthonormal matrix (ATA = In) independent of the sketching matrix. Then we have

PrA,S[∥ATSTSA− I∥F ≤ εn] ≥ 0.9,

as ∥AT∥F =
√
n. Let S = UΣV T be the singular value decomposition with U ∈ Rm×m, Σ ∈ Rm×m and V T ∈ Rm×d.

Note that if S is a random matrix that satisfies the AMM property, then S ·Q is also a random matrix that satisfies the AMM
property where Q is an independent uniformly random orthonormal matrix. Therefore, we can without loss of generality
assume that Σ is independent of V T and that V T is a uniformly random orthonormal matrix. Thus, the above condition
implies that

PrA,V,Σ[∥ATV Σ2V TA− I∥F ≤ εn] ≥ 0.9.

Using the following lemma, we effectively show that the matrix V TA in the above statement can be replaced with (1/
√
d)Ĝ,

where Ĝ is a Gaussian matrix of the same dimensions as V TA.

Lemma B.3 (Lemma 3 of Li & Woodruff (2021)). Let G ∼ Gd,d and Z ∼ Od×d. Suppose that p, q ≤ d and Ĝ is the top
left p× q block of G and Ẑ is the top left p× q block of Z. Then dKL(

1√
d
Ĝ∥Ẑ) ≤ C pq

d , where C is a universal constant.
By applying Pinsker’s inequality, we obtain that

dTV(
1√
d
Ĝ∥Ẑ) ≤

√
(1/2)dKL(

1√
d
Ĝ∥Ẑ) ≤

√
Cpq/2d.

Now both the matrices V,A can be taken to be the first m and n columns of independent uniform random orthogonal
matrices V′ and A′, respectively. By the properties of the Haar Measure, we obtain that V′TA′ is also a uniform random
orthogonal matrix. Thus, the matrix V TA can be seen as the top left m× n sub-matrix of a uniformly random orthogonal
matrix. If nm ≤ d/100C, which can be assumed as m ≤ c/ε2 for a small enough constant α, we have from the above
lemma that dTV(

1√
d
G∥V TA) ≤ 0.1 which implies that

|PrG,Σ[∥(1/d)GTΣ2G− I∥F ≤ εn]− PrA,V,Σ[∥ATV Σ2V TA− I∥F ≤ εn]| ≤ 0.1

and therefore
PrG,Σ[∥(1/d)GTΣ2G− I∥F ≤ εn] ≥ 0.8, (5)

where G is an m× n matrix of i.i.d. normal random variables. We will now show that if m≪ 1/ε2, then no distribution
over matrices Σ satisfies the above condition. Note that G and Σ are independent. We prove this by showing that a random
matrix Σ satisfying the above probability statement must satisfy two properties simultaneously that cannot be satisfied
unless m ≥ c/ε2 for a large enough constant c.

Let Gl denote the left half of the matrix G and Gr denote the right half of the matrix G. We have

∥(1/d)GTΣ2G− I∥2F ≥
1

d2
∥GT

rΣ
2Gl∥2F

which is obtained by considering the Frobenius norm of only the bottom-left block matrix of (1/d)GTΣ2G− I . We first
have the following lemma.

Lemma B.4. Let M be a fixed matrix and G be a Gaussian matrix with t columns. Then with probability ≥ 0.9,
∥MG∥2F ≥ 0.001t∥M∥2F.

Proof. Let M = UΣV T. We have MG = UΣV TG = UΣG′ where G′ is a Gaussian matrix with t columns. Now,
∥MG∥2F = ∥UΣG′∥2F = ∥ΣG′∥2F =

∑
i

∑
j σ

2
i g

2
ij . By Lemma B.2,

∑
i

∑
j σ

2
i g

2
ij ≥ (

∑
i

∑
j σ

2
i ) · 0.001 with probability

≥ 0.9. Now, using the equality
∑

i

∑
j σ

2
i =

∑
i tσ

2
i = t∥Σ∥2F = t∥M∥2F, we finish the proof.
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Thus, conditioned on the matrix GT
rΣ

2, we have that with probability ≥ 0.9,

∥GT
rΣ

2Gl∥2F ≥ 0.001(n/2)∥GT
rΣ

2∥2F.

Applying the same lemma again, we have with probability ≥ 0.9, ∥GT
rΣ

2∥2F ≥ 0.001(n/2)∥Σ2∥2F. Thus, overall with
probability ≥ 0.8 over G, we have for any fixed Σ that, ∥GT

rΣ
2Gl∥2F ≥ Ω(n2∥Σ2∥2F). and therefore,

PrG,Σ[∥GT
rΣ

2Gl∥2F ≥ Ω(n2∥Σ2∥2F)] ≥ 0.8.

Using a union bound with (5), we obtain that with probability ≥ 0.6, it is simultaneously true that

ε2n2 ≥ ∥(1/d)GTΣ2G− I∥2F ≥
1

d2
∥GT

rΣ
2Gl∥2F

and
∥GT

rΣ
2Gl∥2F ≥ Ω(n2∥Σ2∥2F)

which implies that with probability ≥ 0.6, (1/d2)∥Σ2∥2F = O(ε2) i.e., (1/d2)
∑m

i=1 σ
4
i = O(ε2). Thus, if S is a random

matrix that satisfies the AMM property and if σ1, . . . , σr are its singular values, then with probability ≥ 0.6,∑
i

σ4
i ≤ C1d

2ε2 (6)

for a universal constant C1.

We now obtain a different probability statement about the singular values of the sketching matrix S by considering the sum
of squares of the diagonal entries of the matrix (1/d)GTΣ2G− I = (1/d)

∑m
i=1 σ

2
i gig

T
i − I where gi are n dimensional

Gaussian vectors. Note that ((1/d)GTΣ2G− I)jj = (1/d)
∑m

i=1 σ
2
i g

2
ij − 1. Fix the matrix Σ. Clearly,

∥(1/d)GTΣ2G− I∥2F ≥
n∑

j=1

((1/d)

m∑
i=1

σ2
i g

2
ij − 1)2.

If
∑m

i=1 σ
2
i ≤ d/100, we have that with probability at least 0.9, (1/d)

∑m
i=1 σ

2
i g

2
ij ≤ (10/d)E[

∑m
i=1 σ

2
i g

2
ij ] ≤ (10/d) ·

(d/100) which implies that ((1/d)
∑m

i=1 σ
2
i g

2
ij − 1)2 ≥ 1/4 with probability ≥ 0.9. Let j ∈ [n] be large if the previous

event holds. By a Chernoff bound, with probability≥ 0.9, there are≥ n/C2 large values j ∈ [n] for a large enough absolute
constant C2. Thus,

∑m
i=1 σ

2
i ≤ d/100 implies that with probability ≥ 0.9, ∥(1/d)GTΣ2G − I∥2F ≥ (n/C2)(1/4) =

n/4C2 ≥ ε2n2 as we assumed that ε ≤ c/
√
n for a small enough constant c. Now, if PrΣ[

∑m
i=1 σ

2
i ≤ d/100] > 0.3, then

by the above property for a fixed Σ, PrΣ,G[∥(1/d)GTΣ2G− I∥2F ≥ ε2n2] > 0.2 which implies that

PrΣ,G[∥(1/d)GTΣ2G− I∥2F ≤ ε2n2] < 0.8

which is a contradiction to (5). Thus, PrΣ[∥Σ∥2F ≤ d/100] < 0.3 which implies

PrΣ[
m∑
i=1

σ2
i ≥ d/100] ≥ 0.7. (7)

By a union bound on (6) and (7), with probability ≥ 0.3, it simultaneously holds that

m∑
i=1

σ4
i ≤ C1d

2ε2 and
m∑
i=1

σ2
i ≥ d/100.

Now,

d2/1002 ≤
(

m∑
i=1

σ2
i

)2

≤ m

m∑
i=1

σ4
i ≤ C1md2ε2.

Here we used the Cauchy-Schwarz inequality which finally implies that m = Ω(1/ε2). Thus, any oblivious distribution that
gives AMM with ε < c/

√
n for a small enough constant c must have Ω(1/ε2) rows.
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Before proving Theorem 5.4, we first prove the following lemma that shows CountSketch preserves the Frobenius norm of a
matrix.

Lemma B.5 (CountSketch Preserves Frobenius Norms). If S is a CountSketch matrix with m ≥ 200/ε2, then for any
arbitrary matrix A, with probability ≥ 9/10,

∥SA∥2F = (1± ε)∥A∥2F.

Proof. For any vector x, we have E[(∥Sx∥22 − ∥x∥22)2] ≤ (2/m)∥x∥42 if S is a CountSketch matrix with m rows. Now,

E[|∥Sx∥22 − ∥x∥22|]2 ≤ E[(∥Sx∥22 − ∥x∥22)2] ≤ (2/m)∥x∥42

which implies that E[|∥Sx∥22 − ∥x∥22|] ≤
√
2/m∥x∥22. For any arbitrary matrix A, we have |∥SA∥22 − ∥A∥22| =

|∑i ∥SA∗i∥2F − ∥A∗i∥2F| ≤
∑

i |∥SA∗i∥22 − ∥A∗i∥22|. Thus, E[|∥SA∥2F − ∥A∥2F|] ≤
∑

i E[|∥SA∗i∥22 − ∥A∗i∥22|] ≤√
2/m

∑
i ∥A∗i∥22 =

√
2/m∥A∥2F. For m ≥ 200/ε2, we have E[|∥SA∥2F − ∥A∥2F|] ≤ (ε/10)∥A∥2F. By Markov’s

inequality, with probability ≥ 9/10, ∥SA∥2F = (1± ε)∥A∥2F.

Proof of Theorem 5.4. Given n and ε ≤ c/
√
n for a small enough constant, assume that for d = C1/ε

2 for a large enough
universal constant C1, there is a random matrix S with r < C2/ε

2 rows such that for any fixed matrix A ∈ Rd×n, with
probability ≥ 99/100,

∥ATSTSA−ATA∥F ≤ (ε/3)∥AT∥F∥A∥F.

Now consider an arbitrary matrix B ∈ Rd′×n for d′ ≥ Cn/ε2 for which the previous lemma applies. Let S1 be a
CountSketch matrix with K/ε2 rows for a large enough K. With probability ≥ 95/100, we simultaneously have (i)
∥BTST

1S1B − BTB∥F ≤ (ε/3)∥BT∥F∥B∥F = (ε/3)∥B∥2F, and (ii) ∥S1B∥F = (1 ± ε/3)∥B∥F. By picking C1 large
enough, we have that C1 ≥ K. Thus, by our assumption, the random matrix S gives the AMM property for the matrix S1A.
Conditioning on the above events, we have with probability ≥ 99/100 that

∥BTST
1S

TSS1B −BTST
1S1B∥F

≤ (ε/3)∥BTST
1 ∥F∥S1B∥F

≤ (ε/3)(1 + ε/3)2∥B∥2F ≤ (ε/2)∥B∥2F.

By the triangle inequality, we obtain ∥BTST
1S

TSS1B −BTB∥F ≤ (ε/3 + ε/2)∥B∥2F ≤ ε∥B∥2F. Thus, by a union bound,
with probability ≥ 0.9, the random matrix S · S1 satisfies that for any fixed matrix B with ≥ Cn/ε2 rows, with probability
≥ 0.9,

∥BT(S · S1)
T(S · S1)B −BTB∥F ≤ ε∥B∥2F

implying that even for a matrix with at least Cn/ε2 rows, there is an oblivious sketching distribution with r < C2/ε
2

rows which gives an AMM guarantee. This contradicts the previous lemma and hence our assumption that there is a small
sketching matrix for matrices with d = C1/ε

2 rows is false. Thus, we have that for any d ≥ C/ε2 for a large enough
constant C, there is no sketching distribution with < C1/ε

2 rows that gives the ε AMM guarantee for matrices with ≥ d
rows.

C. Missing Proofs from Section 6
C.1. Lower Bounds for Ridge Regression

Note that multiplying a column of M with −1 does not change the optimum value. Therefore, without loss of generality, we
can assume that the columns of M are either [1 1]T or [1−1]T. Thus, we have that d−N columns of M are equal to [1 1]T

and N columns of the matrix M are equal to [1−1]T. Let I ⊆ [n], |I| = N be the set of columns of M that are equal to
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[1−1]T. Now, for any vector x,

∥Mx−
[
1
−1

]
∥22 + λ∥x∥22

= (
∑
i∈I

xi +
∑
i/∈I

xi − 1)2 + (−
∑
i∈I

xi +
∑
i/∈I

xi + 1)2

+ λ
∑
i∈I

x2
i + λ

∑
i/∈I

x2
i

= 2(
∑
i/∈I

xi)
2 + 2(

∑
i∈I

xi − 1)2 + λ
∑
i∈I

x2
i + λ

∑
i/∈I

x2
i .

Clearly, to minimize the expression, we need to set xi = 0 for i /∈ I . We also have that for a fixed value of
∑

i∈I xi, the
expression

∑
i∈I x

2
i is minimized when xi = xi′ for all i, i′ ∈ I . Let xi = α for all i ∈ I . Then,

∥Mx−
[
1
−1

]
∥22 + λ∥x∥22 = 2(Nα− 1)2 + λNα2.

To minimize the expression, we set α = 2/(2N + λ) and obtain that

min
x
∥Mx−

[
1
−1

]
∥22 + λ∥x∥22 =

2λ

λ+ 2N
.

D. Communication Lower Bounds for other Regularized Problems
We show communication lower bounds for computing 1+ ε approximations to optimum values of Lasso and the square-root
Lasso problems by reducing the DISJOINTNESS problem to computing these optimum values.

In an instance of DISJOINTNESS problem Alice receives a set A ⊆ [n] and Bob receives a set B ⊆ [n]. They send bits to
each other to communicate based on a pre-determined to protocol to find if A ∩B = ∅ or not.
Theorem D.1 (Hardness of DISJOINTNESS (Håstad & Wigderson, 2007)). Every public-coin randomized protocol for
DISJOINTNESS that has two-sided error at most a constant ε ∈ (0, 1/2) uses Ω(n) communication in the worst case (over
inputs and coin flips).
Theorem D.2 (Communication Complexity of Lasso). Let 0 < λ < 1 be the Lasso parameter. If Alice has the n× d matrix
M1 and Bob has the n × d matrix M2, then to determine a 1 + c approximation, for a small enough constant c, to the
optimal value of

min
z
∥(M1 +M2)z − b∥22 + λ∥z∥1

requires Ω(d) bits of communication between Alice and Bob.

Proof. We prove the theorem by reducing the DISJOINTNESS problem to an instance of the Lasso problem. Let A,B ⊆ [d]
denote the sets received by Alice and Bob, respectively. Let x(1), x(2) ∈ {0, 1}d be the vectors that denote A and B

respectively. We have x
(1)
i = 1 if and only if i ∈ A and similarly x

(2)
i = 1 if and only if i ∈ B. Let M denote a 2 × d

matrix with two rows such that M1∗ = x(1) and M2∗ = x(2). We consider the Lasso problem:

min
z
∥Mz −

[
1
1

]
∥22 + λ∥z∥1

for some 0 < λ < 1.

Consider the following two cases:

1. A ∩ B ̸= ∅ : Let i ∈ A ∩ B. We have x
(1)
i = x

(2)
i = 1 and therefore M1i = M2i = 1. Let z = ei. We have

Mei = [1 1]T. Therefore

∥Mei −
[
1
1

]
∥22 + λ∥ei∥1 = 0 + λ = λ.

Therefore minz ∥Mz − 12∥22 + λ∥z∥1 ≤ λ.
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2. Let A ∩B = ∅. Let z be an arbitrary vector. We have M1∗z =
∑

i∈A zi and M2∗z =
∑

i∈B zi. Thus,

∥Mz − 12∥22 + λ∥z∥1 = (
∑
i∈A

zi − 1)2 + (
∑
i∈B

zi − 1)2 + λ(
∑
i∈A

|zi|+
∑
i∈B

|zi|),

We can see that the optimum value can be attained by setting zi = α for some i ∈ A and zj = β for some j ∈ B and
setting the rest of the coordinates to 0. We now consider

min
α

(α− 1)2 + λα.

The optimal solution for the above is attained at α satisfying 2(α− 1) + λ = 0 which gives α = 1− λ/2. Thus the
optimum value for

min
z
∥Mz − 12∥22 + λ∥z∥1

when A ∩B = ∅ is given by

2 · λ
2

4
+ λ(2− λ) = 2λ− λ2/2 ≥ 3λ/2.

The optimal Lasso values differ by a factor of at least 3/2. Thus a protocol that can compute 1 + c approximation to the
optimal value of ridge regression can be used to solve the DISJOINTNESS problem which gives an Ω(d) bits lower bound for
approximating Lasso.

We similarly have the following communication lower bounds for Square-root Lasso.

Theorem D.3 (Hardness of Sketching Square-Root Lasso). Let 0 < λ < 2
√
2/3 be the Lasso parameter. If Alice has the

n× d matrix M1 and Bob has the n× d matrix M2, then to determine a 1+ c approximation, for a small enough constant c,
to the optimal value of

min
z
∥(M1 +M2)z − b∥2 + λ∥z∥1,

requires Ω(d) bits of communication between Alice and Bob.

Proof. We use the same notation as in the proof of the above theorem. In the case of A ∩B ̸= ∅, we again have that the
optimum value is at most λ. In the other case, where A ∩B = ∅, we again have that the optimum value can be attained by
setting zi = α = zj for some i ∈ A and j ∈ B. Thus we have the following optimization problem

min
α

√
2|α− 1|+ 2λ|α| = min(

√
2, 2λ).

Thus, the optimum value of the square-root Lasso problem is at most λ in the case A ∩B ̸= ∅ and is at least min(
√
2, 2λ)

in the case of A ∩ B = ∅. If λ < 2
√
2/3, then min(

√
2, 2λ) ≥ (3λ/2). Thus, if Alice and Bob can obtain an 11/10

approximation for the Square-Root Lasso instance (M, 12, λ) for some λ < 2
√
2/3, they can solve the DISJOINTNESS

instance which implies an Ω(d) bit lower bound for computing a 1 + c approximation for Square-Root Lasso.

E. An Experiment
We run our algorithm on a ridge regression instance with a 6000× 70000 matrix A whose entries are independent Gaussian
random variables. We set λ such that σ2/λ ≈ 1. Naı̈vely computing x∗ = AT(AAT + λI)−1b takes tnaive = 71 seconds on
our machine. We use OSNAP with sparsity s = 8 and vary the number r of rows and observe the running times and quality
of the solution that is obtained by our algorithm.

Our experiments show the general trends we expect. Increasing the number of rows in the sketching matrix results in
a solution x̃ that has lower cost and also is closer to the optimum solution x∗. We also see that the running time of the
algorithm is nearly linear in the sketch size r, implying that the time required to apply the sketch is negligible for this
instance. At sketch size r = 30000, that is less than d/2, we see that the algorithm runs nearly 40% faster than the naı̈ve
algorithm while computing a solution that has a cost within 5% of the optimum. For larger values of d, we expect to obtain
a greater speedup as compared to naı̈vely computing x∗.
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Notice that we do not compare with the algorithm of Chowdhury et al. (2018) as for one iteration, our algorithm is exactly
the same as theirs. Our theorems show that the sketch can be smaller and sparser than what is shown in their work to
compute 1 + ε approximate solutions, giving the first proof of correctness about the quality of the solution at smaller sketch
sizes.
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Figure 2. cost(x̃)/Opt vs # of rows of OSNAP
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