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Abstract

As the computational requirements for machine
learning systems and the size and complexity of
machine learning frameworks increases, essen-
tial framework innovation has become challeng-
ing. While computational needs have driven re-
cent compiler, networking, and hardware advance-
ments, utilization of those advancements by ma-
chine learning tools is occurring at a slower pace.
This is in part due to the difficulties involved in
prototyping new computational paradigms with
existing frameworks. Large frameworks prioritize
machine learning researchers and practitioners as
end users and pay comparatively little attention
to systems researchers who can push frameworks
forward — we argue that both are equally im-
portant stakeholders. We introduce Flashlight,
an open-source library built to spur innovation
in machine learning tools and systems by priori-
tizing open, modular, customizable internals and
state-of-the-art, research-ready models and train-
ing setups across a variety of domains. Flashlight
allows systems researchers to rapidly prototype
and experiment with novel ideas in machine learn-
ing computation and has low overhead, competing
with and often outperforming other popular ma-
chine learning frameworks. We see Flashlight as a
tool enabling research that can benefit widely used
libraries downstream and bring machine learning
and systems researchers closer together. Flash-
light is available at this URL.
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1. Introduction
The recent rise of deep learning-based techniques has been
accompanied and sustained by the wide availability of dedi-
cated frameworks such as TensorFlow (Abadi et al., 2016)
and PyTorch (Paszke et al., 2019). These frameworks have
enabled the democratization of machine learning research
by providing extensive collections of high level primitives
to support common use cases. Lowering the barrier to entry
for end users has boosted the popularity of both neural net-
works and the frameworks in which they are implemented.
However, in order to support what are now vast ecosystems
and a diverse user base, framework size and complexity
have increased dramatically over time. As a result, deep,
groundbreaking framework research has become onerous
and time consuming, precluding rapid innovation. Given
these barriers, major deep learning frameworks have become
entrenched in their existing operating modes.

Innovation in this area remains as important as ever. Indeed,
framework innovation accelerates machine learning (ML)
and artificial intelligence (AI) research. Frameworks that are
easier to use reduce the engineering burden on researchers,
and frameworks that are higher-performance decrease the
time required to iterate on experimental work and validate
hypotheses. Even more critically, tooling plays a funda-
mental role in deciding which ideas succeed or fail. For
example, LeCun et al. (1989) pioneered the use of convo-
lutional neural networks (CNNs) (Fukushima & Miyake,
1982) trained using backpropagation for computer vision
tasks in the late 1980s, which was subsequently applied to
handwriting recognition. However, widespread success for
CNNs was achieved two decades later when Krizhevsky
et al. (2012a) leveraged the CUDA programming model to
take advantage of graphics processing units (GPUs) to train
a much deeper model (AlexNet).

While deep learning frameworks have been optimized to
leverage existing hardware paradigms for common neural
network architectures, they often fail to deliver similar effi-
ciencies on designs that diverge from the mainstream. For
example, Barham & Isard (2019) explain how the design
of these frameworks results in poor hardware utilization for
a novel type of neural network, known as a capsule net-

https://github.com/flashlight/flashlight
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work (Hinton et al., 2018), that leverages new components
such as squashing operations and routing by agreement.
More generally, what are now unconventional approaches
to modern problems in machine learning require highly-
specialized additions to popular frameworks. As a result of
narrowly-optimized systems, research beyond deep learning
may be discounted due to purported computational infeasi-
bility given modern frameworks’ capabilities.

Furthermore, the waning of Moore’s law (Theis & Wong,
2017) coupled with the ever-growing computational de-
mands of deep learning are prompting several shifts in
hardware. Massive-scale distributed computing is now re-
quired to train leading models — a process that established
frameworks remain unable to handle truly automatically
— that is, without some manual specification as to how to
distribute work. In parallel, multiple specialized hardware
products are now available to better support deep learning
applications: Nvidia’s TensorCores (Markidis et al., 2018),
Google’s TPUs (Jouppi et al., 2017), Graphcore’s IPUs
(Jia et al., 2019), Apple’s Neural Engine1, and others have
been developed to improve total float-pointing operations
(FLOPs), cost per-FLOP, or energy consumption. Addition-
ally, numerous efforts are underway to move away from con-
ventional von Neumann computing architectures in which
memory and processing units are physically separated, ei-
ther by storing data closer to compute units or by switching
to in-memory computing altogether.

While tooling innovation is alive and well given these incen-
tives for progress, working within large, well-established
frameworks has become more and more challenging as
framework size and scope grows. While some tools such as
Halide (Adams et al., 2019; Steiner et al., 2021) and TVM
(Chen et al., 2018; Zheng et al., 2020) are built from first-
principles, many recent innovations have required the devel-
opment of ad-hoc tools. For example, FlexFlow (Jia et al.,
2018; 2020) underpins recent work aimed at improving the
use of distributed computing to accelerate the training of
large neural networks; PET (Wang et al., 2021) provides
a framework that enables graph-level neural network opti-
mizations; and DeepSpeed (Rasley et al., 2020) implements
algorithms supporting custom distribution of computation.
With ad-hoc approaches, researchers are required to start
from scratch for new directions or adapt their ideas to fit
into the scaffolding these frameworks provide — resulting
in significant technical burdens.

To sustain framework innovation, we introduce Flashlight,
an open source minimalist ML library designed to support
research in machine learning frameworks, facilitate rapid
iteration on ideas, reduce the engineering burden on re-
searchers, and remove the need for new tools. Flashlight
includes:

1https://nr.apple.com/dE9q1p9M7t

• A modular, component-based architecture that makes
every aspect of the implementation fully customizable
with simple internal APIs.

• A compact yet highly-performant reference imple-
mentation of each component.

• A comprehensive set of benchmarks representative of
the state-of-the-art in machine learning on which to
evaluate alternative implementations.

2. Related Work
Numerous frameworks have been implemented in recent
years to support machine learning, including Lush (Bot-
tou & LeCun, 2002), Theano (Bergstra et al., 2010), Torch
(Collobert et al., 2011), Caffe (Jia et al., 2014), MXNet
(Chen et al., 2015), deeplearning4j (Team, 2016), Tensor-
Flow (Abadi et al., 2016), Flux (Innes, 2018), Jax (Bradbury
et al., 2018), PyTorch (Paszke et al., 2019), Chainer (Tokui
et al., 2019), and PaddlePaddle (Ma et al., 2019). These
frameworks offer programming models designed around
multidimensional arrays (TENSORS), modeled as first-class
objects and supported by a comprehensive set of mathemati-
cal primitives (or operators) to manipulate them. To provide
the computing power required by deep learning-based meth-
ods, most natively support hardware accelerators such as
general-purpose GPUs or custom-designed ASICs such as
TPUs.

Generally, framework implementations follow one of a few
computational models:

• In the deferred execution model, the neural network to
be trained is first encoded as a dataflow graph which
can be optimized for a specific set of target hardware
devices. The neural network is then executed in a dis-
tinct second phase. Since the dataflow graph represents
the entire computation, both local and global optimiza-
tions can be applied, making the subsequent execution
very efficient. However, only programs that can be
represented as dataflow graphs can be processed with
this approach, thus limiting flexibility. Frameworks
such as Theano, Caffe, TensorFlow 2.0, or MXNet fall
into this category.

• In the eager model, an interpreter (such as Python) is
extended with the high level kernel-based operations
needed to train a neural network. These operations
are executed immediately when called, though this
precludes many optimizations. By weaving neural
network-related operations into a Turing complete pro-
gramming language, this approach is extremely flexi-
ble. Furthermore, the imperative nature of the under-
lying programming language allows for fine-grained
control over the execution order and memory utiliza-
tion, which enables more specific user-driven optimiza-

https://nr.apple.com/dE9q1p9M7t
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tion. Frameworks such as Torch, TensorFlow 2.0 Eager,
PyTorch, or Chainer exemplify this approach.

• In the static model, computation is explicitly specified
ahead-of-time either via an implicit or explicit schedule.
Operations are executed inside runtime sessions. Given
that the entire graph of computation is fully-specified
before execution, significant global optimizations can
be applied here, such as explicit ahead-of-time (AOT)
scheduling. Frameworks such as TensorFlow 1.0 fall
into this category.

• The hybrid model simply combines multiple of the
above computation models.

3. Principles
The aforementioned frameworks are designed and imple-
mented to best-serve their user bases — namely, machine
learning researchers and practitioners. They rely on large,
internally complex codebases to provide comprehensive
solutions, as is further discussed in Section 5.

In contrast, Flashlight targets an audience of researchers
interested in experimenting with new designs and implemen-
tations of machine learning tools or broader computational
or modeling paradigms. To foster this type of innovation,
Flashlight balances simplicity and nimbleness with the need
to provide enough functionality to support real use cases.
Internal and external simplicity is the key design principle of
Flashlight; the ability to dramatically modify software and
drive it in new directions is inversely correlated with code-
base size and complexity (Gill & Kemerer, 1990). More
specifically:

• Flashlight is built on a shallow stack of idiomatic,
modular, and customizable abstractions. Framework
components interact through small, well-defined, sta-
ble APIs, which expose most internal aspects of its
implementation. This ensures that every component
of Flashlight can be modified or replaced with new
custom implementations, even e.g. its memory man-
ager and tensor implementation. To support the ex-
ploration of a wide array of alternative approaches,
Flashlight interfaces are flexible and unopiniated by
design. This is in contrast to other frameworks, which
impose stricter implementation requirements based on
tight design constraints for their computation mod-
els and support requirements across hardware, down-
stream frameworks, and other ecosystem members.

• Flashlight provides deliberately-compact default im-
plementations of its APIs. This reduces out-of-the-
gate engineering burden and the need for modifica-
tions, and enables fast compilation and rapid iteration
when experimenting. Furthermore, to mitigate pre-
mature optimization, Flashlight deliberately abstains

from adding small efficiency improvements if they
conflict with the goals of keeping the codebase simple
and APIs clean.

• Flashlight is a research-first framework, and is not
intended for out of the box production use. To keep
codebase size small, it forgoes features such as model
servers for deployment and integration with cluster
management tools.

Flashlight is a viable solution for machine learning re-
search, shipping with a comprehensive set of benchmarks
and research setups for state-of-the-art neural network ar-
chitectures such as convolutional neural networks (CNNs)
(Krizhevsky et al., 2012b) and Transformers (Vaswani et al.,
2017), as well as task-specific models such as ViT (Dosovit-
skiy et al., 2020), DETR (Carion et al., 2020), or BERT (De-
vlin et al., 2018). The speech recognition system wav2letter
(Pratap et al., 2019), is also built entirely on Flashlight.

Benchmarks built on these state-of-the-art models make
Flashlight a turn key solution for system researchers who
want to quickly evaluate their design and implementation
choices without needing to build test benches from the
ground-up. More importantly, Flashlight makes possible
end-to-end benchmarking on real models rather than mi-
crobenchmarks or small-scale tests.

4. Design
Flashlight’s design is centered around internal APIs for
framework components which form the building blocks for
domain-specific ML packages and applications — this struc-
ture is outlined in Figure 1. Flashlight is implemented as
a C++ library and follows a Tensor-based programming
methodology, with neural network building blocks that de-
rive from a MODULE interface, communicate by exchanging
Tensor data, and are composed functionally or imperatively
to form complete neural network architectures. Tensor pro-
gramming in Flashlight is fundamentally dynamic, but given
that C++ is a compiled language, code describing models
in Flashlight is compiled. This approach promotes type
safety, foregoes the runtime overheads associated with inter-
preters, and, unlike eager-based approaches, enables global
optimizations where possible.

4.1. Open Foundational Interfaces

Flashlight is built on top of three open foundational APIs,
each addressing design and implementation challenges
faced by machine and deep learning tools: a Tensor in-
terface, a memory management subsystem, and a distributed
computing interface. These APIs are backed by reference
implementations that enable Flashlight to efficiently target
CPUs, GPUs, and other accelerators. These include code
generation and dedicated kernels for Intel, AMD, OpenCL,
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Figure 1. Components of the Flashlight library.

and CUDA devices, and leverage libraries such as cuDNN
(Chetlur et al., 2014), MKL (Intel, 2020a), oneDNN (Intel,
2020b), ArrayFire (Yalamanchili et al., 2015), and MiOpen
(Khan et al., 2019).

4.1.1. TENSOR INTERFACE

Modern deep learning frameworks feature tensor library
internals which sit under deep layers of abstractions, requir-
ing numerous framework modifications in order to iterate
on tensor stack design. Flashlight’s TENSOR abstraction
is defined in terms of existing tensor libraries via a simple,
extensible interface and a high-level API that mirrors numpy
(Harris et al., 2020) rather than using specific, opinionated
intermediate representations (IRs) or large operator sets.

Flashlight TENSOR backend implementations need not fol-
low any particular computation mode as outlined in Sec-
tion 2 and shown in Figure 2. Tensor values need only be
materialized upon user request — typically when extracting
the output values of a model or inspecting intermediary state.
This provides a flexibility unique amongst deep learning
frameworks to either defer or eagerly-compute intermediate
values — or to experiment with new computation paradigms
altogether.

Implementing a TENSOR backend in Flashlight involves
fulfilling a small set of implementation requirements. Users
have full control of their implementations after subclassing
two interfaces:

• the TENSORADAPTER interface (Listing 1) which al-
lows a backend to attach custom stateful information
and metadata to each tensor. This includes shape,
type, and memory information — which may be

implementation-dependent.
• the TENSORBACKEND interface (Listing 2) which al-

lows backends to store global state as needed (e.g de-
vice compute streams, dataflow graphs) and implement
a small set of primitive tensor operations including
unary and binary operations (e.g. arithmetic ops), re-
ductions, matrix multiplication, and convolution.

Rather than require implementations of large, highly-
specialized operator sets or interoperability with complex
dispatch mechanisms or intermediate representations (IRs)
as do other frameworks, Flashlight operators outside of the
small TENSORBACKEND API are derived by composition.
For example: the ReLU activation is implemented by lever-
aging the MAX operator. Flashlight’s reference TENSOR
implementation uses a hybrid approach, offloading compu-
tation to highly-optimized vendor libraries when advanta-
geous and relying on deferred, on-the-fly code generation
via ArrayFire for all other operations so as to increase kernel
arithmetic intensity.

class MyTensorImpl : public TensorAdapter {
// State information goes here
// (e.g. buffers, shape)

public:
// Metadata
const Shape& shape() override;
dtype type() override;
// ...

};

Listing 1. The TensorAdapter interface for implementing
operations on tensor metadata and storing tensor state for
individual tensor instances.
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Figure 2. Flashlight’s Tensor API supports backend implementations with any of the above computation modes (or entirely new modes
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class MyTensorBackend : public
TensorBackend {

// State information goes here (e.g.
compute streams, compiler state)

public:
// Tensor operation primitives
Tensor add(const Tensor& lhs, const
Tensor& rhs) override;

Tensor minimum(const Tensor& lhs, const
Tensor& rhs) override;

// ...
};

Listing 2. The TensorBackend interface for implementing
operations on tensors and storing global backend state.

4.1.2. MEMORY MANAGEMENT

Robust memory management is an important research area
as model size increases. While individual TENSOR back-
ends in Flashlight can perform their own memory man-
agement as defined by implementers, Flashlight’s default
TENSOR backend also provides a generic API for defining
custom memory management schemes. By default, memory
is only allocated when needed for just-in-time compilation.
A sample of this API is shown in Listing 3. To support the
lazy computation model as well as just in time code gen-
eration, memory allocations only occur when tensors need
to be materialized per the compute graph. Buffers are used
asynchronously after they are requested depending on the
timing of kernel launches but are not freed until computation
is complete.

4.1.3. DISTRIBUTED TRAINING

Flashlight provides a low-level API for distributed training
primitives with performant default implementations in GPU
and CPU settings using NCCL (2019) and Gloo (2019), re-
spectively. Users can add new backends or custom methods

of performing distributed computation, and can use prim-
itives in other framework components as needed. Further
details and samples can be found in Section A.4.1.

class CachingMemoryManager : public
MemoryManagerAdapter {

// Store state as needed
public:
void* alloc(bool userLock, unsigned ndim,
dim_t* dims, unsigned elSize) override;

void unlock(void* ptr, bool userLock)
override; // free memory

// ...
};

Listing 3. An implementation of a memory manager using the
memory management API.

4.2. The Flashlight Core

The TENSOR API, together with memory management and
distributed computation abstractions provide a foundation
on which to build other core machine learning algorithms
and applications. These other core components are out-
lined below. Section A.4 provides code samples and linking
documentation for the below components.

Neural Network Primitives To facilitate the implemen-
tation of neural networks, Flashlight ships with common
neural building-blocks encompassing activation functions,
normalization layers, regularizers, losses, and more. These
derive from the MODULE abstraction, as discussed above,
which provides a method of chaining and nesting operations.
Section A.4.2 contains more details and sample implemen-
tations.

Automatic Differentiation Automatic differentiation (au-
tograd) is implemented via a simple VARIABLE abstraction.
A Variable takes a TENSOR argument when created, and its
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underlying Tensor (or gradient Tensor) can be accessed at
any time. Variables feature operators which call underlying
Tensor operations and record those operations to a dynamic
tape in a design similar to Paszke et al. (2017) while being
lightweight enough to allow implementations of other au-
tograd paradigms. In keeping with Flashlight’s modularity,
TENSOR and VARIABLE are separated to avoid performance
and implementation overhead in non-gradient-based ML al-
gorithms. Further, this gives implementers of a Flashlight
Tensor backend an efficient, fully-featured autograd system
with no additional effort. We provide an example of an
autograd primitive implementation in Listing 4.

Optimizers Flashlight provides implementations of most
common first-order stochastic optimization algorithms, as
included in other frameworks. These are defined in terms
of Variable and Tensor operations, allowing for open-ended
experimentation (e.g. with distributed computation, in-place
operations, etc).

Data Loaders Flashlight provides a simple DATASET
class which abstracts away the notion of a sample in ML
algorithms. A sample is viewed here as a TENSOR or vector
of TENSORS. Datasets are trivially composable to create
pipelines to transform, resample, or parallelize (via native
C++ threads) the construction of such samples. While Flash-
light core dataset abstractions are agnostic from the end-user
task, data-specific datasets are provided in higher-level pack-
ages, to efficiently load from disk structured data (e.g. im-
ages, audio or text).

4.3. Packages and Applications

Flashlight contains additional domain-specific abstractions
leveraging both core components as well as stand-alone im-
plementations. These abstractions allow end-users or ML
researchers to quickly get started on various ML applica-
tions. The package module provides building blocks for
common ML tasks, domain-specific algorithms, and helpers.
The application module leverages these building blocks
to provide complete, ready to use solutions (e.g. models,
training loops, evaluation pipelines). When not original to
Flashlight, implementations reproduce the task performance
those they reference. We leverage several of these applica-
tions to evaluate Flashlight’s performance in Section 5.

Speech. Flashlight provides an implementation of classi-
cal featurization (spectogram, log-mel filterbanks, etc.) that
can run on-the-fly with minimal overhead. It also provides a
collection of data-augmentation techniques (including addi-
tive noise and reverberation), as well as implementations of
speech-specific sequential criteria and model architectures.
Flashlight contains a fast beam-search decoder (which can
interface any language model) and beam rescorers (Col-

lobert et al., 2016; Pratap et al., 2019). Research performed
with the speech application have reached and are compet-
itive with state-of-the-art results (Synnaeve et al., 2019;
Likhomanenko et al., 2021).

Vision. Flashlight offers built-in data loaders for standard
computer vision benchmarks (such as ImageNet (Deng et al.,
2009) and COCO (Lin et al., 2014)) along with large set
of efficient data-augmentations and transformations. It in-
cludes mainstream image classification models: convolu-
tional (e.g. ResNet (He et al., 2016)) and transformer-based
architectures (e.g. ViT (Dosovitskiy et al., 2020)), as well as
a modern, transformer-based object detection model (DETR
(Carion et al., 2020)) and helpers (e.g. Hungarian matching
and object detection evaluation).

Text. Flashlight ships with support for text dataset ma-
nipulation and tokenization along with language modeling
training pipelines for a variety of neural language models, in-
cluding transformer (Vaswani et al., 2017) and CNN-based
(Dauphin et al., 2017). Both autoregressive and masked, e.g.
BERT, language modeling tasks are supported. These lan-
guage models can be combined with other domain-specific
packages such as speech.

5. Evaluation
In the sections that follow, we compare Flashlight to two
widely-used deep learning frameworks — PyTorch and Ten-
sorflow — with metrics relevant to framework research ve-
locity. We also evaluate framework performance to demon-
strate the potential of our approach and the quality of the
default implementations of all our components. We outline
the steps needed to reproduce all our results in the Appendix.

5.1. Code Complexity

Flashlight is built to minimize complexity and operating
surface. As frameworks grow and are combined with other
frameworks or take on new platform-specific requirements,
internal modifiability decreases. Table 1 compares frame-
works across well-established measures of complexity and
portability — binary size, lines of code, and number of op-
erators and operator implementations. Flashlight’s small
surface facilitates easily exploring new designs and proto-
typing on new hardware — having few sources of truth
simplifies the process of replacing core components and
ensures end-to-end tests don’t opaquely fall back to existing
implementations.

5.1.1. COMPILATION TIME

When modifying or adding significant new research code
to framework internals, recompilation can be costly. Large
frameworks depend on code generation for broad platform
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Variable cos(const Variable& input) {
auto result = fl::cos(input.tensor()); // get a Tensor from a Variable
// Called with backward() to compute gradients for this op’s inputs
auto gradFunc = [](std::vector<Variable>& inputs,

const Variable& gradOutput) {
inputs[0].addGrad( // Add a gradient to the input

Variable(gradOutput * negate(sin(inputs[0].tensor())), false));
};
// Construct a Variable from a Tensor and a gradient-computing function
return Variable(result, {input}, gradFunc);

}

Listing 4. Defining a cosine autograd operator in Flashlight using TENSOR operations and VARIABLE.

Table 1. Complexity of various frameworks based on high-level metrics. We provide additional analysis disambiguating tensor library
components of each framework in Section A.2.2.

METRIC PYTORCH TENSORFLOW (OURS) FLASHLIGHT

BINARY SIZE (MB) 527 768 10
LINES OF CODE 1,798,292 1,306,159 27,173

NUMBER OF OPERATORS 2,166 1,423 60

APPROX NUM. OPS. THAT PERFORM:
ADD 55 20 1

CONV 85 30 2
SUM 25 10 1

support2, increasing compilation time. Further, expensive
incremental rebuilds can slow iteration speed.

Flashlight is sufficiently-lightweight and modular so as to
enable from-source build times that are orders of magnitude
faster than other frameworks, as shown in Table 2. Times
were measured for both from-scratch and incremental builds
with Intel Xeon Gold 6138 CPUs with 80 cores and 750
GB of memory. To estimate incremental build performance,
we randomly sample 100 source files without replacement,
make trivial modifications that force recompilation, and
time the resulting rebuild. While we constrain the set of
files that can be modified for incremental compilation to
those that are part of core systems (tensor library, autograd,
modules, distributed computation), framework subsystems
differ and constraints were specialised per-framework. The
standard deviation for all incremental compilation bench-
marks was under 5% of the overall compilation time. The
Appendix contains information and resources to reproduce
these results.

5.1.2. PERFORMANCE

When improving framework components or modifying inter-
nals, framework overhead makes it difficult to disambiguate
performance changes due to in-flight modifications from
existing bottlenecks or overhead due to other framework

2Examples — PyTorch: https://git.io/Jzel9, Ten-
sorFlow: https://git.io/JzeRw

Table 2. Compile times in CPU minutes across frameworks, with
incremental compilation times averaged over 100 samples. Flash-
light compilation time includes compiling with the default Array-
Fire CUDA backend.

PLATFORM FROM SCRATCH INCREMENTAL

PYTORCH 754 132
TENSORFLOW 2061 371

(OURS) FLASHLIGHT 34 0.6

components as discussed in Section 3. Table 3 compares the
performance of Flashlight 0.3.1, PyTorch 1.8, TensorFlow
2.4 on six common large-scale deep neural networks. For
each configuration, we benchmark 100 iterations of data
loading3, preprocessing, and forward/backward passes, with
data-parallel gradient synchronization in distributed settings.
Benchmarks are performed on Intel E5-2698 CPUs with
512GB of RAM, and NVIDIA V100-32GB GPUs in a DGX-
1 server. Inter-GPU interconnects in the 8 GPUs (1 node)
setting are Nvidia NVLink-based. All models were warmed
up with 100 iterations of forward and backward passes. For
consistency and reproducibility, no third-party libraries are

3To ensure fairness, due to Flashlight’s significantly better dat-
aloading performance as to compared to other frameworks, BERT-
like models use random data in-memory; ViT models exclude data
augmentation.

https://git.io/Jzel9
https://git.io/JzeRw
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Table 3. Performance on common state-of-the-art models across frameworks. Values are the number of seconds needed to perform 100
iterations of the forward and backwards passes, with data loading (unless indicated). Number of parameters are in millions. Framework
labels: PT = PyTorch, TF = TensorFlow, and FL = Flashlight.

MODEL
1 GPU 8 GPUS

NUM. PARAMS (M) BATCH SIZE PT TF FL PT TF FL

ALEXNET 61 32 2.0 4.0 1.4 6.0 6.5 2.1
VGG16 138 32 14.8 12.6 13.2 16.3 17.9 14.9
RESNET-50 25 32 11.1 12.4 10.3 12.3 15.9 11.9
BERT-LIKE 406 128 19.6 19.8 17.5 22.7 23.6 19.2
ASR TR. 263 10 58.5 63.7 53.6 63.7 69.7 57.5
VIT 87 128 137.8 140.3 129.3 143.1 169.6 141.0

used to enhance performance beyond optimization tools
already contained in frameworks (e.g. @tf.function
in TensorFlow). Flashlight is benchmarked as is with no
optimizations. While orthogonal to the paper, Flashlight’s
default backend has empirically outperformed other frame-
works due to the quality of the ArrayFire JIT, dataloading
performance, and low framework overhead.

Flashlight is competitive and can exceed the performance of
other frameworks, especially on architectures which are of
lower arithmetic intensity and spend less compute time in
vendor-optimized libraries, such as AlexNet. Given strong
performance with simple reference implementations that
have undergone far less optimization than have large frame-
works, we see exciting potential for improvement with fu-
ture research done in Flashlight.

5.2. Case Studies

Ongoing research efforts enabled by Flashlight include work
in code generation, compilers and IRs, memory manage-
ment, and distributed computing. Below, we give examples
of recent research made possible with Flashlight.

5.2.1. OPTIMIZATIONS ON LARGE, SPECIALIZED
AUTOGRAD GRAPHS

The ability to change the lightweight implementation of
Flashlight’s tensor and automatic differentiation (autograd)
components via extensible APIs facilitated research in build-
ing a fully differentiable beam search decoder (Collobert
et al., 2019), which required operating on unconventional
computation graphs not supported by other frameworks’ au-
tograd systems. Other frameworks were unable to handle
these autograd graphs for several reasons:

• Graphs contained millions of nodes/operations that
created significant memory pressure;

• There existed only small operator overhead per auto-
grad graph node (many addition and log operations);

• Graph operations had few opportunities for vectoriza-

tion;
• Only sparse components of the graph were required.

Authors modified Flashlight’s autograd to support:

• On-the-fly graph pruning to take advantage of sparsity
and reduce memory footprint;

• Dynamic, pre-fused gradient computation for common
sequences of gradient computation operations;

• Custom autograd node lifetime for avoiding reference-
counting overhead for graph mutations.

To our knowledge, these capabilities only exist in autograd
implementations like Flashlight’s that feature public APIs
built for customization. Indeed, these ideas may be broadly
applicable to other modeling settings, but implementing
and researching such logic in other frameworks’ autograd
systems is not realistically possible.

5.2.2. FRAGMENTATION REDUCTION IN ACCELERATOR
MEMORY MANAGEMENT

While those researching memory management techniques
in machine learning computation can make ad-hoc mod-
ifications to other frameworks’ memory managers, build
time, internal complexity, and lack of a unified interface
makes this challenging. Using Flashlight’s open memory
management interface, researchers studied and developed
new techniques for fragmentation reduction for memory
management on the GPU. This was made possible by the
ease of extending a lightweight memory manager interface
in Flashlight along with clear implementation requirements
and tests that made rapid prototyping possible.

Various caching memory allocators are used across deep
learning frameworks to reduce the cost of native device
memory allocations and reuse already-allocated memory.
These caching memory managers are subject to fragmen-
tation as they bucket allocations based on rounded size.
Reducing this fragmentation allows for training larger mod-
els and significantly improves performance as it removes
sometimes-expensive allocation overhead.
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Given these challenges, researchers aiming to reduce exter-
nal fragmentation implemented a custom caching memory
manager in Flashlight to study memory behavior and built
highly-specialized telemetry that tied individual tensor oper-
ations to specific allocations. Researchers detailed a myriad
of prototypes to reduce fragmentation and described rapid
rebuilds and custom telemetry as critical to their experimen-
tation. Ultimately, a memory manager that restricted split-
ting large cache blocks (or blocks beyond a certain tunable
size) showed promise and reduced internal fragmentation
for most models by over 20%.

These techniques were tested on a variety of models in Flash-
light before researchers shared their findings with maintain-
ers of other large deep learning frameworks, where knowl-
edge were contributed upstream4.

5.2.3. AUTOMATIC OPTIMIZATION OF MEMORY AND
DISTRIBUTED COMPUTE

Flashlight enables developing generalized approaches to
both memory management and distributed computation. Ap-
proaches such as ZeRO (Rajbhandari et al., 2020) optimizer
state sharding or GPUSwap (Kehne et al., 2015) memory
oversubscription, for example, are specialized to particu-
lar components of training pipelines. Generalizations of
these approaches which involve shuffling around buffers to
a variety of devices or performing pieces of computation
on certain hardware should discover new techniques for
efficient large-scale training.

Given that Flashlight offers complete control over mem-
ory and distributed computation models, tensors can follow
any preordained allocation schedule or rules. They can be
sharded or computations dispatched to arbitrary devices. Op-
erating under such general assumptions in other frameworks
that are without internal APIs for memory management
or feature strict requirements around computation model
makes specifying such a general system difficult.

5.2.4. RESEARCHING EFFICIENT PRIMITIVES IN
TENSOR COMPUTATION

New ideas in basic tensor computation are notoriously diffi-
cult to test at scale in an end-to-end fashion. For demonstra-
tive purposes, consider a research artifact which includes
new, more-efficient ways to perform element-wise arith-
metic operations on tensors (e.g. addition, multiplication).
While such operations can be implemented as one-off oper-
ators in most machine learning frameworks, swapping out
the source of truth for the tensor add function, for instance,
such that existing operators and framework components
(including baselines, benchmarks, etc) uses the custom im-
plementation may be difficult or untenable. Across various

4Caching allocator improvements in PyTorch.

frameworks, this process might involve:

• PyTorch — per Figure 1, 55 PyTorch operators explic-
itly perform addition as part of their computation (and
perhaps far more implicitly); to benchmark end-to-end
with existing PyTorch code, all of these callsites must
be changed to call the new implementation.

• TensorFlow — similarly to PyTorch, many operators
perform addition, and while defining custom opera-
tors is straightforwards, changing a wealth of existing
library code is error-prone and labor-intensive.

• Jax — defining a custom operator in Jax and using
it via composition with other operators is relatively
simple. However, swapping out default behavior of ad-
dition for most all Jax operators would require changes
to XLA via MLIR, a large, complex codebase.

• Flashlight — given the default backend, an imple-
menter can simply subclass or swap out the existing
implementation of the add function with their custom
logic. All add operations in Flashlight dispatch to that
operator, so existing baselines and operations will run
with the new implementation without any additional
code changes.

6. Conclusion
We presented Flashlight, a modular machine learning library
supporting modern, state-of-the-art baselines that features
orders of magnitude less code and binary size as compared
to frameworks such as PyTorch and TensorFlow. These
large frameworks come fully-featured; Flashlight aims to
complement them in providing a first-of-its-kind tool with
which to do machine learning framework and computational
research. To this end, Flashlight features a lightweight,
modular design, as well as full implementations of main-
stream models across a variety of domains, making it easy
for researchers to implement new internal tensor, memory
management, or distributed computation backends. Flash-
light includes a variety of reference implementations for its
APIs that compete with and often outperform popular ma-
chine learning frameworks, thus demonstrating the viability
of our approach.
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A. Appendix
A.1. Reproducibility

All tools and code used in our evaluation are included as supplementary material — this includes scripts to reproduce
benchmarks and other quantitative codebase metrics. Flashlight code can be found on Github at https://github.com/
flashlight/flashlight.

As discussed in Section 5, Flashlight v0.3.1 is used to reproduce results using ArrayFire 3.8 as the underlying tensor backend.
No other specialized configuration is used for either Flashlight or PyTorch or TensorFlow.

A.1.1. FROM-SOURCE COMPILATION

Flashlight is built in CMake release mode, which is also the default for both PyTorch and TensorFlow builds. Build settings
are kept default for all frameworks; Flashlight uses Ninja5 with CMake in accordance with PyTorch’s build, while Tensorflow
employs Bazel.

Exact build step reproduction can be found in the aforementioned repository.

A.1.2. INCREMENTAL COMPILATION

Incremental compilation benchmarks are performed using similar build setups per Section A.1.1. To test incremental
rebuilds, source files are randomly selected without replacement from a distribution constructing by weighting each file by
the number of lines in the file, and using that number to determine the probability of selecting it for modification.

Scripts to perform and time this incremental compilation can be found in the aforementioned public repository.

A.2. Code Complexity

A.2.1. OPERATOR COUNTING

To count the number of operators for each framework, we utilize operator schemas for PyTorch and Tensorflow (which
generate code from those schemas, accordingly) written in YAML and Protobuf, respectively. For Flashlight, we count the
number of functions in the Flashlight TENSOR interface and autograd interfaces, as these form the full implementation
requirements for a full tensor backend that functions on all platforms. The scripts released on Github detail the files and
filtering techniques used to reproduce the number of results.

To count the number of operators for each implementation, we use the above operator lists, then count the number of
operators that perform the specified function, even if those operators perform other functions. For example: an operator
called ADDMM, which performs an addition operation followed by a matrix-matrix multiplication, performs an addition
operation, and would thus be counted when tallying the number of ADD operators.

A.2.2. CODEBASE COMPLEXITY DISAMBIGUATING TENSOR LIBRARY SIZE

Given that Flashlight can be compiled with arbitrary tensor libraries that are adapted to the Flashlight Tensor framework, we
provide brief further evaluation here exhibiting the contribution of tensor libraries to overall framework size. In an effort
to remote auxiliary and irrelevant framework components, both this analysis and the analysis from Section 5 counts only
C, C++, Python, YAML, CUDA, and CMake files from a relevant subset of core framework components when assessing
overall lines of code.

Table 4 details the relative sizes and number of lines per framework with and without tensor libraries. Note that PyTorch
cannot be compiled without its tensor components, so one cannot directly assess binary size.

A.3. Performance

The aforementioned public repository provides scripts required to fully-reproduce all performance measures.

5https://ninja-build.org/

https://github.com/flashlight/flashlight
https://github.com/flashlight/flashlight
https://ninja-build.org/
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Table 4. Complexity of various framework components including and excluding building with tensor library components.

METRIC PYTORCH TENSORFLOW (OURS) FLASHLIGHT

BINARY SIZE (MB) (NO TENSOR LIB) N/A 423 7
LINES OF CODE (NO TENSOR LIB) 924K 602K 27K

BINARY SIZE (MB) (WITH TENSOR LIB) 527 768 10
LINES OF CODE (WITH TENSOR LIB) 1798K 1306K 17K

NUMBER OF OPERATORS 2,166 1,423 60

A.4. Design Details and Code Samples

In the following sections, we show brief code samples expounding on those in Section 4.

A.4.1. DISTRIBUTED TRAINING

Flashlight’s distributed training API is of a similar flavor to its Tensor library, in that it invites custom implementations
of distributed computation primitives with an explicit API. The API is unopinionated and supports both synchronous and
asynchronous communication, unlike other frameworks. Alsi included is an internal API for implementing specialized
rendezvous schemes for new distributed computation environments. Listing 5 shows part of this API, which is structured in
a similar manner to (Li et al., 2020). Implementers need simply derive from this interface, and their distributed computation
primitives will interoperate with other Flashlight computation streams.

class DistributedInterface {
// store arbitrary state here

public:
// metadata about the distributed computation environment
virtual int getWorldRank() = 0;
virtual int getWorldSize() = 0;
// ...

// distributed computation primitives
virtual void allReduce(Tensor& var, double scale = 1.0, bool async = false) = 0;
virtual void allReduceMultiple(

std::vector<Tensor> vars,
double scale = 1.0,
bool async = false) = 0;

// ...

// synchronization primitives
virtual void syncDistributed() = 0;
virtual void barrier() = 0;
// ...

};

Listing 5. Part of Flashlight’s distributed computation API.

A.4.2. MODULES

Flashlight’s MODULE abstraction is similar to that of frameworks such as Torch and PyTorch. It can recursively store other
modules and interoperate with more sophisticated abstractions including CONTAINER, which wraps multiple modules,
SEQUENTIAL, which stores sequences of modules and forwards data through them sequentially, and user-defined abstractions.
Listing 8 in Section A.4.3 shows an example of Sequential usage.

Listing 6 shows a small Dropout module implementation that calls into the dropout autograd primitive, stores and serializes
a small amount of state, and defines a simple forward function on a Variable.

class Dropout : public Module {
private:
double ratio_;
FL_SAVE_LOAD_WITH_BASE(Module, ratio_) // serialization
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public:
Dropout(double drop_ratio = 0.5);
Variable forward(const Variable& input) override {

if (train_) {
return dropout(input, ratio_); // autograd primitive

} else {
return input;

}
}
// ...

};

Listing 6. A Dropout layer implemented as a Flashlight module.

The FL SAVE LOAD WITH BASE macro defines serialization of the Dropout class as a module, including any fields to be
serialized (in this case, only the dropout ratio).

A.4.3. AN END-TO-END EXAMPLE: MNIST

Below, we detail a simple end-to-end training setup following Flashlight’s open-source documentation6.

First, data is loaded using the BATCHDATASET abstraction in Listing 7:

const int kTrainSize = 60000;
const int kValSize = 5000;

auto& [train_x, train_y] = load_dataset(data_dir);

// Hold out a dev set
auto val_x = train_x(span, span, range(0, kValSize));
train_x = train_x(span, span, range(kValSize, kTrainSize));
auto val_y = train_y(range(0, kValSize));
train_y = train_y(range(kValSize, kTrainSize));

// Make the training batch dataset
BatchDataset trainset(

std::make_shared<TensorDataset>(std::vector<Tensor>{train_x, train_y}),
batch_size);

// Make the validation batch dataset
BatchDataset valset(

std::make_shared<TensorDataset>(std::vector<Tensor>{val_x, val_y}),
batch_size);

Listing 7. Loading MNIST data into a train and evaluation set.

A full description of the load dataset function can be found in the MNIST training example on Github7.

We can construct the model using a simple SEQUENTIAL in Listing 8:

const int kImageDim = 28;
auto pad = PaddingMode::SAME;

Sequential model;
model.add(View({kImageDim, kImageDim, 1, -1})); // WHCN (col major)
model.add(Conv2D(

1 /* input channels */,
32 /* output channels */,
5 /* kernel width */,
5 /* kernel height */,
1 /* stride x */,

6https://fl.readthedocs.io/en/latest/mnist.html
7https://git.io/JVI6O

https://fl.readthedocs.io/en/latest/mnist.html
https://git.io/JVI6O
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1 /* stride y */,
pad /* padding mode */,
pad /* padding mode */));

model.add(ReLU());
model.add(Pool2D(

2 /* kernel width */,
2 /* kernel height */,
2 /* stride x */,
2 /* stride y */));

model.add(Conv2D(32, 64, 5, 5, 1, 1, pad, pad));
model.add(ReLU());
model.add(Pool2D(2, 2, 2, 2));
model.add(View({7 * 7 * 64, -1}));
model.add(Linear(7 * 7 * 64, 1024));
model.add(ReLU());
model.add(Dropout(0.5));
model.add(Linear(1024, 10));
model.add(LogSoftmax());

Listing 8. Constructing a CNN for MNIST training.

In Listing 9, we create a simple custom training loop. This uses optimizer, loss function, and meter abstractions as provided
by default by Flashlight. We perform the forward and backward pass, step the optimizer to update parameters, and zero out
gradients before moving to the next batch. We evaluate the model using the function defined in Listing 10, pulls out the max
prediction and comparing it against the ground truth, updating the loss meter as we go, then returning the final loss values.

// Make the optimizer
SGDOptimizer opt(model.params(), learning_rate);

// The main training loop
for (int e = 0; e < epochs; e++) {
AverageValueMeter train_loss_meter;

// Get an iterator over the data
for (auto& example : dataset) {

auto inputs = noGrad(example[INPUT_IDX]);
auto output = model(inputs);

auto target = noGrad(example[TARGET_IDX]);
// Compute and record the loss.
auto loss = categoricalCrossEntropy(output, target);
train_loss_meter.add(loss.tensor().scalar<float>());
// Backprop, update the weights and then zero the gradients.
loss.backward();
opt.step();
opt.zeroGrad();

}

double train_loss = train_loss_meter.value()(0).scalar<double>();

// Evaluate on the dev set.
auto [val_loss, val_error] = eval_loop(model, valset);

std::cout << "Epoch " << e << std::setprecision(3)
<< ": Avg Train Loss: " << train_loss
<< " Validation Loss: " << val_loss
<< " Validation Error (%): " << val_error << std::endl;

}

Listing 9. A simple training loop.

std::pair<double, double> eval_loop(Sequential& model, BatchDataset& dataset) {
AverageValueMeter loss_meter;
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FrameErrorMeter error_meter;

// Place the model in eval mode.
model.eval();
for (auto& example : dataset) {

auto inputs = noGrad(example[INPUT_IDX]);
auto output = model(inputs);
// Get the predictions in max_ids
Tensor max_vals, max_ids;
max(max_vals, max_ids, output.tensor(), 0);

auto target = noGrad(example[TARGET_IDX]);
// Compute and record the prediction error.
error_meter.add(reorder(max_ids, 1, 0), target.tensor());
// Compute and record the loss.
auto loss = categoricalCrossEntropy(output, target);
loss_meter.add(loss.tensor().scalar<float>());

}
// Place the model back into train mode.
model.train();

double error = error_meter.value().scalar<double>();
double loss = loss_meter.value().scalar<double>();
return std::make_pair(loss, error);

}

Listing 10. Evaluating a training model on MNIST.

Finally, in Listing 11, we evaluate the trained model on the test set by creating a test dataset and using the previously-defined
evaluation function.

std::pair<double, double> eval_loop(Sequential& model, BatchDataset& dataset) {
AverageValueMeter loss_meter;
FrameErrorMeter error_meter;

// Place the model in eval mode.
model.eval();
for (auto& example : dataset) {

auto inputs = noGrad(example[INPUT_IDX]);
auto output = model(inputs);
// Get the predictions in max_ids
Tensor max_vals, max_ids;
max(max_vals, max_ids, output.tensor(), 0);

auto target = noGrad(example[TARGET_IDX]);
// Compute and record the prediction error.
error_meter.add(reorder(max_ids, 1, 0), target.tensor());
// Compute and record the loss.
auto loss = categoricalCrossEntropy(output, target);
loss_meter.add(loss.tensor().scalar<float>());

}
// Place the model back into train mode.
model.train();

double error = error_meter.value().scalar<double>();
double loss = loss_meter.value().scalar<double>();
return std::make_pair(loss, error);

}

Listing 11. Evaluating a training model on MNIST.


