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Abstract
In recent work, it has been shown that reinforce-
ment learning (RL) is capable of solving a variety
of problems at sometimes super-human perform-
ance levels. But despite continued advances in
the field, applying RL to complex real-world con-
trol and optimisation problems has proven difficult.
In this contribution, we demonstrate how to suc-
cessfully apply RL to the optimisation of a highly
complex real-world machine – specifically a linear
particle accelerator – in an only partially observ-
able setting and without requiring training on the
real machine. Our method outperforms conven-
tional optimisation algorithms in both the achieved
result and time taken as well as already achieving
close to human-level performance. We expect that
such automation of machine optimisation will push
the limits of operability, increase machine avail-
ability and lead to a paradigm shift in how such
machines are operated, ultimately facilitating ad-
vances in a variety of fields, such as science and
medicine among many others.

1. Introduction
Reinforcement learning (RL) has been shown in various
contributions as a potent method for solving complex tasks
at super-human performance levels that were previously
thought beyond the ability of computers (Silver et al., 2016;
Badia et al., 2020). Furthermore, RL methods promise to
find solutions faster for problems previously solved using
classical optimisation algorithms by moving exploration
from run time to design time. The application of RL to com-
plex real-world tasks has however proven challenging (Irpan,
2018; Dulac-Arnold et al., 2019) for reasons such as the
complexity of real-world tasks and sample efficiency.
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Particle accelerators are an excellent example of a high-
impact real-world application where RL can make a mean-
ingful difference. Among the most advanced machines of
our time, particle accelerators find use in many applications
such as fundamental physics research, cancer treatment, the
development of vaccines and drugs as well as the devel-
opment and production of novel materials enabling for ex-
ample for carbon-neutral transportation. These applications
place strict requirements on the electron or photon beam de-
livered by the accelerator. Tuning accelerators to fulfil these
requirements has historically been a challenging and diffi-
cult to automate task. As a result, accelerators continue to
be tuned mostly manually by experienced human operators.
Manual tuning is a lengthy process with hundreds of hours a
year spent on tuning and therefore not available for product-
ive operation at some facilities. Furthermore, the quality of
the machine setup after tuning depends significantly on the
operators’ experience, limiting their reproducibility. Effect-
ive automation of accelerator tuning and optimisation has
the potential to allow for faster tuning, make results easier
to reproduce and possibly push the limits of accelerator op-
erability. With the help of capable methods such as RL it is
hoped that steps can be taken toward autonomous accelerat-
ors (Eichler et al., 2021) where operators no longer adjust
actuators until a machine setup is achieved, but can instead
define a desired setup that is then autonomously configured.

In this work, we demonstrate the application of RL to a real-
world optimisation problem from a tuning task performed in
regular operation of a linear particle accelerator. We show
the trained RL agent’s ability to solve the highly non-linear
task under partial observability. Our solution achieves bet-
ter results than classical optimisation algorithms and close
to those achieved by experienced human operators. The
RL agents manage to achieve these results in just a few
steps, taking less time than human operators to perform the
optimisation despite the RL agents being limited by slow
hardware present on the particular real machine considered
in this contribution. These excellent results are achieved on
the real accelerator, using a 5-dimensional continuous ac-
tion space, having trained fully in simulation and therefore
without requiring any machine time for training. The trans-
fer from simulation to machine is enabled by the inclusion
of model errors into the simulation for a robust RL agent.
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In the following, we summarise related work in Section 2.
Then we give a brief introduction to RL in Section 3. In Sec-
tion 4, we present our approach to applying RL to particle
accelerator optimisation. Before concluding this work in
Section 6, we present our results and compare them to clas-
sical optimisation in Section 5.

2. Related Work
The autonomous optimisation of particle accelerators dur-
ing their operation is an active field of research (Eichler
et al., 2021). Black-box optimisation algorithms in partic-
ular are applied to such problems both in research as well
as in day-to-day operations. The software package Ocelot
Optimizer (Tomin et al., 2016) for use in the control room
streamlines the application of optimisation algorithms to
accelerators and is regularly used in the operation of various
facilities.

Because the hardware of particle accelerators may be slow
to react, sample-efficiency is a key focus of research into
the autonomous optimisation of accelerators. As a result,
Bayesian Optimisation has found particular interest in the
community and has been applied successfully to a variety
of accelerator optimisation problems (McIntire et al., 2016;
Hanuka et al., 2019; Kirschner et al., 2019; Shalloo et al.,
2020; Duris et al., 2020). These optimisation methods are
however often limited by either their speed or the complexity
of the problems they can handle.

In an effort to improve the speed of classical optimisers on
particle accelerators, other works explore the use of machine
learning (ML) to aid the optimisation by fitting surrogate
models to data from the real accelerator and performing
optimisation on the latter (Edelen et al., 2020; Ivanov &
Agapov, 2020).

The use of RL for autonomous particle accelerator optimisa-
tion is a young and fast growing research field. In (St. John
et al., 2021), a Deep Q-Learning (DQN) agent is trained
to act on a discretised continuous one-dimensional action
space to regulate a gradient magnet power supply (GMPS)
disturbed by environmental factors and improve its output
stability. Using an artificial neural network (ANN) surrog-
ate model for training and evaluation, the authors demon-
strate that the RL performs better than an existing propor-
tional–integral–derivative (PID) controller. In (Bruchon
et al., 2020), two RL agents are trained on a real machine to
attain and recover, respectively, high levels of self-amplified
spontaneous emission (SASE) intensity at the FERMI free-
electron laser at Elettra Sincrotrone. A high-dimensional
highly observed and linear orbit correction problem with lin-
ear dynamics is solved with sample-efficient training of RL
agents on a real accelerator in (Kain et al., 2020). In (Pang
et al., 2020), continuous RL is used to optimise amplitude

and phase settings of a drift tube linac (DTL) for optimal
transmission of the beam in 3- and 5-dimensional continu-
ous actions spaces, with 85 % and 21 % of the optimisations
succeeding after up to 700 steps in simulation.

Outside of the accelerator community, there has been suc-
cessful work on the sim2real transfer of simulation-trained
ML systems exploring domain randomisation to train an
object detector on randomly rendered images such that the
real-world image appears as just another random image
variation (Tobin et al., 2017). The concept of domain ran-
domisation has also been applied to RL, where robot hands
where trained to solve a Rubik’s Cube from randomised im-
age observations in simulation and then successfully applied
in the real world (OpenAI et al., 2019). Most recently, a
sim2real transfer in RL was successfully demonstrated on a
more practical physical real-world application of controlling
the plasma in a tokamak reactor (Degrave et al., 2022).

Compared to prior work on RL for accelerators, we con-
sider a higher complexity problem both in terms of action
space dimensionality and the underlying dynamics. We
further successfully implement a sim2real transfer from a
simulation-trained agent to the real accelerator with the help
of domain randomisation, where prior works were either
only evaluated in simulation or using a surrogate model,
or used expensive beam time for training on the real accel-
erator. In addition, we are – to our knowledge – the first
to compare the performance of an RL agent in accelerator
optimisation directly to that of an expert human operator.

3. Reinforcement Learning
Reinforcement learning (RL) is a subfield of ML, where
an agent is trained to iteratively solve a given task by max-
imising a cumulative reward R, the sum of immediate re-
wards rt received in each step. In order to solve the task,
the agent is provided an observation ot . The agent can use
this observation to compute the next action at to take on the
environment E . In response to the action, the environment
returns a new observation ot+1 and a reward rt+1. The itera-
tion, illustrated in Figure 1, is repeated indefinitely or until
some terminal condition is met. Formally, we aim to solve
a Markov decision process (MDP) by querying the agent’s
policy πθ for the next action at =πθ (ot ) and then perform-
ing this action on the environment that is currently in some
internal state st as ot+1,rt+1 = Est (at ) to receive the next
observation and reward. Many real-world problems are only
partially observable, meaning that the internal state st is
not fully reflected in the observation ot . In such a partially
observable Markov decision process (POMDP) the Markov-
property is not fulfilled and it may not be possible to predict
the next observation ot+1 from a current observation-action
pair (ot , at ).
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Figure 1. Flowchart of the RL loop. Based on the observation ot
of the environment, the agent chooses an action at . As a result of
the action, the environment transitions to a new internal state st+1
and emits the next observation ot+1 and reward rt+1.

The goal of training an RL agent is to find the optimal
policy parameters θ∗ that maximise the cumulative reward
over all states of the environment. This is done by re-
peatedly letting the agent act on the environment and using
the reward as a training signal to adapt the policy para-
meters via, for example, policy gradient or value-based
RL training algorithms such as Proximal Policy Optimisa-
tion (PPO) (Schulman et al., 2017) or Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015).

4. Our Approach
Applying RL to optimisation problems on real-world ma-
chines requires the formulation of an optimisation problem
as well as its translation to an RL problem. In the following
we first introduce the problem setup and the correspond-
ing optimisation problem in Section 4.1, followed by our
RL-based solution of the problem. In developing this con-
tribution, a number of challenges with the application to
real-world machines in general have been addressed.

4.1. Experimental Area

In this contribution, we consider the optimisation of the
transverse electron beam parameters in the Experimental
Area (EA) section of the S-band radio frequency electron
linear accelerator ARES (Panofski et al., 2021) at DESY in
Hamburg, Germany. The EA is located downstream of the
gun section and accelerating structures, where the electron
beam is generated and accelerated to an energy of up to
about 150 MeV, and ends with an experimental chamber
that houses a variety of experiments. The EA is followed
downstream by the second half of the accelerator. Both the
experimental chamber as well the downstream section of
the accelerator place stringent requirements on the beam
properties at the end of the EA in order to enable state-of-
the-art experiments.

The goal of this work is to optimise the transverse beam
properties b = (

µx ,µy ,σx ,σy
)

on a diagnostic screen S to-
ward the end of the EA, just upstream of the experimental
chamber. Here, the properties µx and µy are the position
of the beam, and σx and σy are the beam size in x- and
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Figure 2. Illustration of the Experimental Area (EA) showing the
components relevant for this contribution. The electron beam
is indicated by the blue envelope. The beam enters the EA as
indicated from the left.

y-direction within the transverse plane. They are calculated
as the mean and standard deviation of the electrons in the
beam, respectively. The electron beam is observed using a
diagnostic screen made from a scintillating crystal material
that emits light at an intensity corresponding to the number
of impacting electrons. The image of the screen captured by
a CCD camera allows the calculation of the position and size
of the electron beam in the transverse plane of the screen S.

An arrangement of five magnets installed in the EA, three
quadrupole magnets and two dipole magnets, may be used
to manipulate the beam position and size. Quadrupole mag-
nets act much like lenses in that they focus or defocus the
beam. As a result of the quadrupole geometry, the effect is
always reversed in the x- and y-planes, i.e. focusing in x
means defocusing in y and vice versa. The magnitude of
the focusing effect of a quadrupole is given by its strength
k. The dipole magnets, so-called correctors, deflect within
a plane according to their own orientation by some deflec-
tion angle α. In the EA there is a vertical and a horizontal
corrector deflecting the beam in the vertical and horizontal
plane, respectively. Figure 2 shows a simplified overview of
the relevant components and their arrangement in the EA.

Depending on the experiment, different requirements are
placed on the beam. We therefore consider in this con-
tribution the problem of optimising the actuator settings
x = (

kQ1 ,kQ2 ,kQ3 ,αCv ,αCh

)
to adjust the transverse para-

meters of the beam on screen S to any set of beam para-
meters b′ chosen by the operator as required for the present
experiment. This problem can be formulated as an optim-
isation problem

x∗ = argminx D
(
b,b′)

to find a vector of optimal actuator settings x that minimise
the difference D between the observed beam parameters b
and the desired beam parameters b′.
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To this end, we know that there exists a function b = FI ,M (x)
that maps the actuator values x currently set on the magnets
to beam parameters b measured on the diagnostic screen.
F depends on two unknown stochastic variables, the beam
entering the EA I and a set of potential errors in the con-
structed machine M , such as misalignments of the magnets
as well as drifts. In the real world, neither the incoming
beam I nor the machine errors M are known. Furthermore, a
variety of other effects influence the beam in the real world,
resulting in unknown deviations from the known function
FI ,M . As a result FI ,M is considered a stochastic black-box
function.

4.2. Learning-based Optimisation

The described optimisation problem is reformulated as an
RL problem in order to train agents to perform the optimisa-
tion. Four key components are required for an RL problem:
action, observation, reward and environment.

The action defines how the agent interacts with the envir-
onment. For the optimisation task in the EA, the action
may intuitively be defined as the magnet settings at = xt .
Our experiments have however shown that while this ac-
tion definition works well in simulation, it stops working
when transferring simulation-trained agents to the real world.
This is because in the real world, effects, such as magnet
hysteresis1 and environmental factors, disturb the beam res-
ulting from a particular set of magnet settings. The implica-
tion is that on the real accelerator, even if the environment
were fully-observed, the same set of magnet settings may
lead to different beams on the diagnostic screen at differ-
ent times. We solve this by defining a continuous delta
action at =

(
∆kQ1 ,∆kQ2 ,∆kQ3 ,∆αCv ,∆αCh

)
as the amounts

by which to change the actuator values xt at time step t . At
time step t +1, this results in actuator values xt+1 = xt +at .
This action definition allows the agent to dynamically com-
pensate for unexplained deviations from the expected beam
and is very similar to the way human operators interact with
the magnets. Our experiments have shown that the latter
definition enables a successful sim2real transfer.

The observation is based on the internal state st of the en-
vironment. In the ARES EA, st can be mostly described by
the current actuator values xt , the desired beam parameters
set by the operator b′, the beam entering the EA I and the
magnet misalignments M . Using the function F , the current
beam parameters on the diagnostic screen bt can be com-
puted from the previously named state components. Ideally,
the state st would be the same as the observation ot . As is
the case with many real-world systems, however, the state
of the EA is only partially observable. Both the incoming

1Magnet hysteresis occurs when the ferromagnetic core of an
electromagnet retains some magnetisation when the current in its
coils is removed, reduced or reversed.

beam I and the magnet misalignments M are neither meas-
urable nor constant. Instead, only the current actuator values
xt , the current beam parameters on the screen bt and the
desired beam parameters b′ can be observed. We therefore
derive a partial observation ot =

(
xt ,b′,bt

)
.

The most important component of any RL problem defin-
ition is the reward. The choice of reward is crucial for
an RL algorithm’s ability to learn. We choose to define
the reward function R based on the objective function O.
This is convenient as it allows staying close to the original
optimisation problem definition. We define the reward as
the difference – intuitively the improvement – of the ob-
jective function O from time step t to time step t +1. This
definition is intuitive and does ensure the RL agent learns to
minimise the objective. Learning, however, is slow and it is
possible for agents to traverse potentially dangerous states
of high objective in between two states of low objective
during the optimisation. Both these issues are caused by the
fact that agents can recover most of the reward lost when
traversing states of high objective value in between two
states of approximately equal value. Rather than defining
constraints to solve this issue, which has to be redone for
each problem and may be difficult, the reward is slightly
redefined such that the agent is discouraged from worsening
the objective at any time unless the expected cumulative
reward following such an action is very large. Whenever the
objective difference is negative, i.e. the new actuators xt+1

result in a higher objective O than the previous actuators xt ,
the reward is multiplied by two, making reward recovery
much more difficult. We have found that this improves the
training speed. The final reward function is defined in terms
of an objective function O (x) as

R (st , at ) =
{

R̂ (st , at ) if R̂ (st , at ) > 0

2 · R̂ (st , at ) otherwise .

with R̂ (st , at ) =O (xt )−O (xt+1). While the objective func-
tion is often already defined for optimisation problems, we
found that it is ill-advised to use objectives well suited to
classical optimisation as a basis for a reward function. This
is because typically used objective functions such as mean
squared error (MSE) result in vanishing rewards near the
optimum. Over the course of a single optimisation, the re-
ward can change multiple orders of magnitude, especially
with common objective functions like MSE. As a result,
the reward signal in later stages of optimisations is barely
strong enough to facilitate learning in an RL context. This
issue is illustrated in Figure 3. Resulting trained agents tend
to optimise toward the optimum but stop prematurely. The
problem can be addressed by taking the logarithm of the
objective function previously chosen for classical optim-
isation. In the case of the EA optimisation task, we start
with a weighted sum over the absolute differences between
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Figure 3. 1-dimensional example of a typically used MSE object-
ive compared to the logarithm of an MAE objective.The MSE
differential objective shrinks as the input variable converges to-
ward the optimum, i.e. the reward vanishes. This effect is not
present with the logarithmic objective.

Experimental
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Figure 4. Flowchart of the RL loop as used on the beam position-
ing and focusing task on the EA. The agent receives as observation
from the environment the current actuator values (blue), the beam
parameters and intensity (red) as well as the desired beam paramet-
ers set by the operator (green). Based on the observation, the agent
outputs an action of the change to the settings of the quadrupoles
(red), vertical corrector (cyan) and horizontal corrector (blue).

observed and desired transverse beam parameters on dia-
gnostic screen S. Taking the logarithm of the objective
results in

O (xt ) = ln
∑

p∈bt ,p ′∈b′
wp

∣∣p −p ′∣∣
where wp is the weight for beam parameter p and a tunable
hyperparameter during training of an agent.

The environment contains the problem setup and dynamics
and is defined in terms of the function FI ,M as

Est (at ) = ot+1,rt+1 =
(
xt+1,b′,FI ,M (xt+1)

)
,R (st , at ).

An overview of the RL loop specific to the task in the EA is
shown in Figure 4.

4.3. Training

Training in the real world is difficult and dangerous for a
variety of reasons. Firstly, training using the real machine
can be expensive as a result of limited availability. Beam
time on particle accelerators, for example, is a sought-after
resource due to how few of these machines exist. This
issue is further amplified by the number of samples re-
quired for training an RL agent and the time it takes to
acquire these samples. The agents trained in this contribu-
tion took 6 million samples to train with each sample taking
upwards of 7 seconds to run on the real facility. The result
is infeasible training times of at least a year of continuous
beam time on the real accelerator. Research accelerators
are also usually one of a kind, prohibiting the advantages
of policy gradient RL algorithms like Proximal Policy Op-
timisation (PPO) (Schulman et al., 2017) that make use of
parallelisation. While the optimisation task on the EA is a
particularly strong example for these constraints, they are
nonetheless commonplace in the real world. Secondly, it is
inherent to RL training that the agent explores unexplored
and sometimes extreme regions of the optimisation space.
Doing this on a real machine can be quite dangerous, result-
ing in machine protection systems stopping training in the
best case and serious damage in the worst.

To address the issues of availability, speed and safety, we
choose to train in a simulation of the accelerator and only
deploy the fully trained agent to the real world. We have
developed our training setup to facilitate this by splitting
the logic of the problem environment in two parts: frontend
and backend. The frontend provides the general logic of
the problem and handles interaction with the agent. The
backend is interchangeable and handles the machine dy-
namics. This way, it is possible to implement a backend
that interfaces with the real machine as well as another that
interfaces with a simulation of the machine. By moving the
latter functionality to a backend, it is made invisible to the
trained agents, which can seamlessly be transferred from
simulation to the real machine.

Ideally, the simulation would perfectly represent the real
world. Unfortunately, some aspects of the real accelerator,
such as the beam I entering the EA or the construction errors
M are not known. The incoming beam might even change
during operation. For agents to transfer well from training
in simulation to running in the real world, it is therefore
important to train agents to generalise over these sources of
uncertainty. To achieve this, we consider I and M uniformly
distributed random variables over reasonable ranges derived
from domain knowledge during training in simulation. In
each training episode we sample both random variables such
that the agents learn to generalise over them. In general,
no perfect model exists for any real-world application. It
is therefore important to include such errors in the simula-
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Table 1. Hyperparameters used to train the RL agents.

Parameter Value

Action Noise Scale 0.1
Replay Buffer Length |R| 600000
Discount Factor γ 0.55
Learning Rate (Actor & Critic) 0.001
Warmup Steps 2000
ANN Architecture [64,32]
Total Number of Timesteps 6000000
Episode Timestep Limit 50
Beam Parameter Weights (1,1,2,2)

tion during training as much as is possible. Randomising
such potential errors from the real-world during training
in simulation also positively impacts the robustness of the
final trained agents. As the particular optimisation problem
considered in this contribution is about achieving a specific
goal that can dynamically be chosen by a human after the
agents were trained, the desired beam parameters were also
randomly sampled from uniform distributions over ranges
derived from the operation of the accelerator. This, too, can
be used for other problems with user-defined goals.

In order to accelerate the convergence of the RL training and
the optimisation performed by the trained agents, it is im-
portant to include domain knowledge where possible. From
accelerator theory, it is known that a good beam focus will
follow a focus-defocus-focus (FDF) pattern over the quad-
rupole magnets. We make use of this knowledge in training
and subsequent optimisations by initialising the actuators as
x0 = (10,−10,10,0,0) at the start of each episode.

5. Evaluation
The presented implementation has been evaluated on both
simulation and machine against baselines, other algorithms
as well as human operators. The evaluation was performed
on a fixed set of 300 problem instances that each define
a sample of the desired transverse beam parameters b′, a
sample of the incoming beam I , a sample of system errors
in the form of transverse misalignments of the quadrupole
magnets M and the diagnostic screen S as well as a sample
of the initial settings for all five actuators x0. The perform-
ance of all solutions is compared in terms of two metrics:
MAE and steps. The step metric is defined as the number
of function evaluations (set magnets and measure the beam
resulting on the diagnostic screen) until the MAE converges,
i.e. the change in MAE remains less than the measurement
accuracy possible on the real accelerator. The step metric
allows for consistency between simulation and real acceler-
ator, where the wall time durations of function evaluations
may be very different. The MAE metric is defined as the

difference between observed and desired beam parameters

1

4

∑
p∈(µx ,σx ,µy ,σy )

|p ′−pt | (1)

at the time step t when the beam optimisation is converged.

Three instances of the final RL agent were trained. All
RL agents were trained using a benchmarked implement-
ation of the Twin Delayed DDPG (TD3) algorithm (Lilli-
crap et al., 2015) from the Stable-Baselines3 Python pack-
age (Raffin et al., 2019). Each agent was trained for 6
million steps using a custom high-speed particle acceler-
ator simulation (Stein et al., 2022). Training each agent
on a cluster node with an Intel Xeon Gold 5115 CPU, two
NVIDIA V100 GPUs and 376 GB of RAM took around 14
hours. For the training, RL environments were implemen-
ted as OpenAI Gym (Brockman et al., 2016) environments
around the particle accelerator simulation code backend. Hy-
perparameters for the TD3 algorithm, the ANNs as well as
the environment were selected via a hyperparameter explor-
ation in simulation using Weights & Biases (Biewald, 2020)
for experiment tracking. The best observed hyperparamet-
ers where used to train the models for the final benchmarks.
The final hyperparameters are listed in Table 1.

The trained agents were evaluated both on simulation, in
order to establish a performance baseline and compare it
to alternative algorithms, as well as on the real machine, in
order to verify that the results from simulation transfer to the
real world and compare the RL agents’ performance to that
of experienced human operators. An unweighted MAE is
used as the evaluation score to compare methods and provide
a result that is nicely interpretable as the deviation of the
beam parameters that one can expect of the final achieved
solution. Table 2 shows the results of the evaluation.

For the comparison in simulation, simple strategies as well
as classical optimisation algorithms were evaluated:

• Do Nothing: Leave the initial actuator settings as they
are. Note that this means that no step is required.

• Zero: Turn off all magnets, i.e. setting the actuators
vector to xn = (0,0,0,0,0), effectively transforming the
EA into a drift section. This strategy requires one step.

• FDF: Set the quadrupoles to an FDF pattern and the
dipoles to 0, resulting in xn = x0. This strategy requires
one step.

• Random: A random search of 100 samples over ac-
tuator vectors xt . Finally, the actuator vector with the
best MAE objective is recovered.

• Powell: Run optimisation using Powell’s optimisation
algorithm (Powell, 1994).
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Table 2. Results of the evaluation. We report median MAEs over
all problem instances. For the evaluation on the real machine only
200 problem instance were considered. Convergence is defined
as the number of steps after which the absolute change in MAE
remains smaller than the measurement accuracy on the real accel-
erator.

Algorithm MAE Convergence
Median (mm) Median (Steps)

Do Nothing 1.122 0
Zero 0.588 1
FDF 0.699 1
Random 0.267 101
Powell 0.259 119
COBYLA 0.105 34
Nelder-Mead 0.007 112
Bayesian 0.081 101
Ours 0.008 7
Ours (Machine) 0.036 12

• COBYLA: Run optimisation using the COBYLA op-
timisation algorithm (Powell, 1994). The parameter ρ0

is set to 1×10−3.

• Bayesian: Run optimisation using the Bayesian Op-
timisation algorithm (Moc̆kus, 1982). The logarithm
of the MAE is used as the objective function. Each
optimisation is run for 100 steps.

• Nelder-Mead: Run optimisation using the Nelder-
Mead Simplex optimisation algorithm (Nelder & Mead,
1965). The initial simplex is chosen to span ±5 for the
quadrupoles and ±5×10−3 for dipoles around x0.

Proven implementations of the above optimisation al-
gorithms from the scipy (Virtanen et al., 2020) and scikit-
optimize (Head et al., 2021) packages were used for this
evaluation. Unless stated otherwise, all optimisations
use MSE as the objective function and are initialised at
x0 = (10,−10,10,0,0).

Our solution outperforms baselines by up to two orders of
magnitude in achieved MAE. Furthermore, the RL agents
achieve better MAEs than almost all evaluated classical op-
timisation algorithms, most of which have previously been
demonstrated to perform well on particle accelerator optim-
isation. While allowed 30 steps to attain the reported MAEs,
RL agents manage to converge on an optimal solution in just
7 steps on average. This is significantly less than the steps
required by classical optimisation algorithms. In particular,
the number of steps to convergence by the RL agents are
much less than those taken by the Nelder-Mead Simplex al-
gorithm – the only algorithm to achieve MAEs competitive
with our RL solution. A comparison of the convergence of
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Figure 5. Mean MAE and 95 % confidence interval over 50 steps of
three optimisations of three different problem instances by an RL
agent and Nelder-Mead optimiser running on the real machine.

our solution and Nelder-Mead optimisation on the real accel-
erator is shown in Figure 5. In contrast to other optimisers,
the RL agents take a reliably straight path toward their final
solution. This reduces the chance of entering potentially
dangerous states during the optimisation.

Thanks to the training setup described in Section 4.3, trained
agents can easily run on the real accelerator by exchanging
the backend of the environment. In order to compare the res-
ults on the real accelerator with those from simulation, the
agents were evaluated over the same desired beam and initial
magnet settings as in the evaluation on simulation. Because
it is not possible to set the misalignments of the magnets
or directly define the beam entering the EA, misalignments
and incoming beams were not varied for the experiments on
the real accelerator as they were in simulation. Furthermore,
it was not possible to evaluate all 300 problems with all
three agents due to limited availability of beam time. The
evaluation on the real accelerator was therefore limited to
200 problem instances for each evaluated agent. As shown
in Table 2, the agents’ performance on the real accelerator
degrades from a median MAE of 0.008 mm in simulation
to 0.036 mm in the real world. This result is still very good
and primarily the result of limited measurement accuracy.
The length of the edges of the area covered by one cam-
era pixel on the diagnostic screen is 0.013 mm. This pixel
size marks the limit of what can be measured in the real
world assuming there is no noise. The MAE achieved on the
machine is also better than all other algorithms except for
Nelder-Mead performed in simulation. It can therefore be
concluded that our method transfers well to the real world.
Data from an example run on the real accelerator is shown
in Figure 6.

In order to test the effects of machine drifts on agent per-
formance, three problem instances were evaluated on three
different occasions over the course of a few weeks. We ob-
served a mean MAE of 0.047 mm and a standard deviation
of 0.014 mm. The observed variance is close to the avail-
able measurement accuracy. It can therefore be concluded
that our RL agents are robust with regards to machine drifts.
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(a) Cropped diagnostic screen image at different steps with high beam intensity in red, low intensity in blue and medium intensity in white.
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(b) Actuator values over the optimisation run.
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(c) Objective and cumulative reward over the optimisation run.

Figure 6. Example optimisation by an RL agent on the real accelerator. The desired beam parameters were set to b′ = (0,0,0,0).

Furthermore, the RL agents have been evaluated against
two experienced human operators on a problem instance
in order to establish the agents’ performance in relation to
human-level. Note that in this particular comparison, time
is measured in wall time instead of steps. This is because
human operators do not perform discrete steps in the same
way that RL agents have to, as human operators can infer the
beam’s behaviour before magnets reach requested settings
and a clean measurement of the beam is taken. By the end
of their optimisation, the human operators achieved a me-
dian MAE of 0.039 mm compared to 0.060 mm achieved
by the RL agents. The MAEs of both the human operat-
ors and RL agents are shown in Figure 7. While the final
MAE achieved by the operators is more than the available
measurement accuracy better than that achieved by the RL
agents, it took the human operators on average 18.0 min
to converge on their solution. This is significantly longer
than the 1.1 min taken by the RL agents. Note that the key
reason for this is fine adjustments toward the end of the
operators’ optimisations. Over the first 5 min the operators
MAE runs only slightly higher than that of the RL agents.
While the three agents converged consistently, there was
a significant variance in MAE over the first few minutes
between the human operators. The observed variance can
largely be attributed to different optimisation strategies used
by the operators. Unlike the RL agents, which adjust all
five actuators at the same time in a direct path toward the
optimum, the human operators split the task into multiple
sub-tasks. The operators, for example, start by fixing either
position or focus of the beam first. We also observed human
operators adjusting magnets one after the other. In contrast
to the RL agents, operators also limited themselves to only

using two of the three quadrupoles in the final solution, pre-
sumably to simplify the task. Both final solution patterns
are considered physics textbook strategies. Note that on the
real accelerator, RL agents spent most of their time waiting
for the function evaluation to finish as the magnets in this
accelerator section are controlled by relatively slow power
supplies. When faster power supplies are available, the RL
agents can achieve a much more substantial speed advantage
over human operators.

A further experiment was conducted over three problem
instances to verify that the performance differences of the
Nelder-Mead optimisation algorithm and our RL solution
hold on the real accelerator. The resulting MAE curves are
shown in Figure 5. After 50 steps, our solution achieved a
median MAE of 0.041 mm compared to 0.137 mm achieved
by the Nelder-Mead optimiser. Note that as a result of lim-
ited beam time, the Nelder-Mead optimisation was given
less time on the real machine than it was in simulation,
likely explaining the worse result. Nevertheless, the also
much faster convergence of our solution is clearly visible
in Figure 5. Furthermore, our solution exhibits smoother
convergence and smoother changes to the magnet settings
than the Nelder-Mead optimisation does. In the real world,
smooth actions on the magnets are desired because changing
the direction in which magnet settings are changed causes
magnet hysteresis. As a result of magnet hysteresis, return-
ing to previous magnet settings after changing them will not
result in the same beam on the diagnostic screen and the
objective function for the optimisation problem is no longer
static. Optimisation algorithms such as Nelder-Mead can
struggle with this effect. It was also observed that on the real
accelerator, steps taken by Nelder-Mead took an average
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Figure 7. MAE mean and 95 % confidence interval of three RL
agents competing against two experienced human operators on the
real accelerator in optimising the same problem instance.

of 19.2 s compared to 9.8 s for steps of the RL agent. This
observation, too, can be explained by the smooth and direct
actions of the RL agents when compared to Nelder-Mead.
The RL agents usually move mostly directly to some mag-
net settings. In doing so, the polarity of the magnet power
supplies is usually only changed on the very first step taken
and then left unchanged. Nelder-Mead on the other hand
changes the polarity of the magnets more often. Doing so
in the real world takes a lot longer than changing between
settings of the same polarity, resulting in longer average
wall time per step.

6. Conclusion
In this contribution, we have successfully trained and de-
ployed an RL agent to a continuous, partially observable,
highly non-linear optimisation problem on a real-world ma-
chine, without training on the real machine. It has been
demonstrated that our RL solution achieves results similar to
those achieved by the best alternative optimisation algorithm.
Our solution attains these results more than 10 times faster
than the only competitive optimisation algorithm. Further-
more, our solution requires neither full-observability of the
environment nor machine time for training, significantly
simplifying its implementation and reducing the risk of dam-
aging the machine. It has also been shown that despite being
trained entirely on a simplified high-speed simulation of the
real machine, our solution performs well in the real world
thanks to the introduction of domain randomisation over
real-world errors during training, achieving results close to
the available measurement accuracy as well as those results
achieved by experienced human operators. These optimisa-
tion results are obtained within the same time or less than
it takes experienced human operators to achieve them. The
hardware of the specific real-world machine considered in
this contribution is relatively slow, meaning that on other
problems, an RL optimisation agent is likely to significantly
outperform human operators in terms of speed.

Our contribution extends on previous work on RL for the

operation of particle accelerators in that the problem is both
highly-nonlinear, not fully-observed and yet has a compar-
atively high-dimensional action space. We also achieve
optimisation faster than many previous works.

As is, our solution and similar implementations for other
accelerator-related optimisation problems can already be
deployed to the control rooms of particle accelerators and
decrease the time required for setup and tuning. With less
time spent on attaining desired configurations, more time
will be available for productive use of these highly advanced
but scarce machines. Ultimately, this will improve access
to particle accelerators for researchers all over the world
and enable high-stakes advances in fields such as physics,
material sciences and medicine as well as make the use of
accelerators in applications such as cancer treatment and
manufacturing more feasible.

In the future, we plan to tune the performance of RL on
particle accelerator optimisation problems further as well
as extend their application to increasingly complex prob-
lems. Not least of all, the goal of future work should be to
drive performance beyond the levels of human operators in
order to push the limits of operability of particle acceler-
ators, improving sample efficiency in order to reduce the
time required for training as well as applying RL to the
optimisation of increasingly higher-dimensional problems.

We believe that the experience gained on solving a particle
accelerator-related problem using RL as an optimisation
agent in this contribution will help drive the application of
capable RL solutions to other real-world problems.
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