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Abstract

We study stochastic convex optimization with
heavy-tailed data under the constraint of differen-
tial privacy (DP). Most prior work on this problem
is restricted to the case where the loss function is
Lipschitz. Instead, as introduced by Wang, Xiao,
Devadas, and Xu (Wang et al., 2020), we study
general convex loss functions with the assumption
that the distribution of gradients has bounded k-th
moments. We provide improved upper bounds
on the excess population risk under concentrated
DP for convex and strongly convex loss functions.
Along the way, we derive new algorithms for pri-
vate mean estimation of heavy-tailed distributions,
under both pure and concentrated DP. Finally, we
prove nearly-matching lower bounds for private
stochastic convex optimization with strongly con-
vex losses and mean estimation, showing new
separations between pure and concentrated DP.

1. Introduction

Stochastic convex optimization (SCO) is a classic optimiza-
tion problem in machine learning. The goal is, given a
loss function ¢ and a dataset x4, ..., x, drawn i.i.d. from
some unknown distribution D, to output a parameter vec-
tor w which minimizes the population risk Lp(w) =

]ED[Z(w; x)]. The quality of a solution « is measured in
T~

terms of the excess risk over the minimizer in the parameter
set W, Lp () — mingeyw Lp(w). We study SCO under
the constraint of differential privacy (Dwork et al., 2006)
(DP), a rigorous notion of privacy which guarantees that an
algorithm’s output distribution is insensitive to modification
of a small number of datapoints.

The field of DP optimization has seen a significant amount

“Equal contribution 'Cheriton School of Computer Science,
University of Waterloo 2Meta. Correspondence to: Huanyu Zhang
<huanyuzhang @fb.com>>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2

of work. Early results focused on differentially private
empirical risk minimization (ERM), a non-statistical prob-
lem in which the goal is to privately output a parame-
ter vector w which minimizes the loss function ¢ over a
fixed dataset x1, ..., x,: that is we would like to optimize
min,, 2 Y7 | ¢(w, z;). See, for example, Chaudhuri &
Monteleoni (2008); Chaudhuri et al. (2011); Rubinstein
et al. (2012); Kifer et al. (2012); Thakurta & Smith (2013);
Song et al. (2013); Jain & Thakurta (2014); Bassily et al.
(2014); Talwar et al. (2015); Kasiviswanathan & Jin (2016);
Wau et al. (2017); Wang et al. (2017); Iyengar et al. (2019);
Wang et al. (2019); Zhang et al. (2021); Wang et al. (2021).
The first result to address the statistical problem of DP SCO
was Bassily et al. (2014), using generalization properties
of differential privacy and regularized ERM. However, the
excess risk bounds were suboptimal. Bassily et al. (2019)
addressed this and closed the gap by providing tight upper
bounds on DP SCO. Following this result there has been
renewed interest in DP SCO, with works reducing the gra-
dient complexity and running time (Feldman et al., 2020;
Kulkarni et al., 2021), and deriving results for different
geometries (Asi et al., 2021; Bassily et al., 2021).

Despite the wealth of work in this area, a significant restric-
tion in almost all results is that the loss function is assumed
to be Lipschitz. This assumption bounds the magnitude of
each datapoint’s gradient, a very convenient property for
restricting the sensitivity in the design of differentially pri-
vate algorithms. While convenient, it is often an unrealistic
assumption which does not hold in practice, and DP opti-
mizers resort to heuristic clipping of gradients to enforce a
bound on their magnitude (Abadi et al., 2016). One can re-
move the strong Lipschitz assumption by instead assuming
that the distribution of gradients is somehow well-behaved.
In this vein, Wang et al. (2020) and Hu et al. (2022) intro-
duce and study the problem of DP SCO with heavy-tailed
data.! Their work removes the requirement that the loss
function is Lipschitz, and instead assumes that the distribu-

"Note that the phrase heavy-tailed data is a slight misnomer
— they actually consider a setting with heavy-tailed gradients.
Though the two are naturally related, they are not equivalent. De-
spite this unfortunate mismatch, we use the same nomenclature
as Wang et al. (2020) to signify that we consider the same setting
as they do.
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tion of the gradient has bounded second moments. However,
they leave open the question of whether the rates of their
algorithms can be improved.

1.1. Results

We answer this question affirmatively, giving algorithms
with better rates for DP SCO with heavy-tailed gradients.
Our main upper bound is the following.

Theorem 1.1 (Informal, see Theorems 5.2, 5.4, and 5.6).
Suppose we have a convex and smooth loss function { :
W x R? — R and there exists a distribution D over R?
such that for any parameter vector w € W, when x ~ D,
the k-th moment of V{(w, x) is bounded. Then there exists
a computationally efficient £2-concentrated differentially
private algorithm which, given x1, . ..,x, ~ D, outputs a
parameter vector wP™™ satisfying the following:

E[Lp(wP" ) — Lp(w*))] gé(min {\;% + j—n . (W)? )

. d% 2
032052 \ v/ +e%\/ﬁ ’

where w* = arg min,, Lp(w). Furthermore, if { is strongly
convex, a similar algorithm guarantees the following:

2(k—1)

ElLo(uw™) ~ Lp(w')] < 0 | & +d- <ﬁ> |

ENn

In the first bound, ¢ plays the role of balancing the non-
private and private cost for the second term . For example,
consider the extreme case when € = co (non-private), ¢ = 2
minimizes the non-private cost in that term.

This theorem is stated under the constraint of &2-
concentrated differential privacy, which also implies the
more common notion of (O(e4/log(1/0)), d)-differential
privacy for any § > 0 (see Lemma 2.3).> Thus, ignor-
ing factors which are logarithmic in 1/0, the same rates in
Theorem 1.1 also hold under the weaker notion of (¢, d)-
differential privacy.

Prior work on DP SCO with heavy-tailed data is due to Wang

et al. (2020). Their main results are algorithms for a case

with bounded second moments (k = 2), guaranteeing ex-
~ s \1/3 .

cess risk bounds of O ((‘fn) ) and O (%) for the
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convex and strongly convex cases, respectively, which our
results significantly improve on.> Furthermore, our results

>While it may seem unusual to write £2-concentrated DP, this
allows for direct comparison with (¢, 0)-DP and (g, 6)-DP results,
two privacy notions it is intermediate to.

3The quoted bounds are weaker than those alleged in Wang

are applicable to distributions with bounded moment condi-
tions of all orders k, while Wang et al. (2020) only applies
to distributions with bounded second moments (k = 2).
Finally, while it may appear that one advantage of our upper
bounds is that they hold under the stronger notion of con-
centrated DP, the results of Wang et al. (2020) could easily
be analyzed under concentrated DP as well.

We also provide lower bounds to complement our upper
bounds.

Theorem 1.2 (Informal, see Theorems 6.1 and 6.4). Let
0 W x R = R be a convex and smooth loss function and
D be a distribution over RY, such that for any parameter
vector w € W, when © ~ D, the k-th moment of V{(w, x)
is bounded. Suppose there exists an £2-concentrated differ-
entially private algorithm which is given x1,...,x, ~ D
and outputs a parameter vector wP™™. Then there exists a
choice of convex and smooth loss function ¢ and distribution
D such that

E[LD('UJPTW)—LD(’LU*)]ZQ \/z_’_\/g (\/E> :

EN

where w* = arg min,, Lp(w). Furthermore, there exists a
choice of strongly convex and smooth loss function { and
distribution D such that

2(kk—1)
d (ﬁ

E[Lp(w?™™) — Lp(w*)] > Q -

—+d-
n

Observe that our upper and lower bounds nearly match for
the strongly convex case. For the convex case and k = 2,
the individual terms in our upper bound match the corre-
sponding terms in our lower bound when g is chosen to be
0.5 and 2.

Those familiar with the literature on DP SCO under a Lips-
chitz condition may be puzzled by the apparent discrepancy
on the dimension-dependence in our results. Specifically, re-
sults of Bassily et al. (2019) (which assume that the 5 norm
of gradients are bound by a constant) give an optimal rate of
O(1/+/n 4 V/d/en). In contrast, if one focuses on our con-
vex lower bound in Theorem 1.2 with £ = oo, we show the
rate can be no better than {2(\/d/n+d/en), which is worse

et al. (2020). After communicating with authors of Wang et al.
(2020) and Holland (2019) (which Wang et al. (2020) depends on),
we confirmed an issue in the analysis of Wang et al. (2020) which
leads to an underestimate of the dependence on d. In brief, if the
truncation parameter s is adopted as they suggest, the dependence
on d in Lemma 6 (Equation 13) and Lemma 7 (Equation 14) in

the supplement of Wang et al. (2020) should be d? instead of

. S 1.
d, leading to an extra multiplicative factor of d3 in the upper
bound for convex functions and a factor of d for strongly convex
functions.



Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data

by a factor of v/d. This discrepancy can be explained by
the fact that our moment condition (Definition 2.11) bounds
each coordinate of the gradient by a constant, leading to
an overall bound on the £5-norm of the gradient by O(v/d),
larger than the O(1) bound in the Lipschitz case by precisely
this v/d factor. Thus a scaling argument is required to pro-
vide the most direct comparison. As comparison between
the two settings is nuanced for k£ < oo and not the focus of
our investigation (since, in particular, our algorithms apply
in settings where Lipschitz bounds required by other works
may not hold), we omit further discussion.

As one of our key tools, we introduce new algorithms and
lower bounds for differentially private mean estimation for
distributions with heavy tails.

Theorem 1.3 (Informal, see Corollary 4.2 and Theorem 6.3).
Let D be a distribution over R% with E[D] = u and bounded
k-th moment. There exists a computationally efficient £2-
concentrated differentially private algorithm which, given
T1,...,ZTn ~ D, outputs i which, with probability at least
0.9, satisfies:

k—1

. - d NZAYS
[a—plla <O \/7+\/&~<>
n ENn

Furthermore, if the algorithm is required to satisfy e-
differential privacy instead of €2-concentrated differential
privacy, the guarantee instead becomes

||ﬂ—u|2§0<\/g+\/&- (i))

Finally, considering instead the expected {5 error E[|| i —
|l2], these rates can not be improved by more than poly-
logarithmic factors.

Some prior works have considered private heavy-tailed
mean estimation (Barber & Duchi, 2014; Kamath et al.,
2020), achieving different rates than what we report here.
The distinction arises in the definition of bounded moments:
letting D be the distribution of interest, E[D] = pu, and
X ~ D, Barber & Duchi (2014) considers distributions
D where E[|| X — u|/5] is bounded, while Kamath et al.
(2020) considers distributions D where, for all unit vectors
v, E[(X — i, v)¥] is bounded. In contrast, we consider distri-
butions D where E[{X — p1, v)*] is bounded for all standard
basis vectors v, to match the definition employed in Wang
et al. (2020). We observe an interesting separation which
arises under this definition. For worst-case distributions
over the hypercube, it is known that the sample complexity
of private mean estimation is separated by a v/d factor under
pure and approximate differential privacy (Bun et al., 2014;
Steinke & Ullman, 2015; Dwork et al., 2015). On the other
hand, under the strong direction-wise moment bound of Ka-
math et al. (2020), the best known algorithms and lower

bounds indicate that no such separation exists between these
two notions. However, under our weaker moment bound,
our results show that this same v/d separation between the
sample complexity of pure and approximate differential pri-
vacy arises once again.* Pinpointing the precise conditions
under which such a separation exists remains an interesting
direction for future investigation.

Furthermore, our results are the first to derive matching up-
per and lower bounds for heavy-tailed mean estimation un-
der a privacy notion other than pure DP.> To prove our lower
bounds we introduce a concentrated DP version of Fano’s
inequality, building upon the pure DP version from Acharya
et al. (2021). Considering the wide applicability of pure DP
Fano’s inequality, we believe our CDP version can also be
applied to establish tight lower bounds for other statistical
problems. The proof appears in Section B.10.

Theorem 1.4 (p-CDP Fano’s inequality). Let V =
{p1,..,pm} C P be a set of probability distributions,
6 : P — R? be a parameter of interest, and ¢ : R? x R% —
R be a loss function. Suppose for all i # j, it satis-
fies (@) £0(p:),0(p;)) > 7. (b) drv(pip;) < a (c)
dkr(pi,pj) < B. Then for any p-CDP estimator 0,

;46%] Expr [((000).600)] >

p(n?a? + na(l — a)) + log2

log 2
rmax{lﬁJr o8 1-—

2 logM ~’ log M

1.2. Techniques

Our upper bounds operate using a gradient-descent-based
method, relying upon algorithms for private mean estima-
tion. In particular, we instantiate an oracle which outputs an
estimate of the true gradient at a point. One oracle we adopt
is based on an adaption of the algorithm in Kamath et al.
(2020), which addresses the problem of private mean esti-
mation of heavy-tailed distributions. That said, for several
reasons, a naive black-box application of their results are
insufficient to achieve the rates in Theorem 1.1. First, the ac-
curacy guarantees in Kamath et al. (2020) give a prescribed
£o-error with high probability. While such guarantees for
an oracle allow one to achieve non-trivial rates, they are
far from enough. Instead, we can get better results when

*We actually show a stronger separation, between pure and
concentrated differential privacy.

SWhile the combined results of Kamath et al. (2020) and Barber
& Duchi (2014) prove quantitatively matching upper and lower
bounds for a related heavy-tailed setting, they are for qualitatively
different notions of privacy. Specifically, the upper bound is under
the easier constraint of concentrated DP, while the lower bound is
under the harder constraint of pure DP, resulting in a qualitative
gap. In contrast, we prove matching upper and lower bounds
for pure DP, and separate matching upper and lower bounds for
concentrated DP, the latter of which is often qualitatively harder.

}.
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the estimator is known to have low bias. This is where the
intersection of privacy and heavy-tailed data gives rise to
a new technical challenge: no unbiased mean estimation
algorithm for this setting is known to exist. To deal with
these issues, we explicitly derive bounds on the bias and
variance of the estimator. We must additionally switch the
order of various steps in their algorithm, to achieve sharper
bounds on the variance while keeping the bias unchanged.
Even with these changes in place, the bound would still
be lossy — as a final modification, we find that a different
bias-variance tradeoff is required in each iteration to achieve
the best possible error. Namely, if we tolerate additional
variance to reduce the bias of each step, this results in an
improved final accuracy.

2. Preliminaries
2.1. Privacy Preliminaries

In our work we consider a few different variants of differen-
tial privacy. The first is the standard notion.

Definition 2.1 (Differential Privacy (DP) (Dwork et al.,
2006)). A randomized algorithm M : X" — ) satisfies
(e, §)-differential privacy if for every pair of neighbouring
datasets X, X’ € X" (i.e., datasets that differ in exactly one
entry), VY C Y, P[M(X) € Y] <e*-P[M(X') € Y]+54.
When § = 0, we say that M satisfies e-differential privacy
or pure differential privacy.

The second is concentrated differential privacy (Dwork &
Rothblum, 2016), and its refinement zero-concentrated dif-
ferential privacy (Bun & Steinke, 2016). Since in this work
we exclusively concern ourselves with the latter, in a slight
overloading of nomenclature, we refer to it more concisely
as concentrated differential privacy.

Definition 2.2 (Concentrated Differential Privacy (CDP)
(Bun & Steinke, 2016)). A randomized algorithm
M X" = Y satisfies p-CDP if for ev-
ery pair of neighboring datasets X, X' € A",
Va € (1,00) Do(M(X)|M(X") < pa, where
Do (M(X)||M(X")) is the a-Rényi divergence © between
M(X) and M (X').

Roughly speaking, CDP lives between pure (&, 0)-DP and
approximate (&, §)-DP, formalized in the following lemma.

Lemma 2.3 (Bun & Steinke (2016)). For everye > 0, if M
is £-DP, then M is (3¢%)-CDP. If M is (1£%)-CDP, then

M is (%52 +€«/210g(1/6),6)—DPf0r every § > 0.

Differential privacy enjoys adaptive composition.

SLet P and Q be two probability distributions defined over
some probability space, the a-Rényi divergence of order o > 1 is

defined as Do (P[|Q) = —L- log Eang [(gg;)”}

Lemma 2.4 (Composition of DP (Dwork et al., 2006; 2010;
Bun & Steinke, 2016)). If M is an adaptive composition
of differentially private algorithms My, ..., My, then: if
My, ..., Mr are (1,0),...,(e1,0)-DP then M is (¢, 0)-
DP for ¢ = Y, et Furthermore: if My,..., My are
pis- .-, pr-CDP then M is p-CDP for p =3, p;.

Finally, we introduce two additive noise mechanisms, which
transform non-private algorithms to private algorithms.

Lemma 2.5 (Additive noise mechanisms (Dwork et al.,
2006; Bun & Steinke, 2016)). Let M : &x" —
Re be a non-private algorithm. — Let Ay(M) =
maxx~x’ ||M(X)— M(X')||, denote the {1-sensitivity of
M, which measures the maximum change of the output in {1 -
norm for two neighbouring datasets X ~ X'. Define the {5-
sensitivity Ao (M) analogously in terms of the Ls-norm. The
Laplace mechanism is the output M (X) + N, where N =

(Nh . ,Nd); and v.] S [d], with N_] ~ Lap(O7 %>,
and is (g,0)-DP. If instead N ~ ./\/'(0’ %ﬁmﬂdxd), this is

the Gaussian mechanism, which satisfies p-CDP.

2.2. Optimization Preliminaries

We require the following standard set of optimization pre-
liminaries.

Definition 2.6. A function f : W — R is [-Lipschitz if for
all wy, we € Wwehave | f(wy) — f(w2)] < 1-||wg —wal|2.

Definition 2.7. A function f is A-strongly convex on
W if for all wi,wy € W we have f(wy) > f(ws2) +
(Vf(ws2), wi —ws) + 3[Jwr —w2]3.

Definition 2.8. A function f is L-smooth on W if for all
wy,wy € W, f(wr) < flwz) + (Vf(wz), w1 — wa) +
5 llwr — w2 3.

Definition 2.9. Given a convex set JV, we denote the pro-
jection of any 6 € R? to the convex set VW by Projyy(0) =
argrréi%ﬂe —w||a-

2.3. Problem Setup

Definition 2.10 (Stochastic Convex Optimization (SCO)).
Let D be some unknown distribution over X and X =
{z1,...,z,} be iid. samples from D. Given a con-
vex constraint set YW C R and a convex loss function
£: W x X — R, the goal of stochastic convex optimiza-
tion (SCO) is to find a minimizer w?™* for the population
risk Lp (wP™™) = E,p[f(wP™™, x)]. The utility of an al-
gorithm A is measured by the expected excess population
risk

E LD (pri'U) _

in L
X 4 min Lp(w)

wew

We use the following coordinate-wise definition of bounded
moments, identical to that of Wang et al. (2020).
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Definition 2.11. Let D be a distribution over R? with mean
. We say that for £ > 2, the k-th moment of D is bounded
by v, if for every j € [d], E[[(X — u,¢e;)|*] < 7, where e,
is the j-th standard basis vector.

Let Br(¢) C R? be the ball of radius R > 0 centered
at ¢ € R All our theorems rely on the following set of
assumptions.

Assumption 2.12. We assume the following:

1. The loss function ¢(w, x) is non-negative, differentiable
and convex forallw € Wandz € X.

2. Forany z € X, {(w, x) is L-smooth on W.
3. The constraint set JV is bounded with diameter M.
4. The gradient of the loss function at the optimum is zero.

5. For any w € W, the distribution of the gradient of the
loss function has bounded k-th moments for some k > 2:
Vi(w, x) ~ P satisfies Definition 2.11 with v = 1.

6. For any w € W, the distribution of the gradient has
bounded mean: E[V/{(w, z)] € Bg(0), where R = O(1).

The first four points in Assumption 2.12 are standard when
studying convex learning problems. The fifth is a relax-
ation of the Lipschitz condition in non-heavy-tailed SCO
problems, in which the gradient is assumed to be uniformly
bounded by a constant. While the gradient in our setting is
unbounded, it is realistic to assume that the expected gra-
dient is inside a ball with some radius R. In fact, packing
lower bounds for private mean estimation necessitate such
an assumption under most notions of DP (Karwa & Vad-
han, 2018). As a direct corollary, ||VLp(w)|, < R, so
Lp(w) is R-Lipschitz. We note that all these assumptions
are explicitly or implicitly assumed in Wang et al. (2020).

3. A Framework for Stochastic Convex
Optimization

In this section, we present a general framework for private
SCO. Before diving into the details, we first provide some
intuition on how we approach this problem, via the classic
optimization model.

Let Lp(-) be the expected loss function we are trying to
minimize. Although the data x ~ X, the loss function
(), and its gradient V/(-) may be heavy-tailed, Lp(-) is
well-behaved: specifically, Assumption 2.12 implies that it
is both convex and R-Lipschitz. Therefore, if Lp(-) were
known, the problem would reduce to a classical convex
optimization problem, solvable by gradient descent (GD).
Of course, Lp(-) is not known to the optimizer, and we
can not directly run gradient descent. Instead, we estimate
V Lp(-) from the samples X, incurring an additional loss
based on the quality of the approximation.

Algorithm 1 SCO framework

SCOFn,T,MeanOracle (X )

Input: X = {z;}",,7; € RY, algorithm MeanOracle,
parameters 7,7
Initialize w® € W
fort=1,2,...,T do
if ¢ is convex then
Select Sy = X
else if / is strongly convex then
Select St = {I(t—l)n/T-‘rla ..
end if
VLp(w'™') = MeanOracle({V/(w'™!, z;) }s,e5,)
wt = Projy, (w'™' —n, 1 VLp(w'=1))
end for
Output: {wh, w?, ..., wT}

algorithmic

. axtn/T}

There are two approaches to choosing samples used for this
estimate in each iteration. The first strategy is to choose
the entire dataset X. This breaks independence between
the different iterations, so one must argue using uniform
convergence to bound the estimation error for all w € W
simultaneously. The second strategy is to choose disjoint
samples for each iteration, which maintains independence
between iterations at the cost of less data and thus more
error for each iteration. We adopt the first strategy in our
analysis for convex functions, and the second strategy for
strongly convex functions.

Our GD-based framework, SCOF, is presented in Algo-
rithm 1. The true gradient V Lp(w!™!) is replaced by an
estimate V L (w'™1) obtained by a mean estimation algo-
rithm.

Observe that Algorithm 1 is differentially private if the
mean estimator MeanOracle is differentially private, a con-
sequence of composition and post-processing of differential
privacy. In Theorems 3.1 and 3.2, we quantify the popula-
tion risk of Algorithm 1 based on the accuracy of MeanOr-
acle. Theorem 3.1 considers convex loss functions, while
Theorem 3.2 achieves better rates when the loss function
is strongly convex. Although the proof techniques resem-
ble those in previous work, e.g., Agarwal et al. (2018), we
include the analysis for completeness, with proofs in Ap-
pendix B.1 and Appendix B.2.

Theorem 3.1 (Convex). Suppose that MeanOracle guaran-
tees that for any w € W, |E[VLp(w)] — VLp(w)||2 < B
and E[||V Lp(w) — VLp(w)||2] < G2 Under Assump-
tion 2.12, for any n > 0 the output wP™ = % Zte[T] wt
produced by SCOF satisfies

2

M
[Lp(w”™) — Lp(w*)] < —+n(R* + G*)+MB,

E
X~Dn A 2nT

where w* = arg min,, Lp(w).
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Theorem 3.2 (Strongly convex). Suppose that MeanOracle
guarantees that, for any w',t € [T], E[||VLp(w') —
V Lp(w')|l2] < G. Under Assumption 2.12, and the further
assumption that the population risk is A-strongly convex, if

n = /H_LL the output wP™™ = w’ produced by SCOF
satisfies
. AL\
E L privy _ T, N< (1] - — M
XNDH!A[ (W) p(w")] < < ()\+L)2)
AN+ L)G
+ ==

AL

Specifically, if T = log ((/\J;?G> /log (%)’ the

output wP™™ satisfies

Lo(w")] < (A+L)*(M +1)*G?

E [Lp(uw”™) -

X~Dn A - 2M2L

where w* = arg min,, Lp(w).

4. Mean Estimation Oracle

We employ an adaption of Kamath et al. (2020)’s CD-
PHDME algorithm, which privately estimates the mean
of a heavy-tailed distribution. In order to improve upon
the bounds one would obtain via a black-box application,
we provide a novel analysis for an adapted version of this
algorithm, which differs from theirs in two crucial aspects.

First, their analysis only applies for a specific choice of the
truncation parameter (7 in Theorem 4.1), which is selected
to be optimal for their one-round algorithm. However, note
that our problem is different from theirs, since GD requires
multiple steps instead of only one round. If we naively
follow the same parameter setting as they do, we will get a
loose bound on the excess risk. Therefore, we generalize
their analysis to accommodate a range of values for 7 to fit
our needs.

Second, while their analysis provides ¢5-error guarantees,
Theorem 3.1 necessitates bounds on the bias and variance
of the estimator. We thus modify steps in their algorithm to
reduce the variance (while leaving the bias untouched).

Our new analysis can be summarized by Theorem 4.1, where
we provide theoretical guarantees for our estimators in both
the private and non-private settings. We defer our algorithm
and the proof to Appendix B.3.

Theorem 4.1. Let D be a distribution over R* with mean
€ Br (6) with R < 10 and k-th moment bounded by
1. For any T > 10 and a universal constant C > 14,
there exists a polynomial-time (non-private) algorithm (Al-
gorithm 3) that takes n samples from D, and outputs [i € R,

)

such that with probability at least 1 — j3,

log (¢ k-1
. B c
lii=plly = 0| V- 7§)+<)

T

A p-CDP adaption, CDPCWME(p,T), takes n samples
11527%d log” (%)
pn2

from D, and outputs 11 = ,&+./\/<0, Tixa |

where i is the non-private output of Algorithm 3, such that
with probability at least 1 — 3,
log (%)

e (8)
M b)),

Finally, an (¢,0)-DP adaption, DPCWME(e,T),
n samples from D, and outputs [ with [i; =

2d
Lap <0’ 48'rdlog( 5 )

EN
of Algorithm 3, such that with probability at least 1 — 3,

11— plly = 0(\/3~

+

takes

fj

, where [i is the non-private output

7= plly

=0|Vd- log(g)+(c>kl +

T

rd3 log2 (%)

En

Setting 8 = &, 7 = (%) * for CDPCWME(p, 7), and

1
7 = (&%) * for DPCWME(e, 7), gives the following corol-
lary.

Corollary 4.2. Let D be a distribution over R% with mean
u € Bpg (6) with R < 10 and k-th moment bounded

by 1. There exists a polynomial-time p-CDP algorithm
1
CDPCWME (p, (%) k> that takes n samples from D,

and outputs i € RY, such that with probability at least 0.9,

i - ully = O JZ+¢E<J§>

Furthermore, there exists a polynomial-time e-DP algorithm
1

DPCWME (s, (%") ") that takes n samples from D, and

outputs [i € R?, such that with probability at least 0.9,

|m—u2—6<¢j+wf(;)%>.



Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data

5. Algorithms for SCO with Heavy-Tailed Data

In this section we introduce our main algorithm for p-CDP
SCO, Algorithm 2. We analyze utility for convex loss func-
tions in Section 5.1, while the results for strongly convex
loss functions are in Section 5.2.

Algorithm 2 CDP-SCO algorithm with heavy-tailed data

1: Input: X = {z;}",,x; € RY, parameters 1, p, T

2: {wt}’tl“:1 = SCOF'r],T,MeanOracle(p/T) (X)
3. Output: wP™"

Privacy is straightforward: since each of the T steps of the
algorithm is p/T-CDP, composition of CDP (Lemma 2.4)
gives the following privacy guarantee.

Lemma 5.1. Algorithm 2 is p-CDP.

5.1. Convex Setting

In this section, we consider convex and smooth loss func-
tions. We provide accuracy guarantees for Algorithm 2 in
the following two theorems, each of which instantiates our
framework with a different mean estimation oracle. The
proofs follow by appropriately selecting the truncation pa-
rameter 7, and balancing the bias and variance in SCOF.
We defer the proofs to Appendix B.4 and Appendix B.S5,
respectively.

Theorem 5.2 (Convex). Suppose we have a stochastic con-
vex optimization problem which satisfies Assumption 2.12.
Assuming R < 10, L < 10, Algorithm 2, instantiated with

_ M
CDPCWME ?}lth parameters T = %dﬁ, n= 2t and
(J:{Ti) ’ , outputs wP = % Zte[T] w?, such that

Privy
X LD (W)

<ot Mt (4"

where w* = arg min,, Lp(w), and M is the diameter of
the constraint set W. The running time is O(ndT)" .

Lp(w”)]

Remark 5.3. Our non-standard choice of the truncation
parameter 7 in Theorem 5.2 is crucial to obtaining our re-

1
sults. If one were to naively adopt 7 = (ﬂ> " to

3
dz\T
balance the bias and standard deviation for each iteration,
we would achieve much worse bounds. Instead, in order

to reduce bias we truncate far less aggressively than done

"Suppose M and R are constants, this bound is vacuous unless
the loss is O(1), i.e., we implicitly require 7 is large enough such
that the denominator is larger (in order) than the numerator. The
same constraint applies to the other theorems.

in Kamath et al. (2020), which comes at the cost of in-
creased variance. For example, considering the case when

d = 1, if we were to use the choice of 7 = ( \/T) for

the convex case, the error would be O (% + (%) k—1) _
1 VT = .. 2k—2
O(@ + (W) ) Fixing T = (,/pn) ", we ob-

k=1
tain the bound of O <( ) w > instead of our bound of

\Vpn
=

O((\/lﬁn) in Theorem 5.2. In the limit as k — oo,
our bound is quadratically better.

Alternatively, one can adopt the mean estimation oracle
of Holland (2019), as done by Wang et al. (2020). However,
we provide a more careful analysis, resulting in a signifi-
cantly improved error rate. We provide further details of the
mean estimation oracle and a proof of the following theorem
in Appendix B.5.

Theorem 5.4 (Convex). Suppose we have a stochastic con-
vex optimization problem which satisfies Assumption 2.12.
Assuming R < 10 and L < 10, for any 0.5 < q < 2, Al-
gorithm 2, instantiated with CDPNSME (Algorithm 4) witlh

2 2

_ R°pn _ M _ V/pn
parameters T = e = pur and T = (qu) ,

outputs wP™ = % Zte[T] wt, such that
B Lo(w)
3-q 14q
<0 VMdz +\/]\j[d 2 ’
Vn piy/n

where w* = argmin,, Lp(w), and M is the diameter of
the constraint set W. The running time is O(ndT).

[LD (w;m"iv) _

Remark 5.5. By varying ¢ from 0.5 to 2, Theorem 5.4 is
able to achieve different balances between the non-private
(first) and private (second) error terms. In practice, one
should choose ¢ which minimizes their sum, which depends
on the instance parameters. When ¢ = 0.5, our bound is

0] *Ci“ + fd4 ), where the private term matches the
" NG
k = 2 lower bound in Theorem 6.4. Additionally, when

q = 1 and p and M are constants, our bound is O(%),
strictly improving upon O( ) in Wang et al. (2020).

Combining Theorems 5.2 and 5.4 gives the convex part of
Theorem 1.1.

5.2. Strongly Convex Setting

In this section, we consider strongly convex and smooth loss
functions. The analysis is somewhat simpler than the convex
case, due to number of iterations being only logarithmic.
The proof of the following theorem is in Appendix B.6.
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Theorem 5.6 (Strongly Convex). Suppose we have a
stochastic convex optimization problem which satisfies As-
sumption 2.12, and additionally, the loss function { is \-
strongly convex. Algorithm 2, instantiated with CDOPCWME

with parameters T = log (()‘JFL ) / log (%)

5<\/E+\/g(\/‘/ﬁgn)k) n = —Land

i \! /k )
T = (f 5 ) , outputs wP™ = w7, such that

with G =

E [LD(wpriv) o

4 Lp(w")]

2k—2
O g_i_d. (ﬁ) ,
n N

The running time is

o (M1’ A+ L)?
= XL

where w* = argmin,, Lp(w).

O(ndT).

Remark 5.7. Although in Theorem 5.2 and 5.6, we provide
our utility guarantees in terms of the expectation, they can
be easily generalized to the high-probability setting. In
Appendix B.11, we present the high-probability version of
Theorem 5.2 as an example.

6. Lower Bounds for DP SCO with
Heavy-Tailed Data

In this section, we present our lower bounds for p-CDP SCO.
Our results are generally attained by reducing from mean
estimation to SCO, where similar connections have been
explored when proving lower bounds for DP empirical risk
minimization (Bassily et al., 2014). In order to prove some
of our lower bounds, we introduce a new technical tool, a
CDP version of Fano’s inequality (Theorem 1.4), which is
of independent interest.

6.1. Strongly-Convex Loss Functions

Theorem 6.1 (Strongly convex case). Let n,d € N and
p > 0. There exists a strongly convex and smooth loss
function £ : W x R%, such that for every p-CDP algo-
rithm A (whose output on input X is denoted by wP™ =
A(X)), there exists a distribution D on R? such that Vw €

W, sup; e Eamp [|<W(w, z) — E [Ve(w, z)] ,ej>|’“} <
1 (e; is the j-th standard basis vector), which satisfies

privy
B, L (W)

L(w)
\/g > 216];2
Vi |

>0 g—i—d min | 1, (

where w* = arg min,, Lp(w).

Proof. The following lemma shows a reduction from mean
estimation to SCO. The proof is deferred to Appendix B.7.

Lemma 6.2. Let n,d € N, and p > 0. There exists a
strongly convex and smooth loss function £ : W x R, such
that for every p-CDP algorithm A (whose output on input
X is denoted by wP™" = A(X)), and every distribution D
on R with E[D] = u,

[Lp(w”™) — Lp(w")]

E
X~Dn A

1 .
= B gl - g

where w* = arg min,, Lp(w).

The following lemma provides lower bounds for mean es-
timation, under both DP and CDP. The first term is the
non-private sample complexity, and is folklore for Gaussian
mean estimation. To prove the second term, we leverage our
CDP version of Fano’s inequality (Theorem 1.4), based on
the packing of distributions employed by Barber & Duchi
(2014). Detail are in Appendix B.8.

Lemma 6.3. Let n,d € N and p > 0. For every p-
CDP algorithm A, there exists a distributiol? D on R? with
E[D] = pandsupciq Eznn([{ej, 2 — p)["] < 1(e; is the
j-th standard basis vector), such that

CE, 1400 -

>0 \/7+f min 1<ﬁ>kkl

Additionally, for every (£,0)-DP algorithm A,
exists a distribution D on R? with E[D] =
sup;eqq Ez~pll{ej, z — Wl <1 (ej is the j-th standard
basis vector), such that

E AKX)

X~Dm, A
Q <\/z+\/&~min (1, (i)k»

Observe that by Jensen’s inequality, for p-CDP algorithms,

[[A(X)

tll2]

there
w and

— pll2]

2
XN%I7A 3]

\/a>2kk—2
N

>0 g—l—d min | 1, <

Combining Lemma 6.2 and Lemma 6.3 yields Theorem 6.1.
O
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6.2. Convex Loss Functions

The convex case is slightly different from the strongly con-
vex case, as it can not be reduced to mean estimation in a
black-box fashion. As before, we apply our CDP version
of Fano’s inequality (Theorem 1.4), based on the packing
of distributions employed by Barber & Duchi (2014). The
proof appears in Appendix B.9.

Theorem 6.4 (Convex case). Let n,d € N and p >
0. There exists a convex and smooth loss function
¢ W x R% such that for every p-CDP algorithm A
(whose output on input X is denoted by wP™ = A(X)),
there exists a distribution D on R such that Yu €
W, sup; ey Eamrp [|<W(w, ) — E [V(w, 2)] ,ej>|’“} <
1 (e; is the j-th standard basis), which satisfies

B L@ = Lp(w")

>0 \/E—i—\/gqnin 1,<\/a> ,
n \/pn

where w* = arg min,, Lp(w).
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A. Useful Inequalities

Lemma A.1. Let D be a distribution over R with mean p, and k-th moment bounded by ~y. Then the following holds for any

a> 1. L
1

P [|X - < —.

LpllX —ul>ari] < =

The following lemma comes from Kamath et al. (2020). We prove it here for completeness.

Lemma A.2. Let D be a distribution over R with mean p, and k-th moment bounded by 1. Suppose X1, ..., X,, are
generated from D, then with probability at least 0.99,

1 10

— X, —pl < —.

n ; Bl= Vn

Proof. By Jensen’s inequality,

Then

By Chebyshev’s inequality,

B. Omitted Proofs

B.1. Proof of Theorem 3.1

We let Lp(wt) = ED[E(wt, x)]. By Assumption 2.12, for all ¢,
xre

IVLo()l2 = ||V E, [t 2)]| =

E [w(wt,x)]H <R.
z~D 2

Letw'" = w'=! — pVLp(w'™1), and w' denotes its projection to . By the convexity of Lp(-) (see, e.g., Section 14.1.1
in Shalev-Shwartz & Ben-David (2014)), we have

[LD(wpriv) - L (w*)]

A,X]Fipn P
r T
1 *
r, T
1 *
< e 135 0 (09) - £ o
[T
:A,XIENDn T ; (Lp (w') - LD(“’*))l
< E -l i 1 (nVLp(w'),w" — w* (2)
“AXx~Dn | T & ’
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where (1) is by the Jensen’s inequality and (2) is by the convexity of Lp. Continuing the proof,

B [0~ ()]
T
Z 1 <77VLD )+ nVLD( B — nvzp(wt), wt — w*>
A X~D" T
- E IZT:<VLD(wt)—VfD(wt) wt—w*> + E XT:1<77VED(U)) w' —w >
AX~Dr | T po ’ AX~Dr | T —n

We bound the first term, note that ||w® — w* ||, < M, and [|[E[V Lp(w)] — VLp(w)l||2 < B,

T

! =2 <VLD ~ VIp(wt),wt — w>]

A, XND"
t:l

T

_1 <VLD E [vip(wt)} Lwt — w*> < BM. 3)
t 1

A,XND"

Then we move to the second term.

o [ (90w )

o P ) s )]
=735 (o (2 [l =[] ot -1 + - oot ]) o
s%ﬁ;(;(ﬂﬂﬂww*w[uwtwn}) 3 £ vEown]) ®
ziif(_ﬁ[wﬂ‘ o] + B ot - |7]) + o5 é;HVLD ] @
g;f24-;; E é;HVED@M)2]. (8)

where (4) comes from the fact that Va,b € R?, (a,b) = 3 <||a||§ +[bll3 = [la — b||§> , and (5) is by the updating rule, (6)

comes from the fact that Hw’tJr1 —w*

5> and (7) is by the telescopic sum.

]

2 2
]+2HVLD@AH

> [t
2

Finally, for all ¢ € [T,

E [Hvip(wt) 2] —E [Hvip(wt) — VIp(w') + VLp(w')

< 2E[Hvip(wt) ~ ViIp(uwh)

< 2G? 4+ 2R?, 9)

where we note that E[||V Lp(w) — VLp(w)|2] < G2 and ||VLD(wt)||2 < R%
We conclude the proof by combining (3), (8), and (9).
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B.2. Proof of Theorem 3.2

The argument is broadly similar to the proof of Theorem 5 in Wang et al. (2020), albeit with some minor modifications.

Let w'" = w'™! — nVLp(w'1). Now we have

' = w?lly = flw' ™t = gV Lp(w' ") = w*s
< '™ = 9VLp(w' ™) = w” o + | VLp(w' ") = VLp(w' ™).

It should be noticed that, the second term is bounded by 7G in expectation, since E[[|V Lp (w!™!) — V Lp(w'™1) 2] < G.
For the first term, by the coercivity of strongly convex functions (Lemma 3.11 in Bubeck (2015))

AL
A+ L

— * — — * 1 —
(W™ —w*, VLp(w' ™)) > ™ —w II§+mIIVLD(wt DIz

and by taking n = M%L we have

't = 7V Lp(wt) — w | = ot~ — w* |3 + IV Ep (w3 — 2wt — w*, gV Lp(wt 1))
2\L 1
< 1— o * (12 VL —1\(12
_( Q+L>)u Wl - gl VEo( IR

2AL
< 1 == t—1 _ | % 2'
< (1- gy ) o™ =l

Now using the inequality /1 — z < 1 — § we combine two terms together to have

1t * t—1 *

Recall that w! is the projection of w’* on W, which implies |Jw® — w*||s < ||w’* — w*||o. Therefore,

AL G
t % < o t—1 _ | ok
Bl — ol < (1- g ) Ellu™ — w'lal + 5o

After T' multiplications and simplifying the geometric series,

T 2
E[||wT—w*H2]§ (1_(/\_);_‘[}:)2) M_,_M G

Letting T' = log ((’\H‘)G) / log (%),

A+ L)(M +1)C

E T _ * <
™ — ] < 2EI

Since Lp(w) is L-smooth, we have

N

A+ L)2(M +1)2G?

[LD(U)T)] — LD(’UJ*) S 2/\2L

Effw” —w*|3] <

E
A, X ~Dn

which concludes the proof.



Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data

B.3. Proof of Theorem 4.1

Algorithm 3 High-Dimensional Mean Estimator

Input: Samples X = {z;}_,,z; € R% Parameters 0 < R < 10,7 > 10
Set parameters: m < 4log(2d/5)
I =[-37,37]
for j < 1,...,ddo

fori <+ 1,....,mdo

Zi (clip(x,[) for z € (X(i,l).%ﬂ(j),...,Xi.%(j)))

end for

fi; = median (4}, ..., 47")
end for

: Let o = (fin, - - -, f1d)
: Output: /i

A A o

_—
N2

We adopt a coordinate analysis for the algorithm. For each coordinate, Algorithm 3 truncates each point to an interval. We
first recall a lemma from Kamath et al. (2020), which quantifies the bias induced.

Lemma B.1. [Lemma 3.1 in Kamath et al. (2020)] Let 7 > 10, and D be a distribution over R with mean p and k-th
moment bounded by 1. Suppose © ~ D, ce € R and Z is the following random variable,

aifr < ce— 3,
Z =< bifx >ce+ 31,
xifx € [ce — 3T, ce + 37].

Ifu—ce <37, then |p—E[Z]] <3- (g)k_l, where C' > 14 is a universal constant.

Intuitively, this lemma tells that if the heavy-tailed random variable is truncated to an interval with length 67 and its center
ce close enough to the true mean p, the induced bias is small. With this in mind, we proceed to prove Theorem 4.1.

Proof of Theorem 4.1. We firstly show the accuracy guarantees of the non-private algorithms.

We analyze the algorithm coordinatewisely. For a fixed dimension j, let Z; = clip(x(j), I) with z ~ D, we note that the
k-th moment of Z; is bounded by 1. Since R < 7, by Lemma B.1,

k—1
Elz-ml<3 (£) (10)

where 11, = E [ X (5)].

Let m = 4log(2d/3). For a fixed i, Z;: is a combination of 7 i.i.d. realizations of Z;. By Lemma A.2, we have

Pr<,1§.—JE[ZjH g1o-,/7:> >0.9.

Note that /i; = median /i, ..., 47"). By Hoeffding’s inequality,

Pr <|,:Lj _E[z))| > 10.,/’;;) <e %

We apply the union bound to all the dimensions. Combined with (10), we get

k—1
Pr<|ﬂ—u||22\/g-<10-\/ﬁ+3~<c) ))Sd-e_Tgﬁ.
n T 2
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Next we move to private adaptions, where the key step is to bound the sensitivity of the non-private algorithm.

Fixing one dimension j € [d], for two neighboring datasets X and X', we want to show that |f1;(X) — f;(X")| < 1222

for each j. With this in mind, ¢; sensitivity of /i is upper bounded by 12””d
IQTmf

, and the /5 sensitivity is upper bounded by

Now it suffices to bound the ¢, sensitivity. Let ji; = median(ﬂ;, ey ﬂ;-, -+, {1j"). Let X and X' be the two neighboring
datasets which differ at one sample. Suppose m is odd, there are two cases:

L. [L; (X) is the median for dataset X, and ﬂ; (X’) is the median for dataset X'.

2. i’ (X) is the median for dataset X, while /%' (X') is the median for dataset X',

(X ) — (X )| < 12 since X and X' differ at one sample. For the second case, note that it can
only happen when ’,u; (X) - ﬂ] (X)‘ < 67—’”. Furthermore, we have ﬂ;/(X) — [ﬂ-/ (XN < 67—’". By triangle inequality,
i (X) - i (X7)
omitted.®

< 12'rm

, which provides an upper bound of the /., sensitivity. The case when m is even is similar and

For CDP adaption, by the guarantee of Gaussian mechanism (Lemma 2.5), the algorithm satisfies p-CDP when the noise
addedis.A/(o,Zgg%giéﬂdxd).

Besides, since N ~ N (0, UQded), where 02 = 72;27:212‘1. By the tail property of chi-squared distribution (Laurent &
Massart, 2000),

Pr<||N2>za<¢a+ 1og(5)>> 4

Note that ||z — p||y < || Ny + || — 1|5, we conclude the proof by the union bound.

With respect to DP adaption, by the guarantee of Laplace mechanism (Lemma 2.5), the algorithm satisfies e-DP when the
noise added is Lap (0, 127:4) for each dimension.

Besides, let N; ~ Lap (0, 1224) by the tail property of Laplace distribution,

o

By union bound, with probability at least 1 — 5,

487d3>
I*(WVEZ - J%W%Um>§

Note that ||z — p||, < [|N||5 + ||t — ]|y, we conclude the proof by applying the union bound.

Tog*(2a/9)) < 4

Ry

B.4. Proof of Theorem 5.2

Lemma B.2. Consider Algorithm I instantiated with CDOPCWME (%, T) as MeanOracle (Algorithm 3). Under Assumption
2.12 and further assuming R < 10, L < 10, when T > 10, the following holds for all w € W simultaneously:

- ~( d c\*!
IEIVEp(w)] - VEp(w)]2 < O (\m V. () )

T

8To facilitate the sensitivity analysis, let {x}}"_; be the ordered set of {x;}"_,. If n is even, we define the median to be

1 / / . . / /
3 (x% + Tn +1> rather than an arbitrary value ranging from Tn t0 T 4.
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and
-~ ~(r2diT @2 c\*?
E[|VLp(w) — VLp(w)||3] < O<TnQ+ +d- () .

where ¥ L (w) is the estimated gradient in Algorithm 1.
Proof. We start with bounding the bias. First we note that E[V Lp(w)|V Lp(w)] = VLp(w), which denotes the output of

the non-private algorithm.

In order to obtain bounds that hold uniformly over the choice of w, we follow a standard strategy of covering. Note that the

. . . d - -
number of balls of radius « required to cover W is bounded as N, < (%) . Let W, = {wy,...,wy, } denote the centers
of this covering. For an arbitrary w € W, and w € W,,

|Vio(w) - Viow)| <|Viow)-Vie@)| +|Vio(@) ~ VLo(@)| +VLo(@) — VIp(w)l,.

We bound each term separately.

For the first term, we need to analyze how much the output of the non-private estimator Vip (+) changes, when the input
switches from w to w.

Let 5 = (%)Zd, and m = 4log(2d/5) = 8dlog (%) According to the smoothness assumption, for each dimension j,
and batch ¢ € [m)], the average of each batch differs by no more than La. Therefore, for each dimension j, the median
differs by no more than Lma. Summing over all the dimensions,

Hvﬁp(w) - vﬁp(@)Hz < Lma - Vd.

For the second term, let 5 = (%) 2d. According to Theorem 4.1, with probability at least 1 — 3,

HVﬁD(ﬁ) - VLD(@)H2 <c'|Vd. bggg) . (C’)k_l |

T

where C' is a universal constant.

Note that 5 - N, < (%)d. By union bound, with probability at least 1 — (ﬁ)d, for all w € W,,
R log (d) o\ Pt
HVLD(zE) - VLD({Z;)HQ <c'|va. Tﬁ N <T) 7

Note that "Vﬁp(ﬁ)) — VLp(w) H2 < 2R for sure. Taking expectation, we have

n T

alJ vt -] ] <[ va- [ L ()| o ()

For the third term, according to the smoothness assumption,

IVLo(@) ~ VLp(w)ll, < Lo
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Summing up all three terms, we have

E [Hvﬁp({ﬁ) - VLD(@)HZ] < La(mVd+1)+C'| Vd loggg) + (f)“ 4R (%)d
Finally taking oo = -5, and note that E[VLp(w)] =E [E[Vzp(’w)] |V Lp(w)

| = EVLn(w).
|E[VLp(w)] — VLp(w)||2 = [|E[VLp(w)] — VLp(w)

<E|[||Vio(@) - Vio(@)| |

IA

Assuming L, R are constants,

_(Ld*5  d c\"' R
O<ni’>+\/ﬁ+\/‘§'<) +n3d>' (11)

~ . d C k—1
IEIV Lo (w)] - VLp(w) < O (\/ﬁ Va () )
Next we move to the variance. Note that

-
E[|VLp(w) — VLp(w)|3] < 2E[||VLp(w) — VLp(w)||3] + 2E[|VLp(w) — VLp(w)][3].
As designed in Theorem 4.1, we notice that

2, 2
where 0_2 _ 727°m”dT

Vip(w') — VLp(w) = Ny ~ N(0, 0lgxa),
pn? -

Thus, E[||VLp (w) — VLp(w)[3] = ZE2EL and by (11),

E[|VLp(w) — VLp(w)|3]

22 O 2F2 R\?2
o L Rl e
Assuming L, R are constants,
~ ~ ([ T2d*T  d?
E[|VLp(w) — VLp(w)|3] < 0(

The proof now follows by choosing the right 77 and 7" in Theorem 3.1. To balance the first two terms,
_ M
Theorem 3.1, we let n = RVT

2 2
Suppose 7' = L% with 7 = (

M? .
777T + gR2, mn
von ) we have
Md2

e
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Besides,

k—1

3 Tk
v =0 M9 arvg. (M2
vn v

Finally,

[ 2 Md3 * AN
nG? =0 d+d-<d> +M\/&-< d)
n \/pn

Putting the various terms together completes the proof.

B.5. Proof of Theorem 5.4
We first introduced the mean estimation oracle in Holland (2019). For z € R, let
T, —V2<z <V,

p(x) = 22 z>V2,
—2¥2 r < —V/2.

£

Algorithm 4 CDP Noise Smoothing Mean Estimator (Holland, 2019; Wang et al., 2020)

1: Input: Samples X = {x;}"_,,z; € R Parameters p, 7 > 10
2: Letp = N(0,c¢), and N ~ p, where c is a constant

3. forj < 1,...,ddo

£y =0 [, o B Yay()

5. Letpg=(fi1,...,[d)

6: end for

7: Output: fi +N(0, ;2721 'ded)

Remark B.3. This estimator can be efficiently computed. Please refer to Holland (2019); Wang et al. (2020) for more detail.

It is not hard to see this algorithm satisfies p-CDP. We note that YV, |¢(2)| < 1, so the £ sensitivity Ay (1) < Vd. We
conclude the proof by applying Lemma 2.5.

We provide the accuracy guarantee of this algorithm in the following lemma.

Lemma B.4. Consider Algorithm 1 instantiated with CDPNSME (%, 7') as MeanOracle (Algorithm 4). Under Assumption
2.12 and further assuming R < 10, L < 10, when T > 10, the following holds for all w € VV simulatenously:

d3 d
uf).

n T

|IE[VLp(w)] — VLp(w)|2 < 5(

and

~ ~ (372 d 2q2T
E[||VLD<w)—VLD<w>||§]<O( LS )

n? T2 om

where ¥ L (w) is the estimated gradient in Algorithm 1.

Proof. This bias analysis directly comes from combining Remark 3 and Lemma 4 in Holland (2019). In fact, this analysis
can be viewed as Lemma 5 of Holland (2019) with an explicit analysis on 7. °

°0One may wonder why our result is different with Lemma 5 in Holland (2019) when setting 7 = \/g . After communicating with
authors of Holland (2019), we confirmed there was an issue in their Lemma 5, where their s; (equivalent with our 7) should be \/%
instead of \/n.
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With respect to the variance analysis,
E[|VLp(w) - VLp(w)[3] < 2E[|VLp(w) — VLp(w)||3] + 2E[||VLp(w) = VLo (w)|3].

Note that the noise added is generated from N ~ N (0 M]Idxd). We conclude the proof by summing over all the

> “pn?
dimensions.

O

The proof now follows by choosing the right 77 and 7" in Theorem 3.1. To balance the first two terms, 17‘74—; + gRQ, in
]\/

Theorem 3.1, we let n = R\;f'

N

2 2
Suppose 7' = L with 7 = (}V/IZZ) we have

nT -

Besides,

mu-o(ME (35) s (4) ) o+ )

Finally,

jGr - o £ Mt VMATE)
n N p%\/ﬁ

Note that when 0.5 < ¢ < 2, % >1-— %, putting the various terms together completes the proof.

B.6. Proof of Theorem 5.6

In the strongly convex setting, for each iteration, the input of the MeanOracle is disjoint and independent, with size 7.
Therefore, there is no need to adopt the strategy of covering.

Note that Corollary 4.2 immediately guarantees the following accuracy when CDPCWME is instantiated as MeanOracle in
SCOF:

1/k

Lemma B.5. Consider Algorithm I instantiated with CDPCWME <§, (\/‘?T"g ) ) as MeanOracle. Under Assumption
2

2.12, the following holds for all w',t € [T):

k—1

\/&T%>’“‘

E[|VLp(w') — VLp(w)|2] < O — V- (

where N Lp(w') is the estimated gradient in Algorithm 1.

Note that T is poly-logarithmic on n and d. The proof follows by Theorem 3.2 immediately.
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B.7. Proof of Lemma 6.2
Let z ~ D, and {(w;z) = 1 [|lw — :c||§ Note that w* = argmin Lp(w) = E [z] = u. Further using the expansion

x~D
2 2
lla = blI3 = llall; — 2(a,b) + [Ib]l2,

Lo(w) ~ Lp(w*) = 3 E [lw ]2 ~ " - ]
= 2 E_[lhwll3 — 20w, 2) + foll3 — "3 + 240, ) — ]3]
= 2 (loll3 = 2w, w*) — [ + 2w w))
= 2 (lwll3 — 20w, ")+ 3)
= 2l — w3

Notice that / is both strongly convex and smooth and the expected risk of wP"™ is

Privy] _ *\ - pPriv __ 2
B o) - Do) = B Sl ]

which implies the result.

Now we prove the second half, note that V/(w, z) = w — z, and E [Vl(w, z)] = w — u,
sup By [|(e5, VA(w, 2) = B[VE(w, 2)])|"]
Jjeld]

= sup Eovp l{ejw =@ = (w — )]
jeld]

=sup E,.p [|(ej,x - M)ﬂ <1.
jeld]

B.8. Proof of Lemma 6.3
We first prove the private term (the second term) in Lemma 6.3 for (g, 0)-DP.

We adopt the packing set defined in the proof of Proposition 4 in Barber & Duchi (2014). Given v € V, with ||v||, = g, and

ve {1}, let Q, = (1 — p)Py + pP, for some p € [0, 1], where P, is a point mass on {D = 0} and P, is a point mass
on {D =p~t/ky}.

Given ,,, we define y1,, € R? to be the mean of Q,, i.e., 1, = E,wq, [x].

As a corollary of standard Gilbert-Varshamov bound for constant-weight codes (e.g., see Lemma 6 in Acharya et al. (2021)),
there exists a set VV such that

« The cardinality of V satisfies [V| > 2§,
e Forallv € V,v € {£1}4 with lvll, = %.

e Forall vy,v5 €V, dgam(v1,12) > g.

v |5 18 the same, which is denoted by ||4t]],.

We first compute the norm of . Note that Vv € V),

k=1 [/d
[pwllz = [[Bang, [@]ll2 =pF \/; =l -
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Let x ~ @, and e; denote the j-th standard basis.

jela Esnq, [‘((m - M'/)’eﬂ'>|k] =P (p_l/k)k -

Now we are able to bound the error.

1 )
E X) - > N Exon [P (X) — 2]
B A0 = bl] > 57 3 B (17 () = ]

which comes from the fact that the worst case loss is no smaller than the average loss.

Note that [V| > 2% . Furthermore, Vv V| — prlly > % lellys drv(Qu, @yr) = p, indicating that there exists a
coupling between @, and @), with a coupling distance np. Suppose p = min (17 %), by DP Fano’s inequality (Theorem 2
in Acharya et al. (2021)), it can be shown that

|le| Z EXNQ’J [Hﬂprw(X) - .Uu||2] = Q(min <1, (i) k) \/&)

vey

With respect to p-CDP algorithms, we just take p = min (1, n—‘{/gﬁ) , by CDP Fano’s inequality (Theorem 1.4), it can be

shown that
k=1

1 ) Vd %
- E ~On priv X — 1y :Q . 1’ ) d
1 2 B (17700 ~ ] = i (ﬁn> va

We conclude the proof by noting that the non-private term (the first term) in Lemma 6.3 comes from classical Gaussian
mean estimation, and Va, by, by, @ > 0.5(by + by) if a > max(by, ba).

Remark B.6. The previous analysis implicitly assumes the strongly convex parameter A = 1. To see the dependency on
A, we let the loss function £(w; ) = 3 ||w — $||§ instead. Meanwhile, to keep the k-th moment bounded by 1, we have
to shrink the parameter space of & by \. Therefore, the || wP™™ — pl| gets scaled by %, and the final loss gets scaled by
A % = % We note that this dependency matches with our upper bound when A = L, which is the smoothness parameter.

B.9. Proof of Theorem 6.4

Theorem B.7 (Convex case). Let n,d € N. There exists a convex and smooth loss function £ : W x R, such that for every
(¢,0)-DP algorithm (whose output on input X is denoted by wP™ = A(X)), there exists a distribution D on R? with Yw,

supeig Exnp [[(VEl(w,z) — E [VI(w, 7)] ,ej>|k} <1 (e; is the j-th standard basis), which satisfies

B Do) = Lp(u))] 2 \/z e <mm (1, (i) ) ~ ﬁ) ,

where w* = arg min,, Lp(w).

With respect to p-CDP algorithms, the lower bound turns to

k—1

E [Lp(w““’)—Lp(w*))]z\/ZJrQ min 1)(@) k V|,

X~Dm,A NG

We first prove the private term (the second term) in Theorem 6.4.

Similarly, we adopt the packing set defined in the proof of Proposition 4 in Barber & Duchi (2014). Given v € V, with
|, = %, and v € {£1}%,1et Q, = (1 — p)Py + pP, for some p € [0, 1], where P is a point mass on {D = 0} and P, is
a point mass on {D = p~/kp}.
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Given @), we define u,, € R9 to be the mean of Qu.ie, p =Ezq, [x]. Additionally, we define w,, to be its normalization,
ie,w, = ﬁ Note that w,, is in the same direction as ,,, with |Jw, |, = 1.
vil2

As a corollary of standard Gilbert-Varshamov bound for constant-weight codes (e.g., see Lemma 6 in Acharya et al. (2021)),
there exists a set V such that

« The cardinality of V satisfies [V| > 25,
. 4 wi =4
Forallv € V, v € {£1}¢ with [v| = §.

e Forall vy,v9 € V, dgam(v1,12) > %.

We first compute the norm of 1,,. Note that Vv € V),

|5 18 the same, which is denoted by ||4t]],.

E—1 d

v ll2 = Bz, [2]ll2 = 77 [ 5 = lliell, -
2

Without loss of generality, we assume the parameter space ||WW||, = 1, which is a unit ball. Then we define the loss function
l(w;z). Givenv € V, and z ~ @, we let
Uw;z) = —(w, z),

and
Lo (w)= E [f(w;z)]=—(w, ).
Note that ¢ is both convex and smooth. Let z ~ @),.. Note that V{(w, z) = —x, and E [Vl(w, z)] = —p,,

sup B, [|V6(w, ) — E[V;0(w, 2)]*]
jeld]

k
= sup E,q, [|—xj + L }
J€ld]

k
<p- (p_l/’“) =1L

Now we are able to bound the error of SCO.

. 1 .

E|L Py — min Lp(w)| > — E|L Py — min L v 12
0™ i o] 2 gy ST Lo, (0™~ i, () (12)
1 Ly ,
> =) E [<,Mu> — (W™, ] (13)

1 2 B[l #e) ~ ¢ )
1 TV
= S E [l — (w7, )]
|V‘ vey
1 1 TV
EWZ}E[Z‘HMIIz'IIw” wlt] (14)
ve

where (12) comes from the fact that the worst case loss is no smaller than the average loss, (13) comes from w, =
argminLq, (1), and (14) comes from the fact that pr””HZ <1,and [jw,|, < 1.

HEW
Note that [V| > 2%. Furthermore, Vv # v/, |lw, — wyr|ly = Q(1); drv(wy,,w,r) = p, indicating that there exists a
coupling between w, and w, with a coupling distance np. Suppose p = min (1, %), by DP Fano’s inequality (Theorem 2
in Acharya et al. (2021)), it can be shown that

ﬁ SR [Jur® — w, 2] = (1),

veVy
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Thus,

E |Lp(w?™™) — minLD(uﬁ)} > Q1) - |ull, = Q(min (1, (;) ) -\/&>. (15)

weW

With respect to p-CDP algorithms, we just take p = min (1 ‘f\f) and replace DP Fano’s inequality by CDP Fano’s

inequality, then all the proof follows.

Now we prove the first term. We generally follow the lower bound proof of estimating Gaussians (Acharya et al., 2021).

Given v € {0, 1}¢, we define Q, = N'(u,, 1), where 1, = % v, for some p € [0, 1]. Similarly, we define w, = -
vz

As a standard Gilbert-Varshamov bound for constant-weight codes (e.g., see Lemma 6 in Acharya et al. (2021)), there exists
a set V with cardinality at least ||V||, > 2%, with V]|, = £ forall v € V, and with diam (v, ') > 4 forall v # v/ € V.

Suppose p = min (1, ﬁ), we can compute the norm of the distribution mean. Note that |[v||; = £,

sl = i (1,4/2) o=
vl|g=—min | 1,4/ — | = .
Hull2 9 n Hilg

By a similar argument with the private case, it can be shown that

iV : ~ H/LH 1 APpriv 2
E |:LD(’LUP ) — @%I%Lp(w)] 2. ;E P —w,[|3]

where WP := arg min, ¢y ||w,, — wp””HQ.

Note that this is indeed a multi-way classification problem, where w,,’s are well-separated. By classical Fano’s inequality,

o SB[l —w, ] = ()

vey

E | Lp(wP™™) — ﬁr}réi)gleD(w)] > Q1) - ull, = Q<min (1, ﬁ)) (16)

Combining (15) and (16), and note that Va, by, b2, a > 0.5(b1 + b2) if a > max(by, ba), we conclude the proof.

Thus,

B.10. Proof of Theorem 1.4
We note that the first term comes from classical Fano’s inequality. So it is enough to prove the second term.

Let i* be a random variable uniformly sampled over [M]. Given ¢*, we generate n i.i.d. samples X ~ p;-. Note that the
distribution of X is a mixture of M distributions. Speciﬁcally, for any event S,

Pr(XeS)= ZPI"XNP (X €89).
ZEJW

Letting X* ~ p?, and p(X) be a classifier mapping from samples to the underlying distribution. For the mutual information
I(X,p(X)) between X and p(X),

I(X, (X)) = Baeox [dict (5(2), 5(X))]
= 3 By [ (), 5X))],

i€ M
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where the first equation comes from the definition of the mutual information:

I(X,Y) = Ex [dxr(Y]X,Y)].

By convexity of the KL divergence,

dxr (p(z), (X)) < % > dkw(pla), pXY))
JjEM
< ZM Eu oy [di(p(2). ("))

Therefore,

By the group privacy property of CDP (Proposition 1.9 in Bun & Steinke (2016)), which says that if p is p-CDP,
dir(p(x), p(z')) < p - digam (x, 2')°. Therefore, we have

IXH(0) € 225377 Bonpy [Bary [ditam (@ 2')°] ]

ieM jeM

Note that the TV distance between each pair of distributions is upper bounded by «. By the property of optimal coupling,
there exists a coupling such that Pr_p, ./~p, (2 # 2') = . Therefore, dgam (2, 2") ~ Bin(n, a), and

Ew(—p? []EacN—p? |:dHam<xvxl>2}} < n’a? + na(l - Oé).

By Fano’s inequality, let p. = 57 Zle my Prxepr (B (p(X) # pi)s
I(i*,p(X)) = (1 — pe) log M — log 2.
Noting that I(i*,p(X)) < I(X, p(X)), combining inequalities shows that

p(n*a? + na(l — a)) +log?2

log M 17

Pe=>1—
Finally, let p(X) := arg min;cpr £ (é(X ), 9(pi)>. By triangle inequality,

UO(pi). 0G(0)) < £(0(X), 0(pi-)) ) +£(00X),0(6(X))) < 26(0(X).0pi) )

Therefore,
3 By [0(000),000) ] 2 517 3 By [OG(X)), 0(p0)]
zE [M] ze[]V[
Z — Z Prxpr (p(X) # pi)
2€[]V[
_ TDPe
=5

Combined with (17), we conclude the proof.
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B.11. Theorem 5.2 with High-probability Guarantees

In this paper, we provide all our utility guarantees in terms of the expectation over the randomness of samples and algorithms.
However, they can be easily generalized to the high-probability setting. In this section, we present the high-probability
version of Theorem 5.2 as an example.

Theorem B.8 (Theorem 5.2 in high probability). Suppose we have a stochastic convex optimization problem which satisﬁes
Assumption 2.12. Assuming R < 10, L < 10, Algorithm 2, instantiated with CDPCWME with parameters T = Tﬁ,

1
n= G and T = (f% ) k, outputs wP™ = % ZtG[T] w?, such that with probability at least 1 — 3,

, Md, [log Mdn M Md2 oMLY
Lp(wp””)—LD(w*)§0<+log( dn)( d <ﬁ7:> + d >>,

N 5 nyp \Mdz n3

where w* = arg min,, Lp(w), and M is the diameter of the constraint set V.

Proof. Letw'" = w'™! — pVLp(w'™1), and w' denotes its projection to V. Similar with the proof of Theorem 3.1,

Lp(w”™) — Lp(w")

<l i 1 (nVLp(w'),w* —w*)
T
11 - -
S (nVLo(") +qVLp(w') = nVIp(w')w' - u*)
T

»

<T)VLD B, wt — w*>

TZ<VLD —VLp(w ),wt—w*> %

=LHS + RHS.

'ﬂ \

We first bound the RHS, which corresponds to analyzing the variance. Let w’ bttt — nvzp(wtfl), and w! denotes its
projection to V. Similar with the proof of Theorem 3.1,

RHS —TZ

1 (_ [a—

+ Hwt —w*

o\
1 T 2 1 2 n T ~ : 2
:2777 (—Hw w*| —|—Hw w* )+ﬁ'Z‘VLD(w)H
t=1
1 T, T R AT . 2
g (~ I =l o =) + g7 [V () - V2o ()|
T
3277%( ||wT w*||2+Hw1w*||2)+;.z<‘VZD(wt)VLD( H +||VLD H >
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By Assumption 2.12, we have

VL@t = | B fecwt, )| = | E, (Ve )| < A2

x~D

for all ¢, and ||w’ — w*||* < M? for any w’ € W.

Thus,
M? n a ~ 2
RHS < —— 4+ yR? + 1 H Lp(w') — VLp(wh)| ).
277T+77R Jth:Zl(VD(w) VLp(w")
M? 2 | 21 d 7 t 2 N 7 t N
<2 il L Vi H i ~ VL .
—277T+77R T;(HV p(w’) = VLp(w")|| + ||VLp(w") — VLp(w") )
Following a similar proof with the covering argument in the proof of Theorem 5.2, we can bound HVLD( —VIp(w H

for all ¢ € [T] simulatenously. Specifically, replacing o = 3 and m = dlog <52 dM”

B
— 10,forallw ew,

, we can show that with probability

R C k—1 10g Mdn Ld1‘5 lOg Mdn
HVLD(w) - VLD(w)H <olva () +d E -7 (18)
T n n
Then by Gaussian tail bound and the union bound, with probability 1 — 10, for all w, with ¢ € [T,
. ~ 7d?,/T log M’édT
VLDw—VLDngo :
|Vin(w) - VIn@w) 7
Combining the previous two equations, with probability at least 1 — g,
T 2k—2 d2 lo Mdn L2d3 lo 2 Mdn
23 |[vEow) - vi “<ofy (a- (€ 5 © 5
T z:: D p(wh)|| < n - + " + 6 ,
T 2 74 MndT
n R 2 72d*T - log =5
TX;HVLD w') = Vip(w') SO<77- = : (19)

Next we bound the LHS, which corresponds to analyzing the bias. By the triangle inequality,

LHS = ;i (VLo(w') - VIp(w'). ' —u*)
< ;XT: <VLD(wt) _ V[A/D(wt)’wt _ w*> L2 1 Z <VLD VLD( )7wt . w*> .

t

1 t:

—

By (18), we have

Hvip(w) . VLD(w)H <ol va. (
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Note that ||w* — w*||, < M,

log Mdn Ld1.5 log Mgn

n n3

ZT:<VLD ~ Vip(w )wtw*>gM~0 \/&-<S>H+d

Until now, the proof is almost the same with the case under expectation. Lastly, we analyze the term of Vﬁp(wt) —Vzp(wt).
Note that this term is new, since it is zero when taking expectation. As designed in Theorem 4.1, we notice that

szp(’wt) - pr(wt) = Nt ~ N(O,U]Idxd),

727%d? .. .
where 02 = # Note that N; is independent of w' — w*, with E[(N;, w" — w*)|w'] = 0. Therefore,
Ny, wt — w*), wt}YL_ is a martingale difference sequence. By Azuma’s inequality for sub-Gaussian distributions (see

) ) t=0 g q y q y

Theorem 2 in (Shamir, 2011)),

T

1 7 t 7 ty ot * My/do log(1/8)

T;<VLD(w ) — Vipw"),w' —w ><O<\/T (20)
with probability at least 1 — {5. Taking n = 7 \F’ and T = 2 P, this term is strictly dominated by (19).

Finally, putting everything together with the same 7 and 7" chosen in Theorem 5.2, and by the union bound, we conclude the
result in Theorem B.8.

O



