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Abstract
In this work we study the problem of differentially
private (DP) quantiles, in which given dataset X
and quantiles q1, ..., qm ∈ [0, 1], we want to out-
put m quantile estimations which are as close as
possible to the true quantiles and preserve DP.
We describe a simple recursive DP algorithm,
which we call Approximate Quantiles (AQ), for
this task. We give a worst case upper bound on its
error, and show that its error is much lower than
of previous implementations on several different
datasets. Furthermore, it gets this low error while
running time two orders of magnitude faster that
the best previous implementation.

1. Introduction
Quantiles are the values that divide a sorted dataset in a
certain proportion. They are one of the most basic and im-
portant data statistics, with various usages, ranging from
computing the median to standardized test scores (GRE,
2021). Given sensitive data, publishing the quantiles can
expose information about the individuals that are part of the
dataset. For example, suppose that a company wants to pub-
lish the median of its users’ ages. Doing so means to reveal
the date of birth of a certain user, thus compromising the
user’s privacy. Differential privacy (DP) offers a solution
to this problem by requiring the output distribution of the
computation to be insensitive to the data of any single indi-
vidual. This leads us to the definition of the DP-quantiles
problem:

Definition 1.1 (The DP-Quantiles Problem). Let a, b ∈ R.
Given a dataset X ⊆ (a, b) containing n points from (a, b),
and a set of m quantiles 0 < q1 ≤ · · · ≤ qm < 1, privately
identify quantile estimations v1, ..., vm such that for every
j ∈ [m] we have Prx∼UX

[x ≤ vj ] ≈ qj ,1 where UX is the
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1We will make this precise later.

uniform distribution over the data X .2

On the theory side, the DP-quantiles problem is relatively
well-understood, with advanced constructions achieving
very small asymptotic error (Beimel et al., 2016; Bun et al.,
2015; Kaplan et al., 2020). However, as was recently ob-
served by Gillenwater et al. (2021), due to the complexity
of these advanced constructions and their large hidden con-
stants, their practicality is questionable. This led Gillen-
water et al. (2021) to design a simple algorithm for the
DP-quantiles problem that performs well in practice. In this
work we revisit the DP-quantiles problem. We build on the
theoretical construction of Bun et al. (2015), and present
a new (and simple) practical algorithm that obtains better
utility and runtime than the state-of-the-art construction of
Gillenwater et al. (2021) (and all other existing implementa-
tions). When the number of quantiles is large, the error of
AQ algorithm reaches up to 7.14 time lower than the best
existing baseline.

1.1. Our Contributions

We provide Approximate Quantiles, an algorithm and im-
plementation for the DP-quantiles problem (Section 3). We
prove a worst case bound on the error of the AQ algo-
rithm for arbitrary m quantiles, and a tighter error bound for
the case of uniform quantiles qi = i/(m+1), i = 1, . . . ,m
(Section 3.2). We experimentally evaluated the AQ algo-
rithm and conclude that it obtains higher accuracy and faster
runtime than the existing state-of-the-art implementations
(Section 4). In addition, we adapt our algorithm (and its
competitors) to the definition of Concentrated Differential
Privacy (zCDP) (Bun & Steinke, 2016). We show that its
dominance over other methods is even more significant with
this definition of privacy.

1.2. A Technical Overview of Our Construction:
Algorithm Approximate Quantiles

Our algorithm operates using a DP algorithm for estimat-
ing a single quantile. Specifically, we assume that we have
a DP algorithm A : R2 × Rn × (0, 1) → R that takes
a domain I = (a, b) ∈ R2 (an interval on the line), a
database X ∈ Rn (containing n points in I), and a sin-

2We assume that there are no duplicate points in X.
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Figure 1: The recursion tree of the algorithm. At each node we
write the range of the corresponding subproblem and above it the
part of the data in this subproblem.
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gle quantile q ∈ (0, 1), and returns a point v ∈ I such that
Prx∼UX

[x ≤ v] ≈ q. Estimating a single quantile is a much
easier task, with a very simple algorithm based on the ex-
ponential mechanism (McSherry & Talwar, 2007). A naive
approach of using A for solving the DP-quantiles problem
would be to run it m times (once for every given quantile).
However, due to composition costs of running m DP algo-
rithms on the same data, the error with this approach would
scale polynomially with m. As we demonstrate in our ex-
perimental results (in Section 4), this leads to a significantly
reduced performance. In contrast, as we explain next, in our
algorithm the error scales only logarithmically in the num-
ber of quantiles m. The AQ algorithm privately estimates
(using A) the “middle quantile” p = q⌈m/2⌉ and observes an
answer v. Then it splits the problem into two sub-problems.
The first sub-problem is defined over the dataset Xℓ which
contains the values from X that are smaller than v. Its goal
is to privately compute the quantiles (q1, .., q⌈m/2⌉−1)/p on
Xℓ. The second problem is defined over the dataset Xu

which contains the values from X that are greater than v.
The goal of the second problem is to privately compute
(q⌈m/2⌉+1− p, . . . , qm− p)/(1− p) on Xu. Notice that the
recursive sub-problems have smaller ranges. Specifically, at
the first level of the recursion tree we compute one quantile
q11 ≜ q⌈m/2⌉ on data points from a range (a, b). We denote
by v11 the estimate which we receive. At the second level
we compute two normalized quantiles q12 ≜ q⌈m/4⌉/q

1
1 and

q22 ≜ q⌈3m/4⌉/(1 − q11). The quantile q12 is computed on
data in the range (a, v11), and we denote its estimate by v12 .
The second quantile is computed on the data in the range
[v11 , b], and we denote its estimate by v12 , and so on. Figure 1
illustrates this recursion tree. A few remarks are in order.

1. By shrinking the data range from one level to the next,
we effectively reduce the error of algorithm A (because
its error depends on the data range). We have found
that, in practice, this has a large impact on our accuracy
guarantees.

2. Note that every single data point participates only in
log(m) + 1 sub-problems (one at each level). This
allows our privacy loss (and, hence, our error) to grow
only logarithmically in m.

1.3. Related Work

Private (Cumulative Distribution Function) CDF estima-
tion can be applied to estimating all the quantiles (Bun
et al., 2015; Kaplan et al., 2020), however the theoretically
best known algorithm for private CDF estimation Bun et al.
(2015) relies on several reductions, thus limiting its prac-
ticality. We present our AQ algorithm, inspired by Bun
et al. (2015), taking their CDF estimation algorithm into
practice. As opposed to the algorithm proposed by Bun et al.
(2015), our algorithm avoids discretization of the domain by
solving the DP single quantile problem using the exponen-
tial mechanism (Smith, 2011) instead of an interior point
algorithm (Bun et al., 2015). Moreover, we split the data ac-
cording the desired quantiles (rather than uniformly) while
avoiding using the laplace mechanism in the process. A
common tree-based approach to CDF estimation is included
in our empirical error analysis (Section 4). A recent work by
Gillenwater et al. (2021) proposed an instance of the expo-
nential mechanism that simultaneously draws m quantiles.
The naive implementation of this exponential mechanism
for m quantiles is computationally difficult, but Gillenwater
et al. (2021) provide a sophisticated O(mn log n +m2n)
implementation. The empirical experiments of Gillenwater
et al. (2021) show that when the number of quantiles is small,
JointExp algorithm performs best. A comparison with this
algorithm is included in our experiments (Section 4).

2. Preliminaries
A database X is a set of n points from some data domain
D.3 Differential privacy uses the definition of neighbors as
follows.
Definition 2.1. Databases X and X ′ ∈ Dn are neighbors,
denoted X ∼ X ′, if one of them can be obtained from the
other by adding or removing a single element.

We use the add-remove definition of neighbors, as opposed
to the swap definition (in which we replace a point instead of
deleting or inserting it), although it is important to note that
our algorithm Approximate Quantiles (AQ) easily adapts to
the swap framework. Differential privacy can be defined
using the notion of neighboring databases as follows:
Definition 2.2 (Dwork et al. (2006b)). A randomized algo-
rithm A : D∗ → Y is (ε, δ)-differentially private ((ε, δ)-
DP) if, for every pair of neighboring databases X,X ′

and every output subset Y ⊆ Y , PrA[A(X) ∈ Y ] ≤
eε · PrA[A(X ′) ∈ Y ] + δ. When δ > 0, we say A sat-

3The domain in this paper is the interval (a, b).
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isfies approximate differential privacy. If δ = 0, we say
A satisfies pure differential privacy, and shorthand this as
ε-differential privacy (ε-DP).

The composition property is a key benefit of differential
privacy: an algorithm that relies on differentially private
subroutines inherits an overall privacy guarantee by simply
adding up the privacy guarantees of its components.
Lemma 2.3 (Dwork et al. (2006a;b)). Let A1, . . . ,Ak be k
algorithms that respectively satisfy (ε1, δ1)-, . . . , (εk, δk)-
differential privacy. Then running A1, . . . ,Ak satisfies(∑k

i=1 εi,
∑k
i=1 δi

)
-differential privacy.

The above lemma has come to be known as “basic compo-
sition” in the literature of differential privacy (see (Dwork
et al., 2010b) for more advanced composition theorems).
Given Lemma 2.3, a simplistic approach for the DP-
quantiles problem would be to estimate each of the m quan-
tiles separately, using an ε

m -DP algorithm, and then to apply
Lemma 2.3 in order to show that the m estimations together
satisfy ε-DP. As we will see, our algorithm outperforms this
simplistic approach by a large gap. We will also rely on
the exponential mechanism, a common building block for
differentially private algorithms.
Definition 2.4 (McSherry & Talwar (2007)). Given utility
function u : D∗ × S → R mapping (database, output) pairs
to real-valued scores with L1 sensitivity

∆u ≜ max
X∼X′,s∈S

|u(X, s)− u(X ′, s)|,

the probability that the exponential mechanism M has an
output s ∈ S is:

Pr[M(X) = s] ∝ exp

(
εu(X, s)

2∆u

)
,

where ∝ elides the normalization factor.

The exponential mechanism maintains the database’s pri-
vacy while prioritizing its higher utility outputs.
Lemma 2.5 (McSherry & Talwar (2007)). The mechanism
described in Definition 2.4 is ε-DP and for error parameter
γ > 0 satisfies that:

Pr
s∈S

[u(X, s) > Opt− γ] ≤ |S| · exp
(
− εγ

2∆

)
,

where Opt = maxs∈S{u(X, s)}.

In our case in this paper, the solution space S is infinite.
Specifically, it is an interval (a, b). Lemma A.1 in Appendix
A adapts the exponential mechanism to this setting.

3. Approximate Quantiles Algorithm
This section demonstrates our differentially private quantiles
algorithm, Approximate Quantiles. As we mentioned in the

Algorithm 1 - Approximate Quantiles (AQ)

input Domain D = (a, b), database X = (x1, . . . , xn) ∈
Dn, quantiles Q = (q1, . . . , qm), privacy parameter ε.

1: Let A : R2 ×Rn × (0, 1) → R be a ε
logm+1 -DP mech-

anism for a single quantile.
2: function F ((a, b), X,Q)
3: if m = 0 then
4: return null
5: else if m = 1 then
6: return {A((a, b), X, q1)}
7: end if
8: Let m̂ = ⌈m/2⌉
9: Let p = qm̂

10: Let v = A((a, b), X, p)
11: Let Xℓ, Xu = {x ∈ X | x < v}, {x ∈ X | x > v}
12: Let Qℓ = (q1, . . . , qm̂−1)/p
13: Let Qu = (qm̂+1 − p, . . . , qm − p)/(1− p)
14: return F ((a, v), Xℓ, Qℓ)∪ {v} ∪F ((v, b), Xu, Qu)
15: end function

introduction, our algorithm uses a subroutine A for privately
estimating a single quantile. We implement algorithm A
using the exponential mechanism (see Appendix A). We
remark that, if the dataset is given sorted, then A runs in
linear time, and the time required for all recursive calls at
the same level of the recursion tree is O(n). It follows that
the overall time complexity of AQ algorithm is O(n logm).

We denote by qji the normalized quantile computed by the
jth subproblem at the ith level of the algorithm’s recursion
tree, and by vji the result of this computation. Note that
the number of subproblems at level i is 2i−1. (At the last
level some of the subproblems may be empty.) We let Xj

i

be the data used to compute vji . It was created by splitting
the data X⌈j/2⌉

i−1 into two parts according to v⌈j/2⌉i−1 . We note
that Xj1

i and Xj2
i are disjoint for a fixed level i and j1 ̸= j2.

This allows us to avoid splitting our privacy budget between
subproblems at the same level of the recursion, and we split
it only between different levels, see Section 3.1. We also
denote Qi ≜ (q1i , . . . , q

2i−1

i ) and Vi ≜ (v1i , . . . , v
2i−1

i ).

We assume that the data does not contain duplicate points.
This can be enforced by adding small perturbations to the
points. The answer we return is with respect to the perturbed
points. In fact the utility of our algorithm depends on the
minimum distance between a pair of points.

3.1. Privacy Analysis

First we prove that AQ algorithm is ε-DP.

Lemma 3.1 (Differential Privacy). If A is an ε
logm+1 -DP

mechanism for a single quantile then AQ algorithmis ε-DP.
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Proof. It suffices to show that for each level 1 ≤ i ≤
logm+ 1 the output Vi is ε

logm+1 -DP, since the number of
levels is logm+ 1, from composition (Lemma 2.3) we get
that the AQ algorithm satisfies (ε, δ)-DP.

Let X and X ′ = X ∪ {x′} be neighboring databases, mark
as X ′k

i the part of level i that contains x′ among X ′j
i , 1 ≤

j ≤ 2i−1 (as explained above, only one X ′j
i contains x′).

For each j ̸= k the data Xj
i equals X ′j

i and therefore the
probability of the output vji is the same under X or X ′.
The output vki is obtained by A which is a ε

logm+1 -DP
mechanism, therefore it satisfies ε

logm+1 -DP.

3.2. Utility Analysis

A qi-quantile is any point oi ∈ (a, b) such that the number
points of X which are in (a, oi) is ⌊qin⌋. We also define the
gap, GapX(d1, d2), between d1, d2 ∈ (a, b) with respect to
X are the number of points in the data X that fall between
d1 and d2, formally: GapX(d1, d2) = |{x ∈ X | x ∈
[min{d1, d2},max{d1, d2})}|. Using this notion we define
the error of the algorithm. Given dataset X , quantiles Q =
(q1, . . . , qm), solution V = (v1, . . . , vm) and true quantiles
O = (o1, . . . , om), the maximum missed points error is
defined as:

ErrX(O, V ) = max
j∈[m]

{Gap(oj , vj)} =

max
j∈[m]

{||{x ∈ X|x < vj}| − ⌊qj · n⌋|}.

This error was first defined by Smith (2011) and is widely
used in the literature on the differentially private quantiles
problem. We first analyze the error of our algorithm in the
general case, without any constraints on the given quantiles.

Lemma 3.2 (General Quantiles Utility). Let X ∈ (a, b)n

be a database, and let A be an algorithm that computes
an approximation v for a single quantile q of X such that
Pr[GapX(o, v) > γ] ≤ β

m . for some constants β, γ > 0,
where o is a true q-quantile. We run AQ algorithm using A
on a database X , and quantiles Q = (q1, . . . , qm). Then,
with probability 1− β, we get approximate quantiles V =
(v1, . . . , vm) such that ErrX(O, V ) ≤ (logm+ 1)γ.

Proof. For the computation of m quantiles the AQ algo-
rithm applies A at most m times (once per each internal
node of the recursion tree). Since in each run A has error
at most γ with probability 1 − β/m it follows by a union
bound that:

Pr[∃i, j s.t. GapX(ôji , v
j
i ) > γ] ≤ β, (1)

where ôji is a true qji -quantile with respect to the dataset Xj
i .

We also denote by oji a true qk-quantile with respect to X

Figure 2: An error in computing v11 by at most γ = 2 points
from the optimal value o11, might cause an error of at most γ
points between the value of o2j compared to ô2j . The example
demonstrates the computed quantiles q1 = 1

4
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2
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where qk is the original fraction in Q that corresponds to qji
(see Figure 2).

At the first level (i = 1) of the recursive tree we com-
pute one quantile q11 on the data X = X1

1 and there-
fore GapX(ô11, o

1
1) = 0. At the second level (i = 2),

we split the data X according to v11 into X1
2 , X

2
2 , since

GapX(v11 , o
1
1) ≤ γ, the qj2-quantile ôj2 of the dataset Xj

2

satisfies that GapX(ôj2, o
j
2) ≤ γ (see Figure 2).

By induction, at layer i, for every j we have that
GapX(ôji , o

j
i ) ≤ (i − 1) · γ. Combining this with Equa-

tion (1) results in GapX(vji , o
j
i ) ≤ i·γ. At the last level (i =

logm+1) we have that GapX(vji , o
j
i ) ≤ (logm+1)·γ.

Theorem 3.3. Assume that we implement A using the ex-
ponential mechanism with privacy parameter ε

logm+1 , as
described in Appendix A to solve the single quantile prob-
lem. Then, given a database X ∈ (a, b)n and quantiles
Q = (q1, . . . , qm) the AQ algorithm is ε-DP, and with prob-
ability 1− β output V = (v1, . . . , vm) that satisfies

ErrX(O, V ) ≤ O

(
log2m(logψ + logm+ log 1

β )

ε

)
,

where ψ = b−a
mink∈[n+1]{xk−xk−1} .4

Proof. By Lemma A.1, the exponential mechanism with
privacy parameter ε

logm+1 has an error more than 2(logm+

1) logψ+logm−log β
ε with probability at most β

m . Therefore,
by Lemma 3.2, the AQ algorithm has an error no larger than
γ = 2(logm+1)2 · logψ+logm−log β

ε with probability 1−β.
Combining this with Lemma 3.1 the theorem follows.

The uniform quantiles problem is a common instance of
the quantiles problem where qi = i

m+1 , for i = 1, . . . ,m.
Lemma 3.4 shows that when the desired quantiles are uni-
form it is possible to guarantee that ErrX(O, V ) = O(γ)
with probability 1− β.

4We define x0 = a and xn+1 = b. These are not real data
points.
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Lemma 3.4 (Uniform Quantiles Utility). Let X ∈ (a, b)n

be a database, and let A be an algorithm that computes an
approximation v for a single quantile q of X such that

Pr[GapX(o, v) > γ] ≤ β

m
.

for some constants β, γ > 0, where o is a true q-quantile.
We run AQ algorithm using A on a database X , and quan-
tiles Q = (q1, . . . , qm) where qi = i

m+1 . Then, with proba-
bility 1−β, the AQ algorithm returns approximate quantiles
V = (v1, . . . , vm) satisfying ErrX(O, V ) ≤ 2γ.

Proof. For simplicity we assume that m = 2k − 1. The
proof is similar for other values of m. For this value of m
we have that qℓ = ℓ/2k, ℓ = 1, . . . , 2k − 1 and qji = 1/2
for all i and j. Furthermore, we have that the number of
points in X ∩ (a, oji ) is ⌊ 2·j−1

2i n⌋, j = 1, . . . , 2i−1. As in
Lemma 3.2, Equation (1) holds. So we assume in the rest of
the proof that GapX(vji , ô

j
i ) ≤ γ for all i and j.

For the root (i = 1) of the recursion tree we com-
pute one quantile q11 on the data X = X1

1 and there-
fore GapX(ô11, o

1
1) = 0. At the second level, (i = 2),

we split the data X according to v11 into X1
2 , and X2

2 .
Since GapX(v11 , o

1
1) ≤ γ, we have that ⌊n/2⌋ − γ ≤

|Xj
2 | ≤ ⌊n/2⌋+ γ. Recall that |X ∩ (a, o12)| = ⌊n/4⌋ and

|X∩(a, o22)| = ⌊3n/4⌋ and therefore GapX(ôj2, o
j
2) ≤ γ/2

for j = 1, 2. Now, since GapX(vj2, ô
j
2) ≤ γ we get

that ⌊n/4⌋ − 3γ/2 ≤ |Xj
3 | ≤ ⌊n/4⌋ + 3γ/2, and there-

fore GapX(ôj3, o
j
3) ≤ 3γ/4, for j ∈ [4]. Similarly, since

GapX(vj3, ô
j
3) ≤ γ, it follows that ⌊n/8⌋−7γ/4 ≤ |Xj

4 | ≤
⌊n/8⌋ + 7γ/4 and therefore GapX(ôj4, o

j
4) ≤ 7γ/8, for

j ∈ [8]. We conclude that by induction on the levels we get
that,

GapX(ôji , o
j
i ) ≤

2i−1 − 1

2i−1
· γ ≤ γ,

for all i and j. Combining this upper bound with Equa-
tion (1) we get that GapX(vij , o

i
j) ≤ 2γ.

Theorem 3.5 improves the bound of Theorem 3.3 for uni-
form quantiles. We omit its proof which is similar to the
proof of Theorem 3.3 using Lemma 3.4 instead of Lemma
3.2.
Theorem 3.5. If we set A to be the exponential mech-
anism with privacy parameter ε

logm+1 , as described in
Appendix A, then given data X ∈ (a, b)n and quantiles
Q = (q1, . . . , qm), where qi = i

m+1 , the AQ algorithm is
ε-DP and with probability 1− β output V = (v1, . . . , vm)
that satisfies

ErrX(O, V ) = O

(
logm(logψ + logm+ log 1

β )

ε

)
,

where ψ = b−a
mink∈[n+1]{xk−xk−1} .

Quantiles sanitization. Given a database X =
(x1, .., xn) ∈ (a, b)n, we can produce a differentially pri-
vate dataset X̂ = (x̂1, . . . , x̂n) ∈ (a, b)n, such that for each
point x̂ℓ, the number of points in X̂ that are smaller than x̂ℓ
is similar to the number of points in X that are smaller than
x̂ℓ. This is specified precisely in the following Corollary
of Theorem 3.3. In particular this corollary implies that for
every interval I ⊆ (a, b), |X ∩ I| is approximately equal to
|X̂ ∩ I|.

Corollary 3.6. Assume that we implement A using the ex-
ponential mechanism with privacy parameter ε

logn+1 , as
described in Appendix A, to solve the single quantile prob-
lem. Then, given a database X ∈ (a, b)n and n quantiles
Q = (q1, . . . , qn), where qi = i/n, the AQ algorithm is
ε-DP, and with probability 1− β outputs X̂ = (x̂1, . . . , x̂n)
that satisfies

ErrX(X, X̂) = O

(
log n(logψ + log n+ log 1

β )

ε

)
.

where ψ = b−a
mink∈[n+1]{xk−xk−1} .

3.3. Zero-Concentrated Differential Privacy

Zero Concentrated Differential Privacy (zCDP) (Bun &
Steinke, 2016) offers smoother composition properties than
standard (ε, δ)-DP. The general idea is to compare the Rényi
divergence of the privacy losses random variables for neigh-
boring databases. We analyse our algorithm also under this
definition of privacy. As in Section 3.1, the privacy analysis
of our algorithm applies composition of the processing of
different levels in the recursion tree. zCDP’s composition
theorem allows us to run the exponential mechanism at each
level with a higher privacy parameter, which results in a
tighter error bound for the exponential mechanism. For pre-
cise statements see Theorem 3.11 and Theorem 3.12 below.
In Section 4.3 we measure empirically the gain from this
smoother composition of zCDP.

Definition 3.7 (Zero-Concentrated Differential Privacy
(zCDP) Bun & Steinke (2016)). An algorithm M : Dn →
R is ρ-zCDP if for all neighbouring X,X ′ ∈ Dn, and
α ∈ (1,∞) RDα(M(Z),M(Z ′)) ≤ ρα, where RDα is
the α-Rényi 5 divergence between random variables A and
B. (D is the domain of the database elements, in our case it
is (a, b).)

The following lemma shows that DP implies zCDP.

Lemma 3.8. (Bun & Steinke, 2016) if algorithmM satisfies
ε-DP, then M satisfies ρ-zCDP with ρ = ε2

2 .

5the Rényi divergence of order α ∈ (1,∞) between two
probability distributions on P and Q over ω is RDα :=

1
1−α

log(
∫
ω
P (x)αQ(x)1−α dx)
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The above lemma is generic in that it applies to every mech-
anism that satisfies differential privacy. Better bounds are
known for specific cases. In particular, we will use the
following lemma.

Lemma 3.9. (Cesar & Rogers, 2021) The exponential
mechanism with parameter ε satisfies ε2

8 -zCDP.

Lemma 3.10. (Bun & Steinke, 2016) Let M : Dn → Y
and M ′ : Dn → Z . Suppose M satisfies ρ-zCDP and M ′

satisfies ρ′-zCDP. Define M ′′ : Dn → Z by M ′′(X) =
M ′(X,M(X)). Then M ′′ satisfies (ρ+ ρ′)-zCDP.

Theorem 3.11 (General Quantiles Utility with zCDP). Sup-
pose we implement A using the exponential mechanism
to solve the single quantile problem, with privacy param-

eter ε =
√

8ρ
logm+1 . Then, given data X and quantiles

Q = (q1, . . . , qm), the AQ algorithm is ρ-zCDP and with
probability 1− β output V = (v1, . . . , vm) that satisfies

O

(
log1.5m

√
ρ

(logψ + logm+ log
1

β
)

)
,

where ψ = b−a
mink∈[n+1]{xk−xk−1} .

Proof. By Lemma 3.1, the computation at each recursive

level 1 ≤ i ≤ logm + 1 is
√

8ρ
logm+1 -DP, and therefore,

by Lemma 3.9, also ( ρ
logm+1 )-zCDP. Since the number of

levels is logm + 1, by Lemma 3.10, the AQ algorithm is
ρ-zCDP. The error bound follows exactly as in the proof of
Theorem 3.3.

The following theorem is analogous to Theorem 3.5. Its
privacy proof is as for Theorem 3.11 and the error analysis
is as in the proof of Theorem 3.5.

Theorem 3.12 (Uniform Quantiles Utility with zCDP).
Suppose we implement A using the exponential mecha-
nism to solve the single quantile problem, with privacy

parameter
√

8ρ
logm+1 . Then, given data X and quantiles

Q = (q1, . . . , qm), where qi = i
m+1 , the AQ algorithm is ρ-

zCDP, and with probability 1− β output V = (v1, . . . , vm)
that satisfies

ErrX(O, V ) = O

(√
logm

ρ
(logψ + logm+ log

1

β
)

)
,

where ψ = b−a
mink∈[n+1]{xk−xk−1} .

4. Experiments
We implemented the AQ algorithm in Python and its code
is publicly available on GitHub6. We used the exponential

6https://github.com/ShacharSchnapp/DP AQ

mechanism for the DP single quantile algorithm A, with
−GapX(o, v) as the utility of a solution v, where o is a true
quantile, see Appendix A. We also experimented with the
AQ-zCDP algorithm, a version of our algorithm that is pri-
vate with respect to the definition of zero-concentrated differ-
ential privacy (zCDP) (Section 3.3). We compared our algo-
rithms to the three best performing algorithms from Gillen-
water et al. (2021) called: (1) JointExp (2) AppindExp
and (3) AggTree. We ran the implementations provided by
Gillenwater et al. (2021). We describe these baseline algo-
rithms in Section 4.1. We tested the algorithms using two
synthetic datasets and four real datasets that are described
in Section 4.2. For each dataset we compared the accuracy
(Section 4.3) and runtime (Section 4.4) of the competing
algorithms.

4.1. Baseline Algorithms

JointExp Gillenwater et al. (2021) solves the DP quan-
tiles problem by an efficient implementation of the ex-
ponential mechanism (Definition 2.4) on m-tuples V =
(v1, . . . , vm) ∈ (a, b)m, where the utility of V is defined as
follows:

u(X,V ) = −
∑

j∈[m+1]

|GapX(oj , oj−1)−GapX(vj , vj−1)}|,

where we define v0 = o0 = a and vm+1 = om+1 = b.
The naive implementation of the exponential mechanism
with this utility function is computationally difficult:
The number of m tuples V is infinite, and there may
even be exponentially many (in m) equivalence classes
of such m-tuples. Gillenwater et al. (2021) give an
O(mn log n + m2n) time algorithm to sample from the
distribution defined by the exponential mechanism. The
experiments of Gillenwater et al. (2021) show that when the
number of quantiles, m, is small the JointExp algorithm
performs best.

AppindExp solves the DP quantiles problem by applying
the exponential mechanism as described in Appendix A to
find every quantile qi separately. Since AppindExp applies
the exponential mechanism m times, if we use ε/m as the
privacy parameter for each application of the exponential
mechanism, then by composition we get that AppindExp
is ε-DP. The advanced composition theorem Dwork et al.
(2010b) shows that if we use ε′ ≈ ε/

√
m log(1/δ) for

each application of the exponential mechanism then the
overall algorithm would be (ε, δ)-DP. The implementation
of Gillenwater et al. (2021) uses a tighter advanced
composition theorem specific for nonadaptive applications
of the exponential mechanism (Dong et al., 2020), to
determine an ε′ for each quatile computation such that the
overall composition of the m applications is (ε, δ)-DP. We
use n = 1000 data points in our experiments, so we chose

https://github.com/ShacharSchnapp/DifferentiallyPrivateApproximationQuantiles
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δ = 10−6 in accordance with the common practice that
δ ≪ 1

n .

AggTree Dwork et al. (2010a) and Chan et al. (2011)
implement an ε-DP tree-based counting algorithm for CDF
estimation. Given a domain (a, b) the algorithm builds a
balanced tree T with branching factor b and height h, so T
has bh leaves. The j’th leaf of the tree is associated with
sub-domain [cj−1, cj ] where cj := a+ j(b− a)/bh. Given
a dataset D ∈ (a, b)n, the algorithm starts by counting the
number of elements from the dataset that fall into each leaf
(i.e. are contained in its sub-domain). Each internal node of
T is associated with the sum of the counters of its children
(which equals to the number of elements in the leaves of
its subtree). In particular, the count associated with the
root is n. Since each element in the data contributes to at
most h nodes (the path from the leaf containing it to the
root), it suffice to add Lap(h/ε) noise to the value of each
node to make the counts of T ϵ-DP. We can approximate
any quantile q using this data structure as follows. We find
the leftmost leaf z such that the sum of the noisy counts
of all leaves to the left of z (including z) is at least q · n.
In particular, if the counts were not noisy that z would
contain a qth quantile. Let c(z) be the noisy count of z and
let c−(z) be the sum of the noisy counts of the leaves to
the left of z. Let p = (qn − c−(z))/c(z). Without noise
p would have been the approximate relative quantile of
the qth quantile among the elements in z. Let [ck−1, ck]
be the range associated with z. We approxmate the qth
quantile using linear interpolation inside [ck−1, ck]. That
is we return (1 − p)ck−1 + pck. We utilize the AggTree
implementation provided by Gillenwater et al. (2021),
we used b = 12 and h = 4 those values came from the
exhaustive hyperparameters search of Gillenwater et al.
(2021) (see their Appendix E) and the results are given in
Section 4.3.

4.2. Datasets

We tested our four algorithms on six datasets. Two data
sets are synthetic. One contains independent samples from
the uniform distribution U(−5, 5), and the other contains
independent samples from the Gaussian N(0, 5). Two real
continuous datasets from Goodreads (2019), one contains
book ratings and the other contains books’ page counts.
Last we have two categorial datasets from the adults’ census
data (Dua & Graff, 2019). One contains working hours
per week and the other ages of different persons. Table 1
shows the properties of each dataset, and Figure 3 shows
the histograms of 100 equal-width bins for each dataset.

4.3. Empirical Error Analysis

We compare the error of Approximate Quantiles and the
baseline algorithms. Our error metric is the average gap of

Figure 3: Histograms of 100 equal-width bins.

Table 1: Data set properties.

Data set Size Data Characteristics

Uniform (synthetic) 10000 Continuous

Gaussian (synthetic) 10000 Continuous

Goodreads rating 11123 Continuous

Goodreads pages 11123 Continuous

Adult hours 48842 96 Categories

Adult age 48842 74 Categories

the approximate quantiles V = (v1, . . . , vm) and and the

true ones O = (o1, . . . , om):
∑

j∈[m] GapX(oj ,vj)

m .

DP Error Analysis: We randomly chose 1000 samples
from each dataset and checked the error of each algorithm
with m = 1 to m = 120 uniform quantiles and D =
[−100, 100] as a (loose) user-provided domain. We used
the privacy parameter ε = 1. This process was repeated
100 times. Figure 4 shows the average of the error across
the 100 iterations. Figure 5 zooms in on the error for m =
1, . . . , 35 quantiles. Approximate Quantiles performs better
than the baselines almost in all experiments, except for a
few small values of m where the performance of JointExp
was slightly better. As the number of quantiles increases
Approximate Quantiles wins by a larger margin.

zCDP Error Analysis: As in previous experiments we
randomly chose 1000 samples from each dataset and
checked the error of each algorithm for m = 1, . . . , 120
uniform quantiles and D = [−100, 100] as a (loose) user-
provided domain. All algorithms were ρ-zCDP for ρ = 1

8 .
For this we used ε′ = 1/

√
m in each application of the ex-

ponential mechanism by AppindExp, and a Laplace noise
of magnitude ε′ =

√
h in each node of the tree computed by

AggTree. In each application of the exponential mechanism
by Approximate Quantiles we used ε′ =

√
1/(logm+ 1)

as described in Theorem 3.12. The algorithm JointExp
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Figure 4: The x−axis shows the number of quantiles and the
y−axis shows the gap per quantile averaged over 100 trials with
ε = 1. Note that the graphs are in log scale.

Figure 5: The x−axis shows the number of quantiles and the
y−axis shows the gap per quantile averaged over 100 trials with
ε = 1. Note that the graphs are in log scale.

with ε = 1 is 1
8 -zCDP by Lemma 3.10, so its error is

the same as in the previous experiment. Figure 6 shows
the average of the error for z-CDP across the 100 itera-
tions. Figure 7 zooms in on the error for m = 1, . . . , 35.
Approximate Quantiles performs much better than the base-
lines even for small number of quantiles. When the number
of quantiles is large, the error of AQ algorithm reaches up
to 7.14 time lower than the best existing baseline.

4.4. Time Complexity Experiments

Given a sorted dataset, it takes O(n) time to find
all quantiles at a single level of the recursion tree of
Approximate Quantiles. Therefore the overall time com-
plexity (i.e., without the sort) of the AQ algorithm is
O(n logm), where m is the number of quantiles. In com-
parison, the baseline algorithms are computationally more
expensive: JointExp algorithm runs inO(mn log n+m2n)
time, AppindExp algorithm runs in O(mn) time and
AggTree algorithm runs inO(n log n) time. We empirically
compared the running time of Approximate Quantiles to the
running times of the baseline algorithms. For each dataset
we measured the time required to find m ∈ [120] quantiles

Figure 6: zCDP: The x−axis shows the number of quantiles and
the y−axis shows the gap per quantile averaged over 100 trials
with ρ = 1/8. Note that the graphs are in log scale.

Figure 7: zCDP: The x−axis shows the number of quantiles and
the y−axis shows the gap per quantile averaged over 100 trials
with ρ = 1/8. Note that the graphs are in log scale.

in a sub-sample of size 1000 of each dataset, averaged over
100 trials per dataset. Figure 8 shows the average running
time across all datasets (Section 4.2), each experiment used
one core of an Intel i9-9900K processor. We see that the
running time of Approximate Quantiles is about ten times
smaller than of AggTree and at least a 100 smaller than of
JointExp and AppindExp .

Figure 8: x−axis number of quantiles, y−axis is the run time
averaged across all datasets, each dataset averaged across 100
trials. Note that the graphs are in log scale.
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A. DP Single quantile
In the DP single quantile problem, the input is a single quantile q and a database X ∈ (a, b)n. The output is a quantile
estimate v ∈ (a, b) such that Prx∼UX

[x ≤ v] ≈ q (in a sense that Lemma A.1 would make precise). We solve this problem
using the exponential mechanism of (McSherry & Talwar, 2007) on (a, b) with the utility function:

u(X,w) = − ||{x ∈ X|x < w}| − ⌊q · n⌋| = −GapX(o, w),

where o is a q-quantile and w ∈ (a, b). This mechanism samples each point w ∈ (a, b) to be the output with density
proportional to exp(εu(X,w)/2). Note that the sensitivity of u is 1, that is max{|u(X,ω)− u(X ′, ω)|} ≤ 1, where the
maximum is over neighboring datasets X and X ′ and points ω ∈ (a, b). The largest utility is of a q-quantile and equals to 0.
We can sample from this distribution using the technique given by (Smith, 2011) (see their Algorithm 2). The idea is to split
the sampling process into two steps:

1. Let Ik = [xk−1, xk], k = 1, . . . , n+ 1 where x0 = a, xn+1 = b, be the set of n+ 1 intervals between data points. We
sample an interval from this set of intervals, where the probability of sampling Ik is proportional to

Pr[A(X) = Ik] ∝ exp

(
εu(X, Ik)

2

)
· (xk − xk−1),

Note that all points in Ik have the same utility which we denote by u(X, Ik).

2. Return a uniform random point from the sampled interval.

Lemma A.1. Given dataset X ∈ (a, b)n and quantile q ∈ [0, 1], the exponential mechanism is ε-DP, and with probability
1− β outputs v that satisfies

GapX(o, v) ≤ 2 · logψ − log β

ε
,

where o is a true q-quantile and ψ = b−a
mink∈[n+1]{xk−xk−1} .

Proof. ε-DP follows in a straightforward way by bounding the ratio of the densities of a point w in the destribution defined
by X and in the distribution defined by X ′; See also (Dwork & Roth, 2014).

Let It be an interval such that u(X, It) ≤ −γ. It follows that the probability of sampling a point from It is at most

Pr[A(X) = It] ≤
exp

(−εγ
2

)
· (xt − xt−1)∑

k∈[n+1] exp
(
εu(X,Ik)

2

)
· (xk − xk−1)

.

Using the union bound we get that:

Pr[A(X) ≤ −γ] ≤
exp

(−εγ
2

)
(b− a)∑

k∈[n+1] exp
(
εu(X,Ik)

2

)
· (xk − xk−1)

≤
exp

(−εγ
2

)
(b− a)

exp
(
εu(X,Io)

2

)
(xo − xo−1)

≤ b− a

mink∈[n+1](xk − xk−1)
· exp

(
−εγ
2

)
= ψ exp

(
−εγ
2

)
where Io is the interval containing the q-quantiles so u(X, I0) = 0. It follows that with probability less than β, we sample
an interval whose utility is at most −γ for

γ = 2∆u ·
logψ − log β

ε
.
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Since in the second step we sample the q-quantile v uniformly from the interval selected in the first step, we get that with
probability 1− β the output v satisfies:

GapX(o, v) ≤ 2 · logψ − log β

ε
.


