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Abstract

Graph learning (GL) aims to infer the topology of
an unknown graph from a set of observations on
its nodes, i.e., graph signals. While most of the
existing GL approaches focus on homogeneous
datasets, in many real world applications, data
is heterogeneous, where graph signals are clus-
tered and each cluster is associated with a differ-
ent graph. In this paper, we address the problem
of learning multiple graphs from heterogeneous
data by formulating an optimization problem for
joint graph signal clustering and graph topology
inference. In particular, our approach extends
spectral clustering by partitioning the graph sig-
nals not only based on their pairwise similari-
ties but also their smoothness with respect to the
graphs associated with the clusters. The proposed
method also learns the representative graph for
each cluster using the smoothness of the graph
signals with respect to the graph topology. The
resulting optimization problem is solved with an
efficient block-coordinate descent algorithm and
results on simulated and real data indicate the
effectiveness of the proposed method.

1. Introduction
In many modern data science applications, relationships
between entities, such as features or data samples, are well
described with a graph structure. While many real-world
data are intrinsically graph-structured, e.g. social and traffic
networks, there is still a large number of applications, where
the graph topology is not readily available. For instance,
gene regulations in biological applications or neuronal con-
nections in the brain are not known. In these applications,
the graphs need to be learned since they reveal the relational
structure and may assist in a variety of learning tasks. GL
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deals with the inference of a topological structure among en-
tities from a set of observations on these entities, i.e., graph
signals.

Methodologies to learn a graph from data include naive
methods such as k-nearest neighborhood (k-NN), probabilis-
tic graphical models (Banerjee et al., 2008; d’Aspremont
et al., 2008; Mazumder & Hastie, 2012; Hsieh et al., 2011)
and more recently graph signal processing (GSP) (Mateos
et al., 2019; Dong et al., 2019) and graph neural networks
(GNNs) (Zhang et al., 2020; Wu et al., 2020; Bronstein et al.,
2017). While the probabilistic graphical models assume the
normality of the data, which is not true for most real-world
data, GSP-based GL methods define observations on a col-
lection of nodes as graph signals and fall into two categories.
The first category assumes graph signals are outcomes of
diffusion processes on graphs and reconstructs a graph from
signals according to the diffusion model (Thanou et al.,
2017; Pasdeloup et al., 2017; Shafipour et al., 2021; Segarra
et al., 2017). The second category of methods promotes
the smoothness of graph signals quantified by the Laplacian
quadratic form or more generally via total variation (Dong
et al., 2016; Kalofolias, 2016b; Berger et al., 2020). GNN-
based methods, on the other hand, typically require a large
volume of training data and the learned connectivity is often
less explainable compared to probabilistic graph models and
GSP methods.

Most of the work on GSP-based GL has focused on the
case where all data points follow the same relational model
described by a single graph. However, in practice, the data
may be coming from multiple graphs, i.e., multiview graphs.
Examples of this setup include gene regulation networks
where regulations vary across different cell types, and in
social networks, where a set of users have varying interac-
tions across different social media platforms. In this paper,
we address the problem of multiple graph learning from
a heterogeneous set of graph signals, where each cluster
is associated with a different graph structure. To this end,
we propose GRASCale algorithm for simultaneous GRAph
Signal Clustering And graph LEarning. Previous works that
perform the same task employ only relations of the graph sig-
nals to the graphs associated with the clusters for clustering
assignment. However, clustering algorithm can also bene-
fit from side information in the form of pairwise relations
between graph signals. For instance, in a recommendation
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Figure 1. Overview of the proposed approach: Pairwise similarity between graph signals (Gc) and smoothness of the graph signals with
respect to graphs associated with each cluster (Gs’s) are used jointly in spectral clustering while simultaneously learning Gs’s.

system, when clustering graph signals, e.g. ratings for items,
generated by a set of users, connections among the users can
be used to inform the clustering algorithm. Therefore, we
formulate GRASCale1 with the following key contributions:

• We propose a new framework which is an extension of
conventional spectral clustering where both the signals’
pairwise similarity and smoothness with respect to the
underlying graph structure are taken into account.

• The proposed methodology can learn the graph struc-
tures for mixed (heterogeneous) graph data.

• An efficient prox-linear block-coordinate descent
(BCD) with improved consensus clustering based ini-
tialization is introduced for optimization.

The overall framework is depicted in Figure 1.

1.1. Related Work

Most of the existing work on GL considers simple data,
where all data points follow the same model defined with
only one graph. In recent work, GSP community has ad-
dressed the problem of learning multiple graphs from het-
erogenous data in two different settings: i) multiple views
of the same data and ii) heterogenous data with possibly
unknown cluster information.

The first class of methods, also known as joint inference of
multiple graphs (Navarro et al., 2020), considers the setting
where multiple related networks each with a subset of obser-
vations is available. In this setting, the membership of the
signals to the graphs is known and the graphs are closely
related to each other. This problem setting has been most
widely studied for inferring the topology of time-varying
networks (Kalofolias et al., 2017; Yamada et al., 2019; Bain-
gana & Giannakis, 2016; Sardellitti et al., 2019). Assuming
that the variation is smooth across time, the problem is
reduced to learning multiple closely related graphs regular-
ized with a term that promotes changes between consecutive

1Codes are available at the following github repository:
https://github.com/SPLab-aviyente/GRASCale

graphs to be small in some pre-specified norm. More re-
cently, the problem of joint inference of multiple graphs
from the observed graph signals has been formulated with
the assumption of graph stationarity (Navarro et al., 2020).
In this formulation, the signals are assumed to be station-
ary, and pairwise similarity between all graphs is used to
regularize the optimization.

The second class of methods focuses on the case where
the data is heterogeneous and each subgroup has its own
graph structure. This problem has been addressed for both
the supervised and unsupervised settings. The supervised
setting, also known as multi-category GL problem, assumes
that the number of classes and the signals that belong to
each class are known a priori (Saboksayr et al., 2021; Kao
et al., 2017). In this case, the goal is to learn multiple graphs
each associated to a class of signals such that the represen-
tation of signals within a class and discrimination of signals
in different classes are both taken into consideration. In
the unsupervised setting, the number of clusters is known
but the membership of the different graph signals is not
known. In this case, the goal is to simultaneously cluster
the data and learn the representative graph for each cluster
(Araghi et al., 2019; Maretic & Frossard, 2020). In (Maretic
& Frossard, 2020), graph signals are modelled by a graph
Laplacian mixture model (GLMM), which extends the fac-
tor analysis model of (Dong et al., 2016) to jointly model
the smooth graph signals and identify the clusters through
Gaussian mixture model (GMM). This model assumes that
the number of clusters is known a priori and the distribution
of the data is Gaussian. The model is fitted to data through
the expectation-maximization algorithm for simultaneous
graph inference and clustering. On the other hand, (Araghi
et al., 2019) proposes K-graphs, which is an extension of
k-means clustering where the graph signals are assigned to
the clusters based on their smoothness over each cluster’s
representative graph. Once the signals are clustered, the
representative graphs are updated with graph learning algo-
rithms. Both of GLMM and K-Graphs algorithms assign
a graph signal to a cluster based on only the smoothness
of the signal with respect to the graph associated with that
cluster and do not explicitly take the pairwise relationships

https://github.com/SPLab-aviyente/GRASCale
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between the graph signals into account.

2. Background
2.1. Notations

Scalars, vectors and matrices are denoted by lowercase (x),
bold lowercase (x) and bold uppercase (X) letters, respec-
tively. Entries of vectors and matrices are denoted as xi and
Xij , respectively. ith row and column of X are indicated as
Xi· and X·i, respectively. Superscript ⊤ indicates transpose
of vectors and matrices. Identity matrix is shown by I. All
ones and zeroes vectors and matrices are shown as 1 and 0,
respectively. The operator dg() takes a matrix X and returns
a vector x with xi = Xii or takes a vector x and returns a
diagonal matrix X with Xii = xi. Finally, δij is Kronecker
delta, which is equal to 1 if i = j and 0, otherwise.

2.2. Graphs and Graph Signals

An undirected graph is denoted by G = (V,E,W) where
V is the node set with |V | = n, E ⊆ V × V is the edge set
and W ∈ Rn×n is its adjacency matrix. An edge between
node vi and vj is represented by eij and is associated with
a weight wij . W is a symmetric matrix with Wij = wij

if eij ∈ E and 0, otherwise. Degree of vi is the sum of
the weights of the edges connected to it, i.e., di = W⊤

i·1.
Degree vector of G is d = W1 and D = dg(d) is the
corresponding degree matrix. The Laplacian matrix of G is
defined as L = D−W. L is a positive semi-definite matrix
and has eigendecomposition L = VΛV⊤ where Λ is the
diagonal matrix of eigenvalues and columns of V are the
eigenvectors. Eigenvalues of L are assumed to be sorted in
an ascending order, i.e., 0 = Λ11 ≤ Λ22 ≤ · · · ≤ Λnn.

A graph signal x ∈ Rn is a vector whose entries reside on
the nodes of a graph G. Graph Fourier transform (GFT) of
x is defined as the expansion of x in terms of the eigenbasis
of the graph Laplacian (Shuman et al., 2013). This repre-
sentation allows us to characterize x in terms of its graph
spectral content. GFT of x is given by x̂ = V⊤x. Inverse
GFT is defined as (Shuman et al., 2013):

x = Vx̂ =

n∑
i=1

x̂iV·i. (1)

Thus, x is the linear combination of eigenvectors of L with
the coefficients equal to the entries of x̂. Eigenvectors of L
corresponding to the small eigenvalues have small variation
over the graph. Thus, if most of the energy of x̂ lies in x̂is
corresponding to the small eigenvalues, then x is smooth
with respect to the graph (Sandryhaila & Moura, 2014). The
smoothness of x over G is then quantified as (Shuman et al.,
2013):

tr(x̂⊤Λx̂) = tr(x⊤VLV⊤x) = tr(x⊤Lx), (2)

which is small if x is smooth over G.

2.3. Spectral Clustering

Data clustering can be formulated as community detection
on graphs, where the nodes correspond to data points and
the edge weights indicate the pairwise similarity between
data points. The problem of data clustering is then trans-
formed to partitioning the nodes into groups with strong
intra- and weak inter-group connectivity. Given a dataset
X = {xi}pi=1 with an associated graph G = (V,E,W),
where |V | = p and vi corresponds to xi and wij indicates
the similarity between xi and xj , clustering is then for-
mulated as the partitioning of V into k communities, i.e.,
C = {C1, . . . Ck}. Given the cluster assignment vector
g ∈ Rp with gi = s if vi ∈ Cs, the graph cut is then defined
as (von Luxburg, 2007):

cut(C) =
p∑

i,j=1

Wij(1 9 δgigj ) = tr(Z⊤LZ), (3)

where Z ∈ Rp×k is the cluster assignment matrix with
Zis = 1 if vi ∈ Cs and 0, otherwise. The graph cut is
the sum of the inter-community edge weights and C can be
found by minimizing the graph cut. This minimization is
NP-hard (von Luxburg, 2007). Thus, Z is relaxed to take
on real values, which leads to the following optimization
problem:

minimize
Z

tr(Z⊤LZ) s. t. Z ∈ D, (4)

where Z is constrained to be in a set D to ensure that Z
preserves some properties of binary cluster membership
matrix. These properties can include positivity (Z ≥ 0),
row-sum constraint (Z1 = 1) or orthogonality (Z⊤Z = I)
(von Luxburg, 2007; Shewchuk, 2016; Zass & Shashua,
2005). Once a real valued Z is learned, clustering algorithms
such as k-means can be employed to identify the clusters.

2.4. Graph Learning

An unknown graph G can be learned from a set of observed
graph signals defined over it with the assumption that graph
signals are smooth over G. Using this assumption, (Dong
et al., 2016) proposed to learn G by minimizing (2) with
respect to L given a set of graph signals {xi}pi=1 as follows:

minimize
L∈L

tr(X⊤LX) + α∥L∥2F s. t. tr(L) = 2n, (5)

where X ∈ Rn×p is the data matrix whose columns are xi’s
and L = {L : Lij = Lji ≤ 0 ∀i ̸= j, L1 = 0} is the set
of valid Laplacian matrices. The first term in (5) measures
the smoothness of the graph signals while the second term
is the Frobenius norm of L and controls the density of the
learned graph. Finally, the problem is constrained to prevent
the trivial solution L = 0.
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3. Method
3.1. Graph Signal Clustering with Regularized Graph

Cut

Assume we are given a dataset X = {xi}pi=1 where xi ∈
Rn is a graph signal over a graph Gs ∈ G = {G1, . . . , Gk}.
All graphs in G are defined over the same vertex set V
with |V | = n and have their own edge set Es, i.e.,
Gs = (V,Es,Ws), ∀Gs ∈ G. Let the partitioning of graph
signals in X be defined as C = {C1, . . . , Ck} where Cs in-
cludes all of the graph signals defined over Gs. In this paper,
it is assumed that the partitioning of the graph signals, C, is
not known a priori. The problem of learning C can be con-
sidered as a clustering problem. Let Gc = (V c, Ec,Wc)
be the graph that represents the similarity between the ele-
ments of X where V c is the node set with |V c| = p. Node
vci ∈ V c corresponds to xi and wc

ij is the similarity between
xi and xj . C can then be learned by applying spectral clus-
tering to Gc. However, spectral clustering as formulated in
(4) does not use the fact that xi’s are graph signals. One can
improve the clustering by incorporating information from
the graphs in G. Therefore, we propose a regularized graph
cut (regcut) by assuming that the graph signals are smooth
over the graphs they are defined on:

regcut(C) =
p∑

i,j=1

W c
ij(19δgigj )+α

K∑
s=1

p∑
i=1

δgisx
⊤
i L

sxi, (6)

where x⊤
i L

sxi is the smoothness of xi over Gs as defined in
Section 2.2. By regularizing the graph cut with smoothness,
we ensure that if xi is assigned to the sth cluster it is smooth
with respect to Gs. As in Section 2.3, this problem is NP-
hard. Therefore, we relax Z to take on real values and obtain
the following optimization problem:

minimize
Z∈D

tr(Z⊤LcZ)+α

k∑
s=1

tr(dg(Z·s)X
⊤LsX), (7)

where X is the data matrix with X·i = xi and Z is con-
strained as in (4).

3.2. Joint Graph Signal Clustering and Graph Learning

For the optimization problem in (7), one needs to know Gc

and the graphs in G. Since these graphs are generally not
available, they need to be learned. Gc can be learned from
X using the aforementioned GL methods or more classical
approaches such as k-nearest neighbor graphs. However,
for graphs in G, we cannot use these approaches as we do
not know the partitioning of the graph signals. Thus, the
graphs in G must be learned simultaneously with clustering.
Therefore, we extend (7) with GL:

minimize
Z,L1,...,Lk

tr(Z⊤LcZ)+α1

k∑
s=1

[
tr(dg(Z·s)X

⊤LsX)

+ (Z⊤
·s1)α2∥Ls∥2F

]
(8)

s. t. Z ∈ D, Ls ∈ L, tr(Ls) = 2n ∀s ∈ {1, . . . , k},

where each Ls is learned by assuming that graph signals in
the sth cluster are smooth over Gs. As in (5), the Frobenius
norm controls the sparsity of the learned graphs such that
large values of α2 result in denser graphs. However, in
this setting we weigh this sparsity term with Z⊤

·s1 which
corresponds to the number of signals in cluster s to ensure
that the sparsity levels of the learned graphs are similar for
a given α2. As the value of the smoothness term increases
with the number of signals in the cluster, multiplying the
sparsity term with Z⊤

·s1 ensures that the relative importance
of the sparsity term with respect to smoothness term remains
similar across s. Finally, we set D = {Z ∈ Rp×k | Z ≥
0,Z1 = 1}.

3.3. Optimization

The problem in (8) is a multi-convex problem, i.e., it is
convex in each variable separately but non-convex when
all variables are considered together. Therefore, we em-
ploy block coordinate descent (BCD) to solve (8) (Shi et al.,
2017). At each iteration of BCD, the problem is solved cycli-
cally over each variable while fixing the remaining variables.
When solving with respect to a variable, we perform inexact
minimization with prox-linear update as it results in easy-to-
solve problems with fast convergence when extrapolation
is used (Xu & Yin, 2013). Before applying BCD, we first
vectorize (8) where we learn the upper triangular part of
Ls. Let ℓs ∈ Rm be the upper triangular part of Ls where
m = n(n−1)/2. Define the operator mt with mt(ℓs) = Ls

and define the matrix P ∈ Rm×n with Pℓs = −dg(Ls).
Then, (8) can be rewritten as:

minimize
Z,L1,...,Lk

tr(Z⊤LcZ)+α1

k∑
s=1

[
tr(dg(Z·s)X

⊤mt(ℓs)X)

+ (Z⊤
·s1)α2(2⟨ℓs, ℓs⟩+ ⟨Pℓs,Pℓs⟩)

]
(9)

s. t. Z ≥ 0,Z1 = 1, ℓs ≤ 0,1⊤ℓs = −n ∀s,

where ⟨·, ·⟩ is the inner product. Prox-linear updates at the
tth iteration of BCD can then be found as follows:

Z(t+1)=argmin
Z≥0,
Z1=1

⟨Ĝ(t)
Z ,Z9Ẑ(t)⟩+ λZ

2
∥Z9Ẑ(t)∥2F , (10)

ℓs
(t+1)

= argmin
ℓs≤0,

1⊤ℓs=−n

⟨ĝ(t)
s , ℓs9 ℓ̂s

(t)
⟩+ λs

2
∥ℓs9 ℓ̂s

(t)
∥2F , (11)
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Algorithm 1 GS Clustering with Simultaneous GL
Input: X, Ls, α1, α2, k and max iter
Set t← 1
Initialize Z(t), Z(t−1), ℓs(t) and ℓs

(t−1)

repeat
Update Ls(t+1) with (11) for s ∈ {1, . . . , k}
Update Z(t+1) with (10)
Set t← t+ 1

until convergence or t ≥ max iter
Output: Z(t), L1(t), . . . , Lk(t)

where Ĝ
(t)
Z is the gradient of the objective function in (9)

with respect to Z evaluated at Ẑ(t), ĝ(t)
s is the gradient with

respect to ℓs evaluated at ℓ̂s
(t)

, and:

Ẑ(t) = Z(t−1) + w(Z(t−1) − Z(t−2)), (12)

ℓ̂s
(t)

= ℓs
(t−1)

+ w(ℓs
(t−1) − ℓs

(t−2)
), (13)

where 0 ≤ w ≤ 1 is the extrapolation parameter. Finally,
λZ and λs are step sizes and can be set to the Lipschitz
constants of the gradient of the objective function in (9)
with respect to Z and ℓs. Solutions of both (10) and (11)
are projections onto simplex, as shown in the Appendix.
Overall optimization procedure is given in Algorithm 1.

(Xu & Yin, 2013) show that BCD with prox-linear update
converges for multi-convex problems, when the objective
function consists of smooth and separable non-smooth terms.
The problem in (9) satisfies these assumptions; thus, Algo-
rithm 1 is guaranteed to converge.

3.4. Initialization

BCD type algorithms may converge to poor local minima
(Shi et al., 2017). To overcome this problem, one can run
the algorithm multiple times and consider the solution with
the smallest objective value. One can also initiate the algo-
rithm at a better point such that it converges to a solution
with lower objective value. In this section, we describe a
procedure to select better initializations for the proposed
BCD algorithm.

Consider the set Z = {Z1, . . . ,Zb} which is obtained by
running Algorithm 1 b times. Each Zi indicates a possible
partitioning of the graph signals. One can obtain a better
clustering by combining information from all Zi’s using
consensus clustering (Strehl & Ghosh, 2002), an ensemble
learning method to combine multiple clusterings. We fol-
low the consensus clustering procedure described in (Lanci-
chinetti & Fortunato, 2012), where the consensus clustering
Z0 is found from an association matrix A whose entries
Aij are equal to the number of times graph signals xi and
xj are assigned to the same cluster in Z . This association
matrix can be used as the input to spectral clustering to find

Algorithm 2 Initialization Procedure
Input: b
Initialize Z as an empty set
for i ≤ b do

Run Algorithm 1 and add learned Z to Z
end for
Find Z0 by applying consensus clustering to Z
Run Algorithm 1 with initial point set to Z0

Output: Solutions of the last run

Z0. Once Z0 is found, we rerun the Algorithm 1 one more
time, where Z is initialized at Z0 (the rest of the variables
are initialized randomly). The clustering and learned graphs
obtained from this run are used as the final result. This
initialization procedure is given in Algorithm 2.

In our experiments, we set b = 9 and we set the maximum
number of iterations for each run to a small number, e.g.,
100, since even sub-optimal solutions can result in a good
consensus clustering.

3.5. Hyperparameter Selection

The proposed method requires the selection of three hyper-
parameters: number of clusters k, α1 and α2. In literature,
various methods have been proposed to determine the num-
ber of clusters in spectral clustering. These methods gen-
erally define a quality function Q and find the number of
clusters as the value that optimizes Q. Possible choices of
Q are eigengap (Von Luxburg, 2007), modularity (Newman,
2006), Bayesian information criterion (BIC) (Saldana et al.,
2017), integrated completed likelihood (ICL) (Daudin et al.,
2008). α2 controls the sparsity level of the learned graphs
such that larger values of α2 result in denser graphs. We
set it to a value that results in graphs with a pre-determined
sparsity level. This approach is similar to previous graph
construction schemes, such as in k-NN graphs, where one
wants to construct a graph with each node having at least k
neighbors. The selection of α1 is explained in detail through
parameter sensitivity analysis in Section 4.1

4. Results
In this section, the performance of GRASCale is evaluated
on synthetic and real datasets and is compared to various
state-of-the-art clustering and graph learning algorithms.
We compare methods based on the quality of the resulting
clustering as well as the accuracy of the learned graphs
associated with each cluster. For the first comparison, we
consider normalized spectral clustering (SC), GLMM and
K-Graphs. For the latter comparison, GL (see Section 2.4),
GLMM and K-Graphs are considered. As mentioned in
Section 2.3, SC clusters signals only based on their pairwise
similarities. Thus, by comparing GRASCale to SC, we can



Simultaneous Graph Signal Clustering and Graph Learning

illustrate the benefits of considering graph signal smooth-
ness. GLMM and K-Graphs perform simultaneous graph
signal clustering and graph learning similar to the proposed
method. However, they only rely on the smoothness of the
signals with respect to graphs associated with each cluster.
By comparing GRASCale against them, we can illustrate
the benefits of incorporating pairwise similarities. Finally,
when applying GL, we assume the partitioning of the signals
is known; thus the performance of GL provides an upper
bound for the performance of GRASCale in the graph learn-
ing task. We used the formulation of (Kalofolias, 2016a) for
implementing GL.

Parameter Selection: SC, GLMM, K-Graphs and
GRASCale require the number of clusters k as an input.
We provided the ground truth k as an input to all methods.
GL, GLMM and K-graphs require a hyperparameter that
controls the sparsity of the learned graphs similar to α2 in
(8). For all methods, we set this hyperparameter to a value
that results in graphs with sparsity levels between 0.1 and
0.152. GLMM and K-Graphs algorithms are based on al-
ternating minimization, which causes their results to vary
across runs. Therefore, we run each algorithm 10 times
and report the average performance. For GRASCale, we set
b = 9 as mentioned in Section 3.5. Thus, each algorithm
is run 10 times. Finally, SC is applied to a binary k-nearest
neighbor graph with the number of neighbors set to 5. The
same graph is used as Lc for the proposed method.

Performance Metrics: Normalized mutual information
(NMI) (Danon et al., 2005) is used to quantify the perfor-
mance of clustering. For the graph learning task, F1-score
is used to quantify how close the learned graphs are to the
ground truth graphs. We measure F1-score for all s and
report the average.

4.1. Synthetic Data

Data Generation: Given a graph G with Laplacian L =
VΛV⊤, we can generate a graph signal x that is smooth
with respect to G by filtering a given signal x0 with a low-
pass graph filter (Dong et al., 2016; Kalofolias, 2016a).
Mathematically, this is equivalent to x = h(L)x0 where
h(L) = Vh(Λ)V⊤ is a low-pass graph filter. Based on
this, we generate the synthetic data as follows. We first
generate k graphs G = {G1, . . . , Gk} based on a random
graph model, such as Erdős–Rényi (ER) (Gilbert, 1959) or
Barabási–Albert (BA) models (Albert & Barabási, 2002),
where each Gs has n nodes. For each Gs, we generate
ps smooth graph signals as described above with h(Λ) =

2Real-world graphs are generally sparse, so it is desirable to
learn sparse graphs. Therefore, we learn graphs at this range of
sparsity level. In our experiments, we observed smaller values
sparsity level can result in disconnected graphs. To prevent this,
we did not consider smaller values.
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Figure 2. Results for Experiment 1 when cluster sizes are equal.
Upper row illustrates the graph learning performance and the bot-
tom row shows the clustering performance. Left and right columns
are performances for ER and BA graph models, respectively.

√
Λ

†
and x0 ∼ P , where † is the pseudo-inverse operator

and P is a probability distribution to be determined. The
graph signals are then used to construct data matrices Xs ∈
Rn×ps , from which we build X = [X1, . . . ,Xs] ∈ Rn×p

where p = p1 + · · · + ps. White Gaussian noise with
variance equal to 10% of the signal power is added to the
data matrix. Finally, we generate 20 different realizations
of each dataset in all experiments and report the average
performance across realizations.

Experiment 1: In this experiment, we generate signals
from G = {G1, G2, G3} where each Gs is generated by
swapping the edges of a given graph G ⌈mG × pert⌉ times.
mG is the number of edges in G and pert > 0 refers to
the amount of perturbation. Smaller values of pert causes
graphs in G to be highly correlated; thus, clustering the
graph signals generated from these graphs becomes a harder
task. We generated G with 50 nodes from two random
graph models: ER with edge probability pER = 0.1 and BA
model with mBA = 3. We generated X as described above
with P = N (0, I).

In Figure 2, we report the results when the cluster sizes are
equal, i.e., ps = 200 for all s. It can be observed that the
clustering performance for all methods increases with the
amount of perturbation. This is due to the fact that as the
perturbation level increases, the different clusters become
more distinct. GRASCale performs better than GLMM and
K-Graphs for both ER and BA models. SC is observed to
perform very poorly as the signals are generated indepen-
dently from each other. Thus, pairwise similarities between
signals that are in the same cluster are not strong, resulting
in low NMI values for SC. In terms of graph learning, GL
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Figure 3. Results for Experiment 1 when cluster sizes are differ-
ent. Upper row shows graph learning performance and bottom
row shows clustering performance. Left and right columns are
performances for ER and BA graph models, respectively.

performs the best as expected since it assumes that the clus-
ter membership of the signals is known a priori. There is
a slight improvement in the graph learning performances
of GLMM, K-Graphs and GRASCale as perturbation level
increases and their performances converge to that of GL.
Graph learning performances of GLMM, K-Graphs and the
proposed method for small perturbation levels may seem
counter-intuitive considering their low NMI values. How-
ever, graphs in G are very correlated for small values of
perturbation, thus graph signals in a given cluster carry in-
formation about other graphs too. Therefore, methods can
still perform well for graph inference even though the graph
clusters may not be accurately identified.

Figure 3 illustrates the results for the same simulation setting
when there is heterogeneity in cluster sizes, i.e., p1 = 300,
p2 = 200, and p3 = 100. Results are very similar to that
of Figure 2. There is a slight drop in the performance of
all algorithms compared to Figure 2 across all perturbation
levels and graph models.

Experiment 2: In the previous experiment, signals were
generated independently; thus they do not have any explic-
itly imposed pairwise relations. In this experiment, we
generate graph signals that have pairwise relations and are
also smooth with respect to graphs associated with clus-
ters. In order to achieve this goal, we first generate a data
matrix Y ∈ Rn×p with n = 50 and p = 600. Rows
of Y are generated by filtering a signal y ∈ Rp through
a low-pass graph filter defined on Gc. The signal simi-
larity graph Gc has p nodes and y ∼ N (0, I). If there
is an edge between nodes vi and vj in Gc, columns Y·i
and Y·j will be similar to each other. We construct Gc
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Figure 4. Results for Experiment 2. Upper row shows graph learn-
ing performance and bottom row shows clustering performance.
Left and right columns are performances for ER and BA graph
models, respectively.

from a planted partition model (Condon & Karp, 2001)
whose nodes are partitioned into three equal sized clus-
ters: C1 = {v1, . . . , v200}, C2 = {v201, . . . , v400}, and
C3 = {v401, . . . , v600}. Planted partition model has two pa-
rameters pin and pout, which determine the intra- and inter-
cluster connectivity, respectively. We set pin = 0.05(1− µ)
and pout = 0.05µ, where µ > 0 is the mixing coefficient.
Larger values of µ causes the clusters to be less distin-
guishable. For the low-pass filter, we used a heat kernel
h(Λc) = exp(−5Λc) where Λc is the eigenvalue matrix
corresponding to the Laplacian matrix of Gc (Kalofolias,
2016a). We generated graphs in G as in the first experiment
with pert set to 2. Once Y and G are generated, columns
of Y in Cs are filtered by the graph filter corresponding to
Gs ∈ G for all s to construct X.

Figure 4 shows the performance of the different algorithms.
With the introduction of pairwise similarity within clusters,
the performance of SC is observed to improve significantly.
However, its NMI value is still lower than GRASCale since
the latter benefits from both pairwise relations and smooth-
ness of the graph signals. GLMM and KGraphs have lower
performance than the proposed method, as these methods
employ only smoothness of the graph signals. Increasing
the mixing coefficient causes a decrease in the performance
of all methods, as larger values of µ result in less distin-
guishable clusters. The decrease in NMI values for SC and
GRASCale with increasing µ values follows a similar trend.
This indicates that the proposed method indeed uses the
pairwise relations between signals. For the graph learning
task, F1 score of the proposed method is higher than those
of GLMM and K-Graphs and is very close to that of GL due
to its high clustering performance.



Simultaneous Graph Signal Clustering and Graph Learning

0.
01

0.
07

0.
14

0.
20

0.
26

0.
33

0.
39

0.
45

-1.0
-0.4
0.1
0.7
1.3
1.9
2.4
3.0

lo
g 1

0
α 1

F1

0.
01

0.
07

0.
14

0.
20

0.
26

0.
33

0.
39

0.
45

NMI

0.1

0.5

0.1

0.8

Graph density

Figure 5. Sensitivity of F1 and NMI values to varying values of α1

and density of learned graphs. Left panel shows the graph learning
performance and the right panel shows the clustering performance.

Parameter Sensitivity: We study the sensitivity of the
performance of GRASCale to the selection of α1 and α2

on a dataset from Experiment 2. We consider a dataset
generated from the BA graph model with µ set to 0.25. The
ground truth graph has a density around 0.12 in this dataset.
We apply our algorithm to this dataset with varying α1 and
α2 values and the performances are reported in Figure 5. For
the x-axis, densities of the learned graph are used rather than
the values of α2. Figure 5 shows that the density of learned
graphs is important for the performance. In particular, low
density graphs have poor performance in terms of F1 and
NMI, as these graphs are very sparse and do not contain
enough information. Similarly, high density values also
result in low performance, since learned graphs include
many false positive edges. Finally, this figure also shows
that the proposed method is not sensitive to the value of
α1 as long as the learned graphs have a reasonable density.
In particular, there is a large range of α1 values, where F1-
score and NMI are stable. Based on this observation, we set
α1 = 10 in all of our data analysis without any fine-tuning.

4.2. Real Data

In this section, the proposed method is applied to a real
world data clustering problem, where the aim is to clus-
ter the digits of MNIST dataset while learning a graph for
each digit. More specifically, we selected 400 images cor-
responding to digits 0, 1, 2 and 3. After vectorizing each
image, we obtain a data matrix of size 400× 1600, where

SC GLMM K-Graphs GRASCale
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Clustering performance on MNIST

Figure 6. Clustering performance for MNIST dataset.

Figure 7. Graph structures learned for each digit by the proposed
method. Points correspond to pixels, while lines indicate the
inferred edges between pixels. Only top 300 edges are shown.

the rows and columns correspond to pixels and images,
respectively. SC, GLMM, K-Graphs and GRASCale are
applied to the constructed data matrix and the clustering
performance is reported in Figure 6. The best perform-
ing method is GRASCale, and it is followed by SC; while
GLMM and K-Graphs have significantly lower performance.
These results indicate that using pairwise similarities of the
signals and their smoothness together improve the clustering
performance.

As mentioned in (Maretic & Frossard, 2020), learning a
graph for each cluster can be helpful for the interpretablity
of clustering. By analyzing the graph structure learned for
each cluster, one can deduce why a set of graph signals are
assigned to the same cluster; which leads to explainable
data science (Roscher et al., 2020). In Figure 7, we plot the
graphs learned for each digit by GRASCale. It can be seen
that the method learns very interpretable graph structures.
The learned graphs for digits 0, 2, 3 have high resemblance
to the digits themselves. Although the graph found for digit
1 has a meaningful structure, it is noisier than the other
graphs. This is due to the fact that there is a lot of variation
across samples for writing digit 1. This means that while
we tend to cluster digits based on their numerical values, it
might be the case that there is also a clustering within each
digit based on the writing style.

5. Conclusions
In this paper, we presented GRASCale for simultaneous
graph signal clustering and graph learning. Compared to
previous methods developed for the same task, GRASCale
uses two types of information: pairwise relations between
graph signals and their smoothness with respect to graphs
associated with clusters. Our results on synthetic and real
datasets indicate that incorporating these complementary
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pieces of information within the same framework improves
clustering and graph learning performance significantly.

In the presented formulation of GRASCale, we assumed
Lc is constructed a priori; however, this graph can also
be learned along with clusters and graphs associated with
clusters. In future work, we will consider this extension of
jointly learning Lc along with the individual graphs, Ls.
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A. Solutions of BCD Steps
In this section, the solutions of BCD steps are provided. We start with (11), which can be rewritten as follows:

ℓs
(t+1)

= argmin
ℓs

∥ℓs − ℓ̂s
(t)

+
1

λs
ĝ(t)
s ∥2F s. t. ℓs ≤ 0,1⊤ℓs = −n,

= argmin
ℓs

∥ℓs − ℓ̂s
(t)

+
2k−P⊤d+ (Z

(t)
·s

⊤
1)α2(4ℓ̂

s(t) + 2P⊤Pℓ̂s
(t)
)

λs
∥2F s. t. ℓs ≤ 0,1⊤ℓs = −n, (14)

where, in the second line we substitute ĝ
(t)
s = 2k − P⊤d + (Z

(t)
·s

⊤
1)α2(4ℓ̂

s(t) + 2P⊤Pℓ̂s
(t)
), k ∈ Rm is the upper

triangular part of Xdg(Z
(t)
·s )X⊤, and d ∈ Rn is the diagonal of Xdg(Z

(t)
·s )X⊤. The solution of (14) is the projection

of ℓ̂s
(t)
− 2k−P⊤d+(Z

(t)
·s

⊤
1)α2(4ℓ̂s

(t)
+2P⊤Pℓ̂s

(t)
)

λs
onto the negative simplex, which can be performed efficiently using the

algorithm described in (Duchi et al., 2008). To solve (10), we rewrite it as follows:

Z(t+1) = argmin
Z
∥Z− Ẑ(t) +

1

λZ
Ĝ

(t)
Z ∥

2
F s. t. Z ≥ 0,Z1 = 1,

= argmin
Z
∥Z− Ẑ(t) +

2

λZ
LcẐ(t) +

α1

λZ
Q1 +

α1α2

λZ
Q2∥2F s. t. Z ≥ 0,Z1 = 1, (15)

where, in the second line we substitute Ĝ
(t)
Z = 2LcẐ(t) + α1Q1 + α1α2Q2, Q1 ∈ Rp×k whose sth column is Q1,s· =

dg(X⊤mt(ℓs
(t+1)

)X), and Q2 ∈ Rp×k whose sth column is (2⟨ℓs(t+1)
, ℓs

(t+1)⟩+ ⟨Pℓs
(t+1)

,Pℓs
(t+1)⟩)1. The problem

in (15) can be solved separately with respect to rows of Z. Let A = Ẑ(t) + 2
λZ

LcẐ(t) + α1

λZ
Q1 + α1α2

λZ
Q2, then the

subproblem of (15) with respect to ith row of Z is:

Z
(t+1)
i· = argmin

Zi

∥Zi· −Ai·∥22 s. t. Zi· ≥ 0,Z⊤
i·1 = 1, (16)

whose solution is the projection of Ai· onto the positive simplex, which can be performed efficiently using the algorithm
described in (Duchi et al., 2008).


