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Abstract

Deep neural networks (DNNs) are known to be
highly vulnerable to adversarial examples (AEs)
that include malicious perturbations. Assumptions
about the statistical differences between natural
and adversarial inputs are commonplace in many
detection techniques. As a best practice, AE de-
tectors are evaluated against adaptive attackers
who actively perturb their inputs to avoid detec-
tion. Due to the difficulties in designing adaptive
attacks, however, recent work suggests that most
detectors have incomplete evaluation. We aim to
fill this gap by designing a generic adaptive attack
against detectors: the statistical indistinguisha-
bility attack (SIA). SIA optimizes a novel objec-
tive to craft adversarial examples (AEs) that fol-
low the same distribution as the natural inputs
with respect to DNN representations. Our objec-
tive targets all DNN layers simultaneously as we
show that AEs being indistinguishable at one layer
might fail to be so at other layers. SIA is formu-
lated around evading distributional detectors that
inspect a set of AEs as a whole and is also ef-
fective against four individual AE detectors, two
dataset shift detectors, and an out-of-distribution
sample detector, curated from published works.
This suggests that SIA can be a reliable tool for
evaluating the security of a range of detectors.

1. Introduction

Deep neural networks (DNNs) have enabled breakthroughs
in many challenging machine learning (ML) problems, such
as image classification (Krizhevsky et al., 2012). However, it
is well-known that DNN classifiers are vulnerable to adver-
sarial examples (AEs) that contain malicious perturbations
that subvert the predictions. Two defensive approaches have
emerged against AEs: eliminating them by making DNN’s
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robust (Madry et al., 2018); or detecting them before they
harm the rest of the system (Metzen et al., 2017; Feinman
et al., 2017). Detection techniques have gained traction as
both theory (Shafahi et al., 2018) and practice (Rice et al.,
2020) suggest that achieving robustness is challenging.

Prior work has shown that AE detectors can often be circum-
vented by adaptive adversaries (Carlini & Wagner, 2017).
These attackers have full knowledge of the detector and take
active steps to craft AEs that avoid detection. This arms
race has been influential in establishing adaptive attacks
as an evaluation standard for detectors (Roth et al., 2019;
Raghuram et al., 2021). However, research shows that many
detectors, despite following this standard, can still be de-
feated by more motivated adversaries (Tramer et al., 2020).
Such adversaries identify and target important defensive as-
sumptions instead of attacking many components a typical
defense combines (Tramer et al., 2020). This methodology,
by tailoring attacks to specific detectors, has been effective
in exposing the vulnerabilities.

We aim to alleviate this arms race and the evaluation prob-
lems that stem from non-standardized attacks. We first ob-
serve that a common assumption behind many detectors
is that adversarial and natural inputs are statistically dif-
ferent with respect to the hidden layer representations of
DNNs (Feinman et al., 2017; Zheng & Hong, 2018). This
assumption has given rise to two detection themes: (i) in-
specting multiple samples as a distribution and comparing it
with the distribution of natural samples (Grosse et al., 2017;
Gao et al., 2021); and (ii) combining the statistics derived
from multiple DNN layers (Raghuram et al., 2021).

Building on these observations, we propose a generic adap-
tive attack against AE detectors: the statistical indistin-
guishability attack (STA). SIA targets the common assump-
tion by crafting AEs that follow the natural data distribution
with respect to DNN representations. Against (i), SIA crafts
multiple AEs jointly and minimizes their statistical distance
to the distribution of natural samples. Against (ii), SIA tar-
gets all DNN layers at once as we show that targeting the
representations from a single layer fails to evade a detector
that operates on another layer. This makes SIA effective
against layerwise distributional detectors, which combine
the two themes; whereas prior standard and adaptive attacks
are easily detected. Unless the detectors have access to a
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significant number of AEs (over 1000) they fail to have ac-
ceptable detection performance against SIA. Moreover, STA
is moderately successful in the black-box setting where the
AEs are crafted against a surrogate model and transferred to
an unknown model.

Our formulation allows SIA to defeat five published AE
detectors, designed to detect whether an individual input,
or a set of inputs, is adversarial. Three of these detectors
have been evaluated against adaptive attacks by their authors
and claimed to be secure. However, SIA, without any cus-
tomization, brings their detection performance down to near
chance levels. This further validates our efforts to design a
standard adaptive attack against detectors.

Finally, we highlight the flexibility of SIA by compromising
other detection scenarios that often do not consider adversar-
ial pressure. First, we target the settings where distributional
detectors are used to detect dataset shift, e.g., concept drift.
SIA, by perturbing the shifted dataset to follow the origi-
nal distribution, prevents detection completely. Second, we
attack a state-of-the-art out-of-distribution (OOD) sample
detection method by Sun et al. (2021). This detector cannot
distinguish between in-distribution inputs and the OOD in-
puts perturbed by SIA. To our best knowledge, our attacks
in these scenarios also open up new threat models against
the safety of DNNs.

The rest of the paper is organized as follows: We first present
our setup, the detection methodology we use to evaluate our
attack, and the metrics we report in our work (§2). We then
conduct a case study on prior attacks and formulate STA step-
by-step as a general-purpose attack against detectors (§3).
Next, experimenting on two vision datasets and three con-
volutional neural network (CNN) architectures, we evaluate
SIA and compare it to prior attacks in terms of its success
against distributional detectors (§4) and individual detectors
(§5). Finally, we apply SIA in other detection scenarios and
expose the vulnerabilities in them (§6).

2. Background and Formal Setup

A deep neural network (DNN) F is a series of parametric
function compositions: ' = So fy o¢po fy_10...0
¢ o f1. We refer to F;(z), the intermediate output after the
i*" hidden layer, as the i*" layer representations (of F on
the input x). As special cases, we refer to Fy_1(x) as the
penultimate-layer representations (PLR) and to Fiy(z) as
the logits. The activation function ¢ applies a non-linear
transformation to the layer outputs and the softmax function
S converts the logits into a probability distribution over K
classes. In supervised learning, F' is trained on a training set,
which consists of multiple input-label pairs drawn from an
underlying natural data distribution, {z,y} ~ N. Training
uses back-propagation to adjust the DNN’s parameters to

minimize its loss on the training set using a loss function,
e.g., cross-entropy. The output, F'(z), is a K-dimensional
probability vector and F(x) is the predicted probability of
x belonging to class ¢. Typically, the prediction of a model
is argmax; F''(x) = §(x), i.e., the most probable class.

Adyversarial examples in deep learning. DNNs are shown
to be vulnerable to adversarial examples (AEs) crafted by
malicious actors (Szegedy et al., 2014). Essentially, an AE
is an input sample x, that is very similar to a natural ex-
ample (NE) z,, ~ N but g§(z,,) # y(x,). The similarity
between z,, and z, is evaluated using a distance metric,
D(-,-), usually an £,-norm distance. Generally, a crafting
method optimizes an objective function to iteratively perturb
z, into z, to change the model’s prediction while keeping
D(xy, z,) small. There have also been methods that serve
additional goals. Expectation over transformation (Athalye
et al., 2018) is an adaptive attack against AE defenses that
rely on randomness. DeepSloth (Hong et al., 2021) aims to
cause slow inferences in dynamic early-exit models. AutoAt-
tack (Croce & Hein, 2020) offers a parameter-free method
to standardize robustness evaluations. Following this line,
we propose a method to craft AEs that are indistinguishable
from natural data to evade AE detectors. Most similarly,
Gao et al. (2021) have developed an adaptive attack and
claimed that their detector, SAMMD, is secure against it.

Undetectable attacks in cybersecurity. Security research
hints that real-world defenders often deploy intrusion detec-
tion systems (IDS) against threats such as malicious network
traffic (Paxson, 1999) or malware (Warrender et al., 1999).
Essentially, an IDS learns the normal system behaviors when
there is no attack and then it recognizes possible attacks by
looking for statistical abnormalities. Facing an IDS intro-
duces an additional constraint for the adversaries as their
attacks need to to evade an IDS in addition to achieving
the malicious outcome. To this end, the prior work (Wagner
& Soto, 2002; Fogla et al., 2006) has developed evasive
methods that modify attacks so that they statistically match
a system’s normal profile. Although undetectability is a core
constraint of a realistic adversary in security, powerful AE
crafting methods in ML literature are often only designed
for attack success (Madry et al., 2018; Croce & Hein, 2020;
Andriushchenko et al., 2020). Our work aims to fill this gap
by developing a general-purpose AE crafting method as an
analogue of traditional evasive attacks. Our method crafts
AEs while balancing between two objectives: attack success
and evading statistical anomaly detectors.

2.1. Adversarial Example Detection Methods

Typical detectors, which we refer as individual detectors
(IDs), operate on a single input sample to answer whether it
is adversarial. Supervised IDs (Ma et al., 2018; Lee et al.,
2018) use a set of known AEs to train a binary classifier
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that learns to discriminate AEs from NEs. Unsupervised
IDs (Feinman et al., 2017; Zheng & Hong, 2018; Roth
et al., 2019; Miller et al., 2019), rely only on the statistical
properties of NEs and detect non-conforming samples as
AEs. A common thread in most IDs is extracting informative
test statistics derived from DNN layer representations on the
input samples (Raghuram et al., 2021). Further, researchers
have also proposed distributional detectors (DDs) (Grosse
etal., 2017; Gao et al., 2021) that inspect a set of samples
as a whole. DDs assume that a set contains either only AEs
or only NEs and make a determination between the two
options. Although this assumption allows DDs to extract
stronger statistical signals compared to IDs, it also makes
DDs less practical (Carlini & Wagner, 2017).

We center our formulation around defeating more powerful
DDs as we aim to develop an adaptive attack that would
be effective against a broad class of detectors. We assume
the role of an adversary who starts with X, an initial set
of i.i.d. NEs drawn from N (| Xo| = m). With full access
to the victim model, the adversary crafts an AE for each
x € Xj. The defender aggregates these AEs into the set
X, and deploys a DD to inspect it. Our goal is to ensure
almost all AEs in X, are successful while still bypassing the
defender. We consider an AE as successful if it changes the
model’s output: when §(z,,) # §(z,) or when g(z,) = ¢
for a targeted AE with the target class t.

Distributional detection methodology. Prior DDs (Grosse
et al., 2017; Gao et al., 2021) first form the set X,, by draw-
ing natural samples from a holdout set. We consider DDs
that construct X,, according to the model’s predictions on
X, . This aims to prevent detection solely due to label shift,
e.g., the holdout data is balanced and the non-adversarial
inputs in X, come from a single class. For each class y, this
ensures [{z;€Xa|j(zi)=y}| = {z;€Xn|j(x;)=y}|.

Next, a DD applies a two-sample test (2ST) between X,
and X,. The null hypothesis of a 2ST (§)) states that the
two sets come from the same distribution. A common test
statistic is the maximum mean discrepancy (MMD) (Gretton
et al., 2006). MMD measures the closeness between two
distributions in terms of a kernel k that gives point-level
similarities of its inputs. The MMD between X, and X, is
computed using the unbiased empirical estimator (Gretton
et al., 2006), which assumes | X, |=|X,|=m. A permutation
test or the wild bootstrap (Chwialkowski et al., 2014) is
used to obtain the p-value of the estimate. Ultimately, a DD
rejects ) if the p-value is less than a selected significance
level, 0<a<1. This implies detecting X, as adversarial and
« controls the false positive rate when X, is natural.

Applying the MMD test in the input-space has been shown
to perform poorly for distributions with complex struc-
tures (Liu et al., 2020a). Semantic-aware MMD (SAMMD),
the state-of-the-art DD by Gao et al. (2021), tackles this

problem by applying the MMD test on the representations
of a pre-trained DNN. To tune its kernel, SAMMD splits the
available data and learns the kernel parameters that maxi-
mize the power of the MMD test on the training split. Using
these parameters, it then performs a 2ST on the test split.

As SAMMD specifically focuses on the PLR, we also con-
sider more general layerwise DDs that can operate on any
DNN layer. These DDs use the following kernel at i*" layer:
ki(z,z) = exp(—5= || Fi(x) — F(2)||?), where z and z
are the inputs. Here, (fZ is the length-scale of the Gaussian
kernel, which, intuitively, controls how close the inputs of
the kernel have to be to significantly influence its output. We
also use the holdout data to standardize the representations
and reduce their dimensionality with average pooling for
CNNs. SAMMD uses a splitting strategy to tune its kernel,
which reduces the test power as it leaves fewer samples
for testing (Kiibler et al., 2020). Therefore, layerwise DDs
combine multiple kernels tuned using the median heuristic
as a more efficient alternative (Kiibler et al., 2020).

Relevant metrics. The attack success rate (ASR) measures
the percentage of successful AEs among the crafted samples.
The performance of a statistical test depends on the number
of samples available to it, i.e., | X,| = | X,,| = m. To this
end, we repeat the test 100 times, each time by randomly
selecting m samples from the crafted AEs and m samples
from the NEs in the holdout set. Denoted by DRy,, we then
report the detection rate as the percentage of tests with
sample size m that resulted in p-value less than ov = 0.05.

3. Statistical Indistinguishability Attack (SIA)

This section focuses on a case study to motivate our work
and to formulate our attack methodology. First, we show
how standard attacks such as PGD (Madry et al., 2018)
lead to distinct representation distributions. SAMMD (Gao
et al., 2021), a recent distributional detector (DD), can ef-
fectively detect these attacks. We then identify and address
the challenges in crafting AEs to evade DDs.

We experiment with a ResNet-50 model on CIFAR-10
(see §4.1 for the details), start from 2000 test samples as our
initial set X¢; and craft targeted AEs with random targets.
We use UMAP (Mclnnes et al., 2018) to visually compare
the representations of AEs and NEs in the holdout set. For
simplicity, we visualize only the samples classified into the
horse (randomly selected) class.

3.1. Standard Attacks Are Detectable

In Figure 1, we visualize the model’s penultimate-layer
representations (PLR) on the AEs crafted by three popu-
lar attack algorithms. These attacks constrain the perturba-
tions with different metrics: PGD (Madry et al., 2018) uses
£+, DDN (Rony et al., 2019) uses ¢ and SLIDE (Tramer
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Figure 1. The penultimate-layer representations of the natural (%)
and the adversarial (@) examples crafted by three standard attacks.

& Boneh, 2019) uses ¢; distances. We present the details
of these attacks in Appendix A. They also place an upper
bound on the perturbations with a hyper-parameter, i.e.,
D(xp,x,) < €. For each attack, we find the minimum ¢
value to reach ~100% ASR. We visually demonstrate that
the distributions of these AEs are distinct from the NEs.
Standard attacks optimize only for changing the model’s
prediction and disregard the natural distribution (Tramer
et al., 2020). As a result, SAMMD obtains perfect detec-
tion rates (100%) when it has access to 30, 40 and 50 AEs
against PGD, DDN and SLIDE, respectively.

3.2. Formulating STA

We have shown that optimizing only for changing the
model’s predictions leads to detectable AEs. Ideally, an
attack against a DD crafts a set of AEs that have statistically
indistinguishable representations with respect to NEs. To-
wards this goal, we first note that the MMD between two
sets of samples with respect to the 7*" layer representations—
MMD; (X,,, X,)—is end-to-end differentiable. Previously,
this has allowed MMD to act as a loss function to train
generative models by minimizing the distance between the
generated and the natural distributions (Sutherland et al.,
2017). Inspired by this, we design the following objective
function for STA that finds the set of perturbations A, where
Xo ={z;+4A; | z; € Xo, Aj €A, j=1---m}
which we shortly denote as X + A.

| Xo|
mAlIl’}/MMDL(Xg, XO + A) + Z L(Q(JZJ + Aj), TJ)
j=1
The first term keeps the AE and NE distributions close with
respect to the i*" layer representations. The attacker sam-
ples a random set of NEs to form X, and uses it during the
MMD computations as a guide set. To prevent overfitting,
we sample three guide sets and take the average MMD loss
on them. The attack ultimately aims to defeat DDs by mak-
ing X, statistically equivalent to the guide sets. We sample
the guide sets such that the predicted class labels of the
samples in X, match T, the target labels of the attack. We
tune the kernel using the median heuristic, i.e., the median
pairwise distance between the points in X, and Xy + A.

The second loss term ensures that adding the corresponding
perturbation, A; € A, to each initial sample, z; € X,

changes the model’s prediction into the target class, T; € T
We use cross-entropy as the loss function £ in the second
term. In this section, we perform targeted attacks by select-
ing T; # §(x;) randomly from the list of available classes.

The hyper-parameter y balances between the two terms to
reflect the attacker’s priorities (y > 0). As v decreases the
second term will start dominating at the risk of increasing
the detectability; whereas as y increases the ASR of the AEs
might start dropping.

For its simplicity, we use the {,-norm bounded PGD attack
(IAllss < €) to minimize our objective. Unless specified
otherwise, we set ¢ = 0.03, following prior work (Madry
et al., 2018). We perform 200 PGD iterations, use a sched-
uler that periodically reduces the step size, and craft 250
AE:s at once as a batch. Note that SIA objective can be in-
tegrated into any other distance metric and gradient-based
attack method, which we leave for future work.
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Figure 2. The reprs. of AEs crafted by SIA against the PLR.

Applying SIA against the PLR. We apply SIA against
the PLR (17th layer) and visualize the resulting representa-
tions in Figure 2. We search y € [0, 128] to find the value
that minimizes SAMMD’s DR while still achieving ~100%
ASR. Compared to Figure 1, we first observe the closeness
between AE and NE distributions at the PLR. As a result,
SAMMD fails to detect these AEs with 100 samples, i.e.,
DR g9 = 1%; whereas it could detect the standard attacks
perfectly with only 50 samples. Note that SAMMD focuses
only on the PLR and consumes a total of 2m AEs to obtain
DRy, as it uses half of them for training its MMD kernel.
Therefore, we also focus on the layerwise DDs (§2.1), which
tune the kernels heuristically and can operate on any layer.

Turning our attention to the other layers reveals that the
AEs are still detectable. Layerwise DDs obtain between
80% and 100% DR (o up until the 14th layer, after which
the DR drops rapidly. Although applying SIA against the
PLR breaks SAMMD (the most recent DD), it fails to craft
statistically indistinguishable AEs at the remaining layers.

SIA against one layer is still detectable at others. Here,
we perform SIA against the i*" layer and measure the DR
of a layerwise DD applied at the ;j* layer. Figure 3 presents
the results for a uniformly spaced subset of layers. For ex-
ample, attacking the 5th layer drops the DR at this layer to
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Figure 3. Crafting AEs with SIA against one layer and measuring
the detection rate at the other layers.

3% whereas the same AEs are still detectable at the 14th
layer with 100% DR. Note how attacking certain layers also
defeats the detection at some other layers, e.g., 8th and 11th
layers. We hypothesize that this pattern arises from the ar-
chitecture and the feature diversity among the layers (Kaya
et al., 2019). The layers in the same group, e.g., 8th and
11th, have the same feature map scale and, therefore, extract
similar features. Prior representation similarity metrics (Ko-
rnblith et al., 2019) also report similar findings. Ultimately,
SIA perturbations against one layer create outlier represen-
tations at a dissimilar layer. Overall, these results lead us
to conclude that we have to attack multiple layers jointly to
craft indistinguishable AEs across the model.

Attacking all layers. Our previous formulation only attacks
a single layer, which has failed to evade detection at oth-
ers. To jointly attack all layers, we update the first term of
SIA objective as Zi\il vMMD; (X4, Xo + A), where N
is the number of layers. This minimizes the weighted sum
of the MMD loss from all layers, with ~; as the weight of
the i*" layer. We opt for attacking all layers for simplic-
ity as attacking only the dissimilar layers has not led to
any improvements. We experimentally find that assigning
equal weights to each layer performs well, i.e., v; = ~y for
i€ {l,---, N} Tofind the ideal v, we search in the range
[0, 128], while keeping the ASR above 95%. This allows us
to craft successful AEs that are also indistinguishable.

Figure 4 suggests that the resulting AEs with 97% ASR fol-
low the same distribution as the NEs across the model. Lay-
erwise DDs at each layer result in DR oy between 0% and
3%, i.e., the AEs are not detectable at any layer. SAMMD
also fails to detect the AEs we craft as it obtains less than
1% DR, averaged over 10 runs.

Regarding the impact of vy, we see a trend that confirms our
intuition. When we set v = 1, the AEs we craft have 100%

ASR, however, SAMMD achieves a non-trivial 20% DR3
against these AEs. As the sweet-spot, we have presented the
results for v = 32, where DR3q is 6% and the ASR is 97%.
On the other extreme, when v = 128, the DR3¢ is only
0.3%, however, the ASR drops to 58%, as we expected.

Lyr:14
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®

Figure 4. The reprs. of AEs crafted by SIA against all layers.

Runtime performance. The main overhead SIA has over
PGD is computing MMD between the adversarial and guide
sets with respect to the model’s representations at each layer.
Runtime of MMD computation grows linearly, quadratically
and linearly with the number of dimensions in the represen-
tations, the number of samples in the sets and the number
of layers in the model, respectively. This results in around
30-40% slower attack iterations compared to PGD. For
example, against ResNet-50/CIFAR-10, VGG-16/CIFAR-
10 and ResNet-50/TinyImageNet models (see §4.1 for the
details of these architectures and datasets), crafting 1000
samples on a commodity GPU takes SIA (200 iterations)
10, 4 and 30 minutes, respectively; whereas it takes PGD
(50 iterations) 1.5, 0.5 and 5 minutes.

3.3. Comparison With the Feature-Level Attack (FLA)

Similar to our attack, the FLLA (Sabour et al., 2016) aims
to craft AEs that match the representations of NEs at a
layer. For an initial sample x,,, it randomly selects a natural
guide sample x4, and crafts the perturbation J that minimizes
|| Fi(xyn, + 0) — F;(x4)||2. The FLA has been an effective
attack against typical detectors that operate on individual
samples (Tramer et al., 2020). To evaluate whether it can
also defeat DDs, we apply the /,-norm bounded FLA with
random target labels against each layer. However, regardless
of the parameters, layerwise DDs against the FLA result
in over 60% DR at most layers. We present the detailed
results in Appendix E. Overall, although the AEs crafted
by the FLA evade individual detectors, collectively they are
from a different distribution than the NEs.

Further, our next experiment suggests that attacking mul-
tiple layers simultaneously with the FLA might also be
challenging. We first randomly sample NEs from the ship
and horse classes and compute the pairwise /5 distances be-
tween the representations of these samples at different layers.
For each ship sample, we then find the Spearman’s rank cor-
relation between its distances to the horse samples at layers
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1 and j. Finally, for all ship samples, we take the average
of this measurement which results in a metric we denote by
CORy; ;). Having COR; ;) close to one implies that if two
samples are close at layer ¢, they are close at layer j as well.
However, we see that the distances are poorly correlated
between certain layers. For example COR(3 5 = 0.77,
whereas COR 3 14y = 0.16 and COR 5 gy = 0.81 whereas
COR(5,14) = 0.29. This experiment produces consistent
results for other classes as well. As the FLA selects only a
single guide sample for each AE, an AE that is close to the
guide at one layer might fail to be close to it at another. In
Appendix C, we present a similar layerwise analysis for SIA
to show that it crafts an AE by implicitly selecting different
guides at different layers.

4. Empirical Evaluation

We evaluate our attack on image classification tasks with
CNNs, where adversarial attacks are most well-studied. Our
main focus in this section is evaluating SIA against DDs.
We consider individual AE detectors and other detection
scenarios in the following sections.

4.1. Experimental Setup

Datasets. We experiment on two popular datasets: CIFAR-
10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Deng et al.,
2009). CIFAR-10 consists of 32 x32 pixels colored natural
images (scaled between 0 and 1), drawn from 10 classes,
each of which has 5K training and 1K testing samples. Tiny-
ImageNet consists of a subset of ImageNet images resized
at 64 x 64 pixels. There are 200 classes, each of which has
500 training and 50 testing images. For both datasets, we
randomly select and hold out 10K training samples, which
we will use to model the distribution of NEs.

Architectures and hyper-parameters. We run most of our
experiments on a standard ResNet-50 (He et al., 2016) archi-
tecture. The model has 16 convolutional blocks, a pooling
layer and a fully connected layer that produces the logits. We
also evaluate MobileNetV2 (Sandler et al., 2018), with 19
blocks, and VGG-16 (Simonyan & Zisserman, 2015), with
14 blocks. We augment the training data by using padding,
random cropping, RGB intensity scaling and random hori-
zontal mirror. Our models are comparable to the models in
the prior work, e.g., ResNet-50 models on CIFAR-10 and
Tiny-ImageNet reach 94% and 65% accuracy, respectively.

Attack details. We craft 1000 targeted AEs, starting from
a random subset of the test samples as our initial set Xj.
We select the target labels 7" randomly from the list of
available classes. In Appendix D, we also show the results
on selecting the target T} for x;€ X as the next class, i.e.,
T; = y(x;)+1(mod K). These popular strategies reflect the
average-case difficulty in targeted AEs (Ma & Liu, 2019).

Detector details. Against our attack, we apply the layerwise
DDs at each layer and report the average and the highest
detection rates (DR) among them. We observe that com-
bining the p-values from each layer using popular methods
from Fisher et al. (1948) or Brown (1975) does not improve
the DR over the best layer. We also evaluate SAMMD (Gao
et al., 2021) as it is the state-of-the-art DD. To understand
how consuming more samples affects DDs, we report DR g0,
DRyg9 and DR3¢. These detectors have around 5% (false)
DR when they operate on NEs instead of AEs.

4.2. White-Box Scenarios

In Table 1, we present the detection results against SIA in
the white-box setting, i.e., the attacker has full access to the
victim model. We see how SIA evades the DDs across the
board, while still achieving a high ASR. The low DR of lay-
erwise DDs shows that the AEs we craft are not detectable at
any layer. The more complex the task gets (e.g., larger inputs
or more classes), performing adversarial attacks becomes
easier as the models become more sensitive to perturba-
tions (Balaji et al., 2019). As a result, SIA against Tiny-
ImageNet models is even more successful and SAMMD
completely fails. Moreover, in Appendix E, we compare
SIA with three baseline attacks—PGD, FLA and AutoAt-
tack (Croce & Hein, 2020)—in terms of detection rates. Our
comparison shows that DDs can consistently detect these
attacks with 100% DR, with less than 100 samples.

Table 1. The performance of DDs against SIA. Column [A] in-
cludes three architectures: ResNet-50, VGG-16 and MobileNet.
[AVG LYR] presents the average DR across the layers of the model
and [MAX LYR] presents the highest DR among all layers.

A ASR AVG LYR MAXLYR SAMMD

RANDOM CLASS TARGETED

CIFAR-10

DRygo/2007300  DRigo/200/300 DRioo/200/300
R 97% 1/2/3 % 3/5/7% 0/2/6%
\'% 94% 1/1/1% 3/4/4% 0/5/28 %
M 100% 3/2/3% 71519 % 0/0/1%

TINY-IMAGENET

R 100% 3/4/4 % 9/8/9 % 0/0/0%
VvV  100% 21213 % 6/5/9% 0/0/0%
M 100% 214712 % 7/8/16% 0/0/2%

Applying SIA against a robust model. Robustness aims to
prevent AEs by making the model less sensitive to perturba-
tions (Szegedy et al., 2014). Although it has been studied
separately from detection, recent work has formed a connec-
tion between the two approaches (Yin et al., 2020; Tramer,
2021). Here, we apply SIA and standard PGD against a -
norm adversarially-trained robust model, provided by Madry
et al. (2018). When ¢ = 0.03, SIA and PGD craft AEs
with 42% ASR, on which SAMMD obtains 37% and 100%
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DR3qp, respectively. A higher ¢ increases the ASR without
making SIA fully detectable, e.g., when ¢ = 0.07, ASR is
82% and DR3 is 46%. This shows that PGD is still easily
detectable even at a low ASR level, whereas SIA can still
evade DDs that rely on representations from robust models.

Giving more samples to the detectors. A DD performs bet-
ter as the number of samples available to it increases. Here,
we experiment with our ResNet-50 model on CIFAR-10
and quantify how many AEs a DD needs to be able to con-
sistently detect SIA. When SAMMD consumes 2000 AEs
(1000 for kernel tuning and 1000 for testing), it achieves
78% DR 00, with 4% false DR. The highest DRoo among
the layerwise DDs is 27%, with around 8% false detection
rate. Note that these DDs have a perfect (100%) DR against
the standard attacks with only 50 samples. As a realistic de-
fender might only have a limited number of AEs, this casts
doubt on whether detecting SIA is practical. We present the
full detection trend in Appendix B.

4.3. Transferability of SIA

Transferability of AEs implies that they can still hurt a
model that they were not crafted on (Tramer et al., 2017;
Liu et al., 2017). Even though white-box attacks are impor-
tant to expose a vulnerability, transfer attacks, by requiring
fewer assumptions, are more practical. Here, we investigate
whether SIA can craft transferable AEs that also avoid de-
tection at an unknown model. To this end, we first craft
the AEs against a surrogate model and transfer them to a
target model. We then measure (i) the ASR of these AEs
against the target model and (ii) the performance of the
layerwise DDs that operate on the target model’s represen-
tations. As a baseline, we also craft AEs via PGD and tune
its perturbation-bound ¢ to achieve a similar ASR to SIA.

In Table 2, we present the results on crafting AEs with
random targets against CIFAR-10 models. We first note
that, for similar ASR levels, SIA overall performs better
than PGD against the detectors. Moreover, compared to the
white-box setting, the attacks are more detectable and have
less ASR. For example, when using two ResNet-50 models
as both the surrogate and the target, SIA achieves 46% ASR.
On the AEs, the DDs achieve at most 84% DRy against
SIA; which was only 3% in the white-box setting. Further,
we see that AEs are more transferable, for example, from
ResNet-50 to MobileNet than from ResNet-50 to VGG-
16. The similarities between different DNN architectures
explain the transfer success between different models (Liu
et al., 2017). We believe combining SIA objective with the
recent methods that craft more transferable AEs (Inkawhich
et al., 2019; Wu et al., 2020) is a promising direction to
boost the transferability of SIA.

Cross-statistic transferability. So far, we have applied DDs
that perform a 2ST using MMD as their test statistic. As

Table 2. Transferability performance of SIA. [S-T] column lists
the architectures of the surrogate [S] and target [T] models.

S-T SIA PGD
ASR MAXLYR AVGLYR || ASR MAXLYR AVGLYR
DRso/ 100 DRso/ 100 DRso/100 DRso/100
R-R  46% 19/ 84% 4/20% 44% 100/100%  63/82%
R-V  24% 21/89% 7142% 23% 99/ 100% 63 /90%
R-M 41% 41/94% 14/ 56% 41% 100/100% 70/ 85%
V-M  46% 60/99% 13/58% 42% 100/ 100% 65/82%

SIA also uses MMD to craft indistinguishable AEs, we ask
whether these AEs would evade a 2ST that uses a different
statistic. To this end, we apply a classifier two-sample test
(C2ST) by Lopez-Paz & Oquab (2017) on the represen-
tations at each layer. A C2ST first constructs a dataset by
pairing the samples in X, and X,, with positive and negative
labels, respectively. It then trains a binary classifier on this
dataset and uses its accuracy on test samples to compute the
p-value, which we use to obtain the DR. We use 300 samples
to train the classifier and 300 samples to obtain the p-value.
Applied on a CIFAR-10 ResNet-50 model, C2ST achieves
at most 6% DR3q against the AEs we craft; whereas the
MMD-based DD achieves 7%. This demonstrates that STA
is transferable to test statistics other than MMD.

4.4. The Factors Affecting the Success of SIA

Essentially, an adversarial attack adds perturbation ¢ to an
initial sample = € X, which moves = towards some end
destination with respect to Fj, the model’s representations.
To enforce that the crafted AEs follow the natural distri-
bution, our attack uses natural guide samples (v, € Xg)
that specify a distribution over the possible destinations.
The success of this procedure depends on two factors: (i)
the sensitivity of F; to input perturbations and (ii) the ini-
tial distance between F;(x) and its destination F;(z4). The
sensitivity of F; grows with its Lipschitz constant L, i.e.,
||F;(z) — Fi(xz 4 0)|| < Le, which allows the perturbations
to have a greater impact (Cisse et al., 2017).

In Figure 5, we experiment with our ResNet-50 model on
CIFAR-10 to evaluate how the factors (i) and (ii) affect the
success of SIA in evading detection. We apply the method
in (Yang et al., 2020) to measure the average local Lipschitz
constant around the holdout samples with respect to each
layer in the model (||| < € = 0.03). First, we see that
the Lipschitz constants increase throughout the layers, align-
ing with (Virmaux & Scaman, 2018). Second, to isolate the
impact of (ii), we apply SIA at each layer in two settings
based on the average pairwise representation distances be-
tween the samples in different classes. In the closest and
the furthest settings, we set Xy and X as the samples from
the class pair with the least and the most average distance,
respectively. We then report the detection rates (DRsg) of
DDs that individually operate on the layer attacked by SIA.
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This reveals that SIA is effective when X and X, are close
(e.g., the dog and cat classes) as it does not need to move
the initial samples significantly with respect to the represen-
tations. However, the furthest setting shows that when X
and X are far away (e.g., the airplane and frog classes),
SIA might fail to evade detection. Here, as the Lipschitz
constants increase throughout the layers, the detection rates
drop rapidly: 100% at the 7th, 82% at the 12th and 0% at the
17th layers. These results suggest that reducing the model’s
sensitivity, e.g., via adversarial training (Yang et al., 2020),
and increasing the representation distances between differ-
ent classes, e.g., via orthagonalization (Tao et al., 2022), are
promising directions to improve detection performance.
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Figure 5. Evaluating the factors affecting the success of SIA.

5. Defeating Individual AE Detectors

Although we have formulated SIA against DDs, individ-
ual detectors (IDs) that inspect a single sample are more
realistic and, as a result, more common (Carlini & Wagner,
2017). A typical ID quantifies how statistically similar a
sample is to the known NEs and rejects it if this score is
below a threshold. In this section, we aim to show how its
formulation makes SIA effective against IDs as well.

We experiment with a ResNet-50 model on CIFAR-10, train
the detectors on the whole holdout set and test them on a
balanced set that contains 500 AEs and 500 NEs. We con-
sider the AEs crafted by SIA (in Figure 4) and, as a baseline,
by PGD (in Figure 1), both with near 100% ASR. We report
the following popular metrics to assess the detection per-
formance: (i) the false positive rate (FPR) at 95% true posi-
tive rate (FPR95); and (ii) standardized partial area under
the receiver operating characteristic curve below 20% FPR
(PAUC). These metrics reflect the realistic requirements of
a detector, e.g., low FPR and high TPR, and remove the
need for tuning the threshold manually. The scores for a
chance level detector are 0.5 pAUC and 95% FPR95. For
the perfect detector, they are 1.0 pAUC and 0% FPR95.

We evaluate the following four detectors from the literature.

Density artifacts (Feinman et al., 2017) is one of the early
detectors which assumes that the AEs lie far from the natural
data manifold. It trains a kernel density model based on
the PLR of the holdout samples and rejects a sample if its
density is smaller than a threshold.

I-Defender (Zheng & Hong, 2018) characterizes the natural
data distribution at the PLR using a class-wise Gaussian
mixture model (GMM). It rejects a sample if its likelihood
estimated using GMMs is less than a threshold. For this
detector, we report the average results over all classes.

The odds are odd (Roth et al., 2019) relies on the distri-
bution of a DNN’s logit values, in particular, it assumes
that the logits on AEs are less robust to noise than on
NEs. Prior work has shown that the adaptive evaluation
in this paper is incomplete and designed an attack against
the defense (Tramer et al., 2020). We select this method to
demonstrate how SIA, with no additional effort, can evade
detectors that apply input noise.

JTLA (Raghuram et al., 2021) is the most recent detector we
experimented on, using the implementation by its authors.
JTLA (stands for joint statistical testing across DNN layers
for anomalies) computes statistics regarding whether a given
sample is similar to NEs in terms of its nearest neighbors at
a layer. It then aggregates the statistics from all layers into
the detection score for this sample.

Table 3. The performance of four individual detectors. We
present the detection results against PGD and SIA by reporting
two metrics: FPR95 (lower is better) and pAUC (higher is better).

PGD

SIA
Detector FPR95 pAUC FPR95 pAUC
Density 40% 0.75 95% 0.53
I-Defender  34% 0.77 92% 0.61
Odds 56% 0.71 88% 0.65
JTLA 83% 0.62 90% 0.60

5.1. Evaluation

We present the results in Table 3. We see that all detectors
have significantly worse performance against SIA, com-
pared to their performance against PGD. For example, Den-
sity detector has near-chance level performance against STA.
Regarding JTLA, we observe that it already performs poorly
against PGD, compared to other detectors. As a sanity check,
we apply JTLA on the AEs crafted by DDN (in Figure 1),
which results in over 0.9 pAUC. This shows JTLA has incon-
sistent performance even against standard attacks. Overall,
these results show that SIA, without customization, can be
used as a benchmark to evaluate individual detectors as well
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as distributional detectors.

6. Attacking Other Detection Scenarios

The previous sections show how SIA evades methods de-
signed to detect AEs. Here, we apply SIA in other detection
scenarios to demonstrate its flexibility. In Appendix F, we
display some AEs crafted in this section.

6.1. Dataset Shift Detectors

Seemingly subtle changes in the data distribution are known
to hurt the performance of modern DNNs (Hendrycks &
Dietterich, 2018). Prior work has developed methods to
detect such dataset shifts that give a critical opportunity for
practitioners to act (Rabanser et al., 2019). We focus on two
different shift scenarios and highlight the security risks of
shift detectors as a new threat model.
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Figure 6. Attacking dataset shift detection with SIA.

Concept drift detection. Concept drift refers to the problem
when the relationship between the underlying data distribu-
tion and concept being learned changes over time. Adapting
the setup by Kirchler et al. (2020) and using the dataset
by Maji et al. (2013), we consider the drift from the images
of the ‘Boeing-737" aircraft to the ‘Boeing-747" aircraft. In
this setup, the detector applies a C2ST on the features it ex-
tracts from the images using the PLR of a pre-trained DNN
on ImageNet. Figure 6 (@) shows how the two aircraft types
have different feature distributions. As a result, with 100
samples from each distribution, the detector easily detects
the drift with 100% DR. To evade this detector, we include
the B-737 samples in our guide sets and perturb the B-747
samples using SIA against the DNN. We omit the second
term in SIA objective as the detector discards the DNN’s
predictions. Figure 6 () hints that the perturbed B-747 and
the B-737 distributions are the same. This brings the DR
down to 0%, even with 300 samples, and confirms that STA
has made the drift detection ineffective.

Corruption detection. Another type of shift occurs when
environmental factors start corrupting the inputs. As a result,

image corruptions, such as fog or snow, are shown to hurt the
performance of DNNs (Hendrycks & Dietterich, 2018). This
makes detecting such corruptions crucial in safety-critical
DNN applications (Rabanser et al., 2019). In our setup,
we consider the snow corruption (Hendrycks & Dietterich,
2018) applied on the test samples in Tiny-ImageNet. To
detect the shift, we apply a DD on the PLR of a ResNet-50
Tiny-ImageNet model. Figure 6 (c) shows how the corrupted
samples follow a different distribution than uncorrupted NEs.
As a result, the DD reaches 100% DRy and effectively
detects the shift. Similar to the previous scenario, we use
NEs in our guide sets and apply SIA to perturb the corrupted
samples. The resulting perturbed samples have the same
distribution as the NEs, as we show in Figure 6 (d). This
leads to 0% DR3¢ and prevents the detection.

6.2. Out-of-Distribution (OOD) Detection

Due to its importance in enhancing the safety of DNNs,
detecting OOD inputs has received much attention lately.
ReAct (Sun et al., 2021), the state-of-the-art OOD detector,
rectifies the penultimate-layer activations at an upper limit
c. The authors claim that this empirically and theoretically
leads to a better separation between the energy scores (Liu
et al., 2020b) of OOD and in-distribution inputs. Following
the original setup, we apply ReAct on a ResNet-50 CIFAR-
10 model and use the SVHN (Netzer et al., 2011) dataset
as the OOD inputs. An energy-based detector achieves 24%
FPROS5, which goes down to 19% with ReAct. We then
perturb the SVHN samples with SIA, using CIFAR-10 sam-
ples in the guide sets. We reduce the perturbation-bound to
e = 0.01, instead of € = 0.03, for better imperceptibility.
As a result, ReAct achieves 95% FPR95 on the perturbed
OOD samples, i.e., chance level performance. This shows
that SIA can turn OOD inputs into in-distribution inputs,
which exposes the vulnerabilities of many OOD detectors
that rely on representation statistics.

7. Conclusions

We introduce the statistical indistinguishability attack (SIA)
as a general-purpose adaptive attack against a wide range of
detectors, including distributional and individual ones. STA
essentially crafts adversarial examples (AEs) that closely
follow the distribution of natural samples with respect to
hidden layer DNN representations. This allows our attack to
defeat detectors that rely on observing statistical differences
between adversarial and natural inputs. Thanks to its generic
formulation, SIA compromises detection methods in various
settings, with little-to-no customization. As detecting AEs
is becoming increasingly critical for safeguarding DNNss,
we believe our work will provide a reliable baseline tool to
evaluate the security of detectors against adversaries who
wish to avoid them.
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Generating Distributional Adversarial Examples to Evade Statistical Detectors

A. Attack Details

(i) Projected Gradient Descent (PGD) attack (Madry et al.,
2018), is an iterative attack that perturbs the inputs accord-
ing to the sign of the gradients. After each iteration PGD
bounds the /..-norm of the distance between the AE and the
NE. PGD has been the de facto standard attack for training
and evaluating robust models. We apply the PGD attack for
50 iterations and set the step size as €/ /50, where ¢ is the
perturbation bound. Our proposed attack, SIA, and the base-
line attack, the FLA, also use PGD iterations but we apply
them for 200 iterations instead to ensure better performance.
For our experiments in Section 3 and in Section 4, we set
e = 0.02, which crafts AEs that reach 100% ASR.

(ii) Decoupling Direction-Norm (DDN) (Rony et al., 2019)
is a recent attack that iteratively minimizes the ¢5-norm
of the perturbation that changes the model’s prediction.
It has been shown to be competitive to the popular Car-
lini&Wagner attack, while being more computationally ef-
ficient. Typically, this attack does not have any bound on
the maximum allowed /5 norm of the perturbations, which
allows it to always have 100% ASR. We apply the DDN
attack for 200 iterations. For our experiments in Section 3,
the average /5 perturbation for an AE is 0.18 when DDN
achieves 100% ASR.

(iii) Sparse /1 Descent (SLIDE) (Tramer & Boneh, 2019)
first observes that the default ¢; version of PGD is highly
inefficient as each iteration updates only one pixel. Thus
the authors design a new attack with finer control over the
sparsity of the update step that also uses projection onto
an ¢ ball to bound the perturbations. We apply SLIDE
for 50 iterations and set the sparsity level to 99%. For our
experiments in Section 3, we set the perturbation-bound as
I6]l1 = 25 to achieve 100% ASR.

B. Giving More Samples to the DDs

Figure 7 presents the full detection trend for the experiment
we perform in Section 4.2 of our main paper.

C. The Layerwise Analysis of SIA

In Figure 8, we present images from a case study we conduct
to understand the behavior of SIA. We visualize two clean
initial samples from X, and the corresponding AEs SIA
crafts against all layers of the DNN. We then find the holdout
images closest to the initial clean, and adversarial, images
with respect to the representations at different layers. This
reveals two behaviors that make SIA perform better than the
FLA in evading layerwise DDs.

First, for a clean image, the closest images at different layers
are not classified into the same class as the clean image. For
example, for the clean sports car, the closest image at the
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Figure 7. The detection performance of distributional detectors as
a function of number of available samples. We experiment with
a ResNet-50 model trained on CIFAR-10. We measure the false
detection rates by providing NEs to the detectors instead of AEs.

2nd and 7th layers is an image of a feapot. These results
align with our findings using the CO R metric in Section 3.3
of our main paper. This behavior demonstrates why selecting
a single guide per initial sample makes it challenging for
the FLA to evade multiple layers.

Second, for an adversarial image, the closest images at dif-
ferent layers change from layer to layer. For example, for the
adversarial bow tie (originally a candle), we see the closest
images are orange and lampshade and bow tie at the 7th,
12th and the 17th layers, respectively. This shows that STA
implicitly selects different guide samples at different layers
to craft AEs.
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Clean Layer 2 Layer 7 Layer 12 Layer 17 (PLR)
Sports Car Teapot (£2=0.06) Teapot (£2=0.15) Limousine (£,=0.43) Sports Car ({;=15.38)

Adversarial Layer 2 Layer 7 Layer 12 Layer 17 (PLR)
Black Stork Albatross (£/,=0.06) Teapot (£,=0.17) Convertible (£,=0.45) Black Stork (£,=17.02)

Clean Layer 2 Layer 7 Layer 12 Layer 17 (PLR)

Candle Trilobite (£,=0.07) Trilobite (£,=0.17) Chihuahua (/,=0.44) Candle (/;,=15.16)

Adversarial Layer 2 Layer 7 Layer 12 Layer 17 (PLR)

ow Tie Orange (£,=0.08) Orange (£,=0.16) Lampshade (£,=0.44) Bow Tie ({/,=18.17)

Figure 8. Displaying the holdout images closest to initial natural and the corresponding adversarial examples at different layers. We craft
the AEs using SIA against all layers of a ResNet-50 model trained on Tiny-ImageNet. At the bottom of each image, we display the
model’s predicted class on that image. We find the closest images by measuring the /5 distance between two images with respect to the
model’s representations.
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D. Results on Next-Class Targeted SIA

We present the detection results in Table 4 for this target
selection strategy. We see that the distributional detectors
perform poorly against these AEs, similar to selecting the
targets randomly as we show in Section 4.2 of our main

paper.

Table 4. The performance of DDs against SIA. Column [A] in-
cludes three architectures: ResNet-50, VGG-16 and MobileNet.
[AVG LYR] presents the average DR across the layers of the model
and [MAX LYR] presents the highest DR among all layers.

A ASR AVG LYR MAXLYR SAMMD

NEXT CLASS TARGETED

CIFAR-10

DRigo/2007300 DRigo/200/300 DRioos200/300
R 99% 0/3/2% 21714 % 0/3/11%
\% 94% 1/2/3% 5/47/9 % 1/1/14 %
M 100% 4/3/3% 10/8/7 % 0/0/2%

TINY-IMAGENET

R 100% 3/4/1/7 % 6/9/14 % 0/0/0%
VvV  100% 213714 % 5/10/12 % 0/0/0%
M 9% 2/4715% 5/12/13 % 0/1/1%

E. Applying Distributional Detectors (DDs)
Against PGD, FLA and AutoAttack

FLA (Sabour et al., 2016) results. We present the detection
results in Table 5 for attacking different layers with the FLA.
We set the £,-norm perturbation-bound to £ = 0.03, same
as SIA. For an initial sample, x,,, we select the correspond-
ing guide, x4, randomly among the holdout samples such
that §(x,) = t, where t is the attack’s target class. We see
how the FLA is successful against the deeper layers in evad-
ing the DDs; however, it fails in earlier layers. This aligns
with Sabour et al.’s findings that its is more challenging to
apply the FLA against earlier layers as they are less sensi-
tive to perturbations. Moreover, attacking all layers with the
FLA also cannot evade the DDs. These results demonstrate
that the FLA is ineffective against DDs.

PGD (Madry et al., 2018) results. We present the detection
results in Figure 9 for increasing perturbation-bounds (¢)
of PGD. We see how the ASR increases as we increase €
and how, as a result, the AEs become more detectable. Even
with low ASR levels when € < 0.01, the layerwise DDs still
have moderate success against PGD.

AutoAttack (Croce & Hein, 2020) results. We present
the detection results in Table 6 for increasing perturbation-
bounds (¢) of AutoAttack. We found that maximizing dif-
ference of logits ratio loss, instead of cross-entropy, allows
AutoAttack to be less detectable than PGD in the final layers.
However, in the remaining layers, AutoAttack is still easily
detected: e.g., 100% detection rate at the 11th layer (SIA

Table 5. The detection performance (DRjg) of DDs against the
FLA. We attack individual layers with the FLA to craft targeted
AEs with random targets. We apply the layerwise DDs and measure
the detection rates at the attacked layers. We also report the average
and the highest DRs among the layerwise DDs. In the last row
(ALL), we attack all the layers in the DNN. We experiment with a
ResNet-50 model on CIFAR-10.

ATTACKED ATTACKED
LAYER ASR  LAYERDR AVGLYR MAXLYR
2 98% 40% 89% 100%
5 98% 63% 88% 100%
8 100% 91% 93% 100%
11 100% 100% 94% 100%
14 100% 0% 75% 100%
17 100% 0% 79% 100%
ALL 99% - 78% 100%

has only 2% detection rate). Overall, these results validate
our formulation to evade detection at multiple layers.

Table 6. The detection performance (DRjg) of DDs against Au-
toAttack. We apply the attack with different perturbation bounds
(e) and measure the detection rate at different layers of the model.
We experiment with a ResNet-50 model on CIFAR-10.

DETECTION LAYER

2 5 8 11 14 17
e = 0.005, ASR=79%

4% 10% 35% 36% 10% 4%
e = 0.01, ASR=99%

5% 92% 100% 100% 63% 10%
e = 0.02, ASR=100%

6% 100% 100% 100% 100% 64%

F. Displaying the AEs

Here, we present some of the AEs we crafted in Section 6
of our main paper.

Concept drift detection. We present the images in Fig-
ure 11.

Corruption detection. We present the images in Figure 12.

OOD Detection against ReAct. We present the images in
Figure 10.
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Figure 9. Detection performance (DRsp) of the layerwise detectors
against PGD with increasing perturbation-bounds (¢). AVG and
MAX report the average and the highest DR of the layerwise DDs.
‘We experiment with a ResNet-50 model trained on CIFAR-10.

CIFAR-10

o7
0 SIS

SVHN (SIA)

Figure 10. The AEs crafted by SIA against the out-of-distribution
(OOD) sample detector. The in-distribution samples are from the
test set of CIFAR-10, the OOD samples are from SVHN. We
perturb the OOD samples using SIA to avoid detection.

B-737

B-747 (SIA)

Figure 11. The AEs crafted by SIA in the concept drift detection
scenario. The images of the Boeing-737 are from the original
distribution and the images of the Boeing-747, which are perturbed
by SIA, are from the shifted distribution.
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Figure 12. The AEs crafted by SIA in the corruption detection sce-
nario. The original images are from the test set of Tiny-ImageNet.
The corrupted images include the highest intensity snow from the
dataset provided by Hendrycks & Dietterich (2018). We perturb
the corrupted images using SIA to avoid detection.



