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Abstract

We study a variant of a recently introduced min-
max optimization framework where the max-
player is constrained to update its parameters
in a greedy manner until it reaches a first-order
stationary point. Our equilibrium definition for
this framework depends on a proposal distribu-
tion which the min-player uses to choose direc-
tions in which to update its parameters. We show
that, given a smooth and bounded nonconvex-
nonconcave objective function, access to any pro-
posal distribution for the min-player’s updates,
and stochastic gradient oracle for the max-player,
our algorithm converges to the aforementioned
approximate local equilibrium in a number of it-
erations that does not depend on the dimension.
The equilibrium point found by our algorithm
depends on the proposal distribution, and when
applying our algorithm to train GANs we choose
the proposal distribution to be a distribution of
stochastic gradients. We empirically evaluate our
algorithm on challenging nonconvex-nonconcave
test-functions and loss functions arising in GAN
training. Our algorithm converges on these test
functions and, when used to train GANs, trains
stably on synthetic and real-world datasets and
avoids mode collapse.

1. Introduction
For a loss function f : X × Y → R on some (convex)
domain X × Y ⊆ Rd × Rd, we consider:

min
x∈X

max
y∈Y

f(x, y). (1)
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This min-max optimization problem has several applications
to machine learning, including GANs (Goodfellow et al.,
2014) and adversarial training (Madry et al., 2018). In many
of these applications, only first-order access to f is available
efficiently, and gradient-based algorithms are widely used.

Unfortunately, there is a lack of gradient-based algorithms
with convergence guarantees for this min-max framework
if one allows for loss functions f(x, y) which are noncon-
vex/nonconcave in x and y. This lack of convergence guar-
antees can be a serious problem in practice, since popular al-
gorithms such as gradient descent-ascent (GDA) oftentimes
fail to converge, and GANs trained with these algorithms
can suffer from issues such as cycling (Arjovsky & Bottou,
2017) and “mode collapse” (Dumoulin et al., 2017; Che
et al., 2017; Santurkar et al., 2018).

Since min-max optimization includes minimization (and
maximization) as special cases, it is intractable for general
nonconvex/nonconcave functions. Motivated by the success
of a long line of results which show efficient convergence
of minimization algorithms to various (approximate) lo-
cal minimum notions (e.g., (Nesterov & Polyak, 2006; Ge
et al., 2015; Agarwal et al., 2017)), previous works have
sought to extend these ideas of local minima to various (ap-
proximate) notions of local min-max point–that is, a point
(x⋆, y⋆) where x⋆ is a local minimum of f(·, y⋆) and y⋆

is a local maximum of f(x⋆, ·)– in the hope that this will
allow for algorithms with convergence guarantees to such
points. Unfortunately, to prove convergence, these works
(e.g., Nemirovski (2004); Lu et al. (2020)) make strong
assumptions on f , e.g. assume f(x, y) is concave in y,
or that their algorithm is given a starting point such that
its underlying dynamical system converges (Heusel et al.
(2017); Mescheder et al. (2017)). It is a challenge to develop
gradient-based algorithms which converge efficiently to an
equilibrium for even a local variant of the min-max frame-
work under less restrictive assumptions comparable to those
required for convergence of algorithms to local minima.

Our Contributions. We study a variant of the min-max
framework which allows the max-player to update y in a
“greedy” manner (Section 3). This greedy restriction models
first-order maximization algorithms such as gradient ascent,
popular in machine learning applications, which can make
updates far from the current value of y when run for multiple
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steps. Roughly, from the current point (x, y), our framework
allows the max-player to update y along any continuous
path, along which the loss f(x, ·) is nondecreasing.

Our main contribution is a new gradient-based algorithm
(Algorithm 1) that provably converges from any initial
point to an approximate local equilibrium for this frame-
work (Definition 3.2). Our approximate equilibrium defi-
nition depends on the choice of proposal distribution Qx,y,
parametrized by (x, y), which the min-player uses to up-
date its parameters at any given point (x, y). In particular,
for a b-bounded function f with L-Lipschitz gradient, and
ε≥0, our algorithm requires poly(b, L, 1/ε) gradient and
function oracle calls to converge to an (ε,Q)-approximate
local equilibrium (Theorem 3.3). The number of oracle calls
required by our algorithm is independent of the dimension
d. Gradient-based algorithms that converge in (almost) di-
mension independent number of iterations are required for
machine-learning applications where the dimension d, equal
to the number of trainable parameters, can be very large.

The equilibrium point our algorithm converges to depends
on the choice of proposal distribution Q. In the special case
when f(x, y) is strongly convex in x and strongly concave
in y, there is a choice of proposal distribution Q– the (de-
terministic or stochastic) gradients with mean −∇xf–for
which our (ε,Q)-equilibrium corresponds to an (approxi-
mate) global min-max point with duality gap roughly O(ε)
(Theorem B.2 in the appendix). Our algorithm can find such
a point in time that is polynomial in 1

ε and independent of di-
mension (Corollary B.10). This motivates using (stochastic)
gradients for proposal distributions in more general settings
as well, and, when training GANs we choose the proposal
distribution to be the distribution of stochastic gradients.

Empirically, we show that our algorithm converges on
test functions (Wang et al., 2019) on which other popu-
lar gradient-based min-max optimization algorithms such
as GDA and optimistic mirror descent (OMD) (Daskalakis
et al., 2018) are known to either diverge or cycle (Figure 1,
see also Figure 2 in Section 4). We also show that a prac-
tical variant of our algorithm can be employed for training
GANs, with a per-step complexity and memory requirement
similar to GDA. We observe that our algorithm consistently
learns a greater number of modes than GDA, OMD, and un-
rolled GANs (Table 1), when applied to training GANs on a
Gaussian mixture dataset. While not the focus of this paper,
we also provide results for our algorithm on the real-world
datasets in the Supplementary Material.

Discussion of Equilibrium. The equilibrium points
(x⋆, y⋆) our algorithm converges to can be viewed as local
equilibria for a game where the maximizing player is re-
stricted to making greedy updates to the value of y. Namely,
the point x⋆ is an approximate local minimum of an al-
ternative to the function maxy f(·, y) where, rather than

Figure 1. Our algorithm applied to the function f(x, y) = (4x2−
(y− 3x+ 0.05x3)2 − 0.1y4)e−0.01(x2+y2) with global min-max
point (x, y) = (0, 0) (yellow star). Our algorithm’s max-player
(red segments) first finds a point where f(x, ·) is maximized. The
min-player then proposes random updates to x, and only accepts
those updates which lead to a decrease in the value of f(x, y) after
the max-player’s response is taken into account (blue segments).
This allows our algorithm to converge to (0, 0). This function is
considered as a challenging test function in (Wang et al., 2019),
who show several first-order algorithms, namely GDA, OMD, and
extra-gradient method (Korpelevich, 1976), fail to converge on this
function and instead cycle forever (see Figure 2).

maximizing over all y∈Rd, the maximum is instead taken
over all “greedy” paths–i.e., paths along which f(x⋆, ·) is
increasing–initialized at the value y⋆. Additionally, y⋆ is
an approximate local maximum of f(x⋆, ·). In particular,
any point (x⋆, y⋆) which is a local min-max point is also an
equilibrium point for our algorithm (see Section 3).

Discussion of Assumptions. For our main result, we as-
sume f is bounded above and below. The assumption that
the loss function is bounded below is standard in the mini-
mization literature (see e.g., (Nesterov & Polyak, 2006)), as
an unbounded function need not achieve its minimum and
a minimization algorithm could diverge in a manner such
that the loss function value tends to −∞. Thus, in min-max
optimization, both the upper and lower bound assumptions
are necessary to ensure the existence of even an (approxi-
mate) global min-max point. If we drop the lower bound
assumption, and only assume f(x, ·) is bounded above for
x ∈ Rd, our algorithm still does not cycle: instead it either
converges to a local equilibrium (x⋆, y⋆), or the value of
f diverges monotonically to −∞. Such functions include
popular losses, e.g. cross entropy (Goodfellow et al., 2014)
which is bounded above by zero, making our algorithm
applicable to training GANs.

2. Related Work
Local frameworks. In addition to the local min-max frame-
work (e.g., (Nemirovski, 2004; Lu et al., 2020; Heusel et al.,
2017; Mescheder et al., 2017)), previous works propose
local frameworks where the max-player is able to choose its
move after the min-player. These include the local stackle-
berg equilibrium (Fiez et al., 2020) and the closely related
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local minimax point (Jin et al., 2020). In the local min-max,
local stackleberg and local minimax frameworks, the max-
player is restricted to move in a small ball around the current
point y. In contrast, in our framework, the max-player can
move much farther, as long as it follows a path along which
f is continuously increasing.

Convergence Guarantees. Several works have studied the
convergence properties of GDA dynamics (Nagarajan &
Kolter, 2017; Mescheder et al., 2017; Balduzzi et al., 2018;
Daskalakis & Panageas, 2018; Jin et al., 2020; Li et al.,
2018), and established that GDA suffers from severe limi-
tations: GDA can exhibit rotation around some points, or
otherwise fail to converge. To address convergence issues
for GDA, multiple works analyze algorithms based on Opti-
mistic Mirror Descent (OMD), Extra-gradient (EG) meth-
ods, or similar approaches (Gidel et al., 2019; Daskalakis
& Panageas, 2018; Liang & Stokes, 2019; Daskalakis &
Panageas, 2019; Mokhtari et al., 2020b). For instance,
(Daskalakis et al., 2018) guarantee convergence of OMD to
a global min-max point on bilinear losses f(x, y)=x⊤Ay,
and (Mokhtari et al., 2020a) also show convergence of
OMD and EG methods on strongly convex-strongly con-
cave f . However, as observed in (Wang et al., 2019),
GDA, OMD, and EG fail to converge on some simple
nonconvex-nonconcave test functions; in comparison, we
observe that our algorithm converges for these functions
(Figure 2). Many works make additional assumptions
to prove convergence–(Mertikopoulos et al., 2019) show
asymptotic convergence of OMD under a “coherence” as-
sumption, and (Balduzzi et al., 2018) show convergence
of a second-order algorithm if f corresponds to a Hamilto-
nian game. Some works assume there exists a “variational
inequality” solution (x⋆, y⋆) such that, roughly, the com-
ponent of the gradient field (−∇xf,∇yf) in the direction
away from (x⋆, y⋆) is very small (Dang & Lan, 2015; Liu
et al., 2019; Song et al., 2020; Diakonikolas et al., 2021;
Liu et al., 2021). Other works (Yang et al., 2020) assume
a “PL” condition which says that magnitude of ∇xf(x, y)
is at least f(x, y)−minx f(x, y). However, many simple
functions, e.g. f(x, y)= sin(x) sin(y), do not satisfy Hamil-
tonian game, coherence, variational, and PL assumptions.

For this reason, multiple works show convergence to an
(approximate) local min-max point. For instance (Heusel
et al., 2017) prove convergence of finite-step GDA to a local
min-max point, under the assumption that their algorithm
is initialized such that the underlying continuous dynamics
converge to a local min-max point. And (Mescheder et al.,
2017) show convergence if their algorithm is initialized in
a small neighborhood of a local min-max point. In addi-
tion, many works provide convergence guarantees to a local
stackleberg or local minimax point, if their algorithm is pro-
vided with a starting point in the region of attraction (Fiez
et al., 2019; 2020), or a small enough neighborhood (Wang

et al., 2019), of such an equilibrium. And other works
(Nemirovski & Yudin, 1978; Kinderlehrer & Stampacchia,
1982; Nemirovski, 2004; Rafique et al., 2021; Lu et al., 2020;
Lin et al., 2020; Nouiehed et al., 2019; Thekumparampil
et al., 2019; Kong & Monteiro, 2021) show convergence
to an approximate local min-max point when f may be
nonconvex in x, but is concave in y. In contrast to the
above works, our algorithm is guaranteed to converge for
any nonconvex-nonconcave f , from any starting point, in a
number of gradient evaluations that is independent of the di-
mension d and polynomial in L and b if f is b-bounded with
L-Lipschitz gradient. Such smoothness/Lipschitz bounds
are standard in convergence guarantees for optimization al-
gorithms (Bubeck, 2017; Ge et al., 2015; Vishnoi, 2021).
Similar to our approach, some algorithms make multiple y-
player updates each iteration (e.g., (Nouiehed et al., 2019)).
However, these algorithms are not guaranteed to converge
from any initial point on any nonconvex-nonconcave smooth
bounded f ; to overcome this, our algorithm introduces a
randomized accept-reject procedure.

Greedy Paths. (Mangoubi & Vishnoi, 2021) also consider a
framework where the max-player makes updates in a greedy
manner. The “greedy paths” considered in their work are
defined such that at every point along these paths, f is non-
decreasing, and the first derivative of f is at least ε or the
second derivative is at least

√
ε. In contrast, we just require a

condition on the first derivative of f along the path. This dis-
tinction gives rise to a different framework and equilibrium
than the one presented in their work. Secondly, (Mangoubi
& Vishnoi, 2021) is a second-order method that converges
to an ε-approximate local equilibrium in poly(d, b, L, 1/ε)
Hessian evaluations. On the other hand, the convergence of
our algorithm is independent of d; it requires poly(b, L, 1/ε)
gradient evaluations for convergence.

Training GANs. An important line of work focuses on de-
signing min-max optimization algorithms that mitigate non-
convergence behavior such as cycling when training GANs
using GDA (Goodfellow et al., 2014). (Daskalakis et al.,
2018) show OMD can mitigate cycling when training GANs
with Wasserstein loss. In contrast to both GDA and OMD,
where at each iteration the min- and max-players are al-
lowed only to make small updates roughly proportional to
their respective gradients, our algorithm empowers the max-
player to make large updates at each iteration. (Metz et al.,
2017) introduced Unrolled GANs, where the min-player
optimizes an “unrolled” loss that allows the min-player to
simulate a fixed number of max-player updates. While this
has some similarity to our algorithm the main distinction
is that the min-player in Unrolled GANs may not reach an
(approximate) local minimum, and hence their algorithm
does not have any convergence guarantees. We observe that
our algorithm, applied to training GANs, trains stably and
avoids mode collapse.
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3. Theoretical Results
As a first step towards obtaining a computationally tractable
variant of the min-max framework, we consider the local
min-max point studied in prior work— that is, any point
(x, y) such that x is local minimum of f(·, y) and y is a
local maximum of f(x, ·). Unfortunately, local min-max
points may not exist even on smooth and bounded functions.
For instance, the function f(x, y)= sin(x+ y) has no local
min-max points. This is because, while f(x, y)= sin(x+ y)
has local maximum in y at all points along the collection of
lines S = {(x, y) : x+ y = π

2 + 2πk, k ∈ N}, sin(x+ y)
does not have a local minimum in x at any of these points.
However, the points S are all global min-max points of
f(x, y)= sin(x+y), since for every (x, y) ∈ S, x is a global
minimum of maxy∈Rd f(·, y), and y is a global maximum
of f(x, ·). This is true even though x is neither a global nor
a local minimum of f(·, y).

On the other hand, an (approximate) global min-max point
is always guaranteed to exist for smooth and bounded f .
This is because, in the global min-max framework, be-
fore the min-player considers whether to choose a value
x, it is able to “look ahead” and anticipate the response
argmaxy∈Rd f(x, y) of the max-player. Thus, for any
smooth and bounded function f , one can always find an (ap-
proximate) global min-max point by first finding an (approx-
imate) global minimum x of the function maxy∈Rd f(·, y),
and then finding a value of y which maximizes f(x, ·). In
order to guarantee existence for our framework, we would
therefore ideally like to allow the min-player to anticipate
the max-player’s response maxy∈Rd f(·, y) to any value of
x proposed by the min-player. Unfortunately, computing
the global maximum maxy∈Rd f(·, y) is intractable.

Framework and Equilibrium. To get around this problem,
we consider a variant of the min-max framework, which
empowers the max-player to update y in a “greedy” manner.
More specifically, we restrict the max-player to update the
current point (x, y) to any point in a set P (x, y) consisting
of the endpoints of paths in Y initialized at y along which
f(x, ·) is nondecreasing. These paths model the paths taken
by a class of first-order algorithms, which includes popular
algorithms such as gradient ascent. Our framework therefore
allows the min-player to learn from max-players which are
computationally tractable and yet (in contrast to the local
min-max framework) are still empowered to make updates
to the value of y which may lead to large increases in f(x, y).
Given a bounded loss f : X × Y → R, where X ,Y ⊆ Rd

are convex, an equilibrium for our framework is a point
(x⋆, y⋆) ∈ X × Y such that

x⋆ ∈ argminx∈X (maxy∈P (x,y∗)f(x, y)), (2)
y⋆ ∈ argmaxy∈P (x⋆,y⋆)f(x

⋆, y). (3)
This is in contrast to the (global) min-max framework of
(1) where the maximum is taken over all y∈Y . However,

solutions to (2) and (3) may not exist, and even when they
do exist, finding such a solution is intractable since (2)
generalizes nonconvex minimization.

Local equilibrium. Replacing the global minimum in (2)
with a local minimum leads to the following local version
of our framework’s equilibrium. A point (x⋆, y⋆)∈X×Y is
a local equilibrium if, for some ν>0 (and denoting the ball
of radius ν at x⋆ by B(x⋆, ν)),
x⋆ ∈ argminx∈B(x⋆,ν)∩X (maxy∈P (x,y∗)f(x, y)), (4)

y⋆ ∈ argmaxy∈P (x⋆,y⋆)f(x
⋆, y), (5)

Approximate local equilibrium. Similar to previous work
on local minimization for smooth nonconvex objectives, we
would like to solve (4) and (5) to converge to approximate
stationary points (Nesterov & Polyak, 2006). Towards this
end, we can replace P (x, y⋆) in (4) and (5) with the set
Pε(x, y

⋆) of endpoints of paths starting at y⋆ along which
f(x, ·) increases at some “rate” ε>0.

Definition 3.1. For any x∈X , y∈Y, and ε≥0, define
Pε(x, y)⊆Y to be points w∈Y s.t. there is a continuous
and (except at finitely many points) differentiable path γ(t)
starting at y, ending atw, and unit-speed, i.e.,

∥∥ d
dtγ(t)

∥∥≤1,
s.t. at any point on γ, d

dtf(x, γ(t))≥ε.

The above definition restricts the max-player to updating y
via any “greedy” algorithm, e.g. gradient ascent. Note
that, compared to Definition 3.1, the notion of greedy
paths in (Mangoubi & Vishnoi, 2021) additionally requires
d2

dt2 f(x, γ(t)) ≥
√
ε so as to achieve the goal of converging

to an approximate second-order local equilibrium. Our goal,
on the other hand, is for the max-player’s updates to approx-
imate paths taken by first-order greedy algorithms, hence,
the condition on first derivative in Definition 3.1 suffices.

While we would also like to replace the local minimum in
(4) with an approximate stationary point, the min-player’s
objective, Lε(x, y) := maxz∈Pε(x,y) f(x, z), may not be
continuous1 in x, and thus, gradient-based notions of ap-
proximate local minimum do not apply. To bypass this
difficulty and to define a notion of approximate local mini-
mum which applies to discontinuous functions, we sample
updates to x, and test whether Lε(·, y) has decreased. For-
mally, given a choice of sampling distribution Qx (which
may depend on x), and δ, ω > 0, x⋆ is said to be an approx-
imate local minimum of a (possibly discontinuous) function
g : X → R if Pr∆∼Qx⋆ [g(x

⋆ +∆) < g(x⋆)− δ] < ω.

Thus, replacing the set P with Pε in Equations (4) and (5),
and the “exact” local minimum in Equation (4) with an
approximate local minimum, we arrive at our equilibrium
definition:

1Consider the example f(x, y) = min(x2y2, 1). The min-
player’s objective for ε > 0 is Lε(x, y) = f(x, y) if 2x2y < ε,
and 1 otherwise. Thus L1/2 is discontinuous at (1/2, 1).
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Definition 3.2. Given ε, δ, ω > 0 and a distribution Qx,y,
we say that a point (x⋆, y⋆) ∈ X × Y is an (ε, δ, ω,Q)-
approximate local equilibrium for our framework if

Pr
∆∼Qx⋆,y⋆

[
max

y∈Pε(x⋆+∆,y⋆)
f(x⋆+∆, y)

< max
y∈Pε(x

⋆,y⋆)
f(x⋆, y)−δ

]
≤ω,

(6)

y⋆ ∈ argmaxy∈Pε(x⋆,y⋆)f(x
⋆, y). (7)

Proposal Distribution. In the special case when f is, e.g.,
O(1)-strongly convex in x and O(1)-strongly concave in y
with O(1)-Lipschitz gradients, if one chooses the updates
Q to be the (deterministic or stochastic) gradients −∇xf ,
then the (ε, δ, ω,Q)-equilibrium corresponds to an “approx-
imate” global min-max point for f with duality gapO(ε+δ)
(Theorem B.2). This duality gap does not depend on the di-
mension. This motivates choosing the proposal distribution
to be the (stochastic) gradients −∇xf in the more general
setting when f is nonconvex-nonconcave. Another motiva-
tion for this choice of Q is that adding stochastic gradient
noise to steps taken by deep learning algorithms is known
empirically to lead to better outcomes than, e.g., standard
Gaussian noise (see (Zhu et al., 2019)). Empirically, this
choice of Q leads to GANs that are able to successfully
learn the dataset’s distribution (Section 4).

Comparison to local min-max points. Note that any
local min-max point, if it exists, satisfies Definition 3.2
for a proposal distribution Q with small enough mean
and variance. This is because if (x⋆, y⋆) is a local min-
max point of f , x⋆ is a local minimum of f(·, y⋆) and
hence there is a ball B containing x⋆ on which x⋆ min-
imizes f(·, y⋆). Moreover, y⋆ is a first-order stationary
point of f(x⋆, ·), which means that Pε(x

⋆, y⋆)={y⋆} and
hence maxy∈Pε(x⋆,y⋆) f(x

⋆, y)=f(x⋆, y⋆) (satisfying (7)).
Therefore, if Q has mean and variance small enough that
the min-player’s proposed updates ∆∼Qx⋆,y⋆ fall inside B
w.h.p., we will have that maxy∈Pε(x⋆+∆,y⋆) f(x

⋆+∆, y) >
f(x⋆, y⋆)(since y⋆∈Pε(x

⋆+∆, y⋆)), implying that (x⋆, y⋆)
satisfies (6) (proof provided in Appendix D).

However, the converse is not true. This is a necessary fea-
ture of our definition as there are simple smooth bounded
functions which do not have any local min-max points and
yet an equilibrium from Definition 3.2 is guaranteed to exist.
For instance, as mentioned earlier, sin(x+ y) does not have
any local min-max points; however, the global min-max
points S = {(x, y) : x+y=π

2+2πk, k∈N} of sin(x + y)
satisfy Definition 3.2 for any ε>0, δ=Ω(

√
ε), ω=0, and,

e.g., any proposal distribution Q with support on a ball of
radius 1

2 centered at 0. (See Appendix C for examples)

Algorithm. We present an algorithm for our framework
(Algorithm 1), along with the gradient ascent subroutine

it uses to compute max-player updates (Algorithm 2). In
Theorem 3.3, we show it efficiently finds an approximate
local equilibrium (Definition 3.2).

Algorithm 1 Our algorithm for min-max optimization
input: Stochastic zeroth-order oracle F for bounded loss
function f :Rd×Rd→R with L-Lipschitz gradient, stochas-
tic gradient oracle Gy with mean∇yf , Initial point (x0, y0)
input: A distribution Qx,y , and an oracle for sampling from
this distribution. Error parameters ε, δ > 0
hyperparameters: η > 0 (learning rate), rmax (maximum
number of rejections); τ1 (for annealing);

1: Set i← 0, r ← 0, ε0 = ε
2 , fold ←∞

2: while r ≤ rmax do
3: Sample ∆i from the distribution Qxi,yi

4: Set Xi+1 ← xi + ∆i {min-player’s proposed up-
date}

5: Run Algorithm 2 with inputs x ← Xi+1, y0 ← yi,
and ε′ ← εi × (1− 2ηL)−1 { max-player’s update}

6: Set Yi+1 ← ystationary to be the output of Algorithm
2.

7: Set fnew ← F (Xi+1,Yi+1) { Compute new loss}
8: Set Accepti ← True.
9: if fnew > fold − δ

4 , then
10: Set Accepti ← False with probability max(0, 1−

e−i/τ1) { Decide to accept or reject}
11: end if
12: if Accepti = True then
13: Set xi+1 ← Xi+1, yi+1 ← Yi+1 { accept the

proposed x and y updates}
14: Set fold ← fnew, r ← 0, εi+1 ← εi × (1 −

2ηL)−2

15: else
16: Set xi+1 ← xi, yi+1 ← yi, r ← r+1, εi+1 ←

εi { Reject the proposed updates}
17: end if
18: Set i← i+ 1
19: end while
20: return (x⋆, y⋆)← (xi, yi)

We consider bounded loss functions f : Rd × Rd → R,
where f is an empirical risk loss over m training examples,
i.e., f := 1

m

∑
i∈[m] fi. We assume we are given access

to f via a randomized oracle F where E[F ] = f. We call
such an oracle a stochastic zeroth-order oracle for f . We
are also given randomized oracles Gx, Gy for ∇xf, ∇yf,
where E[Gx] = ∇xf, and E[Gy] = ∇yf, and call such
oracles stochastic gradient oracles for f .

These oracles are computed by randomly sampling “batches”
B,Bx, By ⊆ [m] (i.i.d., with replacement) and return-
ing F = 1/|B|

∑
i∈B fi, Gx = 1/|Bx|

∑
i∈Bx

∇xfi, and
Gy = 1/|By|

∑
i∈By

∇yfi. For our convergence guarantees,
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we require the following bounds on standard smoothness
parameters for each fi : b, L > 0 such that |fi(x, y)| ≤ b
and ∥∇fi(x, y)−∇fi(x′, y′)∥ ≤ L∥x−x′∥+L∥y−y′∥ for
all x, y and all i. These bounds imply f is also b-bounded,
and L-gradient-Lipschitz.

Algorithm 2 Stochastic gradient ascent (for max-player
updates)
input: Stochastic gradient oracle Gy for∇yf ; initial points
x, y0; error parameter ε′

hyperparameters: η > 0

1: Set j ← 0 , Stop← False
2: while Stop = False do
3: Set gy,j ← Gy(x, yj)
4: if ∥gy,j∥ > ε′ then
5: Set yj+1 ← yj + ηgy,j ,
6: Set j ← j + 1
7: else
8: Set Stop← True
9: end if

10: end while
11: return ystationary ← yj

Overview and intuition of our algorithm. From the cur-
rent point (x, y), Algorithm 1 first proposes a random up-
date ∆ from the given distribution Qx,y to update the min-
player’s parameters to x + ∆. In practice, we oftentimes
choose Qx,y to be the distribution of the (scaled) stochastic
gradient −Gx, although one may implement Algorithm 1
with any choice of distribution Qx,y. Then, it updates
the max-player’s parameters greedily by running gradient
ascent using the stochastic gradients Gy until it reaches
a first-order ε-stationary point y′, that is, a point where
∥∇yf(x + ∆, y′)∥ ≤ ε. Thus, the point y′ satisfies (7).
However, Algorithm 1 still needs to eventually find a pair of
points (x⋆, y⋆) where x⋆ is an approximate local minimum
of the min-player’s objective Lε(·, y⋆) in order to satisfy
(6). Moreover, it must also ensure that y⋆ satisfies (7).

Towards this, Algorithm 1 does the following:

1) The algorithm re-uses this same point y′ to compute an
approximation f(x + ∆, y′) for Lε(x + ∆, y) in order to
have access to the value of the min-player’s objective Lε to
be able to minimize it.
2) If f(x + ∆, y′) is less than f(x, y) the algorithm con-
cludes that Lε(x+∆, y) has decreased and, consequently,
accepts the updates x+∆ and y′; otherwise it rejects both
updates. We show that after accepting both x+∆ and y′,
Lε(x+∆, y′) < Lε(x, y), implying that the algorithm does
not cycle.
3) It then starts the next iteration proposing a random update
which again depends on its current position.
4) While Algorithm 1 does not cycle, to avoid getting stuck,

if it is unable to decrease Lε after roughly 1
ω attempts, it

concludes w.h.p. that the current x is an approximate local
minimum for Lε(·, y) with respect to the given distribu-
tion. This is because, by definition, at an approximate local
minimum, a random update from the given distribution has
probability at most ω of decreasing Lε. We also show that
the current y is an ε-stationary point for f(x, ·).

We conclude this section with a few remarks: 1) In practice
our algorithm can be implemented just as easily with ADAM
instead of SGD, as in some of our experiments (alternately,
one may also be able to substitute other optimization algo-
rithms such as Momentum SGD (Polyak, 1964), ADAGrad
(Duchi et al., 2011), or Adabelief (Zhuang et al., 2020) for
gradient updates). 2) Algorithm 1 uses a randomized accept-
reject rule (similar to simulated annealing)– if the resulting
loss has decreased, the updates for x and y are accepted; oth-
erwise they are only accepted with a small probability e−i/τ1

at each iteration i, where τ1 is a “temperature” parameter. 3)
While our main result still holds if one replaces simulated
annealing with a deterministic acceptance rule, the anneal-
ing step seems to be beneficial in practice in the early period
of training when our algorithm is implemented with ADAM
gradients. 4) Finally, in simulations, we find that Algorithm
1’s implementation can be simplified by taking a small fixed
number of max-player updates at each iteration.

Convergence Guarantee.
Theorem 3.3 (Main result). Algorithm 1, with hyperparam-
eters η > 0, τ1 > 0, given access to stochastic zeroth-order
and gradient oracles for a function f=

∑
i∈[m] fi where

each fi is b-bounded with L-Lipschitz gradient for some
b, L>0, and ε, δ, ω > 0, and an oracle for sampling from
a distribution Qx,y, with probability at least 9/10 returns
(x⋆, y⋆) ∈ Rd×Rd such that, for some ε⋆ ∈ [ 12ε, ε], (x

⋆, y⋆)
is an (ε⋆, δ, ω,Q)-approximate local equilibrium. The num-
ber of stochastic gradient, function, and sampling oracle
calls required by the algorithm is poly(b, L, 1/ε, 1/δ, 1/ω)
and does not depend on the dimension d.

Theorem 3.3 says that our algorithm is guaranteed to con-
verge to an approximate local equilibrium for our frame-
work from any starting point, for any f which is bounded
with Lipschitz gradients including nonconvex-nonconcave
f . As discussed in related work this is in contrast to prior
works which assume e.g., that f(x, y) is concave in y or
that the algorithm is provided with an initial point such that
the underlying continuous dynamics converge to a local
min-max point. The exact number of stochastic gradient,
function, and sampling oracle calls required by the algo-
rithm is Õ(b3L3/(δ3ω3ε4)). We present a proof overview
for Theorem 3.3 next, and the full proof in Appendix A.

In the setting where f(x, y) is α-strongly convex in x and
α-strongly concave in y and has L-Lipschitz gradients, Al-
gorithm 3.3 with x-player updates Qx,y chosen to be the
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x-gradients −∇xf(x, y), outputs a point (x⋆, y⋆) which is
an (ε, ε, 14 , Q)-equilibrium point in poly( 1ε , L,

1
α , D) gradi-

ent evaluations, where D := ∥(x0, y0) − (x†, y†)∥ is the
distance from the initial point to the global min-max point
(x†, y†) . As mentioned in Section 1, since f is strongly
convex-strongly concave with Lipschitz gradients, this point
is also an approximate global min-max point with duality
gap O(ε), and the number of gradient evaluations for our
algorithm to achieve a duality gap O(ε) is independent of
the dimension (Corollary B.10).

Proof overview for Theorem 3.3. For simplicity, as-
sume b=L=τ1=1 and ε=δ=ω. There are two key pieces
to proving Theorem 3.3. The first is to show that our algo-
rithm converges to some point (x⋆, y⋆) in a number of gra-
dient, function, and sampling oracle calls that is poly(1/ε)
and independent of the dimension d (Lemma 3.4). Sec-
ondly, we show that, y⋆ is a first-order ε-stationary point
for f(x⋆, ·), and x⋆ is an approximate local minimum of
Lε(·, y⋆) (Lemma 3.5).

Step 1: Bounding the number of oracle evaluations.

Lemma 3.4 (Informal, see Lemma A.5). Algorithm 1 ter-
minates after at most poly(b, L, 1/ε, 1/δ, 1/ω) gradient, func-
tion, and sampling oracle evaluations.

Proof outline of Lemma 3.4. After Θ(log(1/ε)) iterations
of Algorithm 1, the decaying acceptance rate (Line 1 of
Algorithm 1) ensures that, with probability at least 1−O(ε),
at any iteration i for which Algorithm 1 accepts a proposed
update to (xi, yi), we have that

f(xi+1, yi+1) ≤ f(xi, yi)− ε. (8)
Next, we note that the stopping condition in Line 1 of Algo-
rithm 1 implies our algorithm stops whenever rmax=Θ(1/ε)
proposed steps are rejected in a row. Thus, (8) implies that
for every Θ(rmax) iterations where the algorithm does not
terminate, with probability at least 1−O(ε) the value of the
loss decreases by at least Ω(ε). Since f is 1-bounded, this
implies our algorithm terminates after roughly O(rmax/ε)
iterations of the minimization routine w.h.p. (Prop. A.4).
Next, we use the fact that Gy(x, y) is a batch gradient,

Gy(x, y) = 1/|By|
∑

i∈By
∇yfi(x, y),

of batch size |By| = O(ε−2 log(1/ε)), together with the
Azuma-Hoefding concentration inequality, to show w.h.p.

∥Gy(x, y)−∇yf(x, y)∥ ≤ O(ε), (9)
(Proposition A.1). We then use (9) together with the fact
f is 1-bounded with 1-Lipschitz gradient, to show that,
w.h.p., the maximization subroutine (Algorithm 2) requires
at most poly(1/ε) stochastic gradient ascent steps to reach
an ε-stationary point (Proposition A.3). As each step of the
max-subroutine requires one gradient evaluation, and each
iteration of the min-routine calls the max-subroutine once
(and makes O(1) oracle calls), the total number of oracle

calls is poly(1/ε).

Step 2: Show x⋆ is approximate local minimum forLε(·, y⋆),
and y⋆ is ε-stationary point.

Lemma 3.5 (Informal, see Lemma A.7). W.h.p., the output
(x⋆, y⋆) of Algorithm 1 is an approximate local equilibrium
for our framework, for parameters (ε, δ, ω) and proposal
distribution Q.

Proof outline of Lemma 3.5. Since we have already shown
that Algorithm 2 runs stochastic gradient ascent until it
reaches a ε-stationary point, ∥∇yf(x

⋆, y⋆)∥ ≤ ε. The ac-
cept/reject rule (Line 1 of Algorithm 1) says that the pro-
posed update x⋆ + ∆ is rejected with probability at least
1−O(ε) whenever

f(x⋆ +∆, y′) ≥ f(x⋆, y⋆)− ε, (10)
where the maximization subroutine computes y′ by gradient
ascent on f(x⋆ +∆, ·) initialized at y⋆. And the stopping
condition in Line 1 of Algorithm 1 implies that the last
rmax updates x⋆ + ∆ proposed by the min-player were
all rejected, and hence were sampled from the distribution
Qx⋆,y⋆ . Roughly, this fact together with (10) implies that,
with high probability, the proposal distributionQx⋆,y⋆ at the
point (x⋆, y⋆) satisfies

Pr
∆∼Qx⋆,y⋆

[f(x⋆+∆, y′)≥f(x⋆, y⋆)−ε] ≥ 1−O(r−1
max)

= 1−O(ε). (11)
To show (6) holds, we need to replace f in the above equa-
tion with the min-player’s objective Lε. Towards this end,
we first use the fact that f has O(1)-Lipschitz gradient, to-
gether with (9), to show that, w.h.p., the stochastic gradient
ascent steps of Algorithm 2 form an “ε-increasing” path,
starting at y⋆ with endpoint y′, along which f increases at
rate at least ε (Prop. A.6). Since Lε is the supremum of f at
the endpoints of all such ε-increasing paths starting at y⋆,

f(x⋆ +∆, y′) ≤ Lε(x
⋆ +∆, y⋆). (12)

Finally, recall (Section 3) that ∥∇yf(x
⋆, y⋆)∥ ≤ ε⋆ implies

that Lε(x
⋆, y⋆) = f(x⋆, y⋆), and hence (7) holds. Plugging

this and (12) into (11) implies that
Pr

∆∼Qx⋆,y⋆

[Lε(x
⋆+∆, y′)≥Lε(x

⋆, y⋆)−ε]≥1−O(ε),

and hence that (6) holds.

4. Empirical Results
Performance on Test Functions. We apply our algorithm
to three test loss functions previously considered in (Wang
et al., 2019) (Figure 2):
F1(x, y) = −3x2−y2+4xy, F2(x, y) = 3x2+y2+4xy,

F3(x, y) = (4x2−(y−3x+0.05x3)2−0.1y4)e−0.01(x2+y2).

We choose these functions because they are known to be
challenging for gradient-based algorithms.
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Figure 2. Our algorithm (blue), GDA (green), and OMD (red) on test functions F1 (left), F2 (center), and F3 (right). F1 and F3 have
global min-max points at (0,0) (yellow star), and F2 has no min-max points since minx∈R maxy∈R F2(x, y) = +∞.

Both F1 and F3 have global min-max at (0, 0), yet popular
gradient-based algorithms including GDA, OMD, and extra-
gradient (EG) algorithm were shown in (Wang et al., 2019)
not to converge on these functions. In contrast, we observe
that our algorithm finds the global min-max points of both
F1 and F3.

To see why our algorithm converges, note that it uses the
maximization subroutine (Algorithm 2) to first find the
“ridge” along which f(x, y) is a local maximum in the y
variable, and to then return to a point on the ridge every
time the min-player proposes an update. Since the min-
player in our algorithm only accepts updates which lead to
a net decrease in f , our algorithm eventually finds the point
(0, 0) on this ridge where f is minimized. In comparison,
for GDA and OMD, the max-player’s gradient∇yf is zero
along the ridge where f(x, y) is a local maximum in the
y variable, while the min-player’s gradient −∇xf can be
large; on F1 and F3 −∇xf points away from this ridge, and
this can prevent GDA and OMD from converging to the
point (0, 0). In case of F2, minx∈R maxy∈R f(x, y)=+∞.
On F2, GDA, OMD, and EG all converge to (0, 0) which
is neither a global min-max nor a local min-max point. In
contrast, our algorithm diverges to infinity.

When applying our algorithm we use η=0.05 and
Qx,y∼N(0, 0.25). For GDA and OMD we use learning
rate 0.05 (see Appendix E.1).

Performance when Training GANs. We apply our al-
gorithm to train GANs to learn from both synthetic and
real-world datasets. When training on both datasets, we
choose the proposal distribution Q in our algorithm to be
the (ADAM) stochastic gradients for −∇xf . We formulate
GAN using our framework with cross entropy loss,

f(x, y)=− (log(Dy(ζ))+ log(1−Dy(Gx(ξ))) ,
where x, y are the parameters of generator G and discrimina-
tor D respectively, ζ is sampled from data, and ξ∼N(0, Id).

To adapt Algorithm 1 to training GANs, we make certain
simplifications: 1) we use a fixed temperature τ at all iter-
ations i, making it simpler to choose a good temperature
value, rather than a temperature schedule; 2) we replace the
randomized acceptance rule with a deterministic rule: If

Figure 3. Our algorithm, unrolled GANs with k=6 unrolling steps,
OMD, and GDA with k=6 max-player steps trained on a 4-
Gaussian mixture for 1500 iterations. Our algorithm used k=6
max-player steps and acceptance rate e−

1/τ=1/4. Plots show the
points generated by each algorithm after the specified iterations.

Table 1. Gaussian mixture dataset. The fraction of times (out of
20 runs) each method generates m modes, for m∈[4]. k is the
number of max-player steps per iteration. Our algorithm learns 4
modes in more runs than other algorithms.

Number of modes learnt
Method 1 2 3 4

This paper 0 0.15 0.15 0.70
GDA (k = 1) 0.95 0.05 0 0
GDA (k = 6) 0.05 0.75 0 0.20
OMD 0.80 0.20 0 0
Unrolled-GAN 0.75 0.15 0.10 0

fnew≤fold we accept, and if fnew>fold we only accept if i
is a multiple of e1/τ (i.e., average acceptance rate of e−1/τ );
3) we take a fixed number of max-player steps at each itera-
tion, instead of taking as many steps as needed to achieve
a small gradient. These simplifications do not significantly
affect our algorithm’s performance (see Appendix H).

Gaussian mixture dataset. This synthetic dataset consists of
512 points sampled from a mixture of four equally weighted
Gaussians in two dimensions with standard deviation 0.01
and means at (0, 1), (1, 0), (−1, 0), (0,−1). Since modes in
this dataset are well-separated, mode collapse can be clearly
detected. We report the number of modes learnt by the GAN
from each training algorithm across iterations.

Baselines. We compare our algorithm’s performance to
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GDA Our algorithm

Figure 4. Images generated by the GAN trained using GDA vs
our algorithm (for 1000 iterations) on the 01-MNIST dataset. See
Appendix G for more results and details.

GDA, OMD (Daskalakis et al., 2018), and unrolled GAN
(Metz et al., 2017). For the networks and hyperparameter
details, see Appendix E.3.

Results on Gaussian mixture dataset. We trained GANs on
the Gaussian mixture dataset for 1500 iterations using our
algorithm, unrolled GANs with 6 unrolling steps, GDA with
k=1 and k=6 max-player steps (using Adam updates), and
OMD with k=6 max-player steps. We repeated each simula-
tion 20 times. The performance of the output GAN learned
by all algorithms is presented in Table 1, while Figure 3
shows the samples from generators of the different training
algorithms at various iterations (see Appendix E.4 for im-
ages from all runs). The GAN returned by our algorithm
learns all four modes in 70% of the runs, significantly more
than the other training algorithms. Thus, for this synthetic
dataset, our algorithm is the most effective in avoiding mode
collapse and cycling in comparison to baselines.

Results on Real-World Datasets. While we focus on 2-D
and Gaussian mixture GAN simulations in this section to il-
lustrate the convergence properties of our algorithm, we also
ran our algorithm on two real-world datasets, 01-MNIST
and CIFAR-10. For the 01-MNIST dataset, samples gen-
erated from GANs trained using GDA and our algorithm
are presented in Figure 4. We observed that GANs trained
on the 01-MNIST dataset with the gradient descent-ascent
algorithm (GDA) exhibit mode collapse in 77% of the trial
runs (Figure 18, in Appendix G), while GANs trained with
our algorithm do not exhibit mode collapse in any of the
training runs (Figure 19 in Appendix G). For the CIFAR-
10 dataset, samples generated from GANs trained using
our algorithm are presented in Figure 5. On CIFAR-10,
our algorithm achieved a mean Inception score of 4.68 af-
ter 50k iterations (across 20 repetitions); in comparison,
GDA achieved a mean Inception score of 4.51 and OMD
achieved a mean Inception score of 1.96 (Table 2). Detailed
results and methodologies used for 01-MNIST and CIFAR-
10 datasets are presented in Appendix G and F respectively.

Experiments with GANs also demonstrate that our algorithm
scales to high-dimensional parameter spaces; the dimension

Table 2. CIFAR-10 dataset: The mean (and standard error) of In-
ception Scores of models from different training algorithms. Note
that, GDA and our algorithm return generators with similar mean
performance; however, the standard error of the Inception Score in
case of GDA is relatively larger.

Iteration
Method 5000 25000 50000

Ours 2.71 (0.28) 4.10 (0.35) 4.68 (0.39)
GDA 2.80 (0.52) 4.28 (0.77) 4.51 (0.86)
OMD 1.60 (0.18) 1.73 (0.25) 1.96 (0.26)

Figure 5. Images generated by the GAN trained using our algo-
rithm on the CIFAR-10 dataset. See Appendix F for more results
and samples from GANs trained using other baselines.

d of the space of trainable parameters used in the GAN
experiments was around 3.5× 104 for the GANs trained on
the Gaussian mixture dataset, 3× 106 for 01-MNIST and
2× 106 for CIFAR-10.

5. Conclusion and Future Directions
We introduce a new variant of the min-max optimization
framework, and provide a gradient-based algorithm with
efficient convergence guarantees to an equilibrium for this
framework, for nonconvex-nonconcave losses and from any
initial point. Empirically, we observe our algorithm con-
verges on many challenging test functions and shows im-
proved stability when training GANs.

While we show our algorithm runs in time polynomial in
b, L, and independent of dimension d, we do not believe
our bounds are tight and it would be interesting to show the
run-time is linear in b, L. Moreover, while our guarantees
hold for any distribution Q, it would be interesting to see if
a specialized analysis for adaptively preconditioned distribu-
tions leads to improved bounds. Our framework can also be
extended to general settings like multi-agent minimization
problems arising in meta-learning (Finn et al., 2017).
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A. Proof of Theorem 3.3
In this section we give the proof of Theorem 3.3.

Setting parameters: We start by setting parameters which will be used in the proof. Let b0 = |B|, by = |By| denote
the batch sizes. And note that the fact that each fi has L-Lipschitz gradient for all i ∈ [m], implies that each fi is also
L1-Lipschitz, where L1 =

√
2Lb.

For the theoretical analysis, we assume 0 < ε ≤ 1, and set the following parameters:

1. ν = 1
20

[
320b(L+1)

ε2

(
τ1 log(

128
ω2 ) +

2048b
ωδ log2( 100ω (τ1 + 1)(8 b

δ + 1)) + 1

)]−2

2. rmax = 128
ω log2

(
100
ω (τ1 + 1)(8 b

δ + 1) + log( 1ν )

)
3. Define I := τ1 log(

rmax

ν ) + 8rmax
b
δ + 1

4. η = min( 1
10L ,

1
8LI )

5. Define J := 16b
ηε2

6. ε̂1 = min(εηL, δ8 )

7. b0 = ε̂−2
1 3002b2 log(1/ν)

8. by = ε−2ε̂−2
1 3002L2

1 log(1/ν)

In particular, we note that ν ≤ 1
20 (2J I + 2× (rmax

2b
1
4 δ

+ 1))−1, and rmax ≥ 4
ω log( 100Iω ). At every iteration i ≤ I , where

we set ε′ = εi.

We also have

ε′ ≤ ε0
(

1

1− 2ηL

)2i

≤ ε. (13)

To see why (13) holds, note that since we set the hyperparameter η to be η = min( 1
10L ,

1
8LI ), we have 1− 2ηL ≤ 1− 1

4I .
Since we also set ε0 = ε

2 , we therefore have that for all i ≤ I,

ε0(1− 2ηL)−2i ≤ ε

2
(1− 1

4I
)−2I

≤ ε,
where the second inequality holds because (1− 1

2t )
−t ≤ 2 for all t ≥ 1.

A.1. Step 1: Bounding the Number of Gradient, Function, and Sampling Oracle Evaluations

The first step in our proof is to bound the number of gradient, function, and sampling oracle evaluations required by our
algorithm. Towards this end, we begin by showing a concentration bound (Proposition A.1) for the value of the stochastic
gradient and function oracles used by our algorithm. Next, we bound the number of iterations of its discriminator update
subroutine Algorithm 2 (Proposition (17)), and the number of iterations in Algorithm 1 (Proposition A.4); together, these
two bounds imply a poly(b, L, 1/ε, 1/δ, 1/ω) bound on the number of gradient, function, and sampling oracle evaluations
(Lemma A.5).

Proposition A.1. For any ε̂1, ν > 0, if we use batch sizes by = ε−2ε̂−2
1 3002L2

1 log(1/ν) and b0 = ε̂−2
1 3002b2 log(1/ν), we

have that

P
(
∥Gy(x, y)−∇yf(x, y)∥ ≥

ε̂1
10

)
< ν, (14)

and

P
(
|F (x, y)− f(x, y)| ≥ ε̂1

10

)
< ν. (15)
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Proof. From Section 3 we have that

Gy(x, y)−∇yf(x, y) =
1

by

∑
i∈By

[∇yfi(x, y)−∇yf(x, y)],

where the batch By ⊆ [m] is sampled iid with replacement from [m].

But since each fi has L-Lipschitz gradient, we have (with probability 1) that
∥∇yfi(x, y)−∇yf(x, y)∥ ≤ ∥∇yfi(x, y)∥+ ∥∇yf(x, y)∥ ≤ 2L1.

Now,
E[∇yfi(x, y)−∇yf(x, y)] = E[∇yfi(x, y)− E[∇yfi(x, y)]] = 0.

Therefore, by the Azuma-Hoefding inequality for mean-zero bounded vectors, we have

P
(∥∥∥∥ 1

by

∑
i∈By

[∇yfi(x, y)−∇yf(x, y)]

∥∥∥∥ ≥ s
√
by + 1

by
2L1

)
< 2e1−

1
2 s

2

∀s > 0.

Hence, if we set s = 6 log
1/2( 2ν ), we have that 7 log1/2( 2ν )

√
by + 1 ≥ s

√
by + 1 and hence that

P
(∥∥∥∥ 1

by

∑
i∈By

[∇yfi(x, y)−∇yf(x, y)]

∥∥∥∥ ≥ 7 log
1/2( 2ν )

√
by

by
2L1

)
< ν.

Therefore,

P
(∥∥∥∥ 1

by

∑
i∈By

[∇yfi(x, y)−∇yf(x, y)]

∥∥∥∥ ≥ ε̂1
10

)
< ν

which completes the proof of Inequality (14).

Inequality (15) follows from the exact same steps as the proof of Inequality (14), if we replace the bound L1 for ∥∇yfi(x, y)∥
with the bound b on |fi(x, y)|.

Proposition A.2. For every j, with probability at least 1− ν we have that either ∥Gy(x, yj)∥ < ε, or that

∥∇yf(x, yj)−Gy(x, yj)∥ ≤
1

10
ηL×min

(
∥Gy(x, yj)∥, ∥∇yf(x, yj)∥+

ε̂1
10

)
(16)

and
∥yj+1 − yj∥ = η∥Gy(x, yj)∥ ≤ 2η∥∇yf(x, yj)∥ (17)

Proof. By Proposition A.1, we have that, with probability at least 1− ν, and whenever ∥Gy(x, yj)∥ ≥ ε,

∥∇yf(x, yj)−Gy(x, yj)∥ <
ε̂1
10
≤ 1

10
εηL ≤ 1

10
ηL×min

(
∥Gy(x, yj)∥, ∥∇yf(x, yj)∥+

ε̂1
10

)
,

where the first inequality holds by Proposition A.1, the second inequality holds since ε̂1 ≤ εηL, and the third inequality
holds since ∥Gy(x, yj)∥ ≥ ε and since (again by Proposition A.1) ∥∇yf(x, yj)−Gy(x, yj)∥ < ε̂1

10 . This proves Inequality
(16).

Moreover, we have that, whenever ∥Gy(x, yj)∥ ≥ ε and in the same probability 1− ν event where (16) holds,

∥ηGy(x, yj)∥ ≤ η(∥∇yf(x, yj)∥+
ε̂1
10

). (18)

Thus,

2η∥∇yf(x, yj)∥ ≥ 2η

(
∥Gy(x, yj)∥ −

ε̂1
10

)
≥ η∥Gy(x, yj)∥ = ∥yj+1 − yj∥,

where the first inequality holds by (18), the second inequality holds since ∥Gy(x, yj)∥ ≥ ε ≥ ε̂1, and the equality holds by
Step 2 of Algorithm 2. This proves Inequality (17).

Proposition A.3. Algorithm 2 terminates in at most J := 16b
ηε2 iterations of its “While” loop, with probability at least

1− ν × J .
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Proof. Let jmax ∈ N ∪ {∞} be the number of iterations of the “While” loop in Algorithm 2.

First, we note that the stopping condition for Algorithm 2 implies that

∥Gy(x, yj)∥ ≥
1

2
ε (19)

for all j ≤ jmax − 1.

Since f has L-Lipschitz gradient, there exits a vector u, with ∥u∥ ≤ L∥yj+1 − yj∥, such that, for all j ≤ jmax − 1

f(yj+1)− f(yj) = ⟨yj+1 − yj , ∇yf(x, yj) + u⟩ (20)
= ⟨yj+1 − yj , ∇yf(x, yj)⟩+ ⟨yj+1 − yj , u⟩
= ⟨ηGy(x, yj), Gy(x, yj)⟩ − ⟨ηGy(x, yj), Gy(x, yj)−∇yf(x, yj)⟩+ ⟨ηGy(x, yj), u⟩
≥ η∥Gy(x, yj)∥2 − η∥Gy(x, yj)∥ × ∥Gy(x, yj)−∇yf(x, yj)∥ − η∥Gy(x, yj)∥ × ∥u∥
Prop.A.2

≥ η∥Gy(x, yj)∥2 − η∥Gy(x, yj)∥ ×
ηL

10
∥Gy(x, yj)∥ − η∥Gy(x, yj)∥ × L∥yj+1 − yj∥

= η∥Gy(x, yj)∥2 −
1

10
η2L∥Gy(x, yj)∥2 − η∥Gy(x, yj)∥ × L∥ηGy(x, yj)∥

≥ 1

8
η∥Gy(x, yj)∥2

Eq.19
≥ 1

2
ηε2,

with probability at least 1 − ν, where the second-to-last inequality holds since η ≤ 1
10L . Existence of the vector u in

Equation (20) is guaranteed by the fundamental theorem of calculus. Namely, by the fundamental theorem of calculus we
have

f(yj+1)− f(yj) =
∫ 1

0

⟨yj+1 − yj ,∇yf(x, yj + t(yj+1 − yj))⟩dt.

Thus (20) holds for u =
∫ 1

0
∇yf(x, yj + t(yj+1 − yj)) − ∇yf(x, yj)dt. Note that this choice of u satisfies ∥u∥ ≤

L∥yj+1 − yj∥, since ∥∇yf(x, yj + t(yj+1 − yj))−∇yf(x, yj)∥ ≤ L∥yj+1 − yj∥ for t ∈ [0, 1] because f has L-Lipschitz
gradient.

Since f takes values in [−b, b], Inequality (20) implies that Algorithm 2 terminates in at most J := 16b
ηε2 iterations of its

“While” loop, with probability at least 1− ν × J .

Proposition A.4. Algorithm 1 terminates in at most I := τ1 log(
rmax

ν ) + 8rmax
b
δ + 1 iterations of its “While” loop, with

probability at least 1− 2ν × (rmax
2b
1
4 δ

+ 1).

Proof. For any i > 0, let Ei be the “bad” event that both f(xi+1, yi+1)− f(xi, yi) > − δ
4 and Accepti = True.

Then by Proposition A.1, since ε̂1
10 ≤

δ
8 , we have that

P(Ei) ≤ e−
i
τ1 + ν. (21)

Define Î := τ1 log(
rmax

ν ).

Then for i ≥ Î, from Line 1 of Algorithm 1 we have by Inequality (21) that
P(Ei) ≤ 2ν.

Define h := rmax
2b
1
4 δ

+ 1. Then

P

Î+h⋃
i=Î

Ei

 ≤ 2ν × h. (22)

Since f takes values in [−b, b], if
⋃Î+h

i=Î Ei does not occur, the number of accepted steps over the iterations Î ≤ i ≤ Î + h
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(that is, the size of the set {i : Î ≤ i ≤ Î + h,Accepti = True}) is at most 2b
1
4 δ

.

Therefore, since h = rmax
2b
1
4 δ

+ 1, we must have that there exists a number i, with Î ≤ i ≤ i+ rmax ≤ Î + h, such that
Accepti = False for all i ∈ [i, i+ rmax].

Therefore the condition in the While loop (Line 1) of Algorithm 1 implies that Algorithm 1 terminates after at most
i+ rmax ≤ Î + h iterations of its While loop, as long as

⋃Î+h

i=Î Ei does not occur.

Therefore, Inequality (22) implies that, with probability at least 1− 2ν × (rmax
2b
1
4 δ

+ 1), Algorithm 1 terminates after at
most

Î + h = τ1 log(
rmax

ν
) + 8rmax

b

δ
+ 1

iterations of its “While” loop.

Lemma A.5. With probability at least 1− 3νJ I, Algorithm 1 terminates after at most (τ1 log( rmax

ν ) + 4rmax
b
δ + 1)×

(J × by + b0 + bx) gradient, function, and sampling oracle evaluations.

Proof. Each iteration of the While loop in Algorithm 1 computes one batch gradient with batch size bx, one stochastic
function evaluation of batch size b0, generates one sample from the proposal distribution Q, and calls Algorithm 2 exactly
once.

Each iteration of the While loop in Algorithm 2 computes one batch gradient with batch size by. The result then follows
directly from Propositions A.4 and A.3.

A.2. Step 2: Proving the Output (x⋆, y⋆) of Algorithm 1 is an Approximate Local Equilibrium

The second step in our proof is to show that the output of Algorithm 1 is an approximate local equilibrium (Definition 3.2)
for our framework with respect to ε, δ, ω > 0 and the distribution Qx,y (Lemma A.7). Towards this end, we first show
that the steps taken by the discriminator update subroutine (Algorithm 2) form a path along which the loss f is increasing
(Proposition A.6).

Recall the paths γ(t) from Definition 3.1. From now on we will refer to such paths as “ε-increasing paths”. That is, for any
ε > 0, we say that a path γ(t) is an “ε-increasing path” if at every point along this path we have that

∥∥ d
dtγ(t)

∥∥ = 1 and that
d
dtf(x, γ(t)) ≥ ε.
Proposition A.6. Every time Algorithm 2 is called we have that, with probability at least 1 − 2νJ , the path consisting
of the line segments [yj , yj+1] formed by the points yj computed by Algorithm 2 has a parametrization γ(t) which is an
(1− 2ηL)ε′-increasing path.

Proof. We consider the following continuous unit-speed parametrized path γ(t):

γ(t) = yj + (t−
j−1∑
k=1

∥vk∥)
vj
∥vj∥

, ∀ t ∈

[
j−1∑
k=1

∥vk∥,
j∑

k=1

∥vk∥

]
, j ∈ [jmax],

where vj := ηGy(x, yj) and jmax is the number of iterations of the While loop of Algorithm 2.

Next, we show that d
dtf(x, γ(t)) ≥ ε

′. For each j ∈ [jmax] we have that
d

dt
f(x, γ(t)) ≥ [∇yf(x, yj)− L∥yj+1 − yj∥u]⊤

vj
∥vj∥

(23)

= [∇yf(x, yj)− Lη∥Gy(x, yj)∥u]⊤
vj
∥vj∥

Prop.A.1

≥
[
Gy(x, yj)−

1

10
ηL∥Gy(x, yj)∥w − Lη∥Gy(x, yj)∥u

]⊤
Gy(x, yj)

∥Gy(x, yj)∥

≥ ∥Gy(x, yj)∥ −
1

10
ηL∥Gy(x, yj)∥ − Lη∥Gy(x, yj)∥

≥ (1− 2ηL)∥Gy(x, yj)∥
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≥ (1− 2ηL)ε′ ∀t ∈

[
j−1∑
k=1

∥vk∥,
j∑

k=1

∥vk∥

]
,

with probability at least 1− ν for some unit vectors u,w ∈ Rd.

But by Proposition A.3 we have that jmax ≤ J with probability at least 1− ν × J . Therefore inequality (23) implies that

d

dt
f(x, γ(t)) ≥ (1− 2ηL)ε′ ∀t ∈ [0,

jmax∑
k=1

∥vk∥],

with probability at least 1− 2νJ .

Lemma A.7. Let i⋆ be such that i⋆ − 1 is the last iteration i of the “While” loop in Algorithm 1 for which Accepti = True.
Then with probability at least 1− 2νJ I − 2ν × (rmax

2b
1
4 δ

+ 1) we have that

∥∇yf(x
⋆, y⋆)∥ ≤ (1− ηL)εi⋆ . (24)

Moreover, with probability at least 1− ω
100 − 2ν × (rmax

2b
1
4 δ

+ 1) we have that

P∆∼Qx⋆,y⋆

(
Lεi⋆ (x

⋆ +∆, y⋆) ≤ Lεi⋆ (x
⋆, y⋆)− 1

2
δ

∣∣∣∣x⋆, y⋆) ≤ 1

2
ω. (25)

and that
ε

2
≤ εi⋆ ≤ ε. (26)

Proof. First, we note that (x⋆, y⋆) = (xi, yi) for all i ∈ {i⋆, . . . , i⋆ + rmax}, and that Algorithm 1 stops after exactly
i⋆ + rmax iterations of the “While” loop in Algorithm 1.

Let Hi be the “bad” event that, when Algorithm 2 is called during the ith iteration of the “While” loop in Algorithm 1, the
path traced by Algorithm 2 is not an εi-increasing path. Then, by Proposition A.6 we have that

P(Hi) ≤ 2νJ . (27)

Let Ki be the “bad” event that ∥Gy(xi, yi)−∇yf(xi, yi)∥ ≥ ε̂1
10 . Then by Propositions A.1 and A.3 we have that

P(Ki) ≤ 2νJ . (28)

Whenever Kc
i occurs we have that

∥∇yf(xi, yi)∥ ≤ ∥Gy(xi, yi)∥+ ∥Gy(xi, yi)−∇yf(xi, yi)∥ (29)
≤ (1− 2ηL)εi + ∥Gy(xi, yi)−∇yf(xi, yi)∥

≤ (1− 2ηL)εi +
ε̂1
10

≤ (1− ηL)εi,
where the second Inequality holds by Line 2 of Algorithm 2, and the last inequality holds since ε̂1

10 ≤ ηL.

Therefore, Inequalities (28) and (29) together with Proposition A.4 imply that
∥∇yf(x

⋆, y⋆)∥ ≤ (1− ηL)εi⋆
with probability at least 1− 2νJ I − 2ν × (rmax

2b
1
4 δ

+ 1). This proves Inequality (24).

Inequality (29) also implies that, whenever Kc
i occurs, the set Pεi(xi, yi) of endpoints of εi-increasing paths with initial

point yi (and x-value xi) consists only of the single point yi. Therefore, we have that
Lεi(xi, yi) = f(xi, yi) (30)

whenever Kc
i occurs.

Moreover, whenver Hc
i occurs we have that Yi+1 is the endpoint of an εi-increasing path with starting point (xi +∆i, yi).

Now, Lεi(xi + ∆i, yi) is the supremum of the value of f at the endpoints of all εi-increasing paths with starting point
(xi +∆i, yi). Therefore, we must have that

Lεi(xi +∆i, yi) ≥ f(xi +∆i,Yi+1) (31)
whenever Hc

i occurs.
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Therefore,

P∆∼Qxi,yi

(
Lεi(xi +∆, yi) > Lεi(xi, yi)−

1

2
δ

∣∣∣∣xi, yi) (32)

Eq.30,31
≥ P∆∼Qxi,yi

(
f(xi +∆,Yi+1) > f(xi, yi)−

1

2
δ

∣∣∣∣xi, yi)− P(Hi)− P(Ki)

Prop.A.1

≥ P∆∼Qxi,yi

(
F (xi +∆,Yi+1) > F (xi, yi)−

1

4
δ

∣∣∣∣xi, yi)− 2ν − P(Hi)− P(Ki)

≥ P
(
Accepti = False

∣∣xi, yi)− 2ν − P(Hi)− P(Ki)

Eq.27,28
≥ P

(
Accepti = False

∣∣xi, yi)− 2ν − 2νJ − 2νJ , ∀i ≤ I,

where the second inequality holds by Proposition A.1, since ε̂1
10 ≤

δ
8 .

Define

pi := P∆∼Qxi,yi

(
Lεi(xi +∆, yi) > Lεi(xi, yi)−

1

2
δ

∣∣∣∣xi, yi)
for every i ∈ N. Then Inequality (32) implies that

P
(
Accepti = False

∣∣xi, yi) ≤ pi + ν(4J + 2) ≤ pi +
1

8
ω ∀i ≤ I, (33)

since ν ≤ ω
32J+16 .

We now consider what happens for indices i for which pi ≤ 1− 1
2ω. Since (xi+s, yi+s) = (xi, yi) whenever Accepti+k =

False for all 0 ≤ k ≤ s, we have by Inequality (33) that

P
(
∩rmax
s=0 {Accepti+s = False}

∣∣∣∣pi ≤ 1− 1

2
ω

)
≤ (1− 1

4
ω)rmax ≤ ω

100I
∀i ≤ I − rmax

since rmax ≥ 4
ω log( 100Iω ).

Therefore, with probability at least 1− ω
100I × I = 1− ω

100 , we have that the event ∩rmax
s=0 {Accepti+s = False} does not

occur for any i ≤ I − rmax for which pi ≤ 1− 1
2ω.

Recall from Proposition A.4 that Algorithm 1 terminates in at most I iterations of its “While” loop, with probability at least
1− 2ν × (rmax

2b
1
4 δ

+ 1).

Therefore,

P
(
pi⋆ > 1− 1

2
ω

)
≥ 1− ω

100
− 2ν ×

(
rmax

2b
1
4δ

+ 1

)
. (34)

In other words, by the definition of pi⋆ , Inequality (34) implies that with probability at least 1− ω
100 − 2ν × (rmax

2b
1
4 δ

+ 1),
the point (x⋆, y⋆) is such that

P∆∼Qx⋆,y⋆

(
Lεi⋆ (x

⋆ +∆, y⋆) ≤ Lεi⋆ (x
⋆, y⋆)− 1

2
δ

∣∣∣∣x⋆, y⋆) ≤ 1

2
ω.

This completes the proof of inequality (25).

Finally we note that when Algorithm 1 terminates in at most I iterations of its “While” loop , we have

εi⋆ = ε0

(
1

1− 2ηL

)2i⋆

≤ ε0
(

1

1− 2ηL

)2I

≤ ε, (35)

since η ≤ 1
8LI . This completes the proof of Inequality (26).

We can now complete the proof of the main theorem:

Proof of Theorem 3.3. First, by Lemma A.5, with probability at least 1− 3νJ I ≥ 99
100 , our algorithm converges to some
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point (x⋆, y⋆) after at most (τ1 log( rmax

ν ) + 4rmax
b
δ + 1)× (J × by + b0 + bx) gradient, function, and sampling oracle

evaluations, which is polynomial in b, L1, L, 1/ε, 1/δ, 1/ω, and does not depend on the dimension d.

By Lemma A.7, if we set ε⋆ = εi⋆ , we have that Inequalities (7) and (6) hold for parameters ε⋆ ∈ [ 12ε, ε], δ, ω and distribution
Q, with probability at least 1− 2νJ I − 2ν × (rmax

2b
1
4 δ

+ 1) ≥ 19
20 , since ν ≤ 1

20 (2J I + 2× (rmax
2b
1
4 δ

+ 1))−1.

B. Equilibrium in the Strongly Convex-Strongly Concave Setting
In this section we show that, if f is strongly-convex strongly-concave with Lipschitz gradient, if we choose Q to be the
distribution of (either deterministic or stochastic) gradients with mean −∇xf , then an (ε, δ, ω,Q)-equilibrium corresponds
to an “aproximate” global min-max point (Theorem B.1). We then show that this fact, together with the proof of our
main result, implies that when our algorithm is applied to α-strongly-convex α-strongly-concave objective functions f
with L-Lipschitz gradient, it finds an “approximate” global min-max point with duality gap O(ε) in a number of gradient
evaluations that is polynomial in L, 1ε ,

1
α , L,D (Corollary B.10).

For any L > 0, we say that a function ψ : Rd → R has L-Lipschitz gradient (equivalently, “L-smooth”) if for any x, θ ∈ Rd,
∥∇ψ(x)−∇ψ(θ)∥ ≤ L× ||x− θ∥.

And for any α > 0 we say that ψ is α-strongly convex if for any x, θ ∈ Rd,
(∇ψ(x)−∇ψ(θ))⊤(x− θ) ≥ α∥x− θ∥2.

Similarly, we say that ψ is α-strongly concave if −ψ is α strongly-convex.

In the following, we assume that the proposal distribution is a stochastic gradient for −∇xf with some variance σ2 ≥ 0; for
simplicity we set σ2 = 0 in Corollary B.10, although this is not strictly necessary.

Assumption B.1. (σ ≥ 0) For every (x, y) ∈ Rd × Rd, the distribution Qx,y satisfies E∆∼Qx,y
[∆] = − 1

2L∇xf(x, y) and
E∆∼Qx,y

[∥ − 1
2L∇xf(x, y)−∆∥2] ≤ σ2.

Theorem B.2. Suppose that f : Rd × Rd → R is α-strongly convex in x and α-strongly concave in y, with L-Lipschitz
gradient in both variables for some L ≥ α > 0. Then, for any ε, δ, ω > 0 with ω ≤ 1

2 , and any proposal distribution Qx,y

satisfying Assumption (B.1) for some σ ≥ 0, we have that any point (x⋆, y⋆) which is an (ε, δ, ω,Q)-approximate local
equilibrium of f also has duality gap satisfying

max
y∈Rd

f(x⋆, y)− min
x∈Rd

f(x, y⋆) ≤ Lε2

2α2
+
L3

α2

(√
δ + L

(
2
ε

α
+

1

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
+ L

ε

α

)2

. (36)

Before proving Theorem B.2, we first show a number of Lemmas.

In the following we set µ := 1
L .

Lemma B.3. For any x,w ∈ Rd,

∥argmaxz∈Rdf(x, z)− argmaxz∈Rdf(θ, z)∥ ≤
L

α
∥θ − x∥ (37)

Proof. Since f(x, ·) is concave, we have that a point z is a global maximum if and only if∇yf(x, z) = 0. Since f(x, ·) is
α-strongly concave for α > 0, this global maximum point is unique.

Let z⋆ be the global maximum of f(x, ·), and let ζ⋆ be the global maximum of f(θ, ·).

Then, since f(x, ·) is α-strongly concave, ∥∇yf(x, z)∥ ≥ α∥z − z⋆∥ for all z ∈ Rd.

Moreover, since f is L-smooth, we also have that ∥∇yf(x, z)−∇yf(θ, z)∥ ≤ L∥θ − x∥ for every x, θ, z ∈ Rd.

Therefore,

∥∇yf(θ, z)∥ ≥ ∥∇yf(x, z)∥ − ∥∇yf(θ, z)−∇yf(x, z)∥
≥ ∥∇yf(x, z)∥ − L∥θ − x∥
≥ α∥z − z⋆∥ − L∥θ − x∥. (38)
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Since α∥z − z⋆∥ − L∥θ − x∥ > 0 for any z ∈ Rd such that ∥z − z⋆∥ > L
α∥θ − x∥, (38) implies that

∥argmaxz∈Rdf(x, z)− argmaxz∈Rdf(θ, z)∥ ≤
L

α
∥θ − x∥ (39)

Lemma B.4. If (x,w) ∈ Rd × Rd are such that ∥∇yf(x,w)∥ ≤ ε then

∥w − argmaxz∈Rdf(x, z)∥ ≤
ε

α
.

Proof. Let z⋆ be the unique global maximum point of f(x, ·).

Since f(x, ·) is α-strongly concave, we have that
α∥w − z⋆∥ ≤ ∥∇yf(x,w)∥ ≤ ε (40)

Therefore, (40) implies that

∥w − argmaxz∈Rdf(x, z)∥ = ∥w − z⋆∥ ≤
ε

α
. (41)

Lemma B.5. For any x, θ ∈ Rd,

∥Lε(x, y)− Lε(θ, y)| ≤ L
(
2
ε

α
+
L

α
∥θ − x∥

)

Proof. Denote by P̂ε(x, y) ⊆ Pε(x, y) the collection of endpoints of ε-greedy paths where the endpoint z of the path
satisfies∇yf(x, z) = ε. Since f is smooth, we have that supz∈Pε(x,y) f(x, z) = supz∈P̂ε(x,y)

f(x, z) (this is true since, if
the endpoint z of an ε-greedy path does not satisfy ∥∇yf(x, z)∥ = ε, then the ε-greedy path can be extended to achieve a
higher value of f ).

Thus, we have that
|Lε(x, y)− Lε(θ, y)| = | sup

z∈Pε(x,y)

f(x, z)− sup
w∈Pε(θ,y)

f(θ, w)| (42)

= | sup
z∈P̂ε(x,y)

f(x, z)− sup
w∈P̂ε(θ,y)

f(θ, w)|

≤ sup
z∈P̂ε(x,y),w∈P̂ε(θ,y)

|f(x, z)− f(θ, w)|

≤ sup
z∈P̂ε(x,y),w∈P̂ε(θ,y)

L× ∥w − z∥

≤ sup
z∈P̂ε(x,y),w∈P̂ε(θ,y)

L×
(
∥w − argmaxζ∈Rdf(θ, ζ)∥

+∥argmaxζ∈Rdf(θ, ζ)− argmaxζ∈Rdf(x, ζ)∥+ ∥argmaxζ∈Rdf(x, ζ)− z∥
)

Lemmas B.3, B.4
≤ L×

(
ε

α
+
L

α
∥θ − x∥+ ε

α

)
= L×

(
2
ε

α
+
L

α
∥θ − x∥

)
,

where the last inequality holds by Lemma B.3, and also by Lemma B.4 because ∥∇yf(x, z)∥ = ε whenever z ∈ P̂ε(x, y)
and ∥∇yf(θ, w)∥ = ε whenever w ∈ Pε(θ, y).

Lemma B.6. For any x, y ∈ Rd we have

|Lε(x, y)− L0(x, y)| ≤ L
ε2

2α2
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Proof.
|Lε(x, y)− L0(x, y)| = | sup

z∈P̂ (x,y)

f(x, z)− f(x, argmaxz∈Rdf(x, z))| (43)

≤ sup
z∈P̂ (x,y)

|f(x, z)− f(x, argmaxz∈Rdf(x, z))|

≤ sup
z∈P̂ (x,y)

L

2
∥z − argmaxz∈Rdf(x, z)∥2

Lemmas B.4
≤ L

2
(
ε

α
)2,

where the last inequality holds by Lemma B.4 because ∥∇yf(x, z)∥ = ε whenever z ∈ P̂ε(x, y).

Lemma B.7. L0(x
⋆, y⋆) is differentiable and

∥∇xf(x
⋆, y⋆)−∇xL0(x

⋆, y⋆)∥ ≤ L ε
α
.

Proof. Since f(x, ·) is concave, we have that L0(x
⋆, y⋆) = maxz∈Rd f(x⋆, z).

Moreover, by strong concavity f(x⋆, ·) has a unique maximizer argmaxz∈Rdf(x⋆, z).

Thus, by Danskin’s Theorem (Danskin, 1966), we have that L0(x
⋆, ·) is differentiable and that

∇xL0(x
⋆, y⋆) = ∇xf(x

⋆, argmaxz∈Rdf(x⋆, z)). (44)

Therefore, since f is L-smooth,

∥∇xf(x
⋆, y⋆)−∇xL0(x

⋆, y⋆)∥ Eq. 44
= ∥∇xf(x

⋆, y⋆)−∇xf(x
⋆, argmaxz∈Rdf(x⋆, z))∥ (45)

≤ L× ∥y⋆ − argmaxz∈Rdf(x⋆, z)∥

≤ L× ε

α
,

where the last inequality holds by Lemma B.4 since ∥∇yf(x
⋆, y⋆)∥ ≤ ε.

Proof of Theorem B.2. Since (x⋆, y⋆) is an (ε, δ, ω,Q)-approximate local equilibrium of f , we have that,
∥∇yf(x

⋆, y⋆)∥ ≤ ε, (46)
and that, with probability at least 1− ω,

Lε(x
⋆ −∆, y⋆) ≥ f(x⋆, y⋆)− δ, (47)

where ∆ ∼ Qx⋆,y⋆ .

Thus, since by Assumption B.1 E∆∼Qx,y
[∆] = µ∇xf(x, y) and E∆∼Qx,y

[∥∆− µ∇x∥2] ≤ σ2, by Chebyshev’s inequality,
we have that, with probability at least 1− ω − 1

4 ,
Lε(x

⋆ − µ∇xf(x
⋆, y⋆) + ν, y⋆) ≥ f(x⋆, y⋆)− δ, (48)

for some ν ∈ Rd such that ∥ν∥ ≤ 2σ.

Since ω ≤ 1
2 , we have 1− ω − 1

4 ≥
1
4 . Thus, (48) holds with probability at least 1

4 . Since (48) holds with probability at
least 1

4 yet contains no random variables, it must also hold with probability 1.

Therefore, by plugging in Lemma B.6 to the LHS of (48) and applying Lemma B.4 together with the fact that f is L-smooth
to the RHS of (48), we have that

L0(x
⋆ − µ∇xf(x

⋆, y⋆) + ν, y⋆) + L
ε2

2α2
≥ L0(x

⋆, y⋆)− L ε
α
− δ. (49)

Therefore, applying Lemma B.7 to (49) we get that

L0(x
⋆ − µ∇xL0(x

⋆, y⋆) + v, y⋆) + L
ε2

2α2
≥ L0(x

⋆, y⋆)− L ε
α
− δ, (50)

for some v ∈ Rd such that ∥v∥ ≤ L ε
α + 2σ.
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Therefore, plugging in Lemma B.7 to the LHS of (50), we get that

L0(x
⋆ − µ∇xL0(x

⋆, y⋆), y⋆) + L

(
2
ε

α
+ µ

L

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
≥ L0(x

⋆, y⋆)− L ε
α
− δ, (51)

since ∥v∥ ≤ L ε
α + 2σ.

We also have that
L0(x

⋆ − µ∇xL0(x
⋆, y⋆), y⋆) = L0(x

⋆, y⋆)− (∇xL0(x
⋆, y⋆) + u)⊤µ∇xL0(x

⋆, y⋆), (52)

for some u ∈ Rd such that ∥u∥ ≤ L∥µ∇xL0(x
⋆, y⋆)∥, since f is L-smooth.

Therefore (52) implies that
L0(x

⋆ − µ∇xL0(x
⋆, y⋆), y⋆) ≤ L0(x

⋆, y⋆)− (µ− µ2L)∥∇xL0(x
⋆, y⋆)∥2, (53)

Plugging (53) into (51), we get that (since µ = 1
2L implies that µ− µ2L > 0),

∥∇xL0(x
⋆, y⋆)∥ ≤ 1

µ− µ2L

√
δ + L

(
2
ε

α
+ µ

L

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
(54)

But from (44) we have that
∇xL0(x

⋆, y⋆) = ∇xf(x
⋆, argmaxz∈Rdf(x⋆, z)). (55)

Thus,

∥∇xL0(x
⋆, y⋆)−∇xf(x

⋆, y⋆)∥ Eq. 55
= ∥∇xf(x

⋆, argmaxz∈Rdf(x⋆, z))−∇xf(x
⋆, y⋆)∥

≤ L∥y⋆ − argmaxz∈Rdf(x⋆, z)∥
Lemma B.4
≤ L

ε

α
, (56)

where the first inequality holds since f is L-smooth, and the second inequality holds by Lemma B.4 since ∥∇yf(x
⋆, y⋆)∥ ≤

ε.

Plugging in (56) into (54), we get

∥∇xf(x
⋆, y⋆)∥ ≤ 1

µ− µ2

√
δ + L

(
2
ε

α
+ µ

L

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
+ L

ε

α
. (57)

Now, since f(·, y⋆) is α-strongly convex, by Lemma B.4 (applied to −f instead of f ), we have

∥x⋆ − argminθ∈Rdf(θ, y⋆)∥ ≤
∥∇xf(x

⋆, y⋆)∥
α

. (58)

Since f is L-smooth, (58) implies that

f(x⋆, y⋆)− min
θ∈Rd

f(θ, y⋆) ≤ L× 1

2
∥x⋆ − argminθ∈Rdf(θ, y⋆)∥2 (59)

Eq. 58
≤ L

2
×
(
∥∇xf(x

⋆, y⋆)∥
α

)2

.

Moreover, since f(x⋆, ·) is α-strongly concave and ∥∇yf(x
⋆, y⋆)∥ ≤ ε we have by Lemma B.4 that

∥y⋆ − argmaxz∈Rdf(x⋆, z)∥ ≤
ε

α
. (60)

Since f is L-smooth, (60) implies that

max
z∈Rd

f(x⋆, z)− f(x⋆, y⋆) ≤ L× 1

2
∥y⋆ − argmaxz∈Rdf(x⋆, z)∥2 (61)

Eq. 60
≤ L

2
×
( ε
α

)2
.
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Thus, adding (59) to (61), and plugging in (57), we get that

max
z∈Rd

f(x⋆, z)− min
θ∈Rd

f(θ, y⋆) ≤ L

2
×
(
∥∇xf(x

⋆, y⋆)∥
α

)2

+
L

2
×
( ε
α

)2
(62)

Eq. 57
≤ Lε2

2α2
+

L

2α2

(
1

µ− µ2

√
δ + L

(
2
ε

α
+ µ

L

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
+ L

ε

α

)2

.

Since µ = 1
2L , we get that

max
z∈Rd

f(x⋆, z)− min
θ∈Rd

f(θ, y⋆) ≤ Lε2

2α2
+

L

2α2

(
1

µ− µ2

√
δ + L

(
2
ε

α
+ µ

L

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
+ L

ε

α

)2

(63)

=
Lε2

2α2
+
L3

α2

(√
δ + L

(
2
ε

α
+

1

α
(L
ε

α
+ 2σ)

)
+ L

ε2

2α2
+ L

ε

α
+ L

ε

α

)2

.

B.1. Runtime in Strongly Convex-Strongly Concave Setting

Suppose that f(x, y) is L-smooth in (x, y), α-strongly convex in x and α-strongly concave in y.

In this section we assume that hyper-parameter τ1 in Algorithm 1 is set to τ1 =∞, and that Algorithm 2 takes as input exact
gradients for ∇yf (i.e., the “stochastic” gradients have variance set to 0).

Lemma B.8. The function maxz∈Rd f(·, z) is α-strongly convex.

Proof. Define the “global max” function ψ(x) := maxz∈Rd f(x, z) for all x ∈ X . We start by showing that the function
ψ(x) is α-strongly convex. Indeed, for any x1, x2 ∈ X and any λ ∈ [0, 1] we have

λψ(λx1 + (1− λ)x2) = max
y∈Rd

f(λx1 + (1− λ)x2, y)

≤ max
y∈Rd

[λf(x1, y) + (1− λ)f(x2, y)−
1

2
αλ(1− λ)∥x1 − x2∥2]

≤ λ[max
y∈Rd

f(x1, y)] + (1− λ)[max
y∈Rd

f(x2, y)]−
1

2
αλ(1− λ)∥x1 − x2∥2

= λψ(x1) + (1− λ)ψ(x2)−
1

2
αλ(1− λ)∥x1 − x2∥2,

where the first inequality holds by the α-strong convexity of f(·, y). Thus ψ is α-strongly convex.

Lemma B.9. Denote by yi,j the point yj in Algorithm 2 when it is called at the i’th iteration of Algorithm 1. Let
(x†, y†) be the global min-max point of f , and define D := ∥(x0, y0) − (x†, y†)∥ and D := 2max(D + LD

α +

ε
α ,

√
LD+L2D

α +L ε2

α2

α , L
√
D

α
√
α
, ε

√
L

α
√
α
). Then, as long as η ≤ 1

L , at every iteration i of Algorithm 1 and at every iteration

j of its subroutine Algorithm 2, we have that ∥(xi, yi)− (x†, y†)∥ ≤ D and ∥(xi, yi,j)− (x†, y†)∥ ≤ D.

Proof. Bounding the distance ∥(x1, y1)− (x†, y†)∥.

Since at the global min-max point (x†, y†) we have ∇yf(x
†, y†) = 0, and since f is L-Lipschitz, we have that

∥∇yf(x0, y0)∥ ≤ L∥(x0, y0)− (x†, y†)∥ ≤ LD.

Thus, since f(x0, ·) is α-strongly concave, we have by Lemma B.4 that

∥y0 − argmaxz∈Rdf(x0, z)∥ ≤
LD

α
. (64)
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And since (by definition) x0 = x1, and ∇yf(x0, y1) = ∇yf(x1, y1) ≤ ε, we have that (again by Lemma B.4 ),

∥y1 − argmaxz∈Rdf(x0, z)∥ ≤
ε

α
. (65)

Thus, combining (64) and (65), we have that (since x0 = x1),
∥(x1, y1)− (x†, y†)∥ ≤ ∥(x0, y0)− (x†, y†)∥+ ∥(x0, y0)− (x0, y1)∥ (66)

≤ D + ∥y0 − y1∥
≤ D + ∥y1 − argmaxz∈Rdf(x0, z)∥+ ∥y0 − argmaxz∈Rdf(x0, z)∥

≤ D +
LD

α
+
ε

α
≤ D.

Bounding the distance ∥xi − x†∥.

At each iteration i > 1 of Algorithm 1 we have that ∥∇yf(xi, yi)∥ ≤ ε. Thus, by Lemma B.4 we have that

∥yi − argmaxz∈Rdf(xi, z)∥ ≤
ε

α
. (67)

Thus, since f is L-smooth,
max
z∈Rd

f(xi, z)− f(xi, yi) ≤ L× ∥yi − argmaxz∈Rdf(xi, z)∥2 (68)

Eq. 67
≤ L

ε2

α2
.

But f(xi+1, yi+1) ≤ f(xi, yi) at each iteration i (since, if the proposed update to xi does not lead to a decrease in the value
of f we have that the proposed update to xi would be rejected and xi = xi+1 and yi = yi+1). Therefore,

f(xi, yi) ≤ f(x1, y1) ∀i ≥ 1. (69)

Therefore, (68) and (69) imply that

max
z∈Rd

f(xi, z) ≤ f(xi, yi) + L
ε2

α2
(70)

Eq. 68
≤ f(x1, y1) + L

ε2

α2

Eq. 69
≤ max

z∈Rd
f(x1, z) + L

ε2

α2

= f(x0, argmaxz∈Rdf(x0, z)) + L
ε2

α2

Eq. 64
≤ f(x0, y0) + L× LD

α
+ L

ε2

α2
,

since (x0 = x1), and where the last inequality holds by (64) since f is L-smooth.

But since∇xf(x
†, y†) = ∇yf(x

†, y†) = 0, and f is L-smooth,

f(x†, y†)− f(x0, y0) ≤ L∥(x†, y†)− (x0, y0)∥ ≤ LD. (71)

Thus, plugging in (71) into (70), we get
ψ(xi)− min

θ∈Rd
ψ(θ) = max

z∈Rd
f(xi, z)− min

θ∈Rd
max
z∈Rd

f(θ, z) (72)

= max
z∈Rd

f(xi, z)− f(x†, y†)

Eq. 64
≤ LD +

L2D

α
+ L

ε2

α2
.
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But we have shown that ψ is α-strongly convex. Therefore, (72) implies that
∥xi − x†∥ = ∥xi − argminθ∈Rdψ(θ)∥ (73)

≤

√
LD + L2D

α + L ε2

α2

α

≤ D.

Bounding the distance ∥yi,j − y†∥.

Now, since η ≤ 1
L , we have that f(xi, yi,j) is nondecreasing at each iteration j of Algorithm 2,

f(xi, yi,j+1) ≥ f(xi, yi,j) ∀i ≥ 0, j ≥ 1. (74)

First we consider the case when i = 0. Since y1,0 = y0, by (64) we have that

∥y1,0 − argmaxz∈Rdf(x0, z)∥ ≤
LD

α
. (75)

Thus, since f(x0, ·) is L-smooth, (75) implies that

max
z∈Rd

f(x0, z)− f(x0, y1,0) ≤ L(
√
LD

α
)2. (76)

Thus, by (74) we have that

max
z∈Rd

f(x0, z)− f(x0, y0,j) ≤ L(
√
LD

α
)2 ∀j ≥ 1. (77)

Thus, since ∇yf(x0, argmaxz∈Rdf(x0, z)) = 0, and since f(x0, ·) is α-strongly concave, we have that

∥y1,j − argmaxz∈Rdf(x0, z)∥ ≤

√
L

α
(

√
LD

α
)2 =

L
√
D

α
√
α
≤ D ∀j ≥ 1. (78)

Next, we consider the case when i ≥ 1. At each i ≥ 1, we have that ∥∇yf(xi, yi)∥ = ∥∇yf(xi, yi,0)∥ ≤ ε. Therefore,
since f(xi, ·) is α-strongly concave, we have by Lemma B.4 that

∥yi,0 − argmaxz∈Rdf(x, z)∥ ≤
ε

α
. (79)

Thus, since f(xi, ·) is L-smooth, (79) implies that

max
z∈Rd

f(xi, z)− f(xi, yi,0) ≤ L(
ε

α
)2. (80)

Thus by (74) we have that

max
z∈Rd

f(xi, z)− f(xi, yi,j) ≤ L(
ε

α
)2 ∀j ≥ 0. (81)

Thus, since∇yf(x0, argmaxz∈Rdf(x0, z)) = 0, and since f(x0, ·) is α-strongly concave, we have that

∥yi,j − argmaxz∈Rdf(xi, z)∥ ≤
√
L

α
(
ε

α
)2 =

ε
√
L

α
√
α
≤ D ∀j ≥ 1. (82)

Therefore, from (73), (77), and (82), and since yi = yi,0 for every i, we have that ∥(xi, yi) − (x†, y†)∥ ≤ D and
∥(xi, yi,j)− (x†, y†)∥ ≤ D for every i ≥ 0 and every j ≥ 0
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Corollary B.10. Suppose that f : Rd × Rd → R is such that f(·, y) is α-strongly convex for every y ∈ Rd and f(x, ·) is
α-strongly concave for every x ∈ Rd, and that f has L-Lipschitz gradients for some L ≥ α > 0. And suppose that the
proposal distribution Qx,y of Algorithm 1 are the deterministic gradients ∆ = − 1

2L∇xf(x, y) for ∆ ∼ Qx,y, and that
Algorithm 2 takes as input deterministic gradients∇yf . Then, given any ε′ > 0 and any initial point (x0, y0) ∈ Rd × Rd,
Algorithm 1, with appropriate parameters, outputs a point (x⋆, y⋆) which is an approximate global min-max point of f with
duality gap maxy∈Rd f(x⋆, y) − minx∈Rd f(x, y⋆) ≤ ε′ in poly(L, 1

α ,
1
ε′ , D) gradient and function evaluations, where

D := ∥(x0, y0)− (x†, y†)∥ is the distance from the initial point to the (exact) global min-max point (x†, y†) of f .

Proof. Set the parameters ε = 1
10 min

(
α√
L

√
ε′, α4

L5 ε
′
)

, δ = 1
10

α2

L3 ε
′, and ω = 1

4 .

Define D := 2max

(
D + LD

α + ε
α ,

√
LD+L2D

α +L ε2

α2

α , L
√
D

α
√
α
, ε

√
L

α
√
α

)
.

Define b := 4LD2, and L1 := 2LD.

Set hyperparameters τ1 =∞ (so that the rejection probability in line 1 of Algorithm 1 is 1).

Set the remaining hyperparameters as in Items 1-8 in Appendix A with the parameter “L” in Items 1-8 replaced by
min(L,

L2
1

2b ).

Since η ≤ 1
10L , by Lemma B.9 we have that every step i of Algorithm 1 and every step j of its subroutine Algorithm 2

satisfy

∥(xi, yi)− (x†, y†)∥ ≤ D and ∥(xi, yi,j)− (x†, y†)∥ ≤ D for all i ≥ 0 and all j ≥ 0.

Thus, Algorithm 1 and its subroutine Algorithm 2 remain inside the ball B((x†, y†),D) of radius D with center at the global
min-max point (x†, y†) of f .

Since (x†, y†) is the global min-max point of f , we have that∇xf(x
†, y†) = ∇yf(x

†, y†) = 0.

Without loss of generality we may assume that f(x†, y†) = 0 (we can assume this since each step of the algorithm remains
the same if we add a constant to f ).

Thus, since f is L-smooth on all of Rd × Rd, we have that
|f(x, y)| ≤ L× 4D2 ∀(x, y) ∈ B((x†, y†), 2D) (83)

and
∥(∇xf(x, y),∇yf(x, y))∥ ≤ L× 2D ∀(x, y) ∈ B((x†, y†), 2D). (84)

Since f is b-bounded with L1-Lipschitz gradient on the ball B((x†, y†), 2D), and since every step of the algorithm remains
inside the ball B((x†, y†),D) ⊆ B((x†, y†), 2D), each step of the proof of Theorem 3.3 holds if we replace the parameter
“L” in that proof with min(L,

L2
1

2b ) (since the parameter “L” in the proof of Theorem 3.3 is required to be ≤ L2
1

4b , and setting

that parameter “L” to be min(L,
L2

1

2b ) ensures that this assumption holds).

Therefore, the conclusion of Theorem 3.3 must also hold and we have that Algorithm 1 returns a point (x⋆, y⋆) ∈ Rd × Rd

such that, for some ε⋆ ∈ [ 12ε, ε], (x
⋆, y⋆) is an (ε⋆, δ, ω,Q)-equilibrium. The number of gradient and function evaluations

required by the algorithm is poly(b,min(L,
L2

1

2b ),
1/ε, 1/δ, 1/4) and does not depend on the dimension d.

Note that, since we assume the gradients and proposal distribution are deterministic, each step of the algorithm is also
deterministic, and the conclusion must hold with probability 1.

But 1
ε , b,

1
δ = poly(L, 1

α ,
1
ε , D) and min(L,

L2
1

2b ) = poly(L, 1
α ,

1
ε , D). Therefore, the number of gradient and function

evaluations is also poly(L, 1
α ,

1
ε , D).

We have now shown that Algorithm 1 returns a point (x⋆, y⋆) which is an (ε⋆, δ, ω,Q)-equilibrium for f where ε⋆ ∈ [ 12ε, ε]
(and in particular, ε⋆, δ = poly(ε′, α, 1

L )).

Therefore, by Theorem B.2, we have that since f : Rd × Rd → R is α-strongly convex in x and α-strongly concave in
y, with L-Lipschitz gradient in both variables, the point (x⋆, y⋆), which is an (ε⋆, δ, ω,Q)-equilibrium, also satisfies the
duality gap
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max
y∈Rd

f(x⋆, y)− min
x∈Rd

f(x, y⋆) ≤ L(ε⋆)2

2α2
+
L3

α2

(√
δ + L

(
2
ε⋆

α
+

1

α
(L
ε⋆

α
+ 2σ)

)
+ L

(ε⋆)2

2α2
+ L

ε⋆

α
+ L

ε⋆

α

)2

≤ ε′. (85)

C. Examples of Functions Where Global Min-Max Satisfies Definition 3.2 but not Other Local
Equilibrium Notions

In this section, we expand upon the examples mentioned in Section 3. In particular, we provides example functions for which
there exists min-max points that satisfy Definition 3.2 but which do not satisfy other common notions of local equilibrium.

Functions for which global min-max points are not first-order stationary points. f(x, y) = sin(x) × sin(y) −∑
m,n∈Z Bump(x +mπ, y + nπ), where Bump(x, y) := e−1/(1−100(x2+y2)) for x2 + y2 < 1

100 and Bump(x, y) = 0
everywhere else. This function has a global min-max point at (x, y) = (0, 1) and this point also satisfies Definition 3.2 (and
f also has such a point at all points along the line x = 0 except for the intervals (− 1

10 + nπ, 1
10 + nπ) for intergers n), and

yet ∇xf(0, 1) = cos(0) × sin(1) = 0.84 meaning that (x, y) = (0, 1) is not a first-order stationary point for x. In fact,
every global min-max point of this function is not a first-order stationary point in x.

Functions for which global min-max points are not second-order equilibrium points. For f(x, y) = sin(x+ y) and
f(x, y) = 103 ·

∑
k∈Z e

−(x+y+2+9k)2 +2e−(x+y+2+9k)2 − e−(x+6k)2 , there are no ε-approximate local min/max points for
ε < 1

2 , and yet, an equilibrium point from Definition 3.2 is guaranteed to exist for such functions. Note that these functions
are indeed smooth and bounded.

D. Comparison of Local Equilibrium Point and Local Min-Max Point
Lemma D.1. Suppose that (x⋆, y⋆) is such that y⋆ is a local maximum point of f(x⋆, ·) and x⋆ is a local minimum point of
f(·, y⋆). Then (x⋆, y⋆) is also a local equilibrium of f .

Proof. Fix any ε ≥ 0 (the proof of this Lemma requires only ε = 0, but we state the proof for any ε ≥ 0 since this will
allow us to prove Corollary D.2).

Since y⋆ is a local maximum of f(x⋆, ·), there is only one ε-greedy path with initial point y⋆, namely, the path {y⋆}
consisting of the single point y⋆ (since f must increase at rate at least ε at every point on an ε-greedy path).

Thus,
Pε(x

⋆, y⋆) = {y⋆} (86)

Hence, (86) implies that
y⋆ ∈ argmaxy∈Pε(x⋆,y⋆)f(x

⋆, y) (87)
which proves Equation (5).

Next, we will show that Equation (4) holds.

Since x⋆ is a local minimum point of f(·, y⋆), there exists ν > 0 such that
f(z, y⋆) ≥ f(x⋆, y⋆) ∀z ∈ B(x⋆, ν) (88)

Since y⋆ ∈ Pε(x, y
⋆) for all x ∈ X , we have that

max
y∈Pε(x,y⋆)

f(x, y) ≥ f(x, y⋆) ∀x ∈ X , (89)

and hence that

min
x∈B(x⋆,ν)∩X

max
y∈Pε(x,y⋆)

f(x, y)
Eq. 89
≥ min

x∈B(x⋆,ν)
f(x, y⋆) (90)

Eq. 88
= f(x⋆, y⋆)
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Figure 6. Different runs of our algorithm over function F1 for random starting points.

Figure 7. Different runs of our algorithm over function F2 for random starting points.

Eq. 87
= max

y∈Pε(x⋆,y⋆)
f(x⋆, y),

which proves Equation (4).

Corollary D.2. Suppose that (x⋆, y⋆) is such that y⋆ is a local maximum point of f(x⋆, ·) and x⋆ is a local minimum point
of f(·, y⋆). Then there exists ν > 0 such that, for any ε, δ ≥ 0, and any proposal distribution Q with support on X which
satisfies

Pr
∆∼Qx⋆,y⋆

(∥∆∥ ≥ ν) < ω, (91)

for some ω > 0, (x⋆, y⋆) is also an approximate local equilibrium of f for parameters (ε, δ, ω) and proposal distribution Q.

We note that many distributions satisfy (91), for instance the distribution Qx,y ∼ N(0, σ2Id) for σ = O(ν log−1( 1
ω )).

Proof. By Inequality (91) in the proof of Lemma D.1, there exists ν > 0 such that
min

x∈B(x⋆,ν)∩X
max

y∈Pε(x,y⋆)
f(x, y) ≥ max

y∈Pε(x⋆,y⋆)
f(x⋆, y), (92)

Thus, for any proposal distribution Q which satisfies Inequality (91), Inequality (92) implies that, for any δ ≥ 0,

Pr
∆∼Qx⋆,y⋆

[
max

y∈Pε(x⋆+∆,y∗)
f(x⋆ +∆, y) < max

y∈Pε(x⋆,y∗)
f(x⋆, y)− δ

]
Eq. 92
≤ Pr

∆∼Qx⋆,y⋆

[x⋆ +∆ /∈ B(x⋆, ν) ∩ X ]

= Pr
∆∼Qx⋆,y⋆

(∥∆∥ ≥ ν)

Eq. 91
< ω,

This proves Inequality (6).

Inequality (7) follows directly from Inequality (87) in the proof of Lemma D.1.
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Figure 8. Different runs of our algorithm over function F3 for random starting points.

E. Additional Empirical Details and Results for Test Functions and Gaussian Mixture Dataset
E.1. Simulation Setup for Low-Dimensional Test Functions

In this section we describe the setup for the simulations on the low-dimensional test functions presented in Figures 1 and 2.
For our algorithm, we use a learning rate of η = 0.05 for the max-player, and a proposal distribution of Qx,y ∼ N(0, 0.25)
for the min-player. For GDA and OMD we use a learning rate of 0.05 for both the min-player and the max-player. When
generating Figures 1 and 2 we used the initial point (x0, y0) = (5.5, 5.5) for all three algorithms.

E.2. Additional Simulation Results for Low-Dimensional Test functions

We also run our algorithm for toy functions F1, F2, F3 (defined in Section 4) on random initial points. The results are
present in Figures 6, 7, 8 for functions F1, F2, F3, respectively. For all starting points, our algorithm converges to global
min-max point (0, 0) for functions F1, F3, and diverges to∞ for function F2.

E.3. Simulation Setup for Gaussian Mixture Dataset

In this section we discuss the neural network architectures, choice of hyperparameters, and hardware used for the Gaussian
mixture dataset

Hyperparameters for Gaussian Mixture Simulations. For the simulations on Gaussian mixture data, we have used
the code provided by the authors of (Metz et al., 2017) (github.com/poolio/unrolled_gan), which uses a batch
size 512, Adam learning rates of 10−3 for the generator and 10−4 for the discriminator, and Adam parameter β1 = 0.5 for
both the generator and discriminator.2 We use the same neural networks that were used in the code from (Metz et al., 2017):
The generator uses a fully connected neural network with 2 hidden layers of size 128 and RELU activation, followed by a
linear projection to two dimensions. The discriminator uses a fully connected neural network with 2 hidden layers of size
128 and RELU activation, followed by a linear projection to 1 dimension (which is fed as input to the cross entropy loss
function). As in the paper (Metz et al., 2017), we initialize all the neural network weights to be orthogonal with scaling 0.8.

For OMD, we once again use Wasserstein loss and clip parameter 0.01 (github.com/vsyrgkanis/optimistic_
GAN_training/).

Setting Hyperparameters. In our simulations, our goal was to be able to use the smallest number of discriminator
or unrolled steps while still learning the distribution in a short amount of time, and we therefore decided to compare all
algorithms using the same hyperparameter k. To choose this single value of k, we started by running each algorithm
with k = 1 and increased the number of discriminator steps until one of the algorithms was able to learn the distribution
consistently in the first 1500 iterations.

The experiments were performed on four 3.0 GHz Intel Scalable CPU Processors, provided by AWS.

2Note that the authors also mention using slightly different ADAM parameters and neural network architecture in their paper than in
their code; we have used the Adam parameters and neural network architecture provided in their code.

github.com/poolio/unrolled_gan
github.com/vsyrgkanis/optimistic_GAN_training/
github.com/vsyrgkanis/optimistic_GAN_training/
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GDA with 1 discriminator step

Figure 9. The generated points at the 1500’th iteration for all runs of GDA with k = 1 discriminator steps.

GDA with 6 discriminator steps

Figure 10. The generated points at the 1500’th iteration for all runs of the GDA algorithm, with k = 6 discriminator steps, for the
simulation mentioned in Figure 3. At the 1500’th iteration, GDA had learned two modes 65% of the runs, one mode 20% of the runs, and
four modes 15 % of the runs.

E.4. Additional Simulation Results for Gaussian Mixture Dataset

In this section we show the results of all the runs of the simulation mentioned in Figure 3, where all the algorithms were
trained on a 4-Gaussian mixture dataset for 1500 iterations. For each run, we plot points from the generated distribution at
iteration 1,500. Figure 9 gives the results for GDA with k = 1 discriminator step. Figure 10 gives the results for GDA with
k = 6 discriminator steps. Figure 11 gives the results for the Unrolled GANs algorithm. Figure 12 gives the results for the
OMD algorithm. Figure 13 gives the results for our algorithm.

F. Empirical Results for CIFAR-10 Dataset
This real-world dataset contains 60K color images from 10 classes. Previous works (Borji, 2019; Metz et al., 2017; Srivastava
et al., 2017) have noted that it is challenging to detect mode collapse on CIFAR-10, visually or using standard metrics such
as Inception Scores, because the modes are not well-separated. We use this dataset primarily to compare the scalability,
quality, and stability of GANs in our framework obtained using our training algorithm.

For CIFAR-10, in addition to providing images generated by the GANs, we also report the Inception Scores (Salimans et al.,
2018) at different iterations. Inception Score is a standard heuristic measure for evaluating the quality of CIFAR-10 images
and quantifies whether the generated images correspond to specific objects/classes, as well as, whether the GAN generates
diverse images. A higher Inception Score is better, and the lowest possible Inception Score is 1.

Unrolled GANs with 6 unrolling steps

Figure 11. The generated points at the 1500’th iteration for all runs of the Unrolled GAN algorithm for the example in Figure 3, with
k = 6 unrolling steps.
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OMD

Figure 12. The generated points at the 1500’th iteration for all runs of OMD algorithm.

Our algorithm

Figure 13. The generated points at the 1500’th iteration for all runs of our algorithm, for the simulation mentioned in Figure 3. Our
algorithm used k = 6 discriminator steps and an acceptance rate hyperparameter of 1

τ
= 1

4
. By the 1500’th iteration, our algorithm seems

to have learned all four modes 70% of the runs, three modes 15% of the runs, and two modes 15% of the runs.

Figure 14. Inception score average (and standard deviation in errorbars) of all methods across iterations. Note that mean inception score
of our algorithm is higher than the mean inception score of OMD, while the standard deviation of inception score of our algorithm is
lower than the standard deviation of inception score of GDA.

Table 3. CIFAR-10 dataset: The mean (and standard error) of Inception Scores of models from different training algorithms. Note that,
GDA and our algorithm return generators with similar mean performance; however, the standard error of the Inception Score in case of
GDA is relatively larger.

Iteration
Method 5000 10000 25000 50000

Ours 2.71 (0.28) 3.57 (0.26) 4.10 (0.35) 4.68 (0.39)
GDA 2.80 (0.52) 3.56 (0.64) 4.28 (0.77) 4.51 (0.86)
OMD 1.60 (0.18) 1.80 (0.37) 1.73 (0.25) 1.96 (0.26)
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Figure 15. GAN trained using our algorithm (with k = 1 discriminator steps and acceptance rate e−
1/τ = 1/2). We repeated this

simulation multiple times; here we display images generated from some of the resulting generators for our algorithm.

Figure 16. GAN trained using GDA (with k = 1 discriminator steps). We repeated this simulation multiple times; here we display images
generated from some of the resulting generators for GDA.

Figure 17. GAN trained using OMD. We repeated this simulation multiple times; here we display images generated from some of the
resulting generators for OMD.
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Hyperparameters for CIFAR-10 Simulations. For the CIFAR-10 Simulations, we use a batch size of 128, with Adam
learning rate of 0.0002 and hyperparameter β1 = 0.5 for both the generator and discriminator gradients. Our code for the
CIFAR-10 simulations is based on the code of Jason Brownlee (Brownlee, 2019), which originally used gradient descent
ascent and ADAM gradients for training.

For the generator we use a neural network with input of size 100 and 4 hidden layers. The first hidden layer consists of a
dense layer with 4, 096 parameters, followed by a leaky RELU layer, whose activations are reshaped into 246 4× 4 feature
maps. The feature maps are then upscaled to an output shape of 32 x 32 via three hidden layers of size 128 each consisting
of a convolutional Conv2DTranspose layer followed by a leaky RELU layer, until the output layer where three filter maps
(channels) are created. Each leaky RELU layer has “alpha” parameter 0.2.

For the discriminator, we use a neural network with input of size 32 × 32 × 3 followed by 5 hidden layers. The first
four hidden layers each consist of a convolutional Conv2DTranspose layer followed by a leaky RELU layer with “alpha”
parameter 0.2. The first layer has size 64, the next two layers each have size 128, and the fourth layer has size 256. The
output layer consists of a projection to 1 dimension with dropout regularization of 0.4 and sigmoid activation function.

Hardware. Our simulations on the CIFAR-10 dataset were performed on the above, and using one GPU with High
frequency Intel Xeon E5-2686 v4 (Broadwell) processors, provided by AWS.

Results for CIFAR-10. We ran our algorithm (with k = 1 discriminator steps and acceptance rate e−1/τ = 1/2) on
CIFAR-10 for 20 repetitions and 50,000 iterations per repetition. We compare with GDA with k = 1 discriminator steps
and OMD. For all algorithms, we compute the Inception Score every 500 iterations; Table 3 reports the Inception Scores
at iteration 5000, 10000, 25000, and 50000, while Figure 14 provides the complete plot for Inception Score vs. training
iterations. Sample images from all three algorithms are also provided in Figures 15, 16, 17.

The average Inception Score of GANs from both GDA and our algorithm are fairly close to each other, with the final
mean Inception Score of 4.68 for our algorithm being somewhat higher than the final mean of 4.51 for GDA. However, the
standard error of Inception Scores of GDA is much larger than of our algorithm. The relatively larger standard deviation
of GDA is because GDA, in certain runs, does not learn an appropriate distribution at all (Inception Score is close to 1
throughout training in this case), leading to a larger value of standard deviation. Visually, in these GDA runs, the GANs
from GDA do not generate recognizable images (Figure 16, top-right image). For all other trials, the images generated
by GDA have similar Inception Score (and similar quality) as the images generated by our algorithm. In other words, our
algorithm seems to be more stable than GDA and returns GANs that generate high quality images in every repetition.

GANs trained using OMD attain much lower Inception Scores than our algorithm.3 Moreover, the images generated by
GANs trained using OMD have visually much lower quality than the images generated by GANs trained using our algorithm
(Figure 17).

Evaluation on CIFAR-10 dataset shows that the GANs from our training algorithm can always generate good quality images;
in comparison to OMD, the GANs trained using our algorithm generate higher quality images, while in comparison to GDA,
it is relatively more stable.

Clock Time per Iteration. When training on CIFAR-10, our algorithm and GDA both took the same amount of time
per iteration, 0.08 seconds, on the AWS GPU server.

We evaluate our algorithm on MNIST dataset as well, where it also learns to generate from multiple modes; the results are
presented in Appendix G.

G. Empirical Results for MNIST Dataset
This dataset consists of 60k images of hand-written digits (LeCun et al., 2010). We use two versions of this dataset: the full
dataset and the dataset restricted to 0-1 digits.

3We could not replicate the performance of OMD reported in (Daskalakis et al., 2018), even with the implementation provided here -
https://github.com/vsyrgkanis/optimistic_GAN_training.

https://github.com/vsyrgkanis/optimistic_GAN_training
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Figure 18. Images generated at the 1000’th iteration of the 13 runs of the GDA simulation on the 01-MNIST dataset. In 77% of the runs
the generator seems to be generating only 1’s at the 1000’th iteration.

Figure 19. Images generated at the 1000’th iteration of each of the 22 runs of our algorithm on the 01-MNIST dataset.

Hyperparameters for MNIST Simulations. For the MNIST simulations, we use a batch size of 128, with Adam
learning rate of 0.0002 and hyperparameter β1 = 0.5 for both the generator and discriminator gradients. Our code for the
MNIST simulations is based on the code of Renu Khandelwal (Khandelwal, 2019) and Rowel Atienza (Atienza, 2017),
which originally used gradient descent ascent and ADAM gradients for training.

For the generator we use a neural network with input of size 256 and 3 hidden layers, with leaky RELUS each with “alpha”
parameter 0.2 and dropout regularization of 0.2 at each layer. The first layer has size 256, the second layer has size 512, and
the third layer has size 1024, followed by an output layer with hyperbolic tangent (“tanh”) acvtivation.

For the discriminator we use a neural network with 3 hidden layers, and leaky RELUS each with “alpha” parameter 0.2, and
dropout regularization of 0.3 (for the first two layers) and 0.2 (for the last layer). The first layer has size 1024, the second
layer has size 512, the third layer has size 256, and the hidden layers are followed by a projection to 1 dimension with
sigmoid activation (which is fed as input to the cross entropy loss function).

Results for 0-1 MNIST. We trained GANs using both GDA and our algorithm on the 0-1 MNIST dataset, and ran each
algorithm for 3000 iterations (Figures 4, 18, 19). GDA seems to briefly generate shapes that look like a combination of
0’s and 1’s, then switches to generating only 1’s, and then re-learns how to generate 0’s. In contrast, our algorithm seems
to learn how to generate both 0’s and 1’s early on and does not mode collapse to either digit. (See Figure 18 for images
generated by all the runs of GDA, and Figure 19 for images generated by the GAN for all the runs of our algorithm.)

Full MNIST. Next we evaluate the utility of our algorithm on the full MNIST dataset. We trained a GAN on the full
MNIST dataset using our algorithm for 39,000 iterations (with k = 1 discriminator steps and acceptance rate e−1/τ = 1/5).
We ran this simulation five times; each time the GAN learned to generate all ten digits (see Fig. 20 for generated images).
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Figure 20. We ran our algorithm (with k = 1 discriminator steps and acceptance rate e−
1
τ = 1

5
) on the full MNIST dataset for 39,000

iterations, and then plotted images generated from the resulting generator. We repeated this simulation five times; the generated images
from each of the five runs are shown here.

2_annealing_MNIST

1,000500 2,000

10,0005,000

1,500

39,00020,000

Figure 21. In this simulation we used a randomized accept/reject rule, with a decreasing temperature schedule. The algorithm was run for

39,000 iterations, with a temperature schedule of e−
1
τi = 1

4+e(i/20000)
2 . Proposed steps which decreased the computed value of the loss

function were accepted with probability 1, and proposed steps which increased the computed value of the loss function were rejected

with probability max(0, 1− e
− i

τ1 ) at each iteration i. We ran the simulation 5 times, and obtained similar results each time, with the
generator learning both modes. In this figure, we plotted the generated images from one of the runs at various iterations, with the iteration
number specified at the bottom of each figure (see also Figure 22 for results from the other four runs)

H. Randomized Acceptance Rule with Decreasing Temperature
In this section we give the simulations mentioned in the paragraph towards the beginning of Section 4, which discusses
simplifications to our algorithm. We included these simulations to verify that our algorithm also works well when it is
implemented using a randomized acceptance rule with a decreasing temperature schedule (Figure 21).

Figure 22. Images generated at the 39,000’th iteration of each of the 5 runs of our algorithm for the simulation mentioned in Figure 21

with a randomized acceptance rule with a temperature schedule of e−
1
τi = 1

4+e(i/20000)
2 .
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