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Abstract
One of the most important and challenging appli-
cation areas for complex machine learning meth-
ods is to predict, characterize and model rich,
multi-dimensional, neural data. Recent advances
in neural recording techniques have made it pos-
sible to monitor the activity of a large number of
neurons across different brain regions as animals
perform behavioural tasks. This poses the criti-
cal challenge of establishing links between neural
activity at a microscopic scale, which might for
instance represent sensory input, and at a macro-
scopic scale, which then generates behaviour. Pre-
dominant modeling methods apply rather disjoint
techniques to these scales; by contrast, we sug-
gest an end-to-end model which exploits recent
developments of flexible, but tractable, neural net-
work point-process models to characterize depen-
dencies between stimuli, actions, and neural data.
We apply this model to a public dataset collected
using Neuropixel probes in mice performing a
visually-guided behavioural task as well as a syn-
thetic dataset produced from a hierarchical net-
work model with reciprocally connected sensory
and integration circuits intended to characterize
animal behaviour in a fixed-duration motion dis-
crimination task. We show that our model outper-
forms previous approaches and contributes novel
insights into the relationships between neural ac-
tivity and behaviour.
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1. Introduction
Recent developments in neural recording techniques such
as Neuropixel probes allow the activity of large numbers of
neurons across the brain to be monitored as animals perform
behavioural tasks (Jun et al., 2017). This allows us to study
how the brain represents past and present sensory inputs
across areas, how these representations evolve over time
and ultimately lead to behaviour.

Very coarsely, supervised, reinforcement learning and un-
supervised methods have been applied to examine the rela-
tionships between neural activity and behaviour (Paninski
et al., 2007; Mante et al., 2013; Ganguli & Sompolinsky,
2012; Kass et al., 2014; Sussillo, 2014; Richards et al., 2019;
Schaeffer et al., 2020). Encoding and decoding models are
examples of supervised learning. Encoding models use
linear or non-linear methods to predict the activity of in-
dividual neurons based on task-related variables such as
stimuli, actions, rewards and the like. Decoding models
use linear or non-linear methods to predict the values of
these task-related variables from the conjoint activities of
multiple neurons within or between areas. Both types of
model have been hugely influential from the earliest days of
the application of computational methods to understand neu-
ral representation and processing (Dayan & Abbott, 2001;
Rieke et al., 1999; Kass et al., 2014; Meyer et al., 2017).
However, simple reflections of the computational constraints
of the task are often insufficient to capture complex neural
representations of the sensory inputs and actions that are
distributed across different brain regions (Steinmetz et al.,
2019) and can also evolve over time in ‘null’ neural modes
that have no behavioural consequence. Moreover, neural
responses are variable and a population’s response will of-
ten differ from trial to trial and over time, even under the
same experimental conditions (Shadlen & Newsome, 1998).
Most traditional approaches do not generalize to these more
naturalistic conditions where trials with identical stimuli
do not exhibit identical behavioural schemes (Goris et al.,
2014; Churchland et al., 2010). Hence, they can not ac-
count for the temporal irregularities in behaviour and neural
recordings between trials.

Reinforcement learning (or in some cases, supervised learn-
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ing) methods have more recently been used to learn poten-
tially complex feedforward and recurrent neural network
(RNN) models that are themselves capable of performing the
same behavioural task as the subjects, based on assumptions
about sensory noise and processing architecture (Barak,
2017; Sussillo, 2014; Richards et al., 2019; Schaeffer et al.,
2020; Yamins et al., 2014). These methods have been highly
revealing about neural coding. However, they are also ill-
suited to capture the myriad complexities of null modes,
or the particular sub-optimalities expressed by individual
subjects, reflecting their particular incompetence, training
history and more.

Unsupervised methods have also been applied – often as
ways of mapping very high dimensional population activity
into lower dimensional spaces (Paninski et al., 2010; Cun-
ningham & Yu, 2014; Whiteway & Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine a variety of
these approaches (Kobak et al., 2016; Kriegeskorte & Kievit,
2013), with continual innovations. Along these lines, Dez-
fouli et al. (2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the
RNN state and so implying how behaviour would be real-
ized neurally. However, this approach is permissible by the
invertibility that is at least plausible because of the high
dimensionality of fMRI. It is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

A few recent efforts have introduced behavioural data into
the models, mainly focusing on dissociating behaviourally
relevant and irrelevant neural dynamics (Sani et al., 2021;
Hurwitz et al., 2021) or aiming at unsupervised detection
of spike sequences from raw spike trains (Williams et al.,
2020). Here, motivated by previous approaches and recent
neural network point-process models (Omi et al., 2019),
we suggest a novel neural network Poisson process model
which: (i) flexibly learns the connections between envi-
ronmental stimuli and neural representations, and between
neural representations and behavioural responses; (ii) jointly
fits both behavioural and neural data; (iii) handles variabil-
ities between response times across different trials of an

experiments by a temporal rescaling mechanism, and (iv)
derives spike count statistics disentangled from chosen tem-
poral bin sizes. The framework allows efficient training
of the model without making assumptions about the func-
tional form of the relationship between input stimuli and
neural and behavioural processes. We apply the method
to two neural/behavioural datasets concerning visual dis-
crimination tasks: one collected using Neuropixel probes
(Steinmetz et al., 2019) from mice, and the other the output
of a hierarchical network model with reciprocally connected
sensory and integration circuits that modeled behaviour in
a motion-based task (Wimmer et al., 2015). We show that
our method is able in both cases to link behavioural data
with their underlying neural processes and input stimuli; the
synthetic dataset allows us to compare our results against
ground truth.

2. The Model
Data description. We model a canonical visual discrimi-
nation experiment whereby, on each trial, subjects are pre-
sented with a stimulus and have to choose an option (or
keep still; i.e. NoGo). We consider two datasets in this
setting. The first is the visual discrimination experiment
of (Steinmetz et al., 2019) (Figure 1a). On each trial, mice
are presented with a stimulus (visual contrast on the left or
right side) and have to make a simple response by turning a
wheel left or right or keeping it still. The second dataset is
synthetic and based on the work of (Wimmer et al., 2015)
(Figure 1b). A hierarchical spiking neural network model
is built to capture the essence of evidence integration and
decision-making of monkeys in a standard two-alternative
forced-choice motion discrimination task (Gold & Shadlen,
2007; Britten et al., 1996).

Formalisation. The total number of trials in an experiment
is denoted by |N |; the stimuli on trial n ∈ {1 . . . |N |} are
(generically) denoted by vector xn. If a response was made
on trial n (at a time relative to stimulus onset we call rn),
we denote it by an ∈ A (where, here, A = {LEFT, RIGHT}.
After an observation window of W =400ms for the Stein-
metz dataset (same as the window size chosen in (Steinmetz
et al., 2019)) and W =2000ms for the synthetic data expires,
then we consider the subject to have chosen NoGo.

Different neurons in different areas and even different an-
imals (in the Steinmetz dataset) may be recorded and con-
tribute in separate trials. In total, |Su,n| spikes are observed
from unit u at times {siu,n}i=1...|Su,n|, relative to stimulus
onset in the corresponding trials.

In the following, we first discuss how we model the neu-
ral data; and then how we couple this model to predict
behaviour. Figure 2 provides an overview of the designed
framework.
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Figure 1. a) Steinmetz’ visual discrimination task (Steinmetz et al.,
2019). On each trial, visual stimuli of different contrasts were
potentially presented on the left and right sides. If both sides had
zero contrast, the mouse earned reward by NoGo. If both had
equal, non-zero, contrast, it was rewarded at random. Otherwise, it
was rewarded for reporting (a ∈ {LEFT, RIGHT}) which contrast
was larger. The figure is adapted from (Steinmetz et al., 2019).
b) Synthetic network model illustrating the sensory (E1; E2) and
integrator (D1; D2) circuits enjoying feed-forward and top-down
feedback connections as well as lateral excitatory and inhibitory
(population I) recurrent connections within each circuit. The figure
is adapted from (Wimmer et al., 2015). c) Illustrative example
illustrating the occurrence of systematic bias in firing rate estima-
tion when aggregating trials with different end times. Red curves
show firing rates for six sample trials. The dashed line shows the
average of firing rates based on the unfinished trials at each point
in time. Looking at the blue curve, one might conclude that neural
activities increase and then decrease over time, which is not true
for any individual trial.

2.1. Spike Train Models

We make the simplification that the spikes of each neuron u
in trial n can be modelled as the output of an inhomogeneous
Poisson process (Daley & Vere-Jones, 2006) with a latent
intensity function λN

u,n(τ ;hn) (the superscript N indicates
that the intensity function is for the Neural data). This can
be interpreted as the instantaneous probability of observing
a spike at time τ , where hn is a function of the stimulus
xn. The Poisson process assumption is that successive spike
times are independent, given λN

u,n(τ ;hn). Note that we
seek to capture signal correlations but not noise correlations,
and so hn does not depend on the spikes observed during a

trial.

2.1.1. TIME RESCALING OF SPIKE TRAINS

We consider spikes from neuron u until either a response
an was made at time rn, or to the end of time window
W , whichever comes first, i.e., up to Wn = min(W, rn).
The reason for restricting the observation period to rn is
because the aim is to model the neural processes that lead
to behavioural responses, rather than what happens post-
response. The joint probability density of observing spike
trains from neuron u in trial n is then,

f N
u,n(s

1
u,n . . . s

|Su,n|
u,n ) =∏|Su,n|

i=1
λN
u,n(s

i
u,n;hn) exp

(
−
∫ Wn

0

λN
u,n(τ

′;hn)dτ
′
)
.

(1)

Intuitively, the term λN
u,n(s

i
u,n;hn) represents the proba-

bility density of observing a spike at time siu.n and the
exponential term represents the probability of not observing
spikes at other times in the observation period. We aim to
estimate a single function λN

u,n(τ ;hn) to model the neural
activities across all trials. However, note that the duration
of trials can be different (based on response times) and only
trials that ended after τ can contribute to the estimation of
λN
u,n(τ ;hn), which means that this quantity is implicitly

conditioned on rn > τ . This property makes the interpre-
tation of λN

u,n(τ ;hn) rather inconvenient since it will no
longer represent how neural activities evolve over time, but
is confounded by the distribution of response times (see Fig
1c). To address this issue, it is tempting to merely condi-
tion λN

u,n(τ ;hn) on response times (in addition to hn) to
get a picture of the spike trains that lead to each specific
response time (rather than all the response times after τ ).
This, however, only partially addresses the issue. To address
it more fully, we aim to map all trials with different duration
to the same time span. To achieve this goal, we propose the
following theorem and proposition:

Theorem 1 Let 0 < s′1 < s′2 <, . . . , < s′j ≤ Wn ≤
W be a realization from an inhomogeneous Poisson point
process, n, with an intensity function λn(t

′) satisfying 0 <
λn(t

′) for all t′ ∈ (0,Wn]. Define a one-to-one monotonic
transformation function, where:

zn : [0,Wn] → [0,W ], and zn(0) = 0, zn(Wn) = W

Assume 0 < s1 < s2 <, . . . , < sj ≤ W where
∀k ∈ {1, . . . , j}; sk = zn(s

′k). Then sk are a realization
from a second inhomogeneous Poisson point process with
λ(t) = λn(t

′) where t = zn(t
′).
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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Figure 2. Network architecture. 1⃝ Embedding of input stimulus into vector hn. 2⃝ Transformation of embedding hn into neural activity
of each region for each time point t since the stimulus onset. The monotonic transformation function , zn(t′) = t·, is applied to the
input spike time series in this step. Neural activities are characterised by the rescaled cumulative intensity function of spike train for
each region, denoted by ΛN

u(t;hn) for regions u ∈ U . The intensity function λN
u(t;hn) is obtained by differentiating the cumulative

intensity function ΛN
u(t;hn) with respect to t. Component 2⃝ structurally ensures that ΛN

u(t;hn) increases with time, so λN
u(t;hn) ≥ 0.

3⃝ Neural activities are mapped to behavioural responses which are represented by the rescaled cumulative intensity function ΛB
a(t;hn)

for making each action a ∈ A at each time t since stimulus onset (t). The data likelihood is computed over both recorded spike trains and
behavioural responses. This yields a neural log-likelihood function (LN) and a behavioural log-likelihood function (LB).

Proposition 1 For a linear transformation function zn(.),
as defined in Theorem 1, the cumulative intensity function
of the original and second point process realizations are
related as: Λ(t) = 1

∂t(z
−1
n )

· Λn(t
′).

The above theorem allows scaling observation times of
spikes in trial n (which ends at Wn) to become within
the range (0,W ] for all trials. Based on this, as we show
in the next section, we model a single intensity function
(that we canonical intensity function) in the scaled domain
t ∈ (0,W ] and will use it to express the intensity function
of trials with different end times using the function z(.). It is
important to note that although observation times are scaled,
the intensity function at an actual spike time (t′) and at its
canonical, rescaled time (t) are the same, according to the
above theorem; therefore, we can use the learned intensity
function in the scaled space to predict the intensity function
for spikes in trials with different end times in the original
time domain.

Note that Theorem 1. is a special case under the Map-
ping Theorem (Grimmett & Stirzaker, 2001). Please see
Supplementary Materials A and B for proofs.

2.1.2. PARAMETRISING THE INTENSITY FUNCTION

Here, we define λN
u(t;hn) to represent canonical neural

activities (prior to the response) defined over t ∈ (0,W ].

Based on the above theorem, the neural activities for a
certain trial with duration Wn can be obtained by applying
the time rescaling on the original spike time series using a
monotonic function zn : [0,Wn] → [0,W ], t = zn(t

′),

λN
u,n(t

′;hn) = λN
u(zn(t

′);hn),

with zn(0) = 0, zn(Wn) = W, t′ ∈ (0,Wn].
(2)

The dependence of the intensity function on the embedding
hn plays a crucial role in determining how neural activities
are shaped by the stimulus and has to be characterized in
a flexible manner. To achieve this, one option is to use a
multi-layer feed-forward network which takes t and hn as
inputs, and outputs λN

u(t;hn) ≥ 0. Unfortunately, it is then
intractable to calculate the integral in equation 1. An elegant
solution to this problem is to parameterize the cumulative
intensity function ΛN

u(t;hn) instead of λN
u(t;hn) (Omi et al.,

2019). This is

ΛN
u(t;hn) =

∫ t

0

λN
u(τ ;hn)dτ, (3)

and can be (automatically) differentiated to produce the
intensity function:

λN
u(t;hn) =

∂ΛN
u(t;hn)

∂t
. (4)

We represent ΛN
u(t;hn) using a feed-forward network. Note

that the gradient of the cumulative intensity function w.r.t to
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t must always be non-negative (see Section Model structure).
In this work, we chose time to be rescaled uniformly using
zn(t

′) = t′W/Wn. This makes a substantive assumption
that the activities in slow and fast trials are stretched versions
of each other. Its advantage is to reduce the task of learning
trial-specific intensities to learning the canonical intensity
function λN

u(t;hn). Based on Theorem 1. and Proposition
1., trial specific intensity and cumulative intensity functions
(defined on t′ ∈ (0,Wn]) are then given by,

λN
u,n(t

′;hn) = λN
u(zn(t

′);hn),

ΛN
u,n(t

′;hn) =
Wn

W
· ΛN

u(zn(t
′);hn).

(5)

The relatively simple form of transformed cumulative inten-
sities is a consequence of the uniform time rescaling (see
Supplementary Materials A and B for proof). Using these
two related functions, the data log-likelihood implied by
equation 1 is

LN
u.n = log f N

u.n(s
1
u.n . . . s

|Su.n|
u.n ) =

|Su.n|∑
i=1

[
log

∂ΛN
u(t = zn(s

i
u.n);hn)

∂t

]
− Wn

W
· ΛN

u(W ;hn),

(6)
which retains the required flexibility, while obviating the cal-
culation of the intractable integral. The total data likelihood
for all the trials and neurons is then

LN =
∑|N |

t=1

∑
u∈Un

LN
u.n.

In principle, each recorded neuron in the experiment could
be assigned a separate intensity function. However, given
the experimental methodology of only recording some neu-
rons on some trials in the Steinmetz dataset, the problem of
missing data would be radically acute, and the model would
be uninterpretable. The computational cost would also be
prohibitive. Instead, we make the simplifying assumptions
that all the neurons in each of the 42 brain regions identified
by (Steinmetz et al., 2019) and (as is true by design) the 4
regions in the synthetic model share common intensity func-
tions. As such, we consider |UStein| = 42 and |Usynth| = 4.

2.2. Behavioural Response Models

Having provided a way of characterizing the neural response
to the embedding hn, we next need to model the link be-
tween neural representations and behaviour. We assume that
the probability of making a behavioural response at each
point in time depends on the activity of the neurons at that
time. In turn, these are driven by the stimulus hn on that
trial. That is, the behavioural responses are indirectly af-
fected by the stimulus via neural activities. However, rather
than model this dependence explicitly, which is hard given
the punctate nature of the response, we approximate it im-
plicitly, via smooth intensity functions that in turn depend
on ΛN.

The intensity function for an action a is denoted by
λB
a(t;hn), which specifies the instantaneous probability of

taking the action at time t relative to stimulus onset. The
superscript B indicates that the intensity function is for the
Behavioural data. A key simplification is to allow for the
theoretical possibility that the animal performs the same
action more than once on a trial; or performs both actions.
However, that actions are actually sparse implies that this
approximation is not too costly. We write the canonical
behavioural cumulative intensity function as a function of
the canonical neural cumulative intensity functions.

ΛB
a(t;hn) = Φa(Λ

N
1(t;hn), . . . ,Λ

N
|U|(t;hn)). (7)

Function Φa(.) can be realised using a deep feed-forward
network which can represent arbitrary dependencies be-
tween neural activities and behavioural responses.

Then, differentiating:

λB
a(t;hn) =

∑|U|

u=1
λN
u(t;hn)

∂Φa(.)

∂ΛN
u

, (8)

which implies that the behavioural response probability at
each point in time is indirectly dependent on the stimulus
through the spike rate of different neural activities, as de-
sired. Function Φ(.) is also designed to be increasing in t to
ensure that λB

a(t;hn) > 0 (see Section Model structure).
These response rates are presented as a function of canonical
neural intensity functions. Similar to 5 for each trial n we
have,

λB
a,n(t

′;hn) = λB
a(zn(t

′);hn),

ΛB
a,n(t

′;hn) =
Wn

W
· ΛB

a(zn(t
′);hn).

(9)

The subjects can either act or not on a trial; the latter is
determined by a censoring window W . Write Na as the set
of trials on which action a was taken before W , at reaction
time rn. The simplified joint probability distribution of the
behavioural observations is then:

f B
a({rn}n∈Na) =(∏

n∈Na

λB
a,n(rn;hn)

)∏|N|

n=1
exp

(
−
∫ Wn

0

λB
a,n(τ

′;hn)dτ
′
)
,

(10)
and, taking logs, the log-likelihood for those observations
is,

LB
a =∑

n∈Na

log
∂ΛB

a(t = zn(rn);hn)

∂t
−

∑|N|

n=1

Wn

W
· ΛB

a(W ;hn).

(11)
Over the whole experiment and actions, the behavioural
likelihood can be defined as,

LB =
∑

a∈A
LB
a, (12)

in which A is the set of available actions.
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2.3. Model Structure

We implement the model using the neural network architec-
ture shown in Figure 2. This has three components. The first
maps the stimulus xn that was presented through a series
of fully connected layers to realize an input embedding de-
noted by hn. The second component takes the embedding
hn and t and outputs the modelled activity of each neural
region u at time t in the form of cumulative intensity func-
tions for ΛN

u(t;hn). This component is designed such that
the outputs of the network, i.e., ΛN

u(t;hn)s, are monotonic
functions of t to ensure that their gradients with respect to t
(which are neural intensity functions) are always positive.
To achieve this, following ideas from (Sill, 1998; Chilinski
& Silva, 2018; Omi et al., 2019), the weights of the network
are constrained to be positive and ‘tanh’ activation functions
are used in the middle layers and soft-plus in the output
layers.
The third component of the model takes the neural cumula-
tive intensity functions and maps them to the behavioural
cumulative intensity functions (function Φ in equation 7).
We used the same method as for the second component to
ensure that the gradient of ΛB

a(t;hn) with respect to t is
positive.
For training the model, the neural loss function LN is used
to train all the weights from stimulus to neural cumulative
intensity functions (blue and red rectangles in Figure 2).
Given these trained neural cumulative intensity functions,
then the weights connecting neural outputs to behavioural
outputs are trained using LB. The gradients were obtained
using automatic differentiation in Tensorflow (Abadi et al.,
2015). See Supplementary Materials C for more details on
the model architecture.

3. Results
3.1. Data Structure

Synthetic dataset. For the synthetic data, we use data gen-
erated from the model introduced in (Wimmer et al., 2015).
Activities from two direction-selective sensory regions (E1
and E2; e.g. V5/MT) as well as two integrator regions (D1
and D2; e.g. LIP, FEF) are modeled and then observed.
Each region has 240 neurons and the whole experiment con-
sists of 1800 trials (1200 trials for training and 600 trials
for testing). Left and right sensory regions prefer leftwards
and rightwards motion respectively; time-varying activity
in these regions inspired by stimuli with coherence levels
varying from completely obscure: 0%, to rather definite:
50% or 80% (which are encoded using one-hot encoding),
are accumulated by populations in the integration region.
The latter has attractor dynamics; a response is realized
when the activity state is sufficiently close to one of the
two attractors. A choice is modelled as being made when
the average activity of a (trial-)random subset of neurons

in D1 or D2 over a window of 50ms reaches 40Hz. This
corresponds to strong evidence in favour of motion in the
corresponding direction which can be RIGHT (for D1) or
LEFT (for D2).

Steinmetz dataset. We use the data reported in (Steinmetz
et al., 2019)1. The experiments consist of 38 sessions of a
visual discrimination task (Figure 1a). Activities from 42
brain regions from the left hemisphere were recorded (not
all regions were recorded in all the sessions). Overall the
data from 30,000 neurons were recorded and the whole
experiment consisted of 10011 trials. We used the data from
12 sessions for testing and the rest for training the model.
On each trial, the animals were presented with stimuli on the
left and right and were required to turn a wheel LEFT, RIGHT
or keep it fixed (NoGo), based on the contrast input (four
possible levels of contrast on each side: 0, 25, 50, 100%;
0% on both sides requires NoGo). We encoded stimulus
contrast using one-hot encoding based on which side had
a higher contrast, or whether they had equal contrasts (xn

of dimension 8). The reaction time rn corresponds to the
beginning of the wheel turn if this happens before the end
of the response window.

3.2. Training Process

All the weights in the model were trained using the Adam
optimiser (Kingma & Ba, 2014). Stimulus and integrator
components (blue and red rectangles in Figure 2) each were
composed of three fully connected hidden layers with 20
neurons in each layer. The third layer was then connected to
the output layer consisting of one neuron per region in the
dataset. The neural component was followed by two fully
connected behavioural layers for each action (with 10 neu-
rons). ‘softplus’ and ‘tanh’ activation functions were used
to ensure positive of intensity functions. See Supplementary
Materials C for more details about the model architecture
and training process.

3.3. Experiments

We show statistics of the quality of the fit of the model
later. However, we first illustrate the neural and behavioural
properties of the model by freezing the weights and per-
forming simulations with different values of Wn for sample
regions of both synthetic and Steinmetz datasets. Results
showing the performance of the model on all the available
test regions of both datasets are presented in Supplementary
Materials G.2

The solid lines in the upper panels of Figure 3 illustrate the

1https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-
files

2Source code and datasets used in our experiments are
available at https://github.com/Moein-Khajehnejad/NNPoisson-
ICML2022

https://github.com/Moein-Khajehnejad/NNPoisson-ICML2022
https://github.com/Moein-Khajehnejad/NNPoisson-ICML2022
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neural responses for the synthetic dataset for 0.3 ≤ Wn ≤
0.6 when the stimulus had highest coherence level (0.8) and
moved RIGHT. The chosen interval includes more than 90%
of all trials in the coherence level of 0.8. These results are
compared with the empirical activity derived from the data
(dashed lines) for both integrator regions D1 and D2. Note
the change in y-scale between the plots, given the strong
left stimulus. These values are closely related to the learned
intensities and capture the observed variability in response
times between different trials given the time rescaling of
input spike trains.
Figure 3 lower panels show the mean rate of behavioural
responses for each interval of learned neural intensities for
the complete set of trials. As expected, the highest rate of
behavioural action is observed for neural intensities close to
40 spikes/sec for D1. By contrast, region D2 shows very low
behavioural activity rates due to the non-favorable direction
of stimulus in these trials. Note that the shown empirical
firing rates are averaged across all responses, while the in-
tensities correspond to different response times, which helps
explain the differences between the two measures. For ex-
ample, in very fast responses, there is an initial burst in the
firing rates, which is captured by the initial sharp rise in the
intensities (see Figure 3), but this is invisible in the averaged
firing rates.
The upper panels of Figure 4 show modelled and actual
neural activities in the Steinmetz dataset for two example
brain regions with high contrast levels of stimulus on RIGHT:
one the subiculum (SUB), which (Steinmetz et al., 2019) re-
ported as containing neurons that consistently fired before
wheel turns regardless of their direction (arguably a sur-
prising feature of this dataset, given the relationship of the
subiculum with areas such as the hippocampus and entorhi-
nal cortex rather than motor regions), and the other, visual
(VISp; primary visual area), which is reported to have the
highest portion of visual encoding neurons. The activities
were all recorded in the left hemisphere, and therefore, the
right stimulus/action are contralateral to the recording sites.
Comparing the lower and upper panels of Figure 4 show,
we generally see more activity on the left side in VISp for
stimuli with high contrast levels on the RIGHT which is con-
sistent with previous analyses (Steinmetz et al., 2019). It
is clear that the region shows lower neural activity levels
for ipsilateral stimuli. The subiculum (SUB), is reported in
(Steinmetz et al., 2019) as containing neurons that consis-
tently fired before wheel turns regardless of their direction.
We can see in Figure 4 lower panels that this indeed is cap-
tured by our model for the SUB region where it reaches
similar firing rates no matter the direction of stimulus and
motion are. The relative timing of the activities in the areas
are also consistent with expectations. The solid lines in the
panels show estimated firing rates, which are consistent with
the data (dashed lines) in particular for VISp which had a
peak in firing rate early after stimulus was presented (see

below) and closely related to the presented visual stimuli
in the task. Note that in our framework, estimation of the
neural activities (firing rates) does not rely on selecting a
temporal bin size. This is unlike most previous state-of-the-
art works (Liu & Lengyel, 2021) where the output firing
rates are substantially affected by the choice of bin size.
Next, examining the behavioural predictions of our model,
the neural activities presented in Figure 4 show that sooner
responses (with high probabilities) are strongly related to
the peak intensities in VISp. In agreement with these find-
ings, middle right panel in Figure 4 shows higher probability
for the occurrence of reactions when the neural activity in
VISp peaks. SUB is also coupled to behaviour in the mid-
dle panel – in fact for both directions of movement. This
joint characterizations of neural activities and behavioural
responses reported in Figures 3 and 4 are indeed special to
our model.
Finally to evaluate the behavioural predictions of the model,
Figure 5 shows the estimated action intensities. These
closely match empirical response rates for both datasets.
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Figure 3. Synthetic Data (Upper panels). The activity rate of
neural population in the two integrator regions of the synthetic
dataset. The dashed lines show the empirically derived firing rates
compared to the solid lines which are estimated using the proposed
model. Each line plot corresponds to the average activity rate of
trials with Wn in a specific interval illustrated by the colorbar
(see Supplementary Materials F). (Lower panels). Illustrating
the average response rate for each interval of neural activity rates.
The plots correspond to the trials with highest coherence level.
The plots show the average between trials with a RIGHT reaction.
Error bars show the standard error. Purple bars show the average
behavioural response rates. Orange bars indicate the proportion of
trials with the occurrence of each neural response interval.
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Figure 4. Steinmetz (Upper panels). The activity rate of neural
population in the two sample regions of the Steinmetz dataset for
the highest contrast level on RIGHT. The dashed lines show the
empirically derived firing rates compared to the solid lines which
are estimated using the proposed model. Each line plot corre-
sponds to the average activity rate of trials with Wn in a specific
interval illustrated by the colorbar (see Supplementary Materials
F). (Middle panels). Illustrating the average response rate for each
interval of neural activity rates. The plots correspond to the trials
with high contrast on RIGHT. Error bars show the standard error.
Purple bars show the average behavioural response rates. Orange
bars indicate the proportion of trials with the occurrence of each
neural response interval. (Lower panels). Neural activities for
contralateral and ipsilateral stimuli. The VISp shows a direction
selective activity pattern, preferring the contralateral stimuli on the
RIGHT. However this is not the case for SUB which is in agreement
with reports in (Steinmetz et al., 2019) where this region is known
to contain firing neurons before the motion initiation regardless of
the direction of stimulus and movement.

3.4. Baseline Methods

We compare the negative log likelihoods (NLL) for the neu-
ral activity on sample regions of Steinmetz dataset as well
as the 4 regions of the synthetic dataset with the following
baseline point process estimators. For details on the utilized
settings for implementing the baseline methods, please see
the Supplementary Materials E.

• GLM (Truccolo et al., 2005; Paninski, 2004):
Generalized-linear models (GLM) also known as Pois-
son regression, are used to model the intensity of the
input data as a linear combination of time-dependent
covariates. Here, the total spike counts for all trials are
calculated and concatenated for count windows of 5ms
as inputs to the GLM.

a) b)

d)c)

Figure 5. Upper panels: Steinmetz dataset. Fitted behavioral
intensities (solid lines) match the empirical response rate densities
(colored bars) for trials with (left) high contrast on RIGHT and
(right) high contrast on LEFT. Empirical rate densities were cal-
culated on 0.02 s time bins. Lower panels: Synthetic dataset.
The fitted behavioral response intensities match the the empirical
response rate densities for high contrast on (left) RIGHT and (right)
LEFT. Empirical rate densities were calculated on 0.05 s time bins.

• NHPoisson Model (Cebrian, 2015): NHPoisson is
a method for the modelling non homogeneous Pois-
son processes in time estimating maximum likelihood.
The model is based on formulating the intensity as a
function of time-dependent covariates.

• Universal Count Model (Liu & Lengyel, 2021): This
model builds on sparse Gaussian processes (GP) to
capture arbitrary spike count distributions flexibly rely-
ing on observed and latent covariates. Using scalable
variational inference, it can jointly infer the covariate-
to-spike count distribution mappings and latent trajec-
tories. We also examine a second variant of this model
which replaces the GP-based approaches with an arti-
ficial neural network (ANN) mapping. We denote the
two variations by U-GP and U-ANN respectively.

• Poisson Gaussian-Process Latent Variable Model
(P-GPL) (Wu et al., 2017): In this model, Poisson
spiking observations are accompanied by two under-
lying Gaussian processes: One governing a temporal
latent variable, the other governing a set of nonlinear
tuning curves. The model learns using a decoupled
Laplace approximation which is a fast approximate
inference method. The same set of temporal covariates
as above are utilized in the implementation of this
method.
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Table 1. Comparison of the Negative Log-Likelihood (NLL) measure for the neural intensity function estimations in example regions of
the synthetic and Steinmetz datasets.

Methods Synthetic Dataset Steinmetz Dataset

D1 D2 E1 E2 VISp SUB VISam SNr

NN-Poisson -5285.118 -2703.695 -14708.950 -8570.335 3.451 -2.522 0.022 -19.217

GLM -324.343 -146.556 -439.662 -347.569 87.114 17.219 2.216 -5.782

NHPoisson -1330.065 -1066.044 -1354.954 -1341.548 33.817 -0.012 2.915 -11.871

U-GP -3532.831 -2317.245 -10334.716 -5289.174 12.337 1.336 1.066 -17.484

U-ANN -3417.905 -2010.752 -4981.384 -2863.996 12.679 1.354 1.108 -14.603

P-GPL -2631.857 -2196.593 -4774.682 -3729.311 12.375 -1.312 1.584 -15.173

Finally, Table 1 shows a comparison of the performance
of our proposed framework to those of recent prominent
baseline point process estimators.

It is important to mention that the performance of all the
baseline methods depend on the length of the selected time
bin for spike count calculation; a constraining dependency
causing non-robust results that our proposed method over-
comes. We selected the time bin length for optimal perfor-
mance by conducting a heuristic search.
Note that the average spike counts per region in the Stein-
metz dataset is roughly 60 times less than in the synthetic
one. This is due to the difference between the lengths of
the experiment and the numbers of neurons per region in
the Steinmetz and synthetic dataset. Thereby, the NLL mea-
sures differ by two orders of magnitude. Figure 6 shows the
comparison of the performance of the proposed model with
the baseline methods in estimating neural activity summed
over all the 37 regions in the test data of Steinmetz dataset
(including the 4 regions reported in Table 1).

4. Discussion
We presented a novel framework for linking neural spike
trains to sensory inputs and behaviour. The framework ex-
tended previous works on fMRI data (Dezfouli et al., 2018)
by using a flexible Point process framework. The model
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Figure 6. Total NLL of the estimated neural intensity function
on Steinmetz test set. Illustrating the sum of NLL values evaluated
over all the 37 test regions in the Steinmetz dataset using different
baselines compared to the performance of the proposed method.

was able to learn a suitable encoding of the stimulus and
provided a joint explanation for both behavioural and neu-
ral data that could be used to recover correlational links
between neural and behavioural activities. Unlike previ-
ous efforts, the learning process of the proposed model is
independent of the selection of a time bin for spike count cal-
culations obtaining higher robustness. The current method
represents the dependency of neural activity on stimulus and
trial duration, but not on previous neural activities – thus
capturing signal rather than noise correlations (although
the latter are an obvious target for future work). There are
many additional directions for future work: capturing richer
aspects of behaviour that are known to couple to neural
activity (Balleine & O’Doherty, 2010); integrating and/or
substituting spiking activity with calcium imaging; imple-
menting novel approaches such as the auto-regressive linear-
nonlinear-Poisson (LNP) models (Chichilnisky, 2001); dif-
ferentiating more finely the activity in different regions (in-
cluding neurons with opposite stimulus coding). Neverthe-
less, we suggest that our method casts brain and behaviour
interactions in a compelling new light.
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A. Proof of Theorem 1.
Following the Mapping Theorem of an inhomogeneous Poisson process (Grimmett & Stirzaker, 2020), and given a
one-to-one monotonic transformation function, zn(t′) = t, between the original inhomogeneous Poisson point process
0 < s′1 < s′2 <, . . . , < s′j ≤ Wn ≤ W and 0 < s1 < s2 <, . . . , < sj ≤ W , let 0 < s1 < s2 <, . . . , < sj ≤ W represent
a set of event (spike) times from a second inhomogeneous Poisson point process. Let g(t) represent the corresponding
event time probability density. Given g(t) is a density function (measurable and non-negative function), following the
push-forward probability density, we get:

g(t) = f((z−1)(t)) · ∂t (z−1), (13)

where z−1 is the inverse of the transformation, zn(.), and f(t′) is the event time probability density function of the original
Poisson point process.
Now, for t ∈ (0,W ], let N(t) be the sample path of the associated counting process. The sample path is a right continuous
function that jumps 1 at the event times and is constant otherwise. Then, we compute the probability that a spike sk occurs
in [t, t+∆t) where k = N(t) + 1. Note that events {N(t+∆t)−N(t) = 1} and {sk < t+∆t | sk > t} are equivalent.
Thereby,

P (N(t+∆t)−N(t) = 1) = P (sk < t+∆t | sk > t). (14)

From the definition of conditional probability:

P (sk < t+∆t | sk > t) =
P (t < s k < t+∆t)

P (sk > t)
. (15)

Therefore, we get:

P (N(t+∆t)−N(t) = 1) =
P (t < s k < t+∆t)

P (sk > t)
=

∫ t+∆t

t
g(u)du

1−
∫ t

sN(t)
g(u)du

. (16)

Using equation 13, we obtain:

P (N(t+∆t)−N(t) = 1) =

∫
t+∆t

t
∂u (z−1

n ) · f(z−1
n (u))du

1−
∫

t

sN(t)

∂u (z−1
n ) · f(z−1

n (u))du

. (17)

We also have u′ = z−1
n (u) and hence:

du

du′ =
du

dz−1
n (u)

=
1

dz−1
n (u)
du

=
1

∂u (z−1
n )

. (18)

Thereby, inserting the above in equation 17 and by a change of variable u to u′, noting that z−1
n (t+∆t) := (t+∆t)′, we

get:

P (N(t+∆t)−N(t) = 1) =

∫
(t+∆t)′

t′
∂u (z−1

n ) · f(u′) · 1
∂u (z−1

n )
du′

1−
∫

t′

s′
N(t′)

∂u (z−1
n ) · f(u′) · 1

∂u (z−1
n )

du′
= P (N(t+∆t)′ −N(t′) = 1), (19)

where N(t′) is the sample path of the associated counting process for t′ ∈ (0,Wn].
The intensity function of a point process, λ(t), can be written as:

λ(t) = lim
∆t→0

P (N(t+∆t)−N(t) = 1)

∆t
. (20)

hence, since we proved P (N(t+∆t)−N(t) = 1) = P (N(t+∆t)′ −N(t′) = 1), we get:

λ(t) = lim
∆t→0

P (N(t+∆t)−N(t) = 1)

∆t
= lim

∆t→0

P (N(t+∆t)′ −N(t′) = 1)

∆t
= λn(t

′). (21)
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Finally, the intensity function of the new count process λ(t) equals λn(t
′) of the original Poisson point process, thereby

satisfying the four properties of a Poisson point process (Ross et al., 1996) and we have now established our result. 2
Figure 7 is schematically illustrating this result in case of a linear transformation function.
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Figure 7. Illustrating the transformation of the Poisson point process in real time λn(t
′), to the rescaled time domain which results a point

process with intensity function λ(t). The transformation function zn(t
′) = t′ · W

Wn
performs a one-to-one monotonic mapping of the

events in real time (s′j) to the events on the rescaled time axis (sj).

B. Proof of Proposition 1.
The cumulative intensity function of a point process with intensity function λn(t

′) is given by:

Λn(t
′) =

∫ t′

0

λn(τ
′)dτ ′, (22)

for t′ ∈ (0,Wn], which can be (automatically) differentiated to produce the intensity function,

λn(t
′) =

∂Λn(t
′)

∂t′
. (23)

Given a monotonic transformation function zn(t
′) = t, and since λn(t

′) = λ(t) (see A), we get:

Λ(t) =

∫ t

0

λ(τ)dτ =

∫ t

0

λn(τ
′)dτ

=

∫ z−1
n (t)

0

λn(τ
′) · 1

∂τ (z
−1
n )

dτ ′.

(24)

Now, following integration by parts,

Λ(t) = Λn(t
′) · 1

∂t(z
−1
n )

−
∫ t′

0

Λn(τ
′) · d

dτ ′

(
1

∂τ (z
−1
n )

)
dτ ′. (25)

Inserting the special case of a linear transformation function where ∂τ (z
−1
n ) is a constant, the above equation reduces to:

Λ(t) =
1

∂t(z
−1
n )

· Λn(t
′). (26)

In this work, we rescaled time using function zn(t
′) = t′W/Wn where zn : [0,Wn] → [0,W ] and we chose to stretch the

firing rates. Thereby, trial specific cumulative intensity functions are simply defined as:
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Λ(t) =
W

Wn
· Λn(t

′). (27)

C. Model architecture and training
In this section we explain the details of the model architecture.

C.1. Steinmetz dataset

The input stimulus xn is passed through two dense layers with 20 units (SOFTPLUS activation). The output is then passed
through a layer with |hn| = 50 units using a linear activation function to create the stimulus embedding, hn. There is no
constraint on the weights in these layers.

As mentioned in the main text, we assumed the time rescaling function is linear. The elapsed time t′ ∈ [0,Wn] (since the
stimulus) is first scaled by a factor of W/Wn to obtain t ∈ [0,W ] and is then passed through a linear layer (with the same
number of units as |hn| = 50) with the weights constrained to be non-negative. The resulting output is added to hn, with
the sum then being passed through a TANH activation function.
The output of this TANH activation is passed through a dense layer with 20 units and a further TANH activation function
(first neural layer) and then through another dense layer with 42 units and SOFTPLUS activation function (second neural
layer). The weights of these layers are all constrained to be non-negative. The outputs of this layer correspond to ΛN

u(t;hn),
referred to as neural outputs, and are multiplied by Wn/W in the network readout to obtain ΛN

u,n(t
′;hn) for u = 1 . . . 42

which is then passed to the loss function.

For modelling behavioural data, the neural output (ΛN
u(t;hn)) is passed through a dense layer with 10 units (TANH activation)

and then through another dense layer with 1 unit (SOFTPLUS activation) to produce ΛB
RIGHT(t;hn). The weights are all

constrained to be non-negative.

The neural output (ΛN
u(t;hn)) is also passed through a dense layer with 10 units (TANH activation) and then through another

dense layer with 1 unit (SOFTPLUS activation) to produce ΛB
LEFT(t;hn). The weights of all the layers are constrained to be

non-negative.

Note that the path from t to neural and behavioural outputs only contains positive weights which, together with monotonic
activation functions, is a sufficient condition to guarantee that the outputs (neural and behavioural) are monotonic functions
of t (Sill, 1998; Chilinski & Silva, 2018; Omi et al., 2019).

ΛB
LEFT(t;hn) and ΛB

RIGHT(t;hn) were multiplied by factor of Wn/W to obtain trial specific values for ΛB
LEFT,n(t

′;hn) and
ΛB

RIGHT,n(t
′;hn).

Figure 8 visualizes the details of the model structure implemented to be trained on the Steinmetz dataset.

C.2. Synthetic dataset

The same model architecture was used for this dataset as explained above, but with the following differences: (i) the size of
output neural layer was set to four for the four regions involved in this dataset; (ii) the size of the embedding was set to
|hn| = 20, which was smaller than for the Steinmetz dataset, since the synthetic dataset had a smaller number of regions.

C.3. Training

Parameter adaptation was performed using the Adam optimizer with learning rates of 0.01 (Steinmetz) and 0.001 (synthetic).
The neural loss function was used to train all the weights up to the neural outputs, and behavioural loss was used to train all
the weights connecting neural outputs to the behavioural outputs. For the Steinmetz dataset, in each iteration of training the
weights were updated using neural loss for 10 steps, and then the behavioural loss was used to update the weights for 420
steps (each step is one update to the weights). The training process continued until no significant improvement on the losses
(on training data) was observed. For the synthetic dataset, in each iteration the neural loss was used to update the weights for
10 steps, which was followed by training using the behavioural loss for 40 steps.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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Figure 8. Model Architecture. Schematic representing the details of the implemented neural network to be trained on the Steinmetz
dataset. The neural and behavioural outputs of this network are multiplied by a factor of Wn/W for the selected linear transformation
function, z, to obtain the final model readouts.

For the generation of the synthetic data we used the code provided in this link3. We generated 1200 trials for training and
600 trials for testing. For the Steinmetz dataset, we used 12 sessions for testing and the rest for training. Note that since
in each session only a subset of regions were recorded (42 regions in total), we had 42 regions for training the model and
37 regions for testing the model. The split of sessions between training and test was chosen so as to obtain the maximum
number of regions in both training and test datasets. The data was downloaded from this link4.

Automatic differentiation in Tensorflow was used to calculate the intensities.

D. Effects of spike time rescaling on model performance
To illustrate the effectiveness of our proposed model and the increase in model performance compared to the case where
the time rescaling block is disabled, we reproduced both networks and evaluated them on the synthetic dataset. The two
networks were identical in all other aspects. The NLL measures computed on the test data for both networks in all 4 regions
as well as the scores of the NO SCALING version of the model relative to the original model are listed in Table 2; the positive
score means that the proposed model (with time rescaling) is better than the case without rescaling.

Table 2. Comparison of the Negative Log-Likelihood (NLL) measure for the neural intensity function estimations in the original model
with and without time rescaling.

Network Model Synthetic Dataset

D1 D2 E1 E2 Total

NN-Poisson (time rescaling) -5285.118 -2703.695 -14708.95 -8570.335 -31268.098

NN-Poisson (no time rescaling) -5038.888 -2477.002 -14574.856 -8394.009 -30484.717

Relative score 0.04 0.08 0.009 0.02 0.025

3https://senselab.med.yale.edu/MicrocircuitDB/showModel.cshtml?model=168867
&file=%2Fhierarchical_network%2Freadme.html#tabs-2

4https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-files

https://senselab.med.yale.edu/MicrocircuitDB/showModel.cshtml?model=168867&file=%2Fhierarchical_network%2Freadme.html#tabs-2
https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-files
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E. Baseline Methods
For the comparison of our method with the available baselines, we use Generalized-linear models (GLM) (Truccolo et al.,
2005; Paninski, 2004) as well as a recent method for modelling non homogeneous Poisson processes (NHPoisson) (Cebrian,
2015). The baseline comparisons were based on the best performance across time-scaled or not-scaled input spike trains,
and across different bin sizes for each dataset (e.g., if sparsity mattered).

E.1. GLM

For comparison with a Poisson family GLM, one Poisson GLM with a continuous predictor (elapsed time), a categorical
predictor with three/four levels for synthetic/Steinmetz dataset (stimuli coherence/contrast), as well as a behavioral predictor
(the reaction times) is used to estimate the neural intensity function of each region. As the continuous predictor, we include
a list of sinusoidal, tanh, and exponential functions of the elapsed time as covariates. The observed behavioral covariates are
in the form of temporal arrays consisting of NO-ACTION:0, RIGHT reaction time, or -LEFT reaction time in each time bin.
Note that the sign of the provided reaction time is indicative of the direction of the motion. The total spike counts for all
trials were then calculated and concatenated for count windows of 5ms. Due to the large data size and the use of aggregated
spike counts from all trials, we did not use self-coupling terms for spike events. The spike counts were then used as targets
for the GLM, leading to a specific neural intensity function. The derived intensity function was then used to calculate the
negative log-likelihood (NLL) based on equation 1.

E.2. NHPoisson

We used the same procedure as above with the count windows equal to 0.5 ms for the Steinmetz and synthetic datasets to
extract the regional activity rates exploiting the elapsed time, trial stimulus type, and the behavioral reaction times. The
NHPoisson R package 5 (Cebrian, 2015) requires binary information about whether a given event has occurred in each
time bin. Thereby, we used a smaller count window with an order of magnitude similar to inter spike intervals. This
enabled us to keep the average spike events per non empty time bin equal to 0.97 and 0.99 for Steinmetz and synthetic
datasets respectively. A binary vector then stored the presence or absence of spikes in each time bin and then non-zero
indices were fed to the NHPoisson model. Repeatedly, in addition to elapsed time arrays and the categorical array of stimuli
coherence/contrast levels for synthetic/Steinmetz dataset, temporal arrays consisting of NO-ACTION:0, RIGHT reaction time,
or -LEFT reaction time in each time bin were also provided as behavioural covariates. We also examined a list of sinusoidal,
tanh, and exponential functions of the elapsed time as covariates. Using the embedded Akaike information criterion (AIC)
calculator in the package, the best covariate was selected and added to the model (lowest AIC score). The extracted neural
intensity functions for each region were then obtained. The derived intensity functions were plugged into equation 1 to
obtain NLL values for the NHPoisson model.

E.3. Universal Count Model

This universal probabilistic spike count model uses sparse Gaussian processes to derive spike count distributions. It consists
of C Gaussian process (GP) priors, a basis expansion, and a linear-softmax mapping 6 (Liu & Lengyel, 2021). Using 1 ms
time bins, the spike counts of all trials associated with each neuron (in the Steinmetz dataset) or the neuronal population (in
the synthetic dataset) are calculated and concatenated together. Note that for the case of the synthetic dataset, since the
generated spike time sequences are not associated with specific neuron IDs and represent the population activity, a single
cumulative spike count sequence was fed to the model for training. Once again, we use the elapsed time, the categorical
stimulus type associated with each trial repeated for the duration of the trial, as well as the behavioural temporal array
(consisting of 0 (i.e. NoGo), RIGHT reaction time, or -LEFT reaction time in each time bin) as the observed covariates for the
model. To implement the original model (U-GP), we set hyperparameter C = 3 as suggested in (Liu & Lengyel, 2021) and
choose an elementwise linear-exponential basis expansion. We use 5 fold-cross validation on the data from each region and
we cross-validate over the neuron dimension by using the train set to infer the latent states in the test data, and then evaluate
the cross-validated log-likelihood of the fitted model. For the case of synthetic dataset, the cross validation is across the
trials. The learning rate is set to 0.001 and we choose a tuple batch size (to indicate the trial structure of the data; for details
please refer to (Liu & Lengyel, 2021)) equal to the number of time bins accumulated over all trials associated with each
region. In this method, an inference model with log likelihood based objectives using variational inference is built upon the

5R package can be found at: https://www.jstatsoft.org/article/view/v064i06
6The code is available at: https://github.com/davindicode/universal-count-model

https://www.jstatsoft.org/article/view/v064i06
https://github.com/davindicode/universal-count-model
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data and spike couplings are computed and added as well.
In the second variation of the model (U-ANN), the same setting is implemented by replacing the GP mapping with an
artificial neural network (ANN) mapping. In this model, a 10-fold cross validation is utilized. The remainder of the
parameters and model settings are tuned according to the suggestions in (Liu & Lengyel, 2021).

E.4. Poisson Gaussian-Process Latent Variable (P-GPL)

This model uses Poisson spiking observations and two underlying Gaussian processes 7 (Wu et al., 2017). A fast approximate
inference method called the decoupled Laplace approximation is applied to learn the model from data. A Gaussian process
is first used to extract the nonlinear evolution of the latent dynamic in the form of a latent variable. A second GP then
generates the log of the tuning curve as a nonlinear function of the latent variable. This curve is then mapped to a final tuning
curve via an exponential link function to estimate the spike rates of each neuron (λi(t) for the ith neuron) and henceforth
obtain the population activity rate in each discrete time bin. Here, the spike count matrix consisting of spike counts in time
bins of 1 ms for each neuron (or the whole population in the synthetic dataset) is used to construct a generative model of the
latent structure underlying these data. The data from all trials for each neuron are once again concatenated. Both Sinusoid
and deterministic Gaussian bump tuning curves are examined to estimate the latent processes. The deterministic Gaussian
bump tuning curve was then selected to report the results due to higher performance on our data which was expected given
the naturally 2D motion space which is present in the Steinmetz dataset. We first estimated the parameters for the mapping
function using spike trains from all the neurons within the training dataset. Then these parameters were fixed and the latent
process using spike trains from 70% of the test data were inferred (as suggested in (Wu et al., 2017)). We then report the
NLL measure comparing the estimated latent process generating λi(t) values and the known empirical rates from the
remaining test data averaged over all neurons in each region. The rest of the parameters are chosen according to (Wu et al.,
2017).

F. Calculation of empirical rates
For the empirical firing rates, we divided the observation period into equally-sized bins each having 0.008s and 0.05s width
for the Steinmetz and synthetic datasets respectively. Then, we calculated the total number of spikes in each period and
normalized that by the total number of neurons and trials contributed to the spike set and also by the period duration (0.008s
or 0.05s). Note that only spikes which were made before the response were included in the analysis. Moreover, given the
selected stimulus type for each examined Wn in Figure 4, only trials which had end times in an interval of 37.5 ms before
the Wn were included. This interval was chosen to be 60 ms for the results in Figure 3. This interval’s width was adjusted
so that for each region in both datasets, at least 15% of all trials with the chosen stimulus type would fall within the interval
before each of the 5 selected Wns in Figures 9 and 11.

G. Additional results
G.1. Synthetic dataset

Using the procedure explained in Section F, Figure 9 shows the comparison of the model estimation to the empirically
derived firing rates for all the regions in the synthetic dataset.

To evaluate the performance of the model in terms of predicting the behaviour of the neural population and the reaction
times, we used all trials with rightward motion and fed them to the trained network of the model to get the estimated neural
and behavioural response rates. The average of the estimated behavioural response rates corresponding to each of a set of
potential intervals of the estimated neural responses were then calculated over trials. Figure 10 shows the results for all 4
regions. The purple bars show the average behavioural response rate in each occurred neural activity interval. The orange
bars indicate the proportion of trials which achieve each specific neural activity range among all RIGHT trials, hence its
occurrence frequency. Comparing the sensory regions in this figure, the behavioural correlate is with a low firing rate for E2
and with significantly higher firing rates in E1 which is the rightward selective sensory region.

7This method is implemented as a part of the following repository: https://github.com/davindicode/
universal-count-model

https://github.com/davindicode/universal-count-model
https://github.com/davindicode/universal-count-model
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Figure 9. Synthetic Dataset. The red dashed lines are the empirically derived firing rates compared to the blue solid lines which are
estimated using the proposed model. The plots correspond to the trials with high contrast on RIGHT. As expected from the dataset
architecture, for trials when the RIGHT choice is made, the activity in D1 represents an increasing trend until the response is made. This is
in contrast with region D2 for these trials where there is little to no activity detected in this region. Neurons in both sensory regions, E1
and E2 show constant activity throughout each trial with higher activity detected by E1 neurons which prefer rightward motion.

G.2. Steinmetz dataset

With a similar procedure as explained above, Figure 11 shows the comparison of the model estimation with the empirically
derived firing rates for all the regions in the Steinmetz dataset. The occasional observed underfitting for some regions may
be overcome by further forms of regularization in future works. The plots highlight the performance quality of the trained
network on test regions. The temporal neural pattern in each region is well captured by the model outputs for different
observation windows Wn.

The behavioural performances were also evaluated similar to above for the available test regions in the Steinmetz dataset.
Figure 12 illustrates the results. In each region, the highest response rates correspond to the neural activity values achieved
near the end of trial in Figure 11. The purple bars show the average behavioural response rate in each neural activity interval.
The orange bars show how frequently these were observed in each RIGHT trial; meaning the occurrence ratio of that specific
neural response range over all RIGHT test trials.
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Figure 10. Synthetic Dataset Illustrating the average estimated response rate for each interval of estimated neural activity. Error bars
show the standard error. Purple bars show the average behavioural response rates. Orange bars indicate the proportion of trials with the
occurrence of each neural response interval. As expected in the RIGHT trials and represented by purple bars, highest behaviour rates are
detected in D1 when neural activities approach 40 spikes/s in the (32,36) and (36,40) range. On the other hand, there is little to no activity
estimated for D2 which is a leftward preferring integration region. Highest response rates are achieved for when E1 neural activity is in
the vicinity of 40 spikes/s (in the (36,40) range) and when the neural activity in E2 is in (12,14) range. These are in agreement with results
from Figure 9.
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Figure 11. Steinmetz Dataset. The red dashed lines are the empirically derived firing rates compared to the blue solid lines which are
estimated using the proposed model. The plots correspond to the trials with high contrast on RIGHT. The results are obtained only using
trials with the RIGHT side contrast higher than LEFT.
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Figure 12. Steinmetz Dataset. Illustrating the average estimated response rate for each interval of estimated neural activity. The purple
bars show the average behavioural response rate and orange bars represent the occurrence ratio of that specific neural response interval
among all RIGHT test trials. Error bars show the standard error. The size of error bars is invisible compared to the bar sizes in most cases.


